Sample records for o2 uptake rates

  1. Oscillation in O2 uptake in impulse exercise.

    PubMed

    Yano, T; Afroundeh, R; Yamanaka, R; Arimitsu, T; Lian, C S; Shirakawa, K; Yunoki, T

    2014-06-01

    The purpose of the present study was to examine 1) whether O(2) uptake (VO(2)) oscillates during light exercise and 2) whether the oscillation is enhanced after impulse exercise. After resting for 1 min on a bicycle seat, subjects performed 5-min pre-exercise with 25 watts work load, 10-s impulse exercise with 200 watts work load and 15-min post exercise with 25 watts work load at 80 rpm. VO(2) during pre-exercise significantly increased during impulse exercise and suddenly decreased and re-increased until 23 s after impulse exercise. In the cross correlation between heart rate (HR) and VO(2) after impulse exercise, VO(2) strongly correlated to HR with a time delay of -4 s. Peak of power spectral density (PSD) in HR appeared at 0.0039 Hz and peak of PSD in VO(2) appeared at 0.019 Hz. The peak of the cross power spectrum between VO(2) and HR appeared at 0.0078 Hz. The results suggested that there is an oscillation in O(2) uptake during light exercise that is associated with the oscillation in O(2) consumption in active muscle. The oscillation is enhanced not only by change in O(2) consumption but also by O(2) content transported from active muscle to the lungs.

  2. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.

    PubMed

    Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J

    2001-12-01

    Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P < 0.05), consistent with 5- to 10-fold increases in matrix NO concentration. Accordingly, mtNOS expression (75%) and activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.

  3. Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in northwestern Europe

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Ouyang, B.; Allan, J. D.; Aruffo, E.; Di Carlo, P.; Kennedy, O. J.; Lowe, D.; Flynn, M. J.; Rosenberg, P. D.; Williams, P. I.; Jones, R.; McFiggans, G. B.; Coe, H.

    2015-01-01

    Aerosol chemical composition was found to influence nighttime atmospheric chemistry during a series of airborne measurements in northwestern Europe in summer conditions, which has implications for regional air quality and climate. The uptake of dinitrogen pentoxide, γ (N2O5), to particle surfaces was found to be modulated by the amount of water content and ammonium nitrate present in the aerosol. The conditions prevalent in this study suggest that the net uptake rate of N2O5 to atmospheric aerosols was relatively efficient compared to previous studies, with γ (N2O5) values in the range 0.01-0.03. This is likely a consequence of the elevated relative humidity in the region, which promotes greater aerosol water content. Increased nitrate concentrations relative to particulate water were found to suppress N2O5 uptake. The results presented here contrast with previous ambient studies of N2O5 uptake, which have generally taken place in low-nitrate environments in the USA. Comparison of the N2O5 uptake derived from the measurements with a parameterised scheme that is based on the ratio of particulate water to nitrate yielded reasonably good agreement in terms of the magnitude and variation in uptake, provided the effect of chloride was neglected. An additional suppression of the parameterised uptake is likely required to fully capture the variation in N2O5 uptake, which could be achieved via the known suppression by organic aerosol. However, existing parameterisations representing the suppression by organic aerosol were unable to fully represent the variation in N2O5 uptake. These results provide important ambient measurement constraint on our ability to predict N2O5 uptake in regional and global aerosol models. N2O5 uptake is a potentially important source of nitrate aerosol and a sink of the nitrate radical, which is the main nocturnal oxidant in the atmosphere. The results further highlight the importance of ammonium nitrate in northwestern Europe as a key component

  4. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  5. Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in North-Western Europe

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Ouyang, B.; Allan, J. D.; Aruffo, E.; Di Carlo, P.; Kennedy, O. J.; Lowe, D.; Flynn, M. J.; Rosenberg, P. D.; Williams, P. I.; Jones, R.; McFiggans, G. B.; Coe, H.

    2014-07-01

    Aerosol chemical composition was found to influence nighttime atmospheric chemistry during a series of airborne measurements in North-Western Europe in summer conditions, which has implications for regional air quality and climate. The uptake of dinitrogen pentoxide, γ (N2O5), to particle surfaces was found to be modulated by the amount of water content and ammonium nitrate present in the aerosol. The conditions prevalent in this study suggest that the net uptake rate of N2O5 to atmospheric aerosols was relatively efficient compared to previous studies, with γ (N2O5) values in the range 0.01-0.03. This is likely a consequence of the elevated relative humidity in the region, which promotes greater aerosol water content. Increased nitrate concentrations relative to particulate water were found to suppress N2O5 uptake. The results presented here contrast with previous ambient studies of N2O5 uptake, which have generally taken place in low-nitrate environments in the USA. Comparison of the N2O5 uptake derived from the measurements with a parameterised scheme that is based on the ratio of particulate water to nitrate yielded reasonably good agreement in terms of the magnitude and variation in uptake, provided the effect of chloride was neglected. An additional suppression of the parameterised uptake is likely required to fully capture the variation in N2O5 uptake, which could be achieved via the known suppression by organic aerosol. However, existing parameterisations representing the suppression by organic aerosol were unable to fully represent the variation in N2O5 uptake. These results provide important ambient measurement constraint on our ability to predict N2O5 uptake in regional and global aerosol models. N2O5 uptake is a potentially important source of nitrate aerosol and a sink of the nitrate radical, which is the main nocturnal oxidant in the atmosphere. The results further highlight the importance of ammonium nitrate in North-Western Europe as a key

  6. O2 uptake kinetics during exercise at peak O2 uptake.

    PubMed

    Scheuermann, Barry W; Barstow, Thomas J

    2003-11-01

    Compared with moderate- and heavy-intensity exercise, the adjustment of O2 uptake (VO2) to exercise intensities that elicit peak VO2 has received relatively little attention. This study examined the VO2 response of 21 young, healthy subjects (25 +/- 6 yr; mean +/- SD) during cycle ergometer exercise to step transitions in work rate (WR) corresponding to 90, 100, and 110% of the peak WR achieved during a preliminary ramp protocol (15-30 W/min). Gas exchange was measured breath by breath and interpolated to 1-s values. VO2 kinetics were determined by use of a two- or three-component exponential model to isolate the time constant (tau2) as representative of VO2 kinetics and the amplitude (Amp) of the primary fast component independent of the appearance of any VO2 slow component. No difference in VO2 kinetics was observed between WRs (tau90 = 24.7 +/- 9.0; tau100 = 22.8 +/- 6.7; tau110 = 21.5 +/- 9.2 s, where subscripts denote percent of peak WR; P > 0.05); nor in a subgroup of eight subjects was tau2 different from the value for moderate-intensity (2 = 25 +/- 12 s, P > 0.05). As expected, the Amp increased with increasing WRs (Amp90 = 2,089 +/- 548; Amp100 = 2,165 +/- 517; Amp110 = 2,225 +/- 559 ml/min; Amp90 vs. Amp110, P < 0.05). However, the gain (G) of the VO2 response (deltaVO2/deltaWR) decreased with increasing WRs (G90 = 8.5 +/- 0.6; G100 = 7.9 +/- 0.6; G110 = 7.3 +/- 0.6 ml.min-1.W-1; P < 0.05). The Amp of the primary component approximated 85, 88, and 89% of peak Vo2 during 90, 100, and 110% WR transitions, respectively. The results of the present study demonstrate that, compared with moderate- and heavy-intensity exercise, the gain of the Vo2 response (as deltaVO2/DeltaWR) is reduced for exercise transitions in the severe-intensity domain, but the approach to this gain is well described by a common time constant that is invariant across work intensities. The lower deltaVO2/deltaWR may be due to an insufficient adjustment of

  7. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  8. Oxygen uptake and local Po2 profiles in submerged larvae of phaeoxantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air.

    PubMed

    Zerm, M; Zinkler, D; Adis, J

    2004-01-01

    We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae of Phaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po(2)) were measured with microcoaxial needle electrodes close to larvae submerged in initially air-saturated still water. The Po(2) profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO(2) production (sV dot co2) with an infrared gas analyzer at 29 degrees C. The sV dot co2 was around 1.8 mu L g(-1) min(-1), equivalent to an oxygen consumption rate (sV dot o2) of 1.8-2.6 mu L g(-1) min(-1). Oxygen consumption (V dot o2) of individually submerged larvae measured in closed respiration chambers at 19-10.3 kPa Po(2) (initially air saturated, 29 degrees C) ranged between 0.05 and 0.2 mu L min(-1) and was not correlated with body mass. The sV dot o2 ranged between 0.1 and 0.4 mu L min(-1), that is, 4%-22% of the metabolic rate measured in air. Mean V dot o2 decreased with declining Po(2); however, some individuals showed contrary patterns. V dot o2 was additionally measured in dormant larvae, in larvae submerged for 1-2 d in open water or for 30-49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of V dot o2 was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar V dot o2 across the whole range of body mass investigated (0.31-0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.

  9. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  10. Increased plasma O2 solubility improves O2 uptake of in situ dog muscle working maximally.

    PubMed

    Hogan, M C; Willford, D C; Keipert, P E; Faithfull, N S; Wagner, P D

    1992-12-01

    A perfluorocarbon emulsion [formulation containing 90% wt/vol perflubron (perfluorooctylbromide); Alliance Pharmaceutical] was used to increase O2 solubility in the plasma compartment during hyperoxic low hemoglobin concentration ([Hb]) perfusion of a maximally working dog muscle in situ. Our hypothesis was that the increased plasma O2 solubility would increase the muscle O2 diffusing capacity (DO2) by augmenting the capillary surface area in contact with high [O2]. Oxygen uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 4) while working for 6 min at a maximal stimulation rate of 1 Hz (isometric tetanic contractions) on three to four separate occasions for each muscle. On each occasion, the last 4 min of the 6-min work period was split into 2 min of a control treatment (only emulsifying agent mixed into blood) and 2 min of perflubron treatment (6 g/kg body wt), reversing the order for each subsequent work bout. Before contractions, the [Hb] of the dog was decreased to 8-9 g/100 ml and arterial PO2 was increased to 500-600 Torr by having the dog breathe 100% O2 to maximize the effect of the perflubron. Muscle blood flow was held constant between the two experimental conditions. Plasma O2 solubility was almost doubled to 0.005 ml O2 x 100 ml blood-1 x Torr-1 by the addition of the perflubron. Muscle O2 delivery and maximal VO2 were significantly improved (at the same blood flow and [Hb]) by 11 and 12.6%, respectively (P < 0.05), during the perflubron treatment compared with the control. O2 extraction by the muscle remained the same between the two treatments, as did the estimate of DO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis

    PubMed Central

    Eichelmann, H.; Oja, V.; Peterson, R.B.; Laisk, A.

    2011-01-01

    Light response (at 300 ppm CO2 and 10–50 ppm O2 in N2) and CO2 response curves [at absorbed photon fluence rate (PAD) of 550 μmol m−2 s−1] of O2 evolution and CO2 uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO3− or NH4+ as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH4NO3. Photosynthetic O2 evolution in excess of CO2 uptake was measured with a stabilized zirconia O2 electrode and an infrared CO2 analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO2, mainly NO2−, SO42−, and oxaloacetate. In NO3−-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O2–CO2 flux difference rapidly increased to about 1 μmol m−2 s−1 at very low PADs and the process was saturated at 50 μmol quanta m−2 s−1. At higher PADs the O2–CO2 flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m−2 s−1. In NH4+-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O2 evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO2− which successfully competes with CO2 reduction and saturates at a rate of about 1 μmol O2 m−2 s−1 (9% of the maximum O2 evolution rate). The high-PAD component of about 1 μmol O2 m−2 s−1, superimposed on NO2− reduction, may represent oxaloacetate reduction. The roles of NO2−, oxaloacetate, and O2 reduction in the regulation of ATP/NADPH balance are discussed. PMID:21239375

  12. Probing the Release and Uptake of Water in α-MnO 2 · xH 2O

    DOE PAGES

    Yang, Zhenzhen; Ford, Denise C.; Park, Joong Sun; ...

    2016-12-27

    Alpha-MnO 2 is of interest as a cathode material for 3 V lithium batteries and as an electrode/electrocatalyst for higher energy, hybrid Li-ion/Li–O 2 systems. It has a structure with large tunnels that contain stabilizing cations such as Ba 2+, K + , NH 4 + , and H3O + (or water, H 2O). When stabilized by H 3O + /H 2O, the protons can be ion-exchanged with lithium to produce a Li 2O-stabilized α-MnO 2 structure. It has been speculated that the electrocatalytic process in Li–O 2 cells may be linked to the removal of lithium and oxygen frommore » the host α-MnO 2 structure during charge, and their reintroduction during discharge. In this investigation, hydrated α-MnO 2 was used, as a first step, to study the release and uptake of oxygen in α-MnO 2. Temperature-resolved in situ synchrotron X-ray diffraction (XRD) revealed a nonlinear, two-stage, volume change profile, which with the aide of X-ray absorption near-edge spectroscopy (XANES), redox titration, and density functional theory (DFT) calculations, is interpreted as the release of water from the α-MnO 2 tunnels. The two stages correspond to H 2O release from intercalated H 2O species at lower temperatures and H 3O + species at higher temperature. Thermogravimetric analysis confirmed the release of oxygen from α-MnO 2 in several stages during heating–including surface water, occluded water, and structural oxygen–and in situ UV resonance Raman spectroscopy corroborated the uptake and release of tunnel water by revealing small shifts in frequencies during the heating and cooling of α-MnO 2. Lastly, DFT calculations revealed the likelihood of disordered water species in binding sites in α-MnO 2 tunnels and a facile diffusion process.« less

  13. On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor

    PubMed Central

    Riisgård, Frederik Kier; Gunther, William Stuart; Lønsmann Iversen, Jens Jørgen

    2006-01-01

    Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4+, NO2−, or NO3− was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4+ as the nitrogen source and 1.3 when NO3− was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified. PMID:19396354

  14. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China.

    PubMed

    Wang, Yongsheng; Cheng, Shulan; Fang, Huajun; Yu, Guirui; Xu, Minjie; Dang, Xusheng; Li, Linsen; Wang, Lei

    2014-01-01

    To date, few studies are conducted to quantify the effects of reduced ammonium (NH4+) and oxidized nitrate (NO3-) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha(-1) yr(-1). Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0-20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4+-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3(-)-N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4+-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3(-)-N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.

  15. Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton.

    PubMed

    Le, Van Nhan; Rui, Yukui; Gui, Xin; Li, Xuguang; Liu, Shutong; Han, Yaning

    2014-12-05

    SiO2 nanoparticle is one of the most popular nanomaterial which has been used in various fields, such as wastewater treatment, environmental remediation, food processing, industrial and household applications, biomedicine, disease labeling, and biosensor, etc. In agriculture, the use of SiO2 nanoparticles as insecticide, carriers in drug delivery, or in uptake and translocation of nutrient elements, etc., has been given attention. However, the effects of nanoparticles on plants have been seldom studied. In this work, the toxicity of SiO2 nanoparticles and their uptake, transport, distribution and bio-effects have been investigated in Bt-transgenic cotton. The phytotoxic effects of SiO2 nanoparticles were exhibited in Bt-transgenic cotton with different SiO2 concentrations of 0, 10, 100, 500 and 2000 mg.L(-1) for 3 weeks through dry biomasses, nutrient elements, xylem sap, enzymes activities, and hormone concentrations. The uptake and distribution of nanoparticles by the plants were confirmed using transmission electron microscopy (TEM). The SiO2 nanoparticles decreased significantly the plant height, shoot and root biomasses; the SiO2 nanoparticles also affected the contents of Cu, Mg in shoots and Na in roots of transgenic cotton; and SOD activity and IAA concentration were significantly influenced by SiO2 nanoparticles. In addition, SiO2 nanoparticles were present in the xylem sap and roots as examined by TEM showing that the SiO2 nanoparticles were transported from roots to shoots via xylem sap. This is the first report of the transportation of SiO2 nanoparticles via xylem sap within Bt-transgenic cotton. This study provides direct evidence for the bioaccumulation of SiO2 nanoparticles in plants, which shows the potential risks of SiO2 nanoparticles impact on food crops and human health.

  16. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  17. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    PubMed

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  18. CO 2 uptake is offset by CH 4 and N 2O emissions in a poplar short-rotation coppice

    DOE PAGES

    Zenone, Terenzio; Zona, Donatella; Gelfand, Ilya; ...

    2015-04-18

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. These are commonly cultivated as short-rotation coppice (SRC), and currently poplar ( Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO 2), methane (CH 4) and nitrous oxide (N 2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4more » years of the study was an emission of 1.90 (±1.37) Mg CO 2eq ha -1; this indicated that soil trace gas emissions offset the CO 2 uptake by the plantation. CH 4 and N 2O contributed almost equally to offset the CO 2 uptake of -5.28 (±0.67) Mg CO2eq ha -1 with an overall emission of 3.56 (±0.35) Mg CO 2eq ha -1 of N 2O and of 3.53 (±0.85) Mg CO 2eq ha-1 of CH 4. N 2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N 2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N 2O and CH 4, respectively. Here, this study underlines the importance of the ‘non-CO 2 GHGs’ on the overall balance. Further long-term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.« less

  19. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    NASA Astrophysics Data System (ADS)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  20. Heterogenous uptake of gaseous N(sub 2)O(sub 5) by sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Leu, M. -T.; Kane, S. M.; Caloz, F.

    2001-01-01

    The heterogeneous uptake of gaseous N sub 2 O sub 5 by ammonium sulfate, ammonium bisulfate, and sulfuric acid aerosols as a function of relative humididty has been investigated at room temperature and atmsopheric pressure.

  1. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    PubMed

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent.

    PubMed

    Tan, Ling-Yan; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Yang, Liu-Yan; Miao, Ai-Jun

    2016-07-19

    Calcium plays versatile roles in aquatic ecosystems. In this study, we investigated its effects on the uptake of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) by the water flea (cladoceran) Daphnia magna. Particle distribution in these daphnids was also visualized using synchrotron radiation-based micro X-ray fluorescence spectroscopy, transmission electron microscopy, and scanning electron microscopy. At low ambient Ca concentrations in the experimental medium ([Ca]dis), PAA-TiO2-NPs were well dispersed and distributed throughout the daphnid; the particle concentration was highest in the abdominal zone and the gut, as a result of endocytosis and passive drinking of the nanoparticles, respectively. Further, Ca induced PAA-TiO2-NP uptake as a result of the increased Ca influx. At a high [Ca]dis, the PAA-TiO2-NPs formed micrometer-sized aggregates that were ingested by D. magna and concentrated only in its gut, independent of the Ca influx. Our results demonstrated the multiple effects of Ca on nanoparticle bioaccumulation. Specifically, well-dispersed nanoparticles were taken up by D. magna through endocytosis and passive drinking whereas the uptake of micrometer-sized aggregates relied on active ingestion.

  3. Convective and Diffusive O2 Transport Components of Peak Oxygen Uptake Following Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Ade, Carl J.; Moore, A. D.

    2014-01-01

    Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.

  4. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at

  5. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna.

    PubMed

    Hartmann, Nanna B; Legros, Samuel; Von der Kammer, Frank; Hofmann, Thilo; Baun, Anders

    2012-08-15

    The use of engineered nanoparticles (e.g. in industrial applications and consumer products) is increasing. Consequently, these particles will be released into the aquatic environment. Through aggregation/agglomeration and sedimentation, sediments are expected ultimately to be sinks for nanoparticles. Both in the water phase and in the sediments engineered nanoparticles will mix and interact with other environmental pollutants, including metals. In this study the toxicity of cadmium to two freshwater organisms, water column crustacean Daphnia magna and sediment oligochaete Lumbriculus variegatus, was investigated both in the absence and presence of titanium dioxide (TiO(2)) nanoparticles (P25 Evonic Degussa, d: 30 nm). The uptake of cadmium in sub-lethal concentrations was also studied in the absence and presence of 2 mg/L TiO(2) nanoparticles. Formation of larger nanoparticles aggregates/agglomerates was observed and sizes varied depending on media composition (358±13 nm in US EPA moderately hard synthetic freshwater and 1218±7 nm in Elendt M7). TiO(2) nanoparticles are potential carriers for cadmium and it was found that 25% and 6% of the total cadmium mass in the test system for L. variegatus and D. magna tests were associated to suspended TiO(2) particles, respectively. μXRF (micro X-ray fluorescence) analysis confirmed the uptake of TiO(2) in the gut of D. magna. For L. variegatus μXRF analysis indicated attachment of TiO(2) nanoparticles to the organism surface as well as a discrete distribution within the organisms. Though exact localisation in this organism was more difficult to assess, the uptake seems to be within the coelomic cavity. Results show that the overall body burden and toxicity of cadmium to L. variegatus was unchanged by addition of TiO(2) nanoparticles, showing that cadmium adsorption to TiO(2) nanoparticles did not affect overall bioavailability. Despite facilitated uptake of cadmium by TiO(2) nanoparticles in D. magna, resulting in

  6. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  7. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  8. Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.

    PubMed

    Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman

    2018-01-01

    Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.

  9. Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K

    NASA Technical Reports Server (NTRS)

    Chen, A.; Johnsen, R.; Biondi, M. A.

    1977-01-01

    Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data.

  10. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2016-11-01

    Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m -2 ) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCF max ) represent faster kinetics of the respective parameter. CCF max of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCF max of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg -1 ·min -1 ; post-training: 29.3 ± 6.5 mL·kg -1 ·min -1 , P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.

  11. Heterogeneous Nitration of Tyrosine by NO­3 and N2O5: Rates, Mechanisms and Product Yields

    NASA Astrophysics Data System (ADS)

    Talukdar, R. K.; Witkowski, B.; Burkholder, J. B.; Roberts, J. M.

    2015-12-01

    Nitration of protein-bound tyrosine has been identified as a casual connection between air pollution and human health. Tyrosine is a common amino acid, 4-hydroxyphenylalanine, HO-C6H4-CH2-CH(NH2)-C(O)OH), and is present in many atmospheric bio-aerosols. Nitration of the aromatic units of protein molecules in polluted air enhances their allergenicity. The mechanism of heterogeneous nitration process of bio-aerosols by common nitrating agents in the atmosphere, O3/NO2, NO3, N2O5 is not well understood. This chemistry is thought to proceed via reactions with O3 and NO2 on particle surfaces, through mechanisms that are still uncertain. The possible role of higher nitrogen oxides also remains uncertain, partly due to a lack of measurements of fundamental chemical and physical parameters. In this work, we undertook measurements of reactive uptake of NO3, N2O5, as a function of relative humidity and temperature in a tyrosine coated flow tube reactor with chemical ionization mass spectrometric (CIMS) detection. Uptake coefficients on tyrosine coated flow tube were small under low relative humidity but were enhanced by an order of magnitude in the presence of high relative humidity, particularly for N2O5. The measured uptake coefficients were mostly due to reaction with water adsorbed on the surface of the flow tube. Only ~10% of the reactive uptake could be attributed to reaction with tyrosine. Following uptake, the contents of the flow tube were extracted, and analyzed using electrospray ionization - mass spectrometer (ESI-MS) to identify and quantify the products of the nitration reaction. The only organic reaction product detected was 3-nitro-tyrosine (3-NT). The measured uptake coefficients, mechanism of the title reactions and the possible atmospheric implications of these findings will be discussed.

  12. Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise

    PubMed Central

    Chin, Lisa M K; Leigh, Ryan J; Heigenhauser, George J F; Rossiter, Harry B; Paterson, Donald H; Kowalchuk, John M

    2007-01-01

    The effect of voluntary hyperventilation-induced hypocapnic alkalosis (RALK) on pulmonary O2 uptake (V˙o2) kinetics and muscle deoxygenation was examined in young male adults (n = 8) during moderate-intensity exercise. Subjects performed five repetitions of a step-transition in work rate from 20 W cycling to a work rate corresponding to 90% of the estimated lactate threshold during control (CON; , ∼40 mmHg) and during hyperventilation (RALK; , ∼20 mmHg). V˙o2 was measured breath-by-breath and relative concentration changes in muscle deoxy- (ΔHHb), oxy- (ΔO2Hb) and total (ΔHbtot) haemoglobin were measured continuously using near-infrared (NIR) spectroscopy (Hamamatsu, NIRO 300). The time constant for the fundamental, phase 2, V˙o2 response (τV˙o2) was greater (P < 0.05) in RALK (48 ± 11 s) than CON (31 ± 9 s), while τHHb was similar between conditions (RALK, 12 ± 4 s; CON, 11 ± 4 s). The ΔHbtot was lower (P < 0.05) in RALK than CON, prior to (RALK, −3 ± 5 μmol l−1; CON, −1 ± 4 μmol l−1) and at the end (RALK, 1 ± 6 μmol l−1; CON, 5 ± 5 μmol l−1) of moderate-intensity exercise. Although slower adaptation of V˙o2 during RALK may be related to an attenuated activation of PDH (and other enzymes) and provision of oxidizable substrate to the mitochondria (i.e. metabolic inertia), the present findings also suggest a role for a reduction in local muscle perfusion and O2 delivery. PMID:17584832

  13. Uptake of NO, NO 2 and O 3 by sunflower ( Helianthus annuus L.) and tobacco plants ( Nicotiana tabacum L.): dependence on stomatal conductivity

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Kley, D.; Wildt, J.; Segschneider, H. J.; Förstel, H.

    The uptake of NO, NO 2 and O 3 by sunflowers ( Helianthus annuus L. var. giganteus) and tobacco plants ( Nicotiana tabacum L. var. Bel W3), using concentrations representative for moderately polluted air, has been determined by gas exchange experiments. Conductivities for these trace gases were measured at different light fluxes ranging from 820 μEm -2s -1 to darkness. The conductivities to water vapor and the trace gases are highly correlated. It is concluded that the uptake of NO, NO 2 and O 3 by sunflowers and tobacco plants is linearly dependent on stomatal opening. While the uptake of NO is limited by the mesophyll resistance, the uptake of NO 2 is only by diffusion through the stomata. Loss processes by deposition to the leaf surfaces are more pronounced for O 3 than for NO and NO 2.

  14. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O2 transport mechanisms.

    PubMed

    Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J

    2017-04-01

    We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2  = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative

  15. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.

    PubMed

    Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E

    1998-10-01

    Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press

  16. Spectrophotometric determination of H2O2-generating oxidases using oxyhemoglobin as oxygen donor and indicator.

    PubMed

    Bârzu, O; Dânşoreanu, M

    1980-01-01

    1. Spectrophotometric determination of oxygen uptake using oxyhemoglobin as oxygen donor and indicator was used for assay of H2O2-generating oxidases like monoamine oxidase and glucose oxidase. 2. In order to decompose H2O2 formed during the oxygen uptake, catalase and methanol (or ethanol) was added to the respiratory system. At pH values higher than 7.5 the oxydation of deoxygenated hemoglobin to methemoglobin was less than 3%. 2. Oxidases with low Km for oxygen can be assayed using the spectrophotometric method if suitable correction factors are introduced into the calculation of oxygen uptake. The correction factor represents the ratio of the rate of formation (or disappearance) of one of the reactants and the rate of oxyhemoglobin deoxygenation, measured under identical experimental conditions.

  17. The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells.

    PubMed

    Tavares, Sandra; Sousa, Joana; Gonçalves, Pedro; Araújo, João R; Martel, Fátima

    2010-08-25

    The aim of this work was to investigate the effect of folate status on the uptake of several physiologically relevant substances by Caco-2 cells. For this, Caco-2 cells cultured in high-folate conditions (HF) and low-folate conditions (LF) were compared. Growth rates of HF and LF Caco-2 cells were similar. However, proliferation rate of LF cells was greater than that of HF cells during the first 2days of culture and slightly smaller thereafter, viability of LF cells was greater than that of HF cells, and apoptosis index was similar in both cell cultures. We verified that in LF cells, comparatively to HF cells: (1) uptake of [3H]folic acid is upregulated, via an increase in the Vmax of uptake; (2) uptake of [3H]deoxy-glucose, [3H]O-methyl-glucose and [3H]1-methyl-4-phenylpyridinium (MPP+) is downregulated, via a decrease in the Vmax of uptake; additionally, a reduction in Km was observed for [3H]O-methyl-glucose; (3) uptake of [3H]5-hydroxytryptamine and [14C]butyrate is not changed; and (4) the steady-state mRNA levels of the folic acid transporters RFC (reduced folate carrier), PCFT (proton-coupled folate transporter) and FRalpha (folate receptor alpha), of the organic cation transporter OCT1 (organic cation transporter type 1), of the glucose transporter GLUT2 (facilitative glucose transporter type 2) and of the butyrate transporter MCT1 (monocarboxylate transporter type 1) were decreased. In conclusion, folate deficiency produces substrate-specific changes in the uptake of bioactive compounds by Caco-2 cells. Moreover, these changes are associated with alterations in the mRNA levels of specific transporters for these compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    PubMed

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China

    PubMed Central

    Zhou, Yumei; Hagedorn, Frank; Zhou, Chunliang; Jiang, Xiaojie; Wang, Xiuxiu; Li, Mai-He

    2016-01-01

    Climatic warming is expected to particularly alter greenhouse gas (GHG) emissions from soils in cold ecosystems such as tundra. We used 1 m2 open-top chambers (OTCs) during three growing seasons to examine how warming (+0.8–1.2 °C) affects the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from alpine tundra soils. Results showed that OTC warming increased soil CO2 efflux by 141% in the first growing season and by 45% in the second and third growing season. The mean CH4 flux of the three growing seasons was −27.6 and −16.7 μg CH4-C m−2h−1 in the warmed and control treatment, respectively. Fluxes of N2O switched between net uptake and emission. Warming didn’t significantly affect N2O emission during the first and the second growing season, but stimulated N2O uptake in the third growing season. The global warming potential of GHG was clearly dominated by soil CO2 effluxes (>99%) and was increased by the OTC warming. In conclusion, soil temperature is the main controlling factor for soil respiration in this tundra. Climate warming will lead to higher soil CO2 emissions but also to an enhanced CH4 uptake with an overall increase of the global warming potential for tundra. PMID:26880107

  20. Net Community and Gross Photosynthetic Production Rates in the Eastern Tropical South Pacific, as Determined from O2/AR Ratios and Triple Oxygen Isotopic Composition of Dissolved O2

    NASA Astrophysics Data System (ADS)

    Prokopenko, M. G.; Yeung, L. Y.; Berelson, W.; Fleming, J.; Rollins, N.; Young, E. D.; Haskell, W. Z.; Hammond, D. E.; Capone, D. G.

    2010-12-01

    This study assesses the rates of ocean carbon production and its fate with respect to recycling or export in the Eastern Tropical South Pacific (ETSP). ETSP has been previously identified as a region where N2 fixation and denitrification may be spatially coupled; this is also a region of localized CO2 outgassing. Using an Equilibrated Inlet Mass Spectrometer (EIMS) system, we obtained continuous measurements of the biological O2 supersaturation in the mixed layer along the ship track encompassing a region bounded by 10-20° S and 80-100° W in January - March, 2010. Vertical profiles were also taken at selected stations and analyzed for dissolved O2/Ar ratios on EIMS and triple oxygen isotope composition (17O excess) on a multi-collector IRMS (Isotope Ratio Mass Spectrometer) at UCLA. Gas exchange rates were estimated using two approaches: the Rn-222 deficit method and the wind parameterization method, which utilized wind speeds extracted from ASCAT satellite database. Oxygen Net Community Production (O-NCP) rates calculated based on biological O2 supersaturation ranged from slightly negative to ~ 0.3 - 15 mmol/m2d, with higher rates along the northern part of the transect. Oxygen Gross Community Production (O-GPP) rates calculated from 17O excess were between 50 ± 20 and 200 ± 40 mmol/m2d, with higher rates observed along the northern cruise transect as well. Notably, the NCP/GPP ratios along the northern transect were higher by the factor of 2 to 3 than their southern counterparts. The O2/Ar-based NCP rates were comparable to POC flux measured with floating traps deployed at the southern stations, but exceeded by a factor of 5-10 the trap POC fluxes obtained at the northern stations. A one-dimensional box model has been constructed to quantify the magnitude of oxygen primary production below the mixed layer. The results of this work will be integrated with measurements of 15-N2 uptake that are in progress, to constrain the potential contribution of N2 fixation

  1. Heterogeneous kinetics of N2O5 reactive uptake and chlorine activation in authentic biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Jahl, L.; Goldberger, L.; Ahern, A.; Thornton, J. A.

    2017-12-01

    Nitryl chloride (ClNO2) is a nighttime reservoir of NOx that is formed from the uptake of dinitrogen pentoxide (N2O5) into particles containing chloride. The formation of ClNO2 from heterogeneous reactions of N2O5(g) with authentic biomass burning aerosol has not previously been studied. We observed the rapid production of N2O5 and then ClNO2 during dark chemical transformations of biomass burning aerosol produced from a variety of fuels using both a smog chamber and an aerosol flow tube reactor. Iodide adduct chemical ionization mass spectrometry was used to measure gas phase ClNO2 and N2O5, and acetate chemical ionization mass spectrometry to measure gaseous HCl and other compounds, while a soot particle aerosol mass spectrometer measured changes in aerosol composition as chloride was displaced by nitrate. Upon the addition of ozone to the biomass burning smoke, N2O5 was always rapidly formed and ClNO2 was subsequently detected in the gas phase. During experiments at high relative humidity, we observed decreases in particulate chloride and increases in particulate nitrate which we believe are due to acid displacement of HCl(g) by HNO3 since no additional ClNO2 was produced in the gas phase. The reactive uptake probability of N2O5 on authentic biomass burning aerosol and the yield of ClNO2 were determined for the first time using chamber and flow tube experiments on smoke from biomass fuels including sawgrass, giant cutgrass, palmetto leaves, and ponderosa pine. These experiments confirm the formation of N2O5 and ClNO2 in biomass burning emissions and suggest that biomass burning is a likely source of continental ClNO2 and HCl.

  2. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-02-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g-1, and good rate performance of 126.7 F g-1 at 50 A g-1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g-1 and much improved rate performance (213.4 F g-1 at 50 A g-1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g-1), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g-1 at 1 A g-1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.

  3. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    PubMed Central

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-01-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276

  4. O2 reduction and denitrification rates in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Tesoriero, Anthony J.; Puckett, Larry J.

    2011-12-01

    O2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero- and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 μmol L-1 yr-1 to more than 140 μmol L-1 yr-1 and first-order rates ranging from 0.02 to 0.27 yr-1. Moderate denitrification rates (10-100 μmol N L-1 yr-1; 0.06-0.30 yr-1) were observed in most areas with O2 concentrations below 60 μmol L-1, while higher rates (>100 μmol N L-1 yr-1; >0.36 yr-1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation.

  5. O 2 reduction and denitrification rates in shallow aquifers

    USGS Publications Warehouse

    Tesoriero, A.J.; Puckett, L.J.

    2011-01-01

    O 2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero-and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O 2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 ??mol L -1 yr -1 to more than 140 ??mol L -1 yr -1 and first-order rates ranging from 0.02 to 0.27 yr -1. Moderate denitrification rates (10-100 ??mol N L -1 yr -1; 0.06-0.30 yr -1) were observed in most areas with O 2 concentrations below 60 mol L -1, while higher rates (>100 mol N L -1 yr -1; >0.36 yr -1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O 2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O 2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O 2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation. copyright 2011 by the American Geophysical Union.

  6. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise.

    PubMed

    Raper, J A; Love, L K; Paterson, D H; Peters, S J; Heigenhauser, G J F; Kowalchuk, J M

    2014-12-01

    Mitochondrial pyruvate dehydrogenase (PDH) regulates the delivery of carbohydrate-derived substrate to the mitochondrial tricarboxylic acid cycle and electron transport chain. PDH activity at rest and its activation during exercise is attenuated following high-fat (HFAT) compared with high-carbohydrate (HCHO) diets. Given the reliance on carbohydrate-derived substrate early in transitions to exercise, this study examined the effects of HFAT and HCHO on phase II pulmonary O2 uptake (V̇o2 p) kinetics during transitions into the moderate-intensity (MOD) exercise domain. Eight active adult men underwent dietary manipulations consisting of 6 days of HFAT (73% fat, 22% protein, 5% carbohydrate) followed immediately by 6 days of HCHO (10% fat, 10% protein, 80% carbohydrate); each dietary phase was preceded by a glycogen depletion protocol. Participants performed three MOD transitions from a 20 W cycling baseline to work rate equivalent to 80% of estimated lactate threshold on days 5 and 6 of each diet. Steady-state V̇o2 p was greater (P < 0.05), and respiratory exchange ratio and carbohydrate oxidation rates were lower (P < 0.05) during HFAT. The phase II V̇o2 p time constant (τV̇o2 p) [HFAT 40 ± 16, HCHO 32 ± 19 s (mean ± SD)] and V̇o2 p gain (HFAT 10.3 ± 0.8, HCHO 9.4 ± 0.7 ml·min(-1·)W(-1)) were greater (P < 0.05) in HFAT. The overall adjustment (effective time constant) of muscle deoxygenation (Δ[HHb]) was not different between diets (HFAT 24 ± 4 s, HCHO 23 ± 4 s), which coupled with a slower τV̇o2 p, indicates a slowed microvascular blood flow response. These results suggest that the slower V̇o2 p kinetics associated with HFAT are consistent with inhibition and slower activation of PDH, a lower rate of pyruvate production, and/or attenuated microvascular blood flow and O2 delivery. Copyright © 2014 the American Physiological Society.

  7. Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In vitro plantlets.

    PubMed

    Gomez-Garay, Aranzazu; Pintos, Beatriz; Manzanera, Jose Antonio; Lobo, Carmen; Villalobos, Nieves; Martín, Luisa

    2014-10-01

    The present study analyzes some effects of nano-CeO2 particles on the growth of in vitro plantlets of Medicago arborea when the nanoceria was added to the culture medium. Various concentrations of nano-CeO2 and bulk ceric oxide particles in suspension form were introduced to the agar culture medium to compare the effects of nanoceria versus ceric oxide bulk material. Germination rate and shoot dry weight were not affected by the addition of ceric oxide to the culture media. Furthermore, no effects were observed on chlorophyll content (single-photon avalanche diode (SPAD) measurements) due to the presence of either nano- or micro-CeO2 in the culture medium. When low concentrations of nanoceria were added to the medium, the number of trifoliate leaves and the root length increased but the root dry weight decreased. Also the values of maximum photochemical efficiency of PSII (F(v)/F m) showed a significant decrease. Dark-adapted minimum fluorescence (F 0) significantly increased in the presence of 200 mg L(-1) nanoceria and 400 mg L(-1) bulk material. Root tissues were more sensitive to nanoceria than were the shoots at lower concentrations of nanoceria. A stress effect was observed on M. arborea plantlets due to cerium uptake.

  8. Selective 2-( sup 18 F)fluorodopa uptake for melanogenesis in murine metastatic melanomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, K.; Kubota, K.; Kubota, R.

    The relationship between 3,4-dihydroxy-2-({sup 18}F)fluoro-L-phenylalanine (2-({sup 18}F)FDOPA) uptake and melanogenesis was studied using mice bearing two B16 melanomas: B16-F1 has a higher melanin synthesis ability and a slower growing rate than the higher metastatic B16-F10. A significantly higher 2-({sup 18}F)FDOPA uptake by B16-F1 than by B16-F10 and a reverse relationship for the uptake of ({sup 14}C) 2-deoxy-2-fluoro-D-glucose and ({sup 3}H)thymidine were observed 1 hr postinjection. F1-to-F10 ratios of both the 2-({sup 18}F)FDOPA uptake and the acid-insoluble radioactivity increased to about 5 at 6 hr, which paralleled the melanin content. FM3A mammary carcinoma showed a 2-({sup 18}F)FDOPA uptake similar to themore » B16-F10 but without the acid-insoluble radioactivity. With D,L-DOPA loading, a 55% decreased uptake by FM3A 1 hr postinjection was significantly greater than the 20% reduction in both melanomas. O-Methylated 2-({sup 18}F)FDOPA was a predominant acid-soluble metabolite in all tumors. Whole-body autoradiography discriminated the two melanomas clearly. 2-({sup 18}F)FDOPA may be a promising tracer for the selective imaging of melanogenesis.« less

  9. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics

    PubMed Central

    Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P; Berger, Nicolas J; Calbet, José A; Bangsbo, Jens

    2012-01-01

    Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O2 delivery is faster than, and does not limit, the kinetics of muscle O2 uptake (). Direct data are lacking, however, on the question of whether O2 delivery might limit kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (), a– difference and following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and , a– difference and were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRTp) for kinetics was significantly shorter than kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P < 0.05), whereas for HI, the MRTp for and was not significantly different (27 ± 5 vs. 29 ± 4 s, respectively). There was no difference in the MRTp for either or between the two exercise intensities; however, the MRTp for a– difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P < 0.05). Excess O2, i.e. oxygen not taken up (×), was significantly elevated within the first 5 s of exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O2 delivery does not limit kinetics following the onset of LI or HI knee-extension exercise. PMID:22711961

  10. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  11. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    PubMed

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  13. Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise.

    PubMed

    Chin, Lisa M K; Leigh, Ryan J; Heigenhauser, George J F; Rossiter, Harry B; Paterson, Donald H; Kowalchuk, John M

    2007-08-15

    The effect of voluntary hyperventilation-induced hypocapnic alkalosis (RALK) on pulmonary O2 uptake (VO2) kinetics and muscle deoxygenation was examined in young male adults (n=8) during moderate-intensity exercise. Subjects performed five repetitions of a step-transition in work rate from 20 W cycling to a work rate corresponding to 90% of the estimated lactate threshold during control (CON; PET,CO2, approximately 40 mmHg) and during hyperventilation (RALK; PET,CO2, approximately 20 mmHg). was measured breath-by-breath and relative concentration changes in muscle deoxy- (DeltaHHb), oxy- (DeltaO2Hb) and total (DeltaHbtot) haemoglobin were measured continuously using near-infrared (NIR) spectroscopy (Hamamatsu, NIRO 300). The time constant for the fundamental, phase 2, VO2 response (tau VO2) was greater (P<0.05) in RALK (48+/-11 s) than CON (31+/-9 s), while tauHHb was similar between conditions (RALK, 12+/-4 s; CON, 11+/-4 s). The DeltaHb(tot) was lower (P<0.05) in RALK than CON, prior to (RALK, -3+/-5 micromol l(-1); CON, -1+/-4 micromol l(-1)) and at the end (RALK, 1+/-6 micromol l(-1); CON, 5+/-5 micromol l(-1)) of moderate-intensity exercise. Although slower adaptation of during RALK may be related to an attenuated activation of PDH (and other enzymes) and provision of oxidizable substrate to the mitochondria (i.e. metabolic inertia), the present findings also suggest a role for a reduction in local muscle perfusion and O2 delivery.

  14. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  16. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  17. Investigation of Heterogeneous N2O5 Uptake and ClNO2 Yield at a Rural and a Mountain-top Site in Northern China

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tham, Y. J.; Wang, W.; LI, Q.; Yun, H.; Wang, X.; Xue, L.; Wang, T.

    2017-12-01

    Dinitrogen pentoxide (N2O5) is a reactive intermediate in the atmospheric oxidation of nitrogen oxides (NOx), and its heterogeneous reaction plays key roles in the chemical transformation and removal of NOx, as well as the production of nitrate and nitryl chloride (ClNO2) that affects the radical budget and photochemical ozone formation. Ambient measurements at a rural site and a mountain top site in northern China in the summer of 2014 revealed significant ClNO2 mixing ratios (up to 2.1 ppbv) produced by fast heterogeneous N2O5 uptake on atmospheric aerosols. Frequently intercepted ClNO2-laden plumes at the mountain site indicate significant ClNO2 production occurred in the nocturnal residual layer, and could help explain the sustained ClNO2 peaks after sunrise observed in the ground site in the region. The meteorological and chemical analysis suggested that elevated ClNO2 plumes were mostly associated with nocturnal buoyant emission from point combustion sources, such as power and industry plants. The uptake coefficients (γ) of N2O5 and yields (ϕ) of ClNO2 were then derived for different plumes observed at the ground and mountain sites, and the factors affecting the variability of γ and ϕ under different conditions were also investigated. The uptake coefficients and yields obtained in this study in northern China will be compared with other observations in the world, and also compared to the existing parameterizations based on aerosol compositions. The contribution of fast N2O5 heterogeneous reaction to the nocturnal NOx processing and nitrate aerosol formation will be further examined, to better understand the impacts of heterogeneous reactive nitrogen chemistry on air quality in northern China.

  18. Ammonium and nitrate uptake by leaves of the seagrass Thalassia testudinum: impact of hydrodynamic regime and epiphyte cover on uptake rates

    NASA Astrophysics Data System (ADS)

    Cornelisen, Christopher D.; Thomas, Florence I. M.

    2004-08-01

    Seagrasses rely on the uptake of dissolved inorganic nitrogen (DIN) from both sediment pore water and the water column for metabolic processes. Rates at which their leaves remove nutrients from the water column may be influenced by physiological factors, such as enzyme kinetics, and physical factors, including water flow and the presence of epiphytes on the leaf surface. While there is some evidence of the individual effects of these factors on uptake rates for individual plants, there is little information on the effects of these factors on seagrasses that are situated in their natural environment. In order to isolate the combined effects of water flow and epiphyte cover on uptake rates for Thalassia testudinum leaves while they were situated in a natural canopy we applied 15N-labeled ammonium and 15N-labeled nitrate in a series of field flume experiments. Hydrodynamic parameters related to thickness of diffusive boundary layers, including bottom shear stress and the rate of turbulent energy dissipation, were estimated from velocity profiles collected with an acoustic Doppler velocimeter. Rates of NH 4+ uptake for leaves with and without epiphyte cover were proportional to bottom shear stress and energy dissipation rate, while rates of NO 3- uptake were not. For epiphytes, rates of both NH 4+ and NO 3- uptake were dependent on hydrodynamic parameters. Epiphytes covering the leaf surface reduced rates of NH 4+ uptake for seagrass leaves by an amount proportional to the spatial area covered by the epiphytes (˜90%) and although epiphytes reduced NO 3- uptake rates, the amount was not proportional to the extent of epiphyte cover. Results suggest that the rate at which seagrass leaves removed ammonium was limited by the rate of delivery to the surface of the leaves and was greatly reduced due to blockage of active uptake sites by epiphytes. Conversely, rates of nitrate uptake for the seagrass leaves were limited by the rate at which the leaves could process nitrate

  19. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae.

    PubMed

    García-Saucedo, Citlali; Field, James A; Otero-Gonzalez, Lila; Sierra-Álvarez, Reyes

    2011-09-15

    Increasing use of nanomaterials necessitates an improved understanding of their potential impact on environment health. This study evaluated the cytotoxicity of nanosized HfO(2), SiO(2), Al(2)O(3) and CeO(2) towards the eukaryotic model organism Saccharomyces cerevisiae, and characterized their state of dispersion in bioassay medium. Nanotoxicity was assessed by monitoring oxygen consumption in batch cultures and by analysis of cell membrane integrity. CeO(2), Al(2)O(3), and HfO(2) nanoparticles were highly unstable in yeast medium and formed micron-sized, settleable agglomerates. A non-toxic polyacrylate dispersant (Dispex A40) was used to improve nanoparticle stability and determine the impact of enhanced dispersion on toxicity. None of the NPs tested without dispersant inhibited O(2) uptake by yeast at concentrations as high as 1000 mg/L. Dispersant supplementation only enhanced the toxicity of CeO(2) (47% at 1000 mg/L). Dispersed SiO(2) and Al(2)O(3) (1000 mg/L) caused cell membrane damage, whereas dispersed HfO(2) and CeO(2) did not cause significant disruption of membrane integrity at the same concentration. These results suggest that the O(2) uptake inhibition observed with dispersed CeO(2) NPs was not due to reduced cell viability. This is the first study evaluating toxicity of nanoscale HfO(2), SiO(2), Al(2)O(3) and CeO(2) to S. cerevisiae. Overall the results obtained demonstrate that these nanomaterials display low or no toxicity to yeast. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: mechanism and the role of adsorbed water.

    PubMed

    Santschi, Ch; Rossi, M J

    2006-06-01

    All experimental observations of the uptake of the four title compounds on calcite are consistent with the presence of a reactive bifunctional surface intermediate Ca(OH)(HCO3) that has been proposed in the literature. The uptake of CO2 and SO2 occurs on specific adsorption sites of crystalline CaCO3(s) rather than by dissolution in adsorbed water, H2O(ads). SO2 primarily interacts with the bicarbonate moiety whereas CO2, HNO3 and HCl all react first with the hydroxyl group of the surface intermediate. Subsequently, the latter two react with the bicarbonate group to presumably form Ca(NO3)2 and CaCl2.2H2O. The effective equilibrium constant of the interaction of CO2 with calcite in the presence of H2O(ads) is kappa = deltaCO2/(H2O(ads)[CO2]) = 1.62 x 10(3) bar(-1), where CO2 is the quantity of CO2 adsorbed on CaCO3. The reaction mechanism involves a weakly bound precursor species that is reversibly adsorbed and undergoes rate-controlling concurrent reactions with both functionalities of the surface intermediate. The initial uptake coefficients gamma0 on calcite powder depend on the abundance of H2O(ads) under the present experimental conditions and are on the order of 10(-4) for CO2 and 0.1 for SO2, HNO3 and HCl, with gamma(ss) being significantly smaller than gamma0 for HNO3 and HCl, thus indicating partial saturation of the uptake. At 33% relative humidity and 300 K there are 3.5 layers of H2O adsorbed on calcite that reduce to a fraction of a monolayer of weakly and strongly bound water upon pumping and/or heating.

  1. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    PubMed

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.

  2. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  3. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake.

    PubMed

    Ji, Ye; Zhou, Yun; Ma, Chuanxin; Feng, Yan; Hao, Yi; Rui, Yukui; Wu, Wenhao; Gui, Xin; Le, Van Nhan; Han, Yaning; Wang, Yingcai; Xing, Baoshan; Liu, Liming; Cao, Weidong

    2017-01-01

    Previous studies have reported that nanoparticles (NPs) and heavy metals are toxic to the environment. However, the jointed toxicity is not yet well understood. This study was aimed to investigate the combined toxicity of TiO 2 NPs and the heavy metal cadmium (Cd) to plants. Rice (Oryzasativa L.) was selected as the target plant. The rice seedlings were randomly separated into 12 groups and treated with CdCl 2 (0, 10 and 20 mg/L) and TiO 2 NPs (0, 10, 100 and 1000 mg/L). The plant height, biomass and root length indicated significant toxicity of Cd to the growth, but TiO 2 NPs exhibited the potential ability to alleviate the Cd toxicity. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) confirmed the existence of TiO 2 NPs in plants. Elemental analysis of Ti and Cd suggested that the presences of Cd significantly decreased the Ti accumulation in the rice roots in the co-exposure treatments. Interestingly, TiO 2 NPs could lower the Cd uptake and distribution in rice roots and leaves. The results of antioxidant enzyme activity, lipid peroxide as well as phytohormones varied in the different treatments. Comparing with the Cd alone treatment, the net photosynthetic rate and chlorophyll content were significantly increased in the co-exposure treatments, suggesting that TiO 2 NPs could tremendously reduce the Cd toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  5. Relation between the location of elements in the periodic table and tumor-uptake rate.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg2+, Au+ and Bi3+ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as 85Sr2+, 67Ga3+, 181Hf4+, and 95Nb5+, tumor uptake rates are shown as a function of ionic potentials (valency/ionic radii) of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases (calcium salts of acid mucopolysaccharides, etc.). Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl4 and SbCl3 behaved differently from many metallic compounds in tumor tissue.

  6. Role of maximal heart rate and arterial O2 saturation on the decrement of VO2max in moderate acute hypoxia in trained and untrained men.

    PubMed

    Mollard, P; Woorons, X; Letournel, M; Cornolo, J; Lamberto, C; Beaudry, M; Richalet, J-P

    2007-03-01

    We aimed to evaluate 1) the altitude where maximal heart rate (HR (max)) decreases significantly in both trained and untrained subjects in moderate acute hypoxia, and 2) if the HR (max) decrease could partly explain the drop of V.O (2max). Seventeen healthy males, nine trained endurance athletes (TS) and eight untrained individuals (US) were studied. Subjects performed incremental exercise tests at sea level and at 5 simulated altitudes (1000, 1500, 2500, 3500, 4500 meters). Power output (PO), heart rate (HR), arterial oxygen saturation (SaO (2)), oxygen uptake (V.O (2)), arterialized blood pH and lactate were measured. Both groups showed a progressive reduction in V.O (2max). The decrement in HR (max) (DeltaHR (max)) was significant from 1000 m for TS and 2500 m for US and more important in TS than US (at 1500 m and 3500 m). At maximal exercise, TS had a greater reduction in SaO (2) (DeltaSaO (2)) at each altitude. DeltaHR (max) observed in TS was correlated with DeltaSaO (2). When the two groups were pooled, simple regressions showed that DeltaV.O (2max) was correlated with both DeltaSaO (2) and DeltaHR (max). However, a multiple regression analysis demonstrated that DeltaSaO (2) alone may account for DeltaV.O (2max). Furthermore, in spite of a greater reduction in SaO (2) and HR (max) in TS, no difference was evidenced in relative DeltaV.O (2max) between groups. Thus, in moderate acute hypoxia, the reduction in SaO (2) is the primary factor to explain the drop of V.O (2max) in trained and untrained subjects.

  7. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2016-08-01

    The focus of this investigation is to evaluate the phytotoxicity of selected metal oxide nanoparticles and microparticles as a function of maize seed germination and root elongation under different growth conditions (Petri plate, cotton and soil). The results of seed germination and root elongation experiments reveal that all the growth conditions show almost similar results. Alumina (Al2O3) and titania (TiO2) nanoparticles significantly reduce the germination percentage, whereas silica (SiO2) nanoparticles and microparticles enhance the same. The results of nanoparticles and microparticles of zirconia (ZrO2) are found to be same as those of controls. Root elongation is enhanced by SiO2 nanoparticles and microparticles treatment, whereas inhibition is observed with Al2O3 and TiO2 nanoparticles and microparticles. The X-ray fluorescence spectrometry data of the treated and control seed samples show that seeds uptake SiO2 particles to a greater extent followed by TiO2, Al2O3 and ZrO2. In addition, the uptake of nanoparticles is found to be greater than that of microparticles. Thus, the tested metal oxides penetrated seeds at the nanoscale as compared with the microscale. This study clarifies phytotoxicity of nanoparticles treated in different growth substrates and highlights the impact of nanoparticles on environment and agricultural systems.

  8. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  9. Relationships between oxygen uptake, dynamic body acceleration and heart rate in humans.

    PubMed

    D'silva, L A; Cardew, A; Qasem, L; Wilson, R P; Lewis, M J

    2015-10-01

    Accurate estimation of energy expenditure (EE) is important in human and animal behavior analysis. Rate of oxygen consumption (VO2) reflects EE during aerobic metabolism but is not always convenient. Alternative methods include heart rate (HR) and overall dynamic body acceleration (ODBA). A favorable ODBA-VO2 relationship was recently reported but the strength of association between VO2, ODBA, HR and its variability (HRV) is less clear. Fifteen young (23±4 years) healthy males of similar aerobic fitness (maximal oxygen uptake, VO2max=49.7±8.5 mL·kg(-1)·min(-1)) carried out progressive maximal exercise. ODBA, HRV and V̇O2 were recorded continuously. Relationships between ODBA, HRV and V̇O2 were explored using regression methods. VO2 was strongly related to ODBA and RR during walking (R=0.45,0.30; P<5x10(-5)) and running (R=0.60,0.38; P<5x10(-5)). HRV was related to VO2 during walking only (R=0.11-0.26; 0.005

  10. Influence of Dexamethasone on O-(2-[18F]-Fluoroethyl)-L-Tyrosine Uptake in the Human Brain and Quantification of Tumor Uptake.

    PubMed

    Stegmayr, Carina; Stoffels, Gabriele; Kops, Elena Rota; Lohmann, Philipp; Galldiks, Norbert; Shah, Nadim J; Neumaier, Bernd; Langen, Karl-Josef

    2018-05-29

    O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) is an established positron emission tomography (PET) tracer for brain tumor imaging. This study explores the influence of dexamethasone therapy on [ 18 F]FET uptake in the normal brain and its influence on the maximum and mean tumor-to-brain ratio (TBR). [ 18 F]FET PET scans of 160 brain tumor patients were evaluated (80 dexamethasone treated, 80 untreated; each group with 40 men/40 women). The standardized uptake value of [ 18 F]FET uptake in the normal brain (SUV brain ) in the different groups was compared. Nine patients were examined repeatedly with and without dexamethasone therapy. SUV brain of [ 18 F]FET uptake was significantly higher in dexamethasone-treated patients than in untreated patients (SUV brain 1.33 ± 0.1 versus 1.06 ± 0.16 in male and 1.45 ± 0.25 versus 1.31 ± 0.28 in female patients). Similar results were observed in patients with serial PET scans. Furthermore, compared to men, a significantly higher SUV brain was found in women, both with and without dexamethasone treatment. There were no significant differences between the different groups for TBR max and TBR mean , which could have been masked by the high standard deviation. In a patient with a stable brain metastasis investigated twice with and without dexamethasone, the TBR max and the biological tumor volume (BTV) decreased considerably after dexamethasone due to an increased SUV brain . Dexamethasone treatment appears to increase the [ 18 F]FET uptake in the normal brain. An effect on TBR max , TBR mean , and BTV cannot be excluded which should be considered especially for treatment monitoring and the estimation of BTV using [ 18 F]FET PET.

  11. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  12. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    PubMed Central

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P < 0.05) in Hypo compared with Con. However, the mean response time for the overall Δ[HHb] response was not different between conditions (Hypo, 23 ± 5 s; Con, 24 ± 3 s), whereas the Δ[HHb] amplitude was greater (P < 0.05) in Hypo (8.05 ± 7.47 a.u.) compared with Con (6.69 ± 6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  13. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake

    PubMed Central

    Purtell, Kerry; Paroder-Belenitsky, Monika; Reyna-Neyra, Andrea; Nicola, Juan P.; Koba, Wade; Fine, Eugene; Carrasco, Nancy; Abbott, Geoffrey W.

    2012-01-01

    The KCNQ1 α subunit and the KCNE2 β subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (−)-[3R,4S]-chromanol 293B (C293B) significantly impaired thyroid cell I− uptake, which is mediated by the Na+/I− symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028±0.004 min−1; 10 mg/kg C293B, 0.009±0.006 min−1) and in vitro (EC50: 99±10 μM C293B). Na+-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I− in the thyroid (distinguished using ClO4−, a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I− organification. However, Kcne2 deletion doubled the rate of free I− efflux from the thyroid following ClO4− injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I− uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.—Purtell, K., Paroder-Belenitsky, M., Reyna-Neyra, A., Nicola, J. P., Koba, W., Fine, E., Carrasco, N., Abbott, G. W. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake. PMID:22549510

  14. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.

    PubMed

    Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E

    2014-01-01

    Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.

  15. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

    USGS Publications Warehouse

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.

    2006-01-01

    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  16. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).

    PubMed

    Li, Junli; Hu, Jing; Ma, Chuanxin; Wang, Yunqiang; Wu, Chan; Huang, Jin; Xing, Baoshan

    2016-09-01

    Iron oxide nanoparticles (γ-Fe2O3 NPs) have emerged as an innovative and promising method of iron application in agricultural systems. However, the possible toxicity of γ-Fe2O3 NPs and its uptake and translocation require further study prior to large-scale field application. In this study, we investigated uptake and distribution of γ-Fe2O3 NPs in corn (Zea mays L.) and its impacts on seed germination, antioxidant enzyme activity, malondialdehyde (MDA) content, and chlorophyll content were determined. 20 mg/L of γ-Fe2O3 NPs significantly promoted root elongation by 11.5%, and increased germination index and vigor index by 27.2% and 39.6%, respectively. However, 50 and 100 mg/L γ-Fe2O3 NPs remarkably decreased root length by 13.5% and 12.5%, respectively. Additionally, evidence for γ-Fe2O3 NPs induced oxidative stress was exclusively found in the root. Exposures of different concentrations of NPs induced notably high levels of MDA in corn roots, and the MDA levels of corn roots treated by γ-Fe2O3 NPs (20-100 mg/L) were 5-7-fold higher than that observed in the control plants. Meanwhile, the chlorophyll contents were decreased by 11.6%, 39.9% and 19.6%, respectively, upon NPs treatment relative to the control group. Images from fluorescence and transmission electron microscopy (TEM) indicated that γ-Fe2O3 NPs could enter plant roots and migrate apoplastically from the epidermis to the endodermis and accumulate the vacuole. Furthermore, we found that NPs mostly existed around the epidermis of root and no translocation of NPs from roots to shoots was observed. Our results will be highly meaningful on understanding the fate and physiological effects of γ-Fe2O3 NPs in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles.

    PubMed

    Dan, Yongbo; Ma, Xingmao; Zhang, Weilan; Liu, Kun; Stephan, Chady; Shi, Honglan

    2016-07-01

    Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.

  18. [Effects of nitrogen application rate on potassium uptake and utilization of direct-seeded cotton after wheat harvest].

    PubMed

    Zhang, Guo Wei; Yang, Chang Qin; Liu, Rui Xian; Zhang, Lei; Ni, Wan Chao

    2016-10-01

    By using cotton cultivar CCRI-50 as material, field experiments were conducted in the summer seasons of 2013 and 2014 at the experimental station of Jiangsu Academy of Agricultural Sciences (Nanjing, China) to study the effects of different nitrogen application rates (0, 60, 120, 150, 180 and 240 kg N·hm -2 ) on the potassium uptake and utilization of the cotton plant that was direct-seeded after wheat harvest. Data suggested that the elevated nitrogen application rates increased the cotton potassium uptake of all growth stages, and the largest increment was observed at the peak flowering-boll opening stage. Nitrogen application also changed the uptake percentage of potassium uptake of each stage, i.e., the percentage of potassium uptake decreased in the stage from seedling to peak flowering, while increased in the stage from peak flowering to boll maturing. In addition, the elevated nitrogen applications reduced the decreasing rate of nitrogen concentration in upper fruiting branches, but promoted the decreasing rate in middle and low fruiting branches at later growth stages. As the nitrogen application rate increased, the marginal effect of potassium uptake (promoted amount of potassium uptake due to 1 kg increase of N application) increased first and then decreased, and the lint production efficiency of potassium descended steadily. In cotton plants that were direct-seeded after wheat harvest, potassium and biomass were mainly accumulated in the lower and middle fruiting branches. At the 150 and 180 kg N·hm -2 application levels, much more potassium was allocated to the reproductive organs and the characters and the eigenvalues of simulated curves of potassium concentration and total potassium accumulation were more optimized than those at the higher or the lower N application levels. At the high nitrogen application (more than 180 kg N·hm -2 ) level, the marginal effect of potassium uptake and lint production efficiency decreased, and at the lower nitrogen

  19. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis.

    PubMed

    Chin, Lisa M K; Heigenhauser, George J F; Paterson, Donald H; Kowalchuk, John M

    2010-06-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.

  20. Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins

    PubMed Central

    Varanasi, Lakshman; Hosler, Jonathan P.

    2011-01-01

    We review studies of subunit III-depleted cytochrome c oxidase (CcO III (−)) that elucidate the structural basis of steady-state proton uptake from solvent into an internal proton transfer pathway. The removal of subunit III from R. sphaeroides CcO makes proton uptake into the D pathway a rate-determining step, such that measurements of the pH dependence of steady-state O2 consumption can be used to compare the rate and functional pKa of proton uptake by D pathways containing different initial proton acceptors. The removal of subunit III also promotes spontaneous suicide inactivation by CcO, greatly shortening its catalytic lifespan. Because the probability of suicide inactivation is controlled by the rate at which the D pathway delivers protons to the active site, measurements of catalytic lifespan provide a second method to compare the relative efficacy of proton uptake by engineered CcO III (−) forms. These simple experimental systems have been used to explore general questions of proton uptake by proteins, such as the functional value of an initial proton acceptor, whether an initial acceptor must be surface-exposed, which side chains will function as initial proton acceptors and whether multiple acceptors can speed proton uptake. PMID:22023935

  1. Temperature Dependence of the O + HO2 Rate Coefficient

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A pulsed laser photolysis technique has been employed to investigate the kinetics of the radical-radical reaction O((sup 3)P) + HO2 OH + O2 over the temperature range 266-391 K in 80 Torr of N2 diluent gas. O((sup 3)P) was produced by 248.5-nm KrF laser photolysis of O3 followed by rapid quenching of O(1D) to O((sup 3)P) while HO2 was produced by simultaneous photolysis of H2O2 to create OH radicals which, in turn, reacted with H2O2 to yield HO2. The O((sup 3)P) temporal profile was monitored by using time-resolved resonance fluorescence spectroscopy. The HO2 concentration was calculated based on experimentally measured parameters. The following Arrhenius expression describes our experimental results: k(sub 1)(T) equals (2.91 +/- 0.70) x 10(exp -11) exp[(228 +/- 75)/T] where the errors are 2 sigma and represent precision only. The absolute uncertainty in k, at any temperature within the range 266-391 K is estimated to be +/- 22 percent. Our results are in excellent agreement with a discharge flow study of the temperature dependence of k(sub 1) in 1 Torr of He diluent reported by Keyser, and significantly reduce the uncertainty in the rate of this important stratospheric reaction at subambient temperatures.

  2. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.).

    PubMed

    Xu, Xuehui; Wen, Bei; Huang, Honglin; Wang, Sen; Han, Ruixia; Zhang, Shuzhen

    2016-01-01

    This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  4. Non-invasive measurement of the mean alveolar O(2) tension from the oxygen uptake versus tidal volume curve.

    PubMed

    Jordanoglou, J; Latsi, P; Chroneou, A; Koulouris, N G

    2007-10-01

    The classical equations for measuring the mean and the ideal alveolar O(2) tension are based on assumptions, which are shown to be invalid. So we thought to develop a new, non-invasive method for measuring the mean alveolar P,O(2) within the volume domain (PA,O(2(Bohr))). This method is based on the oxygen uptake vs. tidal volume curve (VO(2) vs. VT) obtained during tidal breathing of room air and/or air enriched with oxygen. PA,O(2(Bohr)) and the ideal alveolar PO(2) (PA,O(2(ideal))) were simultaneously measured in 10 healthy subjects and 34 patients suffering from chronic obstructive pulmonary disease (COPD) breathing tidally room air at rest. Additionally, 10 subjects (three healthy subjects and seven COPD patients) were studied while breathing initially room air and subsequently air enriched with oxygen. According to the results, PA,O(2(Bohr)) considerably differed from PA,O(2(ideal)) (P = 0.004). The cause of the difference, at the individual's R, is: (1) the difference between the arterial and Bohr's alveolar CO(2) tension, mainly in COPD patients, and (2) the inequality between Bohr's alveolar part of the tidal volume for CO(2) and O(2). Furthermore, end-tidal gas tension (PET,CO(2) and PET,O(2)) differed from Pa,CO(2) and PA,O(2(Bohr)) respectively. The deviation of PA,O(2(Bohr)) from PA,O(2(ideal)) has a definite impact on Bohr's dead space ratio for O(2) and CO(2), and on the alveolar-arterial O(2) difference. The difference (PA,O(2(Bohr)) - PA,O(2(ideal))) is not related to the pathology of the disease. So, gas exchange within the lungs should be assessed at the subject's R from PA,O(2(Bohr)) and PA,CO(2(Bohr)) but not from PA,O(2(ideal)) nor Pa,CO(2).

  5. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  6. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  7. High rate dry etching of InGaZnO by BCl3/O2 plasma

    NASA Astrophysics Data System (ADS)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  8. Influence of body size, metabolic rate and life history stage on the uptake and excretion of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) by invasive sea lampreys (Petromyzon marinus).

    PubMed

    Tessier, Laura R; Long, Tristan A F; Wilkie, Michael P

    2018-01-01

    Invasive sea lamprey (Petromyzon marinus) are controlled in the Great Lakes using the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), which is applied to streams infested with larval lamprey. However, lamprey that survive treatments (residuals) remain a challenge because they may subsequently undergo metamorphosis into parasitic juvenile animals that migrate downstream to the Great Lakes, where they feed on important sport and commercial fishes. The goal of this study was to determine if body size and life stage could potentially influence sea lamprey tolerance to TFM by influencing patterns of TFM uptake and elimination. Because mass specific rates of oxygen consumption (M˙O 2 ) are lower in larger compared to smaller lamprey, we predicted that TFM uptake would be negatively correlated to body size, suggesting that large larvae would be more tolerant to TFM exposure. Accordingly, TFM uptake and M˙O 2 were measured in larvae ranging in size from 0.2-4.2g using radio-labelled TFM ( 14 C-TFM) and static respirometry. Both were inversely proportional to wet mass (M), and could be described usingthe allometric power relationship: Y=aM b , in which M˙O 2 =1.86M 0.53 and TFM Uptake=7.24M 0.34 . We also predicted that body size would extend to rates of TFM elimination, which was measured following the administration of 14 C-TFM (via intraperitoneal injection). However, there were no differences in the half-lives of elimination of TFM (T 1/2 -TFM). There were also no differences in M˙O 2 or TFM uptake amongst size-matched larval, metamorphosing (stages 6-7), or post-metamorphic (juvenile) sea lamprey. However, the T 1/2 -TFM was significantly lower in larval than post-metamorphic lamprey (juvenile), indicating the larval lamprey cleared TFM more efficiently than juvenile lamprey. We conclude that larger larval sea lamprey are more likely to survive TFM treatments suggesting that body size might be an important variable to consider when treating streams with TFM to

  9. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  10. Heating rate effects in simulated liquid Al2O_3

    NASA Astrophysics Data System (ADS)

    van Hoang, Vo

    2006-01-01

    The heating rate effects in simulated liquid Al{2}O{3} have been investigated by Molecular Dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with Born-Mayer type pair potentials. The temperature of the system was increasing linearly in time from the zero temperature as T(t)=T0 +γ t, where γ is the heating rate. The heating rate dependence of density and enthalpy of the system was found. Calculations show that static properties of the system such as the coordination number distributions and bond-angle distributions slightly depend on γ . Structure of simulated amorphous Al{2}O{3} model with the real density at the ambient pressure is in good agreement with Lamparter's experimental data. The heating rate dependence of dynamics of the system has been studied through the diffusion constant, mean-squared atomic displacement and comparison of partial radial distribution functions (PRDFs) for 10% most mobile and immobile particles with the corresponding mean ones. Finally, the evolution of diffusion constant of Al and O particles and structure of the system upon heating for the smallest heating rate was studied and presented. And we find that the temperature dependence of self-diffusion constant in the high temperature region shows a crossover to one which can be described well by a power law, D∝ (T-Tc )^γ . The critical temperature Tc is about 3500 K and the exponent γ is close to 0.941 for Al and to 0.925 for O particles. The glass phase transition temperature Tg for the Al{2}O{3} system is at anywhere around 2000 K.

  11. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise.

    PubMed

    Pringle, Jamie S M; Doust, Jonathan H; Carter, Helen; Tolfrey, Keith; Jones, Andrew M

    2003-04-01

    We hypothesized that a higher pedal rate (assumed to result in a greater proportional contribution of type II motor units) would be associated with an increased amplitude of the O(2) uptake (Vo(2)) slow component during heavy-cycle exercise. Ten subjects (mean +/- SD, age 26 +/- 4 yr, body mass 71.5 +/- 7.9 kg) completed a series of square-wave transitions to heavy exercise at pedal rates of 35, 75, and 115 rpm. The exercise power output was set at 50% of the difference between the pedal rate-specific ventilatory threshold and peak Vo(2), and the baseline power output was adjusted to account for differences in the O(2) cost of unloaded pedaling. The gain of the Vo(2) primary component was significantly higher at 35 rpm compared with 75 and 115 rpm (mean +/- SE, 10.6 +/- 0.3, 9.5 +/- 0.2, and 8.9 +/- 0.4 ml. min(-1). W(-1), respectively; P < 0.05). The amplitude of the Vo(2) slow component was significantly greater at 115 rpm (328 +/- 29 ml/min) compared with 35 rpm (109 +/- 30 ml/min) and 75 rpm (202 +/- 38 ml/min) (P < 0.05). There were no significant differences in the time constants or time delays associated with the primary and slow components across the pedal rates. The change in blood lactate concentration was significantly greater at 115 rpm (3.7 +/- 0.2 mM) and 75 rpm (2.8 +/- 0.3 mM) compared with 35 rpm (1.7 +/- 0.4 mM) (P < 0.05). These data indicate that pedal rate influences Vo(2) kinetics during heavy exercise at the same relative intensity, presumably by altering motor unit recruitment patterns.

  12. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    PubMed

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres - the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2-3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section

    NASA Astrophysics Data System (ADS)

    Pysanenko, A.; Lengyel, J.; Fárník, M.

    2018-04-01

    The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.

  14. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Weihao; Tham, Yee Jun; Li, Qinyi; Wang, Hao; Wen, Liang; Wang, Xinfeng; Wang, Tao

    2017-10-01

    Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NOx recycling upon photolysis of ClNO2. To better understand the roles of N2O5 and ClNO2 in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated ClNO2 plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N2O5 was typically present at very low levels (< 30 pptv), indicating fast heterogeneous N2O5 hydrolysis. Combined analyses of chemical characteristics and backward trajectories indicated that the ClNO2-laden air was caused by the transport of NOx-rich plumes from the coal-fired industry and power plants in the NCP. The heterogeneous N2O5 uptake coefficient (γ) and ClNO2 yield (ϕ) were estimated from steady-state analysis and observed growth rate of ClNO2. The derived γ and ϕ exhibited high variability, with means of 0.061 ± 0.025 and 0.28 ± 0.24, respectively. These values are higher than those derived from previous laboratory and field studies in other regions and cannot be well characterized by model parameterizations. Fast heterogeneous N2O5 reactions dominated the nocturnal NOx loss in the residual layer over this region and contributed to substantial nitrate formation of up to 17 µg m-3. The estimated nocturnal nitrate formation rates ranged from 0.2 to 4.8 µg m-3 h-1 in various plumes, with a mean of 2.2 ± 1.4 µg m-3 h-1. The results demonstrate the significance of heterogeneous N2O5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NOx transformation, and thus their potential impacts on regional haze pollution

  15. Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake

    NASA Astrophysics Data System (ADS)

    Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.

    2015-12-01

    Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.

  16. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  17. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea.

    PubMed

    Yu, Ran; Fang, Xiaohua; Somasundaran, Ponisseril; Chandran, Kartik

    2015-06-01

    Nanosized TiO2 (n-TiO2), CeO2 (n-CeO2), and ZnO (n-ZnO) and bulk ZnO were chosen for a 4-h exposure study on a model ammonia oxidizing bacterium, Nitrosomonas europaea. n-ZnO displayed the most serious cytotoxicity while n-TiO2 was the least toxic one. The change of cell morphologies, the retardance of specific oxygen uptake rates and ammonia oxidation rates, and the depression of amoA gene expressions under NP stresses were generally observed when the cell densities and membrane integrities were not significantly impaired yet. The TEM imaging and the synchrotron X-ray fluorescence microscopy of the NPs impacted cells revealed the increase of the corresponding intracellular Ti, Ce or Zn contents and suggested the intracellular NP accumulation. The elevation of intracellular S contents accompanied with higher K contents implied the possible activation of thiol-containing glutathione and thioredoxin production for NP stress alleviation. The NP cytotoxicity was not always a function of NP concentration. The 200 mg L(-1) n-TiO2 or n-CeO2 impacted cells displayed the similar ammonia oxidation activities but higher amoA gene expression levels than the 20 mg L(-1) NPs impacted ones. Such phenomenon further indicated the possible establishment of an anti-toxicity mechanism in N. europaea at the genetic level to redeem the weakened AMO activities along with the NP aggregation effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The rate of sulfide oxidation by δMnO 2 in seawater

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Millero, Frank J.

    1993-07-01

    The rate of oxidation of hydrogen sulfide by manganese dioxide in seawater was determined as a function of pH (2.0-9.0), temperature (5-45°C), and ionic strength (0-4 M). The overall rate constant, k, in seawater at pH = 8.17 was found to be first order with respect to both sulfide and manganese dioxide: - d[H 2S] T/dt = k[H 2S] τ[MnO 2] . The rate constant, k, for seawater (S = 35.8, pH = 8.17) at 25°C was found to be 436 M -1 min -1, or 0.0244 m -2 1 min -1 when [MnO 2] is expressed in surface area (m 2/L). The energies of activation were found to be 14 ± 1 KJ mol -1 and 10 ± 1 KJ mol -1, respectively, for pH = 8.2 and pH = 5.0 in seawater (S = 35). The rate increased from pH 2.0 to a maximum at a pH of about 5.0 and decreased at higher pH. This pH dependence was attributed to formation of a surface complex between >MnO - and H 2S. As the concentration of HS - increases above pH = 5 the rate of the reaction decreases. The rate of sulfide oxidation by MnO 2 is not strongly dependent on ionic strength. The rates in 0.57 M NaCl were found to be slightly higher than the rates in seawater. Measurements made in solutions of the major sea salts indicated that Ca 2+ and Mg 2+ caused the rates to decrease, apparently by absorbing on the surface of manganese dioxide. Measurements made in artificial seawater (Na +, Mg 2+, Ca 2+, Cl -, and SO 2-4) were found to be in good agreement with the measurements in actual seawater. Phosphate was found to inhibit the reaction significantly.

  19. Comparison of fusion rate and clinical results between CaO-SiO2-P2O5-B2O3 bioactive glass ceramics spacer with titanium cages in posterior lumbar interbody fusion.

    PubMed

    Lee, Jae Hyup; Kong, Chang-Bae; Yang, Jae Jun; Shim, Hee-Jong; Koo, Ki-Hyoung; Kim, Jeehyoung; Lee, Choon-Ki; Chang, Bong-Soon

    2016-11-01

    The CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer generates chemical bonding to adjacent bones with high mechanical stability to produce a union with the end plate, and ultimately stability. The authors aimed to compare the clinical efficacy and safety of CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics with a titanium cage that is widely used for posterior lumbar interbody fusion (PLIF) surgery in the clinical field. This is a prospective, stratified randomized, multicenter, single-blinded, comparator-controlled non-inferiority trial. The present study was conducted in four hospitals and enrolled a total of 86 patients between 30 and 80 years of age who required one-level PLIF due to severe spinal stenosis, spondylolisthesis, or huge disc herniation. The Oswestry Disability Index (ODI), Short Form-36 Health Survey (SF-36), and pain visual analog scale (VAS) were assessed before surgery and at 3, 6, and 12 months after surgery. The spinal fusion rate was assessed at 6 and 12 months after surgery. The spinal fusion rate and the area of fusion, subsidence of each CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics and titanium cage, and the extent of osteolysis were evaluated using a dynamic plain radiography and a three-dimensional computed tomography at 12 months after surgery. The present study was supported by BioAlpha, and some authors (JHL, C-KL, and B-SC) have stock ownership (<10,000 US dollars). From the plain radiography results, the 6-month fusion rates for the bioactive glass ceramics group and the titanium group were 89.7% and 91.4%, respectively. In addition, the 12-month fusion rates based on CT scan were 89.7% and 91.2%, respectively, showing no significant difference. However, the bone fusion area directly attached to the end plate of either bioactive glass ceramics or the titanium cage was significantly higher in the bioactive glass ceramics group than in the titanium group. The ODI, SF-36, back pain, and lower limb pain in both groups significantly improved

  20. Uptake of copper and cerium by alfalfa, lettuce and cucumber exposed to nCeO2 and nCuO through the foliage or the roots: Impacts on food quality, physiological and agronomical parameters

    NASA Astrophysics Data System (ADS)

    Hong, Jie

    , with 50, 100, 200 mg/L of nCeO2, nCuO and the respective bulk material suspensions. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) of cucumber leaves were measured with a portable gas exchange system. Nutritional elements and Ce/Cu uptake were determined by ICP-OES. Quality of cucumber fruits was evaluated after harvest. Results showed that cucumber absorbed Ce and Cu through foliar applied nCeO2 and nCuO and translocate them to new leaves and fruits. Photosynthetic and transpiration rates were only affected in new leaves. None of the treatment significantly affected cucumber, yield, length, and diameter of fruits. However, both nCeO2 and nCuO significantly reduced the firmness of the fruit. Mineral element determination in fruit showed that Zn decreased by 25% with 200 mg/L of both nCeO2 and bulk CeO 2 and in fruit Mo decreased by 51% and 44% with both nCuO and bulk CuO at 200 mg/L, respectively. For the aim III, 15 day-old hydroponically grown lettuce and alfalfa were exposed to 0, 5, 10, and 20 mg/L nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2. The concentration of Cu, macro and microelements in plants were measured by using ICP-OES. The size of the plants and the activity of catalase and ascorbate peroxidase were also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. Under all treatments, Cu, P, and S were increased (>100%, >50%, and >20%, respectively) in alfalfa shoots; while P and Fe were decreased (>50% and >50%, respectively) in lettuce shoot. In addition, catalase activity was reduced in alfalfa (root and shoot) and ascorbate peroxidase activity was increased in roots of both plant species. Our findings show that increasing concentration of atmospheric nCeO2 can affect the nutritional value of crop plants with unknown consequences for the food chain. In addition Cu NPs/compounds could impact the growth of plants and altered the quality of crops

  1. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV radiation

    EPA Science Inventory

    A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...

  2. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    PubMed

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  3. High-rate Li-MnO2 cells for aerospace use

    NASA Technical Reports Server (NTRS)

    Becker-Kaiser, R.; Ruch, J.; Harms, H.-J.; Schmoede, P.; Welsh, J. R.; Vollmers, M.-J.; Pack, H.

    1992-01-01

    A series of comparative studies were undertaken on representative cells as objectively as possible in order to appreciate the respective advantages of the different systems. After reviewing the first test results our attention was soon focussed on the following four lithium systems: (1) Li-SOCl2; (2) Li-SO2; (3) Li-(CF(sub x))(sub n); and (4) Li-MnO2. This resulted in the decision in 1982 to adopt the Li-MnO2 system for high-rate applications.

  4. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    PubMed

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs

    PubMed Central

    Sarzynski, Mark A.; Rice, Treva K.; Kraus, William E.; Church, Timothy S.; Sung, Yun Ju; Rao, D. C.; Rankinen, Tuomo

    2011-01-01

    Low cardiorespiratory fitness is a powerful predictor of morbidity and cardiovascular mortality. In 473 sedentary adults, all whites, from 99 families of the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study, the heritability of gains in maximal O2 uptake (V̇o2max) after exposure to a standardized 20-wk exercise program was estimated at 47%. A genome-wide association study based on 324,611 single-nucleotide polymorphisms (SNPs) was undertaken to identify SNPs associated with improvements in V̇o2max Based on single-SNP analysis, 39 SNPs were associated with the gains with P < 1.5 × 10−4. Stepwise multiple regression analysis of the 39 SNPs identified a panel of 21 SNPs that accounted for 49% of the variance in V̇o2max trainability. Subjects who carried ≤9 favorable alleles at these 21 SNPs improved their V̇o2max by 221 ml/min, whereas those who carried ≥19 of these alleles gained, on average, 604 ml/min. The strongest association was with rs6552828, located in the acyl-CoA synthase long-chain member 1 (ACSL1) gene, which accounted by itself for ∼6% of the training response of V̇o2max. The genes nearest to the SNPs that were the strongest predictors were PR domain-containing 1 with ZNF domain (PRDM1); glutamate receptor, ionotropic, N-methyl-d-aspartate 3A (GRIN3A); K+ channel, voltage gated, subfamily H, member 8 (KCNH8); and zinc finger protein of the cerebellum 4 (ZIC4). The association with the SNP nearest to ZIC4 was replicated in 40- to 65-yr-old, sedentary, overweight, and dyslipidemic subjects trained in Studies of a Targeted Risk Reduction Intervention Through Defined Exercise (STRRIDE; n = 183). Two SNPs were replicated in sedentary obese white women exercise trained in the Dose Response to Exercise (DREW) study (n = 112): rs1956197 near dishevelled associated activator of morphogenesis 1 (DAAM1) and rs17117533 in the vicinity of necdin (NDN). The association of SNPs rs884736 in the calmodulin-binding transcription

  6. Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3-BaO-B2O3-Na2O glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.

    2018-03-01

    In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.

  7. Effect of an insect juvenile hormone analogue, Fenoxycarb on development and oxygen uptake by larval lobsters Homarus gammarus (L.).

    PubMed

    Arnold, Katie E; Wells, Colin; Spicer, John I

    2009-04-01

    Little attention has been focused on the effect of anthropogenic compounds that disrupt the endocrine systems in crustaceans. Consequently, this study investigated the effects of the juvenile hormone analogue (JHA), Fenoxycarb on selected physiological and developmental processes of the zoeal stages in the European lobster, Homarus gammarus. Chronic exposure to Fenoxycarb (50microg L(-1)) resulted in a significant (p < 0.05) reduction in moult frequency and size at moult. Fenoxycarb exposure extended zoeal duration between zoea I to II (p<0.05) and resulted in total inhibition of the moult from zoea II to III. Significantly greater rates of O2 uptake were observed in Fenoxycarb-exposed larvae in comparison with controls (p<0.05). All rates of O2 uptake decreased significantly between 7 and 12d of exposure (p<0.05). At 12d, exposure to the solvent control no longer influenced rates of O2 uptake, but it was not possible to attribute increased O2 uptake to Fenoxycarb exposure directly, as treated individuals did not moult beyond zoea III. The low exposure concentrations of Fenoxycarb, comparable to those used in plant protection, resulted in endocrine disrupted responses in H. gammarus (albeit with little clear, demonstrable effect on metabolism) a finding that could have important ecological and commercial implications.

  8. Relation between the location of elements in the periodic table and various organ-uptake rates.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1989-01-01

    Fifty four elements and 65 radioactive compounds were examined to determine the organ uptake rates for rats 3, 24 and 48 h after i.v. injection of these compounds. They were prepared as carrier free nuclides, or containing a small amount of stable nuclide. Generally speaking, behaviors of K, Rb, Cs and Tl in all the organs were very similar to one another, but they differed from that of Na. Bivalent hard acids were avidly taken up into bone; therefore, uptake rates in soft tissues were very small. Hard acids of tri-, quadri- and pentavalence which were taken up into the soft tissue organs decreased more slowly from these organs than other ions. Soft acids such as Hg2+ were bound very firmly to the component in the kidney. Anions (with few exceptions), GeCl4 and SbCl3 were rapidly excreted in urine, so that the uptake rates in organs were low.

  9. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  10. Effect of nitrate on uptake of pertechnetate by tomato plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krijger, G.C.; Kolloeffel, C.; Wolterbeek, H.T.

    Nitrate has been shown to affect the acquisition of the nuclear waste product technetium (Tc) by plants. The mechanism responsible for this phenomenon is unknown. The uptake of [{sup 99m}Tc]TcO{sub 4}{sup {minus}},[{sup 35}S] SO{sub 4}{sup 2{minus}} and H{sub 2}[{sup 32P}]PO{sub 4}{sup {minus}} was studied in tomato plants (Lycopersicon esculentum Mill., cv. Tiny Tim) with different growth rates due to culture at 0.5, 4.0, or 30 mM NO{sub 3}{sup {minus}}. In experiments lasting 24 h, net TcO{sub 4}{sup {minus}} uptake decreased at higher NO{sub 3}{sup {minus}} supplies. The inhibitory effect of NO{sub 3}{sup {minus}} on TcO{sub 4}{sup {minus}} uptake also wasmore » shown in TcO{sub 4}{sup {minus}} influx experiments (K{sub i} = 3.3 mM), although about 30% of the TcO{sub 4}{sup {minus}} influx is suggested to be insensitive to NO{sub 3}{sup {minus}}. In contrast, H{sub 2}PO{sub 4}{sup {minus}} (30 mM) did not inhibit TcO{sub 4}{sup {minus}} influx, whereas SO{sub 4}{sup 2{minus}} (30 mM) tended to increase TcO{sub 4}{sup {minus}} influx, probably due to the ionic strength of the uptake solution. Significant effects of the NO{sub 3}{sup {minus}} supply on Tc efflux were not found. Overall, this leads to the conclusion that TcO{sub 4}{sup {minus}} and NO{sub 3}{sup {minus}} share at least one transporter.« less

  11. Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.

    2012-03-01

    The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggestingmore » the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.« less

  12. Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors.

    PubMed

    Zhu, Shi Jin; Jia, Jia Qi; Wang, Tian; Zhao, Dong; Yang, Jian; Dong, Fan; Shang, Zheng Guo; Zhang, Yu Xin

    2015-10-14

    Two kinds of novel CeO2@MnO2 nanostructures have been synthesized via a self-assembly strategy. The as-prepared CeO2 nanowire@MnO2 nanostructures exhibited unprecedented pseudocapacitance performance (255 F g(-1)) with outstanding rate capability. A new mechanism based on the synergistic effect between CeO2 and MnO2 was proposed to interpret this phenomenon. When assembled as an asymmetric supercapacitor, an energy density of 27.5 W h kg(-1) with a maximum power density of 1.6 kW kg(-1) was achieved for CeO2 nanowire@MnO2 nanostructures.

  13. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots.

    PubMed

    Jayawardena, Dileepa M; Heckathorn, Scott A; Bista, Deepesh R; Mishra, Sasmita; Boldt, Jennifer K; Krause, Charles R

    2017-03-01

    Atmospheric CO 2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO 3 - ) or ammonium (NH 4 + ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO 2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO 2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO 3 - or NH 4 + as the N source. Elevated CO 2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO 2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO 2 plus warming, reduced NO 3 - -uptake rate per g root was correlated with a decrease in the concentration of NO 3 - -uptake proteins per g root, reduced NH 4 + uptake was correlated with decreased activity of NH 4 + -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO 2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N). © 2016 Scandinavian Plant Physiology Society.

  14. Rate constants for the quenching of metastable O2 (1Sigma g +) molecules

    NASA Technical Reports Server (NTRS)

    Kwang, Y. C.; Leu, M.-T.

    1985-01-01

    The O2 (1Sigma g +) rates for CO2, H2, N2, Cl2, CO, O3, and 2,3 DMB-2 are determined by monitoring the 762-nm emission in a fast-flow-discharge chemiluminescence detection system (Leu, 1984; Leu and Smith, 1981). The results are presented in tables and graphs and briefly characterized. The rate constants (in cu cm/s x 10 to the -16th) are 4600 + or - 500 for CO2, 7000 + or - 300 for H2, 17 + or - 1 for N2, 4.5 + or - 0.8 for Cl2, 45 + or - 5 for CO, 220,000 + or - 30,000 for O3, and 6000 + or - 100 for 2,3 DMB-2. The temperature dependence of the CO2 and O3 quenching reactions at 245-362 K is found to be negligible.

  15. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    PubMed

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  16. Leaf and Stem CO2 Uptake in the Three Subfamilies of the Cactaceae 1

    PubMed Central

    Nobel, Park S.; Hartsock, Terry L.

    1986-01-01

    Net CO2 uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO2 uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO2 uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO2 uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO2 uptake over 24 hours was by the leaves and some CO2 uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C3 plants, whereas nocturnal CO2 uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C3 plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways. PMID:16664741

  17. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.

    PubMed

    Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming

    2018-06-20

    As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.

  19. The uptake of HNO3 on meteoric smoke analogues

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Feng, Wuhu; Plane, John M. C.

    2015-05-01

    The uptake of HNO3, H2O, NO2 and NO was studied on meteoric smoke particle analogues using a low-pressure Knudsen cell operating at 295 K. The analogues used were olivine (MgFeSiO4) and a haematite/goethite (Fe2O3/FeO(OH)) mixture synthesised by the sol-gel process. For uptake on MgFeSiO4, the following uptake coefficients were obtained: γ(HNO3)=(1.8±0.3)×10-3, γ(H2O)=(4.0±1.3)×10-3, γ(NO2)=(5.7±0.2)×10-4 and γ(NO)<3×10-4. γ(HNO3) did not show a dependence on the mass of MgFeSiO4 in the Knudsen cell (when varied by a factor of 6) implying that, because of relatively efficient uptake, HNO3 is removed only by near-surface particles. This was corroborated by application of a surface uptake model. Saturating the MgFeSiO4 particles with water vapour before exposing them to NO2 increased γ(NO2) to (2.1±0.7)×10-3, but had a very small effect on γ(HNO3). For uptake on Fe2O3/FeO(OH), γ(HNO3)=(1.5±0.2)×10-3. These results were then included in a whole atmosphere chemistry-climate model, which shows that the heterogeneous removal on meteoric smoke particles in the winter polar vortex between 30 and 60 km appears to provide an important sink for HNO3.

  20. 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

    NASA Astrophysics Data System (ADS)

    Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel, J.; Holzwarth, U.; Franchini, F.; Ponti, J.; Gibson, N.; Rossi, F.

    2011-12-01

    Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

  1. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  2. Vanadium Uptake by Plants

    PubMed Central

    Welch, Ross M.

    1973-01-01

    The kinetics of vanadium absorption by excised barley (Hordeum vulgare L., cv. Eire) roots were investigated with respect to ionic species of V in solution, time and concentration dependence, Ca sensitivity, and interaction with various anions, cations, and pH levels. The role of metabolism in V absorption was also studied using anaerobic treatment (N2 gas) and chemical inhibitors (NaN3, KCN, or 2,4-dinitrophenol). Approximately one-third of the labeled V initially taken up by excised roots was desorbed to a constant level after 45 min in unlabeled V solutions. The rate of absorption of labeled V from 5 μm NH4VO3 solutions containing 0.5 mm CaSO4 was constant for at least 3 hours. Omission of Ca resulted in a 72% reduction in V uptake when compared to controls with 0.5 mm CaSO4. The rate of uptake of V was highest at pH 4 but dropped to a very low level at pH 10. It was relatively constant between the pH levels of 5 and 8 at which the VO3− ion is the predominant ionic species in solution. The rate of absorption of V was followed as a function of concentrations from 0.5 to 100 μm NH4VO3. It was found to be a linear function of concentration and did not follow saturation kinetics. Absorption experiments carried out with labeled V from either NaVO3 or NH4VO3 sources gave similar results. No anion studied (i.e. HPO42−, HAsO42−, MoO42−, SeO42−, SeO32−, CrO42−, BO33−, No3−, and Cl−) interfered appreciably (i.e. less than 30% inhibition) with the absorption of labeled V. Anaerobic treatment of absorption solution with N2 gas did not inhibit V absorption by excised roots. The results obtained using chemical inhibitors were not consistent. It was concluded that V is not actively absorbed by excised barley roots. PMID:16658421

  3. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4.

    PubMed

    Loukhovitskaya, Ekaterina E; Talukdar, Ranajit K; Ravishankara, A R

    2013-06-13

    The uptake of HNO3 on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H2SO4 coating of the TC-1 soot surface on HNO3 uptake was also investigated. Only reversible uptake of HNO3 was observed. HONO and NO2, potential products of reactive uptake of HNO3, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO3 and did not lead to displacement of H2SO4 from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO3 uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO3 loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO3 is not converted to either NO2 or HONO upon its uptake on soot in the atmosphere.

  4. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  5. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

    PubMed

    Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S

    2016-06-01

    The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.

  6. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean

  7. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/more » (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.« less

  8. Model simulation of NO3, N2O5 and ClNO2 at a rural site in Beijing during CAREBeijing-2006

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Lu, Keding; Tan, Zhaofeng; Sun, Kang; Li, Xin; Hu, Min; Shao, Min; Zeng, Limin; Zhu, Tong; Zhang, Yuanhang

    2017-11-01

    A chemical box model was used to study nitrate radical (NO3), dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) in a rural site during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006). The model was based on regional atmospheric chemistry mechanism version 2 (RACM2) with the heterogeneous uptake of N2O5 and the simplified chloride radical (Cl) chemistry mechanism. A high production rate of NO3 with a mean value of 0.8 ppbv/h and low mixing ratios of NO3 and N2O5 (peak values of 17 pptv and 480 pptv, respectively) existed in this site. Budget analysis showed that NO emission suppressed the NO3 chemistry at the surface layer, the reaction of NO3 with VOCs made a similar contribution to NO3 loss as N2O5 heterogeneous uptake. The NO3 chemistry was predominantly controlled by isoprene, and NO3 oxidation produced organic nitrate with a mean value of 0.06 ppbv/h during nighttime. The organic nitrate production initiated by NO3 was equal to that initiated by OH, implying the importance of nighttime chemistry for secondary organic aerosol (SOA) formation. We confirmed that the N2O5 heterogeneous reaction accounted for nighttime particle NO3- enhancement, with a large day to day variability, and made less of a contribution to NOx loss compared to that of OH reacting with NO2. Additionally, abundant ClNO2, up to 5.0 ppbv, was formed by N2O5 heterogeneous uptake. ClNO2 was sustained at a high level until noon in spite of the gradually increasing photolysis of ClNO2 after sunrise. Chlorine activation caused by N2O5 heterogeneous uptake increased primary ROx formation by 5% and accounted for 8% of the net ozone production enhancement in the morning.

  9. Pulmonary uptake of morphine (M)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roerig, D.L.; Bunke, S.S.; Kotrly, K.J.

    Previously the authors reported less than 5% of M was taken up during the first pass through the human lung. The low uptake of this basic lipophilic amine was further investigated in a single pass isolated perfused rat lung (IPL) in comparison to uptake of radiolabelled H/sub 2/O, antipyrine (A), aminopyrine (AM), nicotine (N) and phenylethylamine (P). The IPL was perfused for 5 min with each drug (5nmol/ml) and effluent collected in 10 sec fractions. Pulmonary extraction was calculated using indocyanine green dye as a non-extractable reference indicator. Accumulation of all compounds in the IPL reached an apparent equilibrium withinmore » 4 min. At equilibrium lung/perfusate conc. ratios for H/sub 2/O, A, AM, N, P and M were 1.04, 0.84, 0.85, 1.44, 2.57 and 1.13 respectively. The time course of M uptake differed from the other compounds since initial extraction of M was low (23%) compared to 75%, 53%, 35%, 82% and 86% for H/sub 2/O, A, AM, N and P respectively. Also, the half time to equilibrium for M was longer (50 sec) compared to 18, 21, 26, 19 and 22 sec for H/sub 2/O, A, AM, N and P respectively. The low initial pulmonary extraction of M compared to these compounds followed by greater M extraction during the remainder of drug infusion suggests uptake mechanisms for M different than the flow limited uptake for water and other basic amine drugs.« less

  10. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    PubMed

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  11. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture.

    PubMed

    Yan, Feng; Jiang, Jianguo; Li, Kaimin; Liu, Nuo; Chen, Xuejing; Gao, Yuchen; Tian, Sicong

    2017-07-05

    High-temperature sorption of CO 2 via calcium looping has wide applications in postcombustion carbon capture, sorption-enhanced hydrogen production, and inherent energy storage. However, fast deactivations of CaO sorbents and low CO 2 uptake in the fast carbonation stage are major drawbacks of this technology. For the first time, we developed a green approach through the reuse of nanosilica derived from coal fly ash (CFA) to enhance both the cyclic CO 2 uptakes and the sorption kinetics of CaO sorbents. The as-synthesized nanosilica-supported CaO sorbent showed superior cyclic stability even under realistic carbonation/calcination conditions, and maintained a final CO 2 uptake of 0.20 g(CO 2 ) g(sorbent) -1 within short carbonation time, markedly increased by 155% over conventional CaO sorbent. Significantly, it also exhibited very fast sorption rate and could achieve almost 90% of the total CO 2 uptake within ∼20 s after the second cycle, which is critical for practical applications. These positive effects were attributed to the formation of larnite (Ca 2 SiO 4 ) and the physical nanostructure of silica, which could yield and keep abundant reactive small pores directly exposed to CO 2 throughout multiple cycles. The proposed strategy, integrating the on-site recycling of CFA, appears to be promising for CO 2 abatement from coal-fired power plants.

  12. Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals.

    PubMed

    Horák, Daniel; Beneš, Milan; Procházková, Zuzana; Trchová, Miroslava; Borysov, Arsenii; Pastukhov, Artem; Paliienko, Konstantin; Borisova, Tatiana

    2017-01-01

    Changes in cholesterol concentration in the plasma membrane of presynaptic nerve terminals nonspecifically modulate glutamate transport and homeostasis in the central nervous system. Reduction of the cholesterol content in isolated rat brain nerve terminals (synaptosomes) using cholesterol-depleting agents decreases the glutamate uptake and increases the extracellular level of glutamate in nerve terminals. Extraction of cholesterol from the plasma membrane and its further removal from the synaptosomes by external magnetic field can be achieved by means of magnetic nanoparticles with immobilized cholesterol-depleting agent such as O-methyl-β-cyclodextrin (MCD). A simple approach is developed for preparation of maghemite (γ-Fe 2 O 3 ) nanoparticles containing chemically bonded MCD. The method is based on preparation of a silanization agent containing MCD. It is synthesized by the reaction of triethoxy(3-isocyanatopropyl)silane with MCD. Base-catalyzed silanization of superparamagnetic γ-Fe 2 O 3 provides a relatively stable colloid product containing 48μmol of MCDg -1 . MCD-modified γ-Fe 2 O 3 nanoparticles decrease the initial rate of the uptake and accumulation of l-[ 14 C]glutamate and increase the extracellular l-[ 14 C]glutamate level in the preparation of nerve terminals. The effect of MCD-immobilized nanoparticles is the same as that of MCD solution; moreover, magnetic manipulation of the nanoparticles enables removal of bonded cholesterol. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rate Coefficient for Collisional Removal of O2(X3Σ ^-g, v = 1) with O Atoms at 240 K

    NASA Astrophysics Data System (ADS)

    Pejaković, D. A.; Campbell, Z.; Kalogerakis, K. S.; Copeland, R. A.; Slanger, T. G.

    2004-12-01

    Knowledge of the water concentration profile is key to understanding of the chemistry and energy flow in the stratosphere and mesosphere. One of the tasks of the SABER instrument in NASA's TIMED mission is to measure water vapor concentration by detecting H2O2) emission in the 6.8 μ m region. An important source of the H2O2) emission is the collisional deactivation of vibrationally excited O2: O2(X3Σ ^-g, v = 1) + H2O <-> O2(X3Σ ^-g, v = 0) + H2O2). For reliable interpretation of the SABER data it is crucial to determine rate coefficient for the competing process: O2(X3Σ ^-g, v = 1) + O(3P) -> O2(X3Σ ^-g, v = 0) + O(3P) [1]. Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X3Σ ^-g, v = 1) by O(3P) at a temperature of 240 K, relevant to the upper mesosphere. Instead of directly detecting the O2(X3Σ ^-g, v = 1) population, a novel, technically simpler, approach is used in which the v = 1 level of the O2(a1Δ g) state is monitored. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ ^-g, v = 1) and O2(a1Δ g, v = 1) populations via the processes O2(a1Δ g, v = 1) + O2(X3Σ ^-g, v = 0) <-> O2(a1Δ g, v = 0) + O2(X3Σ ^-g, v = 1), the information on the O2(X3Σ ^-g, v = 1) kinetics is extracted from the O2(a1Δ g, v = 1) temporal evolution. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δ g, v = 1), and the pulsed output of the second laser detects O2(a1Δ g, v = 1) via the resonance-enhanced multiphoton ionization. In the same experiment, rate coefficients for removal of O2(a1Δ g, v = 1) with the atmospherically relevant colliders O2, CO2, and O also were measured at room temperature and 240 K. The measured rate coefficient for O2(X3Σ ^-g, v = 1) removal by O(3P) is in the range 2--3 × 10-12 cm3s-1 at 240 K, compared to the recently measured room temperature value of about 3 × 10

  14. MRI quantification of human fetal O2 delivery rate in the second and third trimesters of pregnancy.

    PubMed

    Rodríguez-Soto, Ana E; Langham, Michael C; Abdulmalik, Osheiza; Englund, Erin K; Schwartz, Nadav; Wehrli, Felix W

    2018-01-22

    The purpose of this study was to estimate fetal O 2 delivery rate in vivo across a range of gestational ages. Toward this, a calibration equation for T 2 -based oximetry was derived. Umbilical cord blood of varying hematocrit (Hct) and oxygen saturation (HbO 2 ) levels was prepared and T 2 measured using a T 2 -prepared balanced steady-state free-precession sequence at 1.5 T. The relationship between blood R 2  = 1/T 2 , HbO 2 and Hct was established based on the model R2=(1-Hct)R2,plasma+Hct R2,RBC+k·Hct·(1-Hct)·(1-HbO2)2. Experimental R 2 , HbO 2 , and Hct levels were fit to the model-yielding values of k, R2,plasma, and R2,RBC (R 2 of plasma and erythrocytes). Umbilical vein T 2 measured in vivo was then converted to HbO 2 , yielding-together with blood flow rate-the fetal O 2 delivery rate in 22 pregnancies (gestational age 30 ± 3 weeks). Constants derived from the fit (R 2  = 0.94) were k = 83.1 s -1 , R2,plasma=1.1  s-1, and R2,RBC=12.9  s-1. The R2,RBC and k were found to be larger than those obtained for adult blood, likely the result of differences in dominant hemoglobin type. Data suggest that the use of adult blood calibration could entail errors up 10% in fetal blood HbO 2 . The average umbilical vein blood flow rate (89.5 ± 17.2 mL/min/kg), HbO 2 (84 ± 7%,), and fetal O 2 delivery rate (15.1 ± 3.8 mL O 2 /min/kg) were independent of gestational age. The fetal O 2 delivery rate agreed well with the results obtained with invasive methods at term. The present work describes strategies for measuring umbilical vein blood flow rate and HbO 2 in vivo and estimates fetal O 2 delivery rate noninvasively with quantitative MRI during the second and third trimesters of pregnancy. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    NASA Astrophysics Data System (ADS)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p < 0.05). The amount of Cu transport increased with the increase of CuSO4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  16. Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Telford, P. J.; Pope, F. D.; Rkiouak, L.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Pyle, J. A.; McGregor, J.; Watson, I. M.; Cox, R. A.; Kalberer, M.

    2014-06-01

    Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space has been suggested as a solar-radiation management scheme for the mitigation of global warming. TiO2 has recently been highlighted as a possible candidate particle because of its high refractive index, but its impact on stratospheric chemistry via heterogeneous reactions is as yet unknown. In this work the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated for the first time, at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ~1.0 × 10-3 at low RH, increasing to ~3 × 10-3 at 60% RH. The uptake of N2O5 onto TiO2 is then included in the UKCA chemistry-climate model to assess the impact of this reaction on stratospheric chemistry. While the impact of TiO2 on the scattering of solar radiation is chosen to be similar to the aerosol from the Mt Pinatubo eruption, the impact of TiO2 injection on stratospheric N2O5 is much smaller.

  17. High rate performance supercapacitor based on Nb2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    In the present communication, we report the successful preparation of Nb2O5 nanoparticles from precursor NbCl5 using hydrothermal method, followed by thermal annealing. The surface morphology of the as-prepared material was studied using scanning electron microscopy (SEM) while crystal structure and vibrational response was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The observed results indicate the successful synthesis of Nb2O5 nanoparticles. The electrochemical properties of the material was investigated in two-electrode assembly in 1 M LiClO4 solution using the techniques of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both EIS and CV studies show high rate performance of the assembled supercapacitor cells. Fabricated cell offers low response time (˜17.1 ms), and the shape of CV pattern remains almost rectangular, even for high scan rates (˜20 V s-1).

  18. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak

  19. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.

    PubMed

    Sousa, Ana; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, J Paulo; Fernandes, Ricardo J

    2015-06-01

    What is the central question of this study? Do the mechanical differences between swimming, rowing, running and cycling have a potential effect on the oxygen uptake (V̇O2) off-kinetics after an exercise sustained until exhaustion at 100% of maximal oxygen uptake (V̇O2max) intensity? What is the main finding and its importance? The mechanical differences between exercise modes had a potential effect and contributed to distinct amplitude of the fast component (higher in running compared with cycling) and time constant (higher in swimming compared with rowing and cycling) in the V̇O2 off-kinetic patterns at 100% of V̇O2max intensity. This suggests that swimmers, unlike rowers and cyclists, would benefit more from a longer duration of training intervals after each set of exercise performed at V̇O2max intensity. The kinetics of oxygen uptake (V̇O2) during recovery (off-transient kinetics) for different exercise modes is largely unexplored, hampering the prescription of training and recovery to enhance performance. The purpose of this study was to compare the V̇O2 off-transient kinetics response between swimmers, rowers, runners and cyclists during their specific mode of exercise at 100% of maximal oxygen uptake (V̇O2max) intensity and to examine the on-off symmetry. Groups of swimmers, rowers, runners and cyclists (n = 8 per group) performed (i) an incremental exercise protocol to assess the velocity or power associated with V̇O2max (vV̇O2max or wV̇O2max, respectively) and (ii) a square-wave exercise transition from rest to vV̇O2max/vV̇O2maxwV̇O2maxwV̇O2max until volitional exhaustion. Pulmonary exchange parameters were measured using a telemetric portable gas analyser (K4b(2) ; Cosmed, Rome, Italy), and the on- and off-transient kinetics were analysed through a double-exponential approach. For all exercise modes, both transient periods were symmetrical in shape once they had both been adequately fitted by a double-exponential model. However, differences

  20. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland.

    PubMed

    Dijkstra, Feike A; Morgan, Jack A; Follett, Ronald F; Lecain, Daniel R

    2013-06-01

    Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2 O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2 O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2 O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2 O emission and uptake occurred at our site with some years showing cumulative N2 O emission and other years showing cumulative N2 O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2 O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2 O expressed in CO2 -equivalents. © 2013 Blackwell Publishing Ltd.

  1. MnO2 Motor: A Prospective Cancer-Starving Therapy Promoter.

    PubMed

    Zhang, Yao-Hui; Qiu, Wen-Xiu; Zhang, Mingkang; Zhang, Lu; Zhang, Xian-Zheng

    2018-05-02

    Here, a tumor-targeted MnO 2 motor nanosystem (designed as MG/HA) was constructed by the assembly of glucose oxidase (GOD), manganese dioxide (MnO 2 ), and glycoprotein CD44-targeting polymer hyaluronic acid (HA) to elevate cancer-starving therapy efficacy in solid tumor. Upon the specific uptake of MG/HA by CD44 overexpressed cancer cells, GOD catalyzed the oxidation of glucose into gluconic acid and hydrogen peroxide (H 2 O 2 ) accompanying the consumption of oxygen (O 2 ). Meanwhile, MnO 2 would react with H 2 O 2 and acid to generate O 2 , which is in turn supplied to the glucose-depletion process, running like a loop. As a result, MnO 2 is displayed as a motor to promote the rate of glucose depletion that contributed to the starving therapy. In contrast to G/HA, MG/HA could not only achieve effective glucose consumption to depress cancer progression, but also alleviate hypoxia and reduce the expression of Glut1 to inhibit the metabolism for further restraining the tumor aggressiveness and metastasis. The concept of MnO 2 motor shows a promising prospect to overcome the restriction of the starving therapy.

  2. Estrogen-mediated impairment of macrophageal uptake of environmental TiO2 particles to explain inflammatory effect of TiO2 on airways during pregnancy.

    PubMed

    Zhang, Yiming; Mikhaylova, Lyudmila; Kobzik, Lester; Fedulov, Alexey V

    2015-01-01

    Innate defenses against environmental particulate exposures can become deficient when physiological background of the organism is unbalanced. Even those exposures considered innocuous may then become harmful. For example, one of the important inherent risks of pregnancy is increased inflammatory responsiveness in the airways, which extends to exposures considered otherwise innocuous: it has been observed that normally "inert" particulates become inflammatory in pregnancy. They lead to enhanced airway inflammation associated with increased asthma risk in the offspring in the BALB/c model. It was hypothesized that pregnancy hormones alter macrophageal uptake and clearance of particles. This study shows that the phagocytic activity of alveolar macrophages (AM) and RAW264.7 cells against titanium dioxide (TiO2) was inhibited in pregnancy by ∼ 10% and in vitro by estradiol by ∼ 20%; progesterone potentiated this effect. Hence, enhanced inflammation in pregnancy as an outcome of exposure to the "inert" TiO2 may be due to an effect of pregnancy hormones which decrease the ability of the airways to clear the particles. AM (at 10(6) cells/recipient) isogenically transplanted from pregnant mothers into airways of recipients were able to confer the phenotype of inflammatory response to TiO2 (PMN counts of 1.62 [± 0.19] × 10(5)/ml versus 0.61 [± 0.13] × 10(5)/ml in control). Because this small amount of transferred AM could not replace the AM population in the recipients' lungs, it is postulated that the effect is mediated by inhibitory signaling factors that AM produce and release; hence, a list of probable molecules was identified via genome-wide microarray.

  3. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    PubMed

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. AMPKα2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle.

    PubMed

    Abbott, Marcia J; Bogachus, Lindsey D; Turcotte, Lorraine P

    2011-07-01

    AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca(2+) concentration ([Ca(2+)]). The purpose of this study was to determine whether increases in intracellular [Ca(2+)] induced by caffeine act solely via AMPKα(2) and whether AMPKα(2) is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα(2) dominant-negative (DN) transgene mice were perfused during rest (n = 11), treatment with 3 mM caffeine (n = 10), or muscle contraction (n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period (P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol (P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice (P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction (P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation (P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice (P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase I or ERK1/2 (P > 0.05). These data suggest that AMPKα(2) is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.

  5. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    PubMed

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ( sup 14 C)-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrig, K.; Raschke, K.

    1991-05-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated ({sup 14}C)-sucrose. Uptake rates were corrected after measurement of {sup 14}C-sorbitol and {sup 3}H{sub 2}O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K{sub m} 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related tomore » an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours.« less

  7. Does elevated CO 2 alter silica uptake in trees?

    DOE PAGES

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; ...

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO 2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO 2 fertilization, longterm free-air CO 2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO 2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblollymore » pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO 2 enrichment, N enrichment, and N and CO 2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO 2, N fertilization, or combined elevated CO 2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO 2 concentrations. Due largely to increased primary production, elevated CO 2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less

  8. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.

    PubMed

    Scheuermann, B W; Hoelting, B D; Noble, M L; Barstow, T J

    2001-02-15

    1. We hypothesized that either the recruitment of additional muscle motor units and/or the progressive recruitment of less efficient fast-twitch muscle fibres was the predominant contributor to the additional oxygen uptake (VO2) observed during heavy exercise. Using surface electromyographic (EMG) techniques, we compared the VO2 response with the integrated EMG (iEMG) and mean power frequency (MPF) response of the vastus lateralis with the VO2 response during repeated bouts of moderate (below the lactate threshold, < LT) and heavy (above the lactate threshold, > LT) intensity cycle ergometer exercise. 2. Seven male subjects (age 29 +/- 7 years, mean +/- S.D.) performed three transitions to a work rate (WR) corresponding to 90 % LT and two transitions to a work rate that would elicit a VO2 corresponding to 50 % of the difference between peak VO2 and the LT (i.e. Delta50 %, > LT1 and > LT2). 3. The VO2 slow component was significantly reduced by prior heavy intensity exercise (> LT1, 410 +/- 196 ml min(-1); > LT2, 230 +/- 191 ml min-1). The time constant (tau), amplitude (A) and gain (DeltaVO2/DeltaWR) of the primary VO2 response (phase II) were not affected by prior heavy exercise when a three-component, exponential model was used to describe the V2 response. 4. Integrated EMG and MPF remained relatively constant and at the same level throughout both > LT1 and > LT2 exercise and therefore were not associated with the VO2 slow component. 5. These data are consistent with the view that the increased O2 cost (i.e. VO2 slow component) associated with performing heavy exercise is coupled with a progressive increase in ATP requirements of the already recruited motor units rather than to changes in the recruitment pattern of slow versus fast-twitch motor units. Further, the lack of speeding of the kinetics of the primary VO2 component with prior heavy exercise, thought to represent the initial muscle VO2 response, are inconsistent with O2 delivery being the limiting factor

  9. Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO3-, NO2-, NH4+, and urea

    NASA Technical Reports Server (NTRS)

    Criddle, R. S.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The net influx (uptake) rates of NO3-, NH4+, NO2-, and urea into roots of wheat (Triticum aestivum cv Yecora Rojo) seedlings from complete nutrient solutions containing all four compounds were monitored simultaneously. Although urea uptake was too slow to monitor, its presence had major inhibitory effects on the uptake of each of the other compounds. Rates of NO3-, NH4+, and NO2- uptake depended in a complex fashion on the concentration of all four N compounds. Equations were developed which describe the uptake rates of each of the compounds, and of total N, as functions of concentrations of all N sources. Contour plots of the results show the interactions over the range of concentrations employed. The coefficients of these equations provide quantitative values for evaluating primary and interactive effects of each compound on N uptake.

  10. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  11. Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Al-Najar, B.; Khezami, L.; Judith Vijaya, J.; Lemine, O. M.; Bououdina, M.

    2017-01-01

    In this study, MgFe2O4 nanopowders were synthesized through two different methods, sol-gel method (SG) and modified sol-gel with Ammonia (MSG-A). The influence of synthesis route was investigated in terms of phase stability, pores size and surface area, magnetic properties and uptake of Ni and Cd metals from aqueous solution. Rietveld refinements of x-ray diffraction patterns confirmed the formation of single spinel phase for SG sample, while minor impurity was detected for SGM-A sample (few amount of MgO). The crystallite size was found to be sensitive to the preparation method; it ranges from 4 nm for SG to 15 nm for MSG-A. Magnetization experiment at room temperature showed ferromagnetic behavior with a saturation magnetization ( M s) ranging from 5.39 emu/g for SG to 9.93 emu/g for MSG-A. Preliminary results showed that SG and MSG-A samples are efficient adsorbent for Ni and Cd metal ions from aqueous solution. Maximum quantity of 62.67 and 61.2 mg of Ni(II) and 36.49 and 32.84 mg of Cd(II) was adsorbed per gram of MgFe2O4 synthesized by SG and MSG-A, respectively.

  12. Effects of Elevated CO2 on Levels of Primary Metabolites and Transcripts of Genes Encoding Respiratory Enzymes and Their Diurnal Patterns in Arabidopsis thaliana: Possible Relationships with Respiratory Rates

    PubMed Central

    Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko

    2014-01-01

    Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073

  13. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    NASA Astrophysics Data System (ADS)

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A. Jan; de Jong, Wim H.

    2016-07-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  14. Cyclic variations in nitrogen uptake rate of soybean plants: effects of pH and mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.; Chaillou, S.

    1991-01-01

    To determine if the daily pattern of NO3- and NH4+ uptake is affected by acidity or NO3- : NH4+ ratio of the nutrient solution, non-nodulated soybean plants (Glycine max) were exposed for 21 days to replenished, complete nutrient solutions at pH 6.0, 5.5, 5.0, and 4.5 which contained either 1.0 mM NH4+, 1.0 mM NO3- [correction of NO3+], 0.67 mM NH4+ plus 0.33 mM NO3- (2:1 NH4+ : NO3-) [correction of (2:1 NH3+ : NO4-)], or 0.33 mM NH4+ plus 0.67 mM NO3- (1:2 NH4+ : NO3-). Net uptake rates of NH4+ and NO3- were measured daily by ion chromatography as depletion from the replenished solutions. When NH4+ and NO3- were supplied together, cumulative uptake of total nitrogen was not affected by pH or solution NH4+ : NO3- ratio. The cumulative proportion of nitrogen absorbed as NH4+ decreased with increasing acidity; however, the proportional uptake of NH4+ and NO3- was not constant, but varied day-to-day. This day-to-day variation in relative proportions of NH4+ and NO3- absorbed when NH4+ : NO3- ratio and pH of solution were constant indicates that the regulatory mechanism is not directly competitive. Regardless of the effect of pH on cumulative uptake of NH4+, the specific nitrogen uptake rates from mixed and from individual NH4+ and NO3- sources oscillated between maxima and minima at each pH with average periodicities similar to the expected interval of leaf emergence.

  15. Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants.

    PubMed

    Deng, Yingqing; Petersen, Elijah J; Challis, Katie E; Rabb, Savelas A; Holbrook, R David; Ranville, James F; Nelson, Bryant C; Xing, Baoshan

    2017-09-19

    Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO 2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO 2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.

  16. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

    NASA Astrophysics Data System (ADS)

    Yu, Ting; Zhao, Defeng; Song, Xiaojuan; Zhu, Tong

    2018-05-01

    The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 / NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10-5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2-3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 / NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

  18. A longitudinal analysis of the effect of nonmedical exemption law and vaccine uptake on vaccine-targeted disease rates.

    PubMed

    Yang, Y Tony; Debold, Vicky

    2014-02-01

    We assessed how nonmedical exemption (NME) laws and annual uptake of vaccines required for school or daycare entry affect annual incidence rates for 5 vaccine-targeted diseases: pertussis, measles, mumps, Haemophilus influenzae type B, and hepatitis B. We employed longitudinal mixed-effects models to examine 2001-2008 vaccine-targeted disease data obtained from the National Notifiable Disease Surveillance System. Key explanatory variables were state-level vaccine-specific uptake rates from the National Immunization Survey and a state NME law restrictiveness level. NME law restrictiveness and vaccine uptake were not associated with disease incidence rate for hepatitis B, Haemophilus influenzae type B, measles, or mumps. Pertussis incidence rate, however, was negatively associated with NME law restrictiveness (b = -0.20; P = .03) and diphtheria-pertussis-tetanus vaccine uptake (b = -0.01; P = .05). State NME laws and vaccine uptake rates did not appear to influence lower-incidence diseases but may influence reported disease rates for higher-incidence diseases. If all states increased their NME law restrictiveness by 1 level and diphtheria-pertussis-tetanus uptake by 1%, national annual pertussis cases could decrease by 1.14% (171 cases) and 0.04% (5 cases), respectively.

  19. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    OH and HO2 (HOx) radicals are closely coupled and OH is responsible for the majority of the oxidation in the troposphere and controls the concentrations of many trace species. Therefore, it is important to be able to accurately predict HOx concentrations. However, some field measurement studies have reported significantly lower HO2 radical concentrations than calculated by constrained box models using detailed chemical mechanisms. Although the inclusion of halogen chemistry into the mechanisms can explain much of the differences in the marine boundary layer (MBL) (1,2), HO2 uptake by aerosols has been suggested as a possible sink in the MBL (2), the Arctic troposphere (3) and the upper troposphere (4). There have been very few laboratory studies (5,6) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for a variety of atmospherically relevant inorganic and organic aerosols. The measurements were performed using an aerosol flow tube combined with a Fluorescence Assay by Gas Expansion (FAGE) detector. The sensitive FAGE cell allowed low HO2 concentrations (108-109 molecule cm-3) to be injected into the flow tube using a moveable injector. By moving the injector along the flow tube, position dependent HO2 decays were able to be recorded which when plotted against the total aerosol surface area allowed an uptake coefficient to be obtained. The aerosols were generated using an atomiser or by homogeneous nucleation and the total aerosol surface area was measured using a Scanning Mobility Particle Sizer. The HO2 uptake coefficient (γ) was measured at room temperature for dry inorganic salts and dry organics (γ< 0.004), wet inorganic salts and wet organics (γ= 0.002-0.005), wet copper doped ammonium sulfate aerosols (γ= 0.28± 0.05) and ammonium sulfate aerosols doped with different molar amounts of iron (γ= 0.003-0.06). The pH dependence of the HO2 uptake coefficient was investigated, however no

  20. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  1. Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon Forest

    NASA Technical Reports Server (NTRS)

    Fan, Song-Miao; Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.

    1990-01-01

    An eddy correlation measurement of O3 deposition and CO2 exchange at a level 10 m above the canopy of the Amazon forest, conducted as part of the NASA/INPE ABLE2b mission during the wet season of 1987, is presented. It was found that the ecosystem exchange of CO2 undergoes a well-defined diurnal variation driven by the input of solar radiation. A curvilinear relationship was found between solar irradiance and uptake of CO2, with net CO2 uptake at a given solar irradiance equal to rates observed over forests in other climate zones. The carbon balance of the system appeared sensitive to cloud cover on the time scale of the experiment, suggesting that global carbon storage might be affected by changes in insolation associated with tropical climate fluctuations. The forest was found to be an efficient sink for O3 during the day, and evidence indicates that the Amazon forests could be a significant sink for global ozone during the nine-month wet period and that deforestation could dramatically alter O3 budgets.

  2. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanaga, S.; Rahman, F.; Khanom, F.

    2005-09-15

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and {beta}{sub 2}-channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and {beta}{sub 1}-TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it canmore » well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T{sub s} exhibits a clear anti-correlation with the bulk dangling bond density versus T{sub s} curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed.« less

  3. The cooling rate dependence of cation distributions in CoFe2O4

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; O'Handley, Robert C.; Kalonji, Gretchen

    1989-01-01

    The room-temperature cation distributions in bulk CoFe2O4 samples, cooled at rates between less than 0.01 and about 1000 C/sec, have been determined using Mossbauer spectroscopy in an 80-kOe magnetic field. With increasing cooling rate, the quenched structure departs increasingly from the mostly ordered cation distribution ordinarily observed at room temperature. However, the cation disorder appears to saturate just short of a random distribution at very high cooling rates. These results are interpreted in terms of a simple relaxation model of cation redistribution kinetics. The disordered cation distributions should lead to increased magnetization and decreased coercivity in CoFe2O4.

  4. Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.

    1984-01-01

    A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.

  5. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  6. Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC (Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling

    NASA Astrophysics Data System (ADS)

    Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp

    2018-03-01

    The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.

  7. Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.

  8. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    PubMed

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  9. Seasonal carbon uptake rates of phytoplankton in the northern East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Lee, Sang Heon; Joo, HuiTae; Lee, Jae Hyung; Lee, Jang Han; Kang, Jae Joong; Lee, Ho Won; Lee, Dabin; Kang, Chang Keun

    2017-09-01

    Korea-Russia joint expeditions have been conducted mainly in the less studied Russian sector of the East/Japan Sea to understand the physical and ecological structures. In this study, the carbon uptake rates of phytoplankton measured in 2012 (middle-late October) and 2015 (middle April-early May) were analyzed to understand seasonal and spatial distributions of phytoplankton production, using a 13C-15N dual isotope tracer technique. The water columns in the euphotic layers were well mixed during our cruise periods in both years. The water column-integrated chl-a concentrations (mean ± S.D. = 2.28 ± 1.47 mg m-3) in 2015 was significantly higher (t-test, p < 0.01) than in 2012 (mean ± S.D. = 0.49 ± 0.29 mg m-3) because of different sampling seasons. Small phytoplankton (< 2 μm) were relatively dominant in 2012, whereas different sizes of phytoplankton were evenly distributed in 2015 although a spatial distribution of large phytoplankton (> 20 μm) was observed near the Russian coast. The daily carbon uptake rates in this study were 180.5 and 441.6 mg C m-2 d-1 in 2012 and 2015, respectively which are significantly (t-test, p < 0.01) lower than the averaged values previously reported in the East/Japan Sea (863 ± 679.6 mg C m-2 d-1). The potential reasons for the lower rate in this study are discussed. The small phytoplankton contribution (47.4%) averaged from the two different cruises in this study is consistent with the result (47%) reported in temperate regions. Moreover, a significantly (t-test, p < 0.01) lower contribution of small phytoplankton in total primary production than total phytoplankton biomass in this study is consistent with the results from other regions. Lower total primary production might be expected due to increasing contribution of small phytoplankton under warmer conditions.

  10. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.

    PubMed

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.

  11. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique

    PubMed Central

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477

  12. Diurnal changes in net uptake rate of nitrate are associated with changes in estimated export of carbohydrates to roots

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    The rate of NO3- uptake by soybean (Glycine max [L.] Merrill) roots generally declines during the night in association with progressive depletion of the nonstructural carbohydrate pool in the shoot as well as the concentration of carbohydrates in roots. To determine if NO3- uptake rate changes in response to variations in translocation rate of carbohydrates from shoot to roots per se or to carbohydrate status of the roots, the night period was interrupted with a low light level from incandescent lamps to alter the diurnal pattern of NO3- uptake by roots and export of carbohydrate from shoots of nonnodulated soybean. Depletion of NO3- from replenished, complete nutrient solutions containing 1 mM NO3- was measured by ion chromatography and rates of NO3- uptake were calculated. Changes in export of carbohydrates from shoot to roots during intervals of the night period were calculated as the differences between rates of disappearance in contents of nonstructural carbohydrates and their estimated rates of utilization in shoot respiration and growth. A positive, significant correlation occurred between changes in calculated rates of carbohydrate export from shoots and NO3- uptake rates. Conversely, there was no significant correlation between concentrations of nonstructural carbohydrates in roots and NO3- uptake rates. These results support the hypothesis that carbohydrate flux from shoot to roots has a direct role in regulation of nitrogen uptake by the whole plant.

  13. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells.

    PubMed

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A Jan; de Jong, Wim H

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  14. Intracellular metabolism of a 2'-O-methyl-stabilized ribozyme after uptake by DOTAP transfection or asfree ribozyme. A study by capillary electrophoresis.

    PubMed Central

    Prasmickaite, L; Hogset, A; Maelandsmo, G; Berg, K; Goodchild, J; Perkins, T; Fodstad, O; Hovig, E

    1998-01-01

    The uptake and cellular metabolism of a fluorescein-labelled synthetic ribozyme stabilized by 2'- O -methyl modification and a 3' inverted thymidine have been studied, employing capillary gel electrophoresis as a novel and efficient analytical method. After internalization by DOTAP transfection, electrophoretic peaks of intact ribozyme and different degradation products were easily resolved and the amount of intracellular intact ribozyme was quantified to >10(7) molecules/cell at the peak value after 4 h transfection. On further incubation the amount of intracellular intact ribozyme decreased due to both degradation and efflux from the cell. However, even after 48 h incubation there were still >10(6) intact ribozyme molecules/cell. Clear differences both in uptake and in metabolism were seen when comparing DOTAP transfection with the uptake of free ribozyme. Fluorescence microscopy studies indicated that the ribozyme was mainly localized in intracellular granules, probably not accessible to target mRNA. This implies that agents able to release the intact ribozyme from intracellular vesicles into the cytosol should have a considerable potential for increasing the biological effects of synthetic ribozymes. PMID:9722645

  15. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  16. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to

  17. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    PubMed

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  18. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  19. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  20. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  1. Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2.

    PubMed

    Srinivasan, Nanda K; Su, Meng-Chih; Sutherland, James W; Michael, Joe V; Ruscic, Branko

    2006-06-01

    The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.

  2. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    PubMed

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco B C; Hase, William L

    2018-05-31

    The reaction of 3 CH 2 with 3 O 2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH 2 OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H 2 CO + O( 3 P), while the singlet surface leads to eight product channels with their relative importance as CO + H 2 O > CO + OH + H ∼ H 2 CO + O( 1 D) > HCO + OH ∼ CO 2 + H 2 ∼ CO + H 2 + O( 1 D) > CO 2 + H + H > HCO + O( 1 D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10 -12 cm 3 molecule -1 s -1 in comparison to the recommended experimental rate constant of 3.3 × 10 -12 cm 3 molecule -1 s -1 . The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO 2 , and H 2 O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3 CH 2 + 3 O 2 → 3 CH 2 OO, (2) the temperature dependence of the 3 CH 2 + 3 O 2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1 CH 2 OO Criegee intermediate.

  3. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J

    2015-07-01

    Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.

  4. Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia.

    PubMed

    Hu, Ji; Wang, Demin; Wang, Jiangtao; Wang, Jianmin

    2012-03-01

    While nano-Fe(2)O(3)(magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe(2)O(3)(m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe(2)O(3)(m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe(2)O(3) also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7-8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe(2)O(3)(m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe(2)O(3)(m) occurred, and food addition accelerated the depuration process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluation of Maximal O[subscript 2] Uptake with Undergraduate Students at the University of La Reunion

    ERIC Educational Resources Information Center

    Tarnus, Evelyne; Catan, Aurelie; Verkindt, Chantal; Bourdon, Emmanuel

    2011-01-01

    The maximal rate of O[subscript 2] consumption (VO[subscript 2max]) constitutes one of the oldest fitness indexes established for the measure of cardiorespiratory fitness and aerobic performance. Procedures have been developed in which VO[subscript 2max]is estimated from physiological responses during submaximal exercise. Generally, VO[subscript…

  6. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    PubMed Central

    Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven

    2012-01-01

    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810

  7. The study of glass transition temperature in Sb-V2O5-TeO2 glasses at different heating rates

    NASA Astrophysics Data System (ADS)

    Souri, Dariush

    2015-12-01

    The glass transition of xSb-(60 - x)V2O5-40TeO2 glasses with 0 < x <15 (in mol%) at different heating rates ( φ = 3-12 K/min) has been studied using differential scanning calorimetry. The glass transition temperature ( T g) and crystallization temperature ( T cr) of these glasses have been determined. The effects of the heating rate and the Sb content on T g have been discussed. It has been observed that the transition region shifts to higher temperatures when the measuring time is reduced. The compositional dependence of T g has been determined and so an empirical equation has been deduced relating the glass transition temperature with the Sb concentration. Also, the value of glass-forming tendency has been studied for the present glasses.

  8. New electron-energy transfer rates for vibrational excitation of O2

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.

    2003-09-01

    We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.

  9. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  11. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    PubMed

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for <1μm-size and the deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance

    NASA Astrophysics Data System (ADS)

    Huang, Xingkang; Shi, Keying; Yang, Joseph; Mao, George; Chen, Junhong

    2017-07-01

    Sulfur cathodes have attracted much attention recently because of their high energy density and power density. However, sulfur possesses very poor electrical conductivity, and lithium polysulfides, resulting from the lithiation of sulfur, are prone to dissolving into electrolytes, which leads to the loss of active materials and poor cyclic performance of the sulfur cathodes. Here we report an MnO2-graphene oxide (GO) double-shelled sulfur (S@MnO2@GO) with improved rate capability and cyclic performance, in which we propose a new reaction using sulfur-reducing KMnO4 to produce MnO2 that covers the surface of the excess sulfur in situ. The resulting MnO2 with honeycomb-like morphology provides excellent voids for storing polysulfides. The outermost GO was assembled to block the open pores of MnO2, thereby minimizing the opportunity for polysulfides to leach into the electrolytes. The GO significantly improved the electrical conductivity of the sulfur cathode, and the S@MnO2@GO exhibited excellent rate capability and long cycle life.

  13. In-situ Measured Carbon and Nitrogen Uptake Rates of Melt Pond Algae in the Western Arctic Ocean, 2014

    NASA Astrophysics Data System (ADS)

    Song, Ho Jung; Kim, Kwanwoo; Lee, Jae Hyung; Ahn, So Hyun; Joo, Houng-Min; Jeong, Jin Young; Yang, Eun Jin; Kang, Sung-Ho; Yun, Mi Sun; Lee, Sang Heon

    2018-03-01

    Although the areal coverage of melt pond in the Arctic Ocean has recently increased, very few biological researches have been conducted. The objectives in this study were to ascertain the uptake rates of carbon and nitrogen in various melt ponds and to understand the major controlling factors for the rates. We obtained 22 melt pond samples at ice camp 1 (146.17°W, 77.38°N) and 11 melt pond samples at ice camp 2 (169.79°W, 76.52°N). The major nutrient concentrations varied largely among melt ponds at the ice camps 1 and 2. The chl-a concentrations averaged from the melt ponds at camps 1 and 2 were 0.02-0.56 mg chl-a m-3 (0.12 ± 0.12 mg chl-a m-3) and 0.08-0.30 mg chl-a m-3 (0.16 ± 0.08 mg chl-a m-3), respectively. The hourly carbon uptake rates at camps 1 and 2 were 0.001-0.080 mg C m-3 h-1 (0.025 ± 0.024 mg C m-3 h-1) and 0.022-0.210 mg C m-3 h-1 (0.077 ± 0.006 mg C m-3 h-1), respectively. In comparison, the nitrogen uptake rates at camps 1 and 2 were 0.001-0.030 mg N m-3 h-1 (0.011 ± 0.010 mg N m-3 h-1) and 0.002-0.022 mg N m-3 h-1 (0.010 ± 0.006 mg N m-3 h-1), respectively. The values obtained in this study are significantly lower than those reported previously. A large portion of algal biomass trapped in the new forming surface ice in melt ponds appears to be one of the main potential reasons for the lower chl-a concentration and subsequently lower carbon and nitrogen uptake rates revealed in this study. A long-term monitoring program on melt ponds is needed to understand the response of the Arctic marine ecosystem to ongoing environmental changes.

  14. Uptake and speciation of uranium in synthetic gypsum (CaSO4•2H2O): Applications to radioactive mine tailings.

    PubMed

    Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming

    2018-01-01

    Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  16. Heliocentric distance dependencies of the C2 lifetime and C2 parent production rate in comet P/Brorsen-Metcalf (1989o)

    NASA Technical Reports Server (NTRS)

    Lazzarin, M.; Tozzi, Giau Paolo; Barbieri, C.; Festou, Michel C.

    1992-01-01

    Comet P/Brorsen-Metcalf (1989o) has been extensively observed in the visible and in the ultraviolet during its latest apparition of summer 1989. In this paper we report a preliminary determination of the C2 production rates and lifetimes and we compare those rates to the H2O production rates obtained from UV data.

  17. The Rate-Limiting Step of O2 Activation in the α-Ketoglutarate Oxygenase Factor Inhibiting Hypoxia Inducible Factor

    PubMed Central

    2015-01-01

    Factor inhibiting HIF (FIH) is a cellular O2-sensing enzyme, which hydroxylates the hypoxia inducible factor-1α. Previously reported inverse solvent kinetic isotope effects indicated that FIH limits its overall turnover through an O2 activation step (HangaskyJ. A., SabanE., and KnappM. J. (2013) Biochemistry52, 1594−160223351038). Here we characterize the rate-limiting step for O2 activation by FIH using a suite of mechanistic probes on the second order rate constant kcat/KM(O2). Steady-state kinetics showed that the rate constant for O2 activation was slow (kcat/KM(O2)app = 3500 M–1 s–1) compared with other non-heme iron oxygenases, and solvent viscosity assays further excluded diffusional encounter with O2 from being rate limiting on kcat/KM(O2). Competitive oxygen-18 kinetic isotope effect measurements (18kcat/KM(O2) = 1.0114(5)) indicated that the transition state for O2 activation resembled a cyclic peroxohemiketal, which precedes the formation of the ferryl intermediate observed in related enzymes. We interpret this data to indicate that FIH limits its overall activity at the point of the nucleophilic attack of Fe-bound O2— on the C-2 carbon of αKG. Overall, these results show that FIH follows the consensus mechanism for αKG oxygenases, suggesting that FIH may be an ideal enzyme to directly access steps involved in O2 activation among the broad family of αKG oxygenases. PMID:25423620

  18. ULTRAVIOLET PHOTON-INDUCED SYNTHESIS AND TRAPPING OF H{sub 2}O{sub 2} AND O{sub 3} IN POROUS WATER ICE FILMS IN THE PRESENCE OF AMBIENT O{sub 2}: IMPLICATIONS FOR EXTRATERRESTRIAL ICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Raut, U.; Kim, J.-H.

    2011-09-01

    The mass uptake of ambient oxygen in nanoporous ice is enhanced by irradiation with 193 nm photons, due to conversion of O{sub 2} into H{sub 2}O{sub 2} and O{sub 3}, with an efficiency that increases with decreasing temperature. These findings show a new way to form H{sub 2}O{sub 2} and O{sub 3} on icy surfaces in the outer solar system at depths much larger than are accessible by typical ionizing radiation, with possible astrobiological implications.

  19. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    PubMed

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  20. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei; Gao, Changyou

    2015-01-01

    Exposure of the CeO2 nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO2 NPs (D-CeO2 from Degussa and PC-CeO2 from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO2 NPs had a negative surface charge around -12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO2 NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO2 NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO2 NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO2 NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO2 NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO2 NPs.

  1. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  2. A novel Online-to-Offline (O2O) model for pre-exposure prophylaxis and HIV testing scale up.

    PubMed

    Anand, Tarandeep; Nitpolprasert, Chattiya; Trachunthong, Deondara; Kerr, Stephen J; Janyam, Surang; Linjongrat, Danai; Hightow-Weidman, Lisa B; Phanuphak, Praphan; Ananworanich, Jintanat; Phanuphak, Nittaya

    2017-03-13

    PrEP awareness and uptake among men who have sex with men (MSM) and transgender women (TG) in Thailand remains low. Finding ways to increase HIV testing and PrEP uptake among high-risk groups is a critical priority. This study evaluates the effect of a novel Adam's Love Online-to-Offline (O2O) model on PrEP and HIV testing uptake among Thai MSM and TG and identifies factors associated with PrEP uptake. The O2O model was piloted by Adam's Love (www.adamslove.org) HIV educational and counselling website. MSM and TG reached online by PrEP promotions and interested in free PrEP and/or HIV testing services contacted Adam's Love online staff, received real-time PrEP eCounseling, and completed online bookings for receiving services at one of the four sites in Bangkok based on their preference. Auto-generated site- and service-specific e-tickets and Quick Response (QR) codes were sent to their mobile devices enabling monitoring and check-in by offline site staff. Service uptake and participant's socio-demographic and risk behaviour characteristics were analyzed. Factors associated with PrEP uptake were assessed using multiple logistic regression. Between January 10th and April 11th, 2016, Adam's Love reached 272,568 people online via the PrEP O2O promotions. 425 MSM and TG received eCounseling and e-tickets. There were 325 (76.5%) MSM and TG who checked-in at clinics and received HIV testing. Nine (2.8%) were diagnosed with HIV infection. Median (IQR) time between receiving the e-ticket and checking-in was 3 (0-7) days. Of 316 HIV-negative MSM and TG, 168 (53.2%) started PrEP. In a multivariate model, higher education (OR 2.30, 95%CI 1.14-4.66; p  = 0.02), seeking sex partners online (OR 2.05, 95%CI 1.19-3.54; p  = 0.009), being aware of sexual partners' HIV status (OR 2.37, 95%CI 1.29-4.35; p  = 0.008), ever previously using post-exposure prophylaxis (PEP) (OR 2.46, 95%CI 1.19-5.09; p  = 0.01), and enrolment at Adam's Love clinic compared to the other three sites

  3. A novel Online-to-Offline (O2O) model for pre-exposure prophylaxis and HIV testing scale up

    PubMed Central

    Anand, Tarandeep; Nitpolprasert, Chattiya; Trachunthong, Deondara; Kerr, Stephen J; Janyam, Surang; Linjongrat, Danai; Hightow-Weidman, Lisa B; Phanuphak, Praphan; Ananworanich, Jintanat; Phanuphak, Nittaya

    2017-01-01

    Abstract Introduction: PrEP awareness and uptake among men who have sex with men (MSM) and transgender women (TG) in Thailand remains low. Finding ways to increase HIV testing and PrEP uptake among high-risk groups is a critical priority. This study evaluates the effect of a novel Adam’s Love Online-to-Offline (O2O) model on PrEP and HIV testing uptake among Thai MSM and TG and identifies factors associated with PrEP uptake. Methods: The O2O model was piloted by Adam’s Love (www.adamslove.org) HIV educational and counselling website. MSM and TG reached online by PrEP promotions and interested in free PrEP and/or HIV testing services contacted Adam’s Love online staff, received real-time PrEP eCounseling, and completed online bookings for receiving services at one of the four sites in Bangkok based on their preference. Auto-generated site- and service-specific e-tickets and Quick Response (QR) codes were sent to their mobile devices enabling monitoring and check-in by offline site staff. Service uptake and participant’s socio-demographic and risk behaviour characteristics were analyzed. Factors associated with PrEP uptake were assessed using multiple logistic regression. Results: Between January 10th and April 11th, 2016, Adam’s Love reached 272,568 people online via the PrEP O2O promotions. 425 MSM and TG received eCounseling and e-tickets. There were 325 (76.5%) MSM and TG who checked-in at clinics and received HIV testing. Nine (2.8%) were diagnosed with HIV infection. Median (IQR) time between receiving the e-ticket and checking-in was 3 (0–7) days. Of 316 HIV-negative MSM and TG, 168 (53.2%) started PrEP. In a multivariate model, higher education (OR 2.30, 95%CI 1.14–4.66; p = 0.02), seeking sex partners online (OR 2.05, 95%CI 1.19–3.54; p = 0.009), being aware of sexual partners’ HIV status (OR 2.37, 95%CI 1.29–4.35; p = 0.008), ever previously using post-exposure prophylaxis (PEP) (OR 2.46, 95%CI 1.19–5.09; p = 0.01), and

  4. Rates of volcanic CO2 degassing from airborne determinations of SO2 Emission rates and plume CO2SO2: test study at Pu′u ′O′o Cone, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Gerlach, Terrence M.; McGee, Kenneth A.; Sutton, A. Jefferson; Elias, Tamar

    1998-01-01

    We present an airborne method that eliminates or minimizes several disadvantages of the customary plume cross-section sampling method for determining volcanic CO2 emission rates. A LI-COR CO2analyzer system (LICOR), a Fourier transform infrared spectrometer system (FTIR), and a correlation spectrometer (COSPEC) were used to constrain the plume CO2/SO2 and the SO2 emission rate. The method yielded a CO2 emission rate of 300 td−1 (metric tons per day) for Pu′u ′O′o cone, Kilauea volcano, on 19 September 1995. The CO2/SO2 of 0.20 determined from airborne LICOR and FTIR plume measurements agreed with the CO2/SO2 of 204 ground-based samples collected from vents over a 14-year period since the Pu′u ′O′o eruption began in January 1983.

  5. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  6. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order

  7. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPAmore » with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.« less

  8. Interdependence of arterial PO2 and O2 consumption in the fetal sheep.

    PubMed

    Asakura, H; Ball, K T; Power, G G

    1990-04-01

    These experiments were undertaken to measure the effects of changing arterial oxygen tension (PaO2) on oxygen use by the fetal body (VO2). Six fetal sheep at 130-140 days gestation were prepared with an endotracheal tube, carotid artery catheter, body-core thermistor, cooling coil and loosely-applied umbilical cord snare. The next day the cord was occluded and the fetal lungs were ventilated with gas mixtures containing different concentrations of oxygen. While fetal core temperature was kept constant, fetal arterial PO2 was cycled between high and low values (span = 7 to 359 mmHg, n = 103) and O2 consumption was measured by the rate of O2 uptake from a closed-rebreathing circuit. VO2 changed directly with changes in PO2 from 10 to 40 mmHg but became insensitive to changes in PO2 above about 50 mmHg. The results were well described over the entire range by the equation: VO2 (ml/min per kg fetal wt) = -9.62 + 6.99 ln PO2(mmHg)-0.66 ln2 PO2. Thus the oxygen consumption of the near-term fetal sheep varies with changes in arterial PO2 in the physiologic range. This finding is distinctly different than the adult at rest but resembles adult tissues such as exercising muscle at VO2max. This finding is consistent with differences in fetal metabolic controls, limited cardiac reserve, and limited tissue diffusion rates in actively metabolizing tissues.

  9. Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2)

    NASA Astrophysics Data System (ADS)

    Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.

    2005-06-01

    COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd; related to stomatal conductance) for COS and CO2. We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The new global estimate of the COS uptake based on available net primary productivity data (NPP) ranges between 0.69-1.40 Tga-1. However, as a COS molecule is irreversibly split in contrast to CO2 which is released again by respiration processes, we took into account the Gross Primary Productivity (GPP) representing the true CO2 leaf flux the COS uptake has to be related to. Such a GPP based deposition estimate ranged between 1.4--2.8 Tga-1 (0.73-1.50 TgSa-1). We believe that in order to obtain accurate global COS sink estimates such a GPP-based estimate corrected by the different deposition velocities of COS and CO2 must be taken into account.

  10. Gas Pressure Monitored Iodide-Catalyzed Decomposition Kinetics of H[subscript 2]O[subscript 2]: Initial-Rate and Integrated-Rate Methods in the General Chemistry Lab

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca

    2010-01-01

    The reaction kinetics of the iodide-catalyzed decomposition of [subscript 2]O[subscript 2] using the integrated-rate method is described. The method is based on the measurement of the total gas pressure using a datalogger and pressure sensor. This is a modification of a previously reported experiment based on the initial-rate approach. (Contains 2

  11. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    USGS Publications Warehouse

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  12. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  13. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study

    PubMed Central

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg−1 · min−1 ± 7.2 mL · kg−1 · min−1) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes. PMID:24379723

  14. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study.

    PubMed

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília Dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg(-1) · min(-1) ± 7.2 mL · kg(-1) · min(-1)) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes.

  15. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 2: Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2013-04-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑ CO2], etc.) as the critical variable and with a major focus on carbonate shell formation. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyse the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas, since with CO2 the influence of the seawater carbonate acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and fluid flow rate under typical oceanic concentrations. The effect of these reactions can be described by an enhancement factor, similar to that widely used for CO2 invasion at the sea surface. While organisms do need to actively regulate flow over their surface to thin the boundary layer to take up enough O2, this seems to be not necessary to facilitate CO2 efflux. Instead, the main impacts of rising oceanic CO2 will most likely be those associated with classical ocean acidification science. Regionally, as with O2, the combination of T, P and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth.

  16. Effect of Sulfuric Acid on the Uptake of Sulfur Dioxide on Soot

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Koehler, B. G.

    2001-05-01

    The uptake of SO2 on soot may lead to the formation of sulfuric acid on the soot. The sulfuric acid then can affect the further uptake of SO2 on the soot. We are interested in the effect of submonolayer H2SO4 on the uptake of SO2. We measured the uptake of SO2 on n-hexane soot as a function SO2 pressure (10-7 to 10-4 Torr) and sulfuric acid coverage between -140\\deg and -120\\deg C. We generate sulfuric acid by adsorbing varying amounts of SO3 on soot, covering the SO3 with a thick layer of condensed H2O, and heating to 193 K to react the SO3 and H2O and to remove the excess H2O. The sulfuric acid coverage is in the range of monolayer or sub-monolayer. Adsorption of SO2 on soot with and without the sulfuric acid shows that the acid reduces the SO2 uptake by a factor of two or more. Varying the amount of acid has little effect on uptake. However, increasing the thickness of the soot substrate causes a significant increase in SO2 uptake.

  17. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    NASA Astrophysics Data System (ADS)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving

  18. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies.

    PubMed

    Jensen, Frank B; Rohde, Sabina

    2010-04-01

    Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.

  19. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  20. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  1. Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data.

    PubMed

    Cinquemani, Eugenio; Laroute, Valérie; Cocaign-Bousquet, Muriel; de Jong, Hidde; Ropers, Delphine

    2017-07-15

    Technological advances in metabolomics have made it possible to monitor the concentration of extracellular metabolites over time. From these data, it is possible to compute the rates of uptake and excretion of the metabolites by a growing cell population, providing precious information on the functioning of intracellular metabolism. The computation of the rate of these exchange reactions, however, is difficult to achieve in practice for a number of reasons, notably noisy measurements, correlations between the concentration profiles of the different extracellular metabolites, and discontinuties in the profiles due to sudden changes in metabolic regime. We present a method for precisely estimating time-varying uptake and excretion rates from time-series measurements of extracellular metabolite concentrations, specifically addressing all of the above issues. The estimation problem is formulated in a regularized Bayesian framework and solved by a combination of extended Kalman filtering and smoothing. The method is shown to improve upon methods based on spline smoothing of the data. Moreover, when applied to two actual datasets, the method recovers known features of overflow metabolism in Escherichia coli and Lactococcus lactis , and provides evidence for acetate uptake by L. lactis after glucose exhaustion. The results raise interesting perspectives for further work on rate estimation from measurements of intracellular metabolites. The Matlab code for the estimation method is available for download at https://team.inria.fr/ibis/rate-estimation-software/ , together with the datasets. eugenio.cinquemani@inria.fr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhong; Zhang, Yu; Liu, Shizhong

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  3. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE PAGES

    Ma, Zhong; Zhang, Yu; Liu, Shizhong; ...

    2017-10-28

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  4. Uptake and biotransformation of 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species

    NASA Astrophysics Data System (ADS)

    Po, Beverly H. K.; Ho, Ka-Lok; Lam, Michael H. W.; Giesy, John P.; Chiu, Jill M. Y.

    2017-03-01

    Hydroxylated- and methoxylated- polybrominated diphenyl ethers (OH-PBDEs and MeO-PBDEs) are more toxic than PBDEs and occur widely in the marine environment, and yet their origins remain controversial. In this study, four species of microalgae (Isochrysis galbana, Prorocentrum minimum, Skeletonema grethae and Thalassiosira pseudonana) were exposed to BDE-47, which is synthetic and is the predominant congener of PBDEs in the environment. By chemical analysis after incubation of 2 to 6 days, the efficiency of uptake of BDE-47 and, more importantly, the potential of undergoing biotransformation to form OH-PBDEs and MeO-PBDEs by the microalgae were investigated. Growth rates of these axenic microalgae were not affected upon exposure to environmentally relevant concentrations (0.2-20 μg BDE-47 L-1), and accumulation ranged from 0.772 ± 0.092 μg BDE-47 g-1 lipid to 215 ± 54 μg BDE-47 g-1 lipid within 2 days. Debromination of BDE-47 and formation of BDE-28 occurred in all microalgae species (0.01 to 0.87%), but biotransformation to OH-PBDEs was only found in I. galbana upon exposure to extremely high concentration. The results of this study showed that biotransformation of microalgae species is unlikely an explanation for the OH-PBDEs and MeO-PBDEs found in the marine environment.

  5. Calmodulin antagonists have differential effects on Ca/sup 2 +/ uptake, (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase and Ca/sup 2 +/ release in hepatic endoplasmic reticulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delfert, D.M.; Koepnick, S.; McDonald, J.M.

    1986-05-01

    The effect of calmodulin (CaM) antagonists on Ca/sup 2 +/ handling by hepatic endoplasmic reticulum (ER) was studied. Ca/sup 2 +/ uptake by saponin-permeabilized hepatocytes or isolated ER was measured using /sup 45/Ca/sup 2 +/ in a filtration assay in the presence of 0.09 ..mu..M free (Ca/sup 2 +/) and inhibitors of mitochondrial Ca/sup 2 +/ transport. Each CaM-antagonist (chlorpromazine, CPZ; trifluoperazine, TFP; calmidazolium, W7 and 48/80) showed a dose-dependent inhibition of Ca/sup 2 +/ accumulation in permeabilized hepatocytes. Both the initial rate and steady state values for Ca/sup 2 +/ uptake were reduced by 50% with 40 ..mu..M calmidazolium,more » 100 ..mu..M TFP, 150..mu..M W7, 150 ..mu..M CPZ and 300 ..mu..M 48/80. Using isolated ER both calmidazolium (20 ..mu..M) and W7 (150 ..mu..M) inhibited the initial rate and steady state level of Ca/sup 2 +/ accumulation. At this concentration calmidazolium inhibited the initial rate of (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase activity, and enhanced Ca/sup 2 +/ release. In contrast, W7 had no effect on these parameters. These results suggest that the reduced level of Ca/sup 2 +/ uptake into ER vesicles in the presence of calmidazolium may result from inhibition of the (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase as well as induction of Ca/sup 2 +/ release, while W7 may act to uncouple Ca/sup 2 +/ transport from its (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase counterpart.« less

  6. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes.

    PubMed

    Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude

    2014-01-16

    A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g(-1) at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.

  7. Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude

    2014-01-01

    A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g-1 at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.

  8. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  9. O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.

    PubMed

    Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N

    2017-10-05

    Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  10. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  11. Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans

    NASA Astrophysics Data System (ADS)

    Zarboo, Amirmahdi; Bender, Stefan; Burrows, John P.; Orphal, Johannes; Sinnhuber, Miriam

    2018-01-01

    We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50-150 km. In this study we use the limb observations in the visible (595-811 nm) and near-infrared (1200-1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.

  12. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors.

    PubMed

    Zheng, Dezhou; Feng, Haobin; Zhang, Xiyue; He, Xinjun; Yu, Minghao; Lu, Xihong; Tong, Yexiang

    2017-04-04

    Free-standing porous MoO 2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO 2 electrode exhibits a remarkable capacitance of 424.4 mF cm -2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

  13. Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2)

    NASA Astrophysics Data System (ADS)

    Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.

    2005-01-01

    COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd for COS and CO2). We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The global COS uptake by vegetation as estimated by the new model ranges between 0.69-1.40 Tg a-1, based on the Net Primary Productivity (NPP). Taking into account Gross Primary Productivity (GPP) the deposition estimate ranges between 1.37-2.81 Tg a-1 (0.73-1.50 Tg S a-1). We believe that in order to obtain accurate and reliable global NPP-based estimates for the COS flux into vegetation, the different deposition velocities of COS and CO2 must be taken into account.

  14. Influence of simulated weightlessness on maximal oxygen uptake of untrained rats

    NASA Technical Reports Server (NTRS)

    Overton, J. Michael; Tipton, Charles M.

    1987-01-01

    The purpose of this study was to determine the effect of hindlimb suspension on maximal oxygen uptake of rodents. Male Sprague-Dawley rats were assigned to head-down (HD) suspension, horizontal (HOZ) suspension, or cage (C) control for 6-9 days. Rats were tested for maximal oxygen uptake before and after surgical instrumentation (Doppler flow probes, carotid and jugular cannulae), and after suspension. Body weight was significantly decreased after suspension in both HD and HOZ groups, but was significantly increased in the C group. Absolute maximal O2 uptake (ml/min) was not different in the C group. However, because of their increased weight, relative maximal O2 uptake (ml/min per kg) was significantly reduced. In contrast, both relative and absolute maximal O2 uptake were significantly lower, following suspension, for the HD and HOZ groups. These preliminary results support the use of hindlimb suspension as an effective model to study the mechanism(s) of cardiovascular deconditioning.

  15. Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2-11 and isoelectric points

    NASA Astrophysics Data System (ADS)

    Biver, M.; Shotyk, W.

    2013-05-01

    Batch reactor experiments were carried out in order to derive rate laws for the proton promoted dissolution of the main natural antimony oxide phases, namely stibiconite (idealized composition SbSb2O6OH), senarmontite (cubic Sb2O3) and (metastable) valentinite (orthorhombic Sb2O3) over the range 2 ⩽ pH ⩽ 11, under standard conditions and ionic strength I = 0.01 mol l-1. The rates of antimony release by stibiconite were r = (2.2 ± 0.2) × 10-9 a(H+)0.11±0.01 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 4.74 and r = (4.3 ± 0.2) × 10-10 a(H+)-0.030±0.003 mol m-2 s-1 for 4.74 ⩽ pH ⩽ 10.54. The rates of dissolution of senarmontite were r = (5.3 ± 2.2) × 10-7 a(H+)0.54±0.05 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 6.93 and r = (1.4 ± 0.3) × 10-14 a(H+)-0.53±0.07 mol m-2 s-1 for 6.93 ⩽ pH ⩽ 10.83. The rates of dissolution of valentinite were r = (6.3 ± 0.2) × 10-8 a(H+)0.052±0.003 mol m-2 s-1 for 1.97 ⩽ pH ⩽ 6.85. Above pH = 6.85, valentinite was found to dissolve at a constant rate of r = (2.79 ± 0.05) × 10-8 mol m-2 s-1. Activation energies were determined at selected pH values in the acidic and basic domain, over the temperature range 25-50 °C. The values for stibiconite are -10.6 ± 1.9 kJ mol-1 (pH = 2.00) and 53 ± 14 kJ mol-1 (pH = 8.7). For senarmontite, we found 46.6 ± 4.7 kJ mol-1 (pH = 3.0) and 68.1 ± 6.1 kJ mol-1 (pH = 9.9) and for valentinite 41.9 ± 1.1 kJ mol-1 (pH = 3.0) and 39.0 ± 4.6 kJ mol-1 (pH = 9.9). These activation energies are interpreted in the text. The solubility of stibiconite at 25 °C in the pH domain from 2 to 10 was determined; solubilities decrease from 452.0 μg l-1 (as Sb) at pH = 2.00 to 153.2 μg l-1 at pH = 7.55 and increase again in the basic region, up to 176.6 μg l-1 at pH = 9.92. A graphical synopsis of all the kinetic results, including those of stibnite (Sb2S3) from earlier work, is presented. This allows an easy comparison between the dissolution rates of stibnite and the minerals examined in the present work

  16. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    NASA Astrophysics Data System (ADS)

    Zawierucha, I.; Malina, G.

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O2 supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H2O2 and KMnO4. The biodegradation was evaluated on the basis of O2 uptake and CO2 production. The O2 consumption and CO2 production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O2 uptake and CO2 production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO4 in concentration of 20 g L-1 was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H2O2 caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H2O2 decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  17. Calculated rate constants for the reaction ClO + O yields Cl + O2 between 220 and 1000 deg K. [molecular trajectories and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Jaffee, R. L.

    1978-01-01

    Classical trajectory calculations are presented for the reaction ClO + O yields Cl + O2, a reaction which is an important step in the chlorine-catalyzed destruction of ozone which is thought to occur in the 220 and 1000 K. The calculated rate constant is 4.36 x 10 to the minus 11th power exp (-191/T)cu cm molecule (-1)s(-1) and its value at 300 K is 2.3 plus or minus 10 to the 11th power cu cm molecule (-1)s(-1), about a factor of 2 lower than recent experimental data. The empirical potential energy surface used in the calculations was constructed to fit experimental data for ClO, O2 and ClOO molecules. Other important features of this potential surface, such as the barrier to reaction, were varied systematically and calculations were performed for a range of conditions to determine the best theoretical rate constants. Results demonstrate the utility of classical trajectory methods for determining activation energies and other kinetic data for important atmospheric reactions.

  18. Uptake of Free HPV Vaccination among Young Women: A Comparison of Rural versus Urban Rates

    ERIC Educational Resources Information Center

    Crosby, Richard A.; Casey, Baretta R.; Vanderpool, Robin; Collins, Tom; Moore, Gregory R.

    2011-01-01

    Purpose: To contrast rates of initial HPV vaccine uptake, offered at no cost, between a rural clinic, a rural community college, and an urban college clinic and to identify rural versus urban differences in uptake of free booster doses. Methods: Young rural women attending rural clinics (n = 246), young women attending a rural community college (n…

  19. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  20. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  1. Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, G.A.

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  2. Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, Gary

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  3. Ab initio thermal rate calculations of HO + HO = O(3P) + H2O reaction and isotopologues.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2013-04-04

    The forward and reverse reactions, HO + HO ⇌ O((3)P) + H2O, which play roles in both combustion and laboratory studies, were theoretically characterized with a master equation approach to compute thermal reaction rate constants at both the low and high pressure limits. Our ab initio k(T) results for the title reaction and two isotopic variants agree very well with experiments (within 15%) over a wide temperature range. The calculated reaction rate shows a distinctly non-Arrhenius behavior and a strong curvature consistent with the experiment. This characteristic behavior is due to effects of positive barrier height and quantum mechanical tunneling. Tunneling is very important and contributes more than 70% of total reaction rate at room temperature. A prereactive complex is also important in the overall reaction scheme.

  4. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2.

    PubMed

    Foraita, Sebastian; Fulton, John L; Chase, Zizwe A; Vjunov, Aleksei; Xu, Pinghong; Baráth, Eszter; Camaioni, Donald M; Zhao, Chen; Lercher, Johannes A

    2015-02-02

    The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2 , whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α-hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    NASA Astrophysics Data System (ADS)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  6. INTERREGIONAL COMPARISON OF NUTRIENT UPTAKE RATES IN MANAGED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared nutrient uptake rates to examine the effect of timber harvest on streams. From 1999-2002, nutrient additions were conducted in 50 stream reaches in 4 ecoregions (southern Blue Ridge, NC, Ouachita Mountains, AR, Cascade Mountains, OR, and the redwood forests of the Co...

  7. Testosterone enhances C-14 2-deoxyglucose uptake by striated muscle. [sex hormones and muscle

    NASA Technical Reports Server (NTRS)

    Toop, J.; Max, S. R.

    1982-01-01

    The effect of testosterone propionate (TP) on C-14 2-deoxyglucose (C-14 2DG) uptake was studied in the rat levator ani muscle in vivo using the autoradiographic technique. Following a delay of 1 to 3 h after injecting TP, the rate of C-14 2DG uptake in experimental animals began to increase and continued to increase for at least 20 h. The label, which corresponds to C-14 2-deoxyglucose 6-phosphate, as demonstrated by chromatographic analysis of muscle extracts, was uniformly distributed over the entire muscle and was predominantly in muscle fibers, although nonmuscular elements were also labeled. The 1 to 3 h time lag suggests that the TP effect may be genomic, acting via androgen receptors, rather than directly on muscle membranes. Acceleration of glucose uptake may be an important early event in the anabolic response of the rat levator ani muscle to androgens.

  8. Morphology-defined interaction of copper phthalocyanine with O2/H2O

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; Gredig, Thomas; Ivanov, Ilia N.

    2016-10-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but interaction with ambient gas/vapor may lead to changes in its electronic properties and limit OPV device lifetimes. CuPc films of thickness 25 and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. We measured electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. CuPc films deposited at 250°C showed a factor of 5 higher uptake of O2 as detected by a quartz crystal microbalance (QCM), possibly due to the formation of β-CuPc at T>200°C which allows higher O2 mobility between stacked molecules. While weight-based measurements stabilize after ˜10 min of gas exposure, resistance response stabilizes over times >1 h, suggesting that mass change occurs by rapid adsorption at active surface sites whereas resistive response is dominated by slow diffusion of adsorbates into the bulk film. The 25 nm films exhibit higher resistive response than 100 nm films after an hour of O2/H2O exposure due to fast analyte diffusion down to the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold.

  9. Vertical Transport Rates in the Stratosphere in 1993 from Observations of CO2, N2O and CH4

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Boering, Kristie A.; Daube, Bruce C., Jr.; McElroy, Michael B.; Loewenstein, Max; Podolske, James R.; Elkins, James W.; Dutton, Geoffrey S.; Fahey, David W.

    1994-01-01

    Measurements of CO2, N2O and CH4 are analyzed to define hemispheric average vertical exchange rates in the lower stratosphere from November 1992 to October 1993. Effective vertical diffusion coefficients were small in summer, less than or equal to 1 m(exp 2)/sec at altitudes below 25 km; values were similar near the tropopause in winter, but increased markedly with altitude. The analysis suggests possibly longer residence times for exhaust from stratospheric aircraft, and more efficient transport from 20 km to the middle stratosphere, than predicted by many current models. Seasonally-resolved measurements of stratospheric CO2 and N2O provide significant new constraints on rates for global-scale vertical transport.

  10. Effects of training on muscle O2 transport at VO2max

    NASA Technical Reports Server (NTRS)

    Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.

    1992-01-01

    To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.

  11. Determination of the thermal rate coefficient, products, and branching ratios for the reaction of O/+/ /D-2/ with N2

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.

    1980-01-01

    Atmosphere Explorer-C satellite measurements are used to determine rate coefficients (RCs) for the following reactions: O(+)(D-2) + N2 yields N2(+) + O (reaction 1), O(+)(D-2) + N2 yields O(+)(S-4) + N2 (reaction 2), and O(+)(D-2) + N2 yields NO(+) + N (reaction 3). Results show the RC for reaction 1 to be 1 (plus 1 or minus 0.5) x 10 to the -10th cu cm per sec, for reaction 2 to be 3 (plus 1 or minus 2) x 10 to the -11th cu cm per sec, and 3 to be less than 5.5 x 10 to the -11th cu cm per sec. It is also found that the reaction of O(+)(D-2) with N2 does not constitute a detectable source of NO(+) ions in the thermosphere.

  12. Diselenolane-mediated cellular uptake.

    PubMed

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  13. Evidence of decrease in peak heart rate in acute hypoxia: effect of exercise-induced arterial hypoxemia.

    PubMed

    Grataloup, O; Busso, T; Castells, J; Denis, C; Benoit, H

    2007-03-01

    This study focuses on the influence of the arterial oxygen saturation level at exhaustion on peak heart rate under acute moderate hypoxia, in endurance-trained subjects. Nineteen competing male cyclists performed exhaustive ramp exercise (cycle ergometer) under normoxia and normobaric hypoxia (15 % O (2)). After the normoxic trial, the subjects were divided into those demonstrating exercise-induced arterial hypoxemia during exercise (> 5 % decrease in SaO (2) between rest and the end of exercise, n = 10) and those who did not (n = 9). O (2) uptake, heart rate and arterial O (2) saturation (ear-oximeter) levels were measured. Under hypoxia, peak heart rate decreased for both groups (p < 0.001) and to a greater extent for hypoxemic subjects (p < 0.01). Arterial O (2) saturation under hypoxia was lower for the hypoxemic than for the non-hypoxemic subjects (p < 0.001) and it was correlated to the fall in peak heart rate between normoxia and hypoxia for all subjects (p < 0.01; r = 0.65). Hypoxemic subjects presented greater decrease in maximal O (2) uptake than non-hypoxemic ones (19.6 vs. 15.6 %; p < 0.05). The results confirm the greater decrement in arterial O (2) saturation under hypoxia in hypoxemic subjects and demonstrates a more pronounced reduction in peak heart rate in those subjects compared with non-hypoxemic ones. These data confirm the possible influence of arterial oxygenation on the decrease in peak heart rate in acute hypoxia.

  14. Muscle contraction increases carnitine uptake via translocation of OCTN2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity.more » The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles

  15. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    PubMed

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  16. Celllular Uptake and Clearance of TIO2 Nanoparticles

    EPA Science Inventory

    Differential rates of cellular uptake and clearance of engineered nanomaterials may influence the propensity for tissue accumulation under chronic exposure conditions. A retinal pigment epithelial cell line (ARPE-19) was used to investigate 1) if Ti02 (Degussa, P25) nanoparticles...

  17. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    PubMed Central

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-01-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs. PMID:27353576

  18. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-06-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  19. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse.

    PubMed

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J; Goehlich, Henry; Latijnhouwers, Kelly R W; van Heeringen, Seth; Honcoop, Saskia A S; Bleyenberg, Tanja E; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J A; Visser, Petra M

    2016-06-29

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  20. Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?

    PubMed Central

    Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.

    2014-01-01

    Agaves exhibit the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway. Some species are potential biofuel feedstocks because they are highly productive in seasonally dry landscapes. In plants with CAM, high growth rates are often believed to be associated with a significant contribution of C3 photosynthesis to total carbon gain when conditions are favourable. There has even been a report of a shift from CAM to C3 in response to overwatering a species of Agave. We investigated whether C3 photosynthesis can contribute substantially to carbon uptake and growth in young and mature Agave angustifolia collected from its natural habitat in Panama. In well-watered plants, CO2 uptake in the dark contributed about 75% of daily carbon gain. This day/night pattern of CO2 exchange was highly conserved under a range of environmental conditions and was insensitive to intensive watering. Elevated CO2 (800 ppm) stimulated CO2 fixation predominantly in the light. Exposure to CO2-free air at night markedly enhanced CO2 uptake during the following light period, but CO2 exchange rapidly reverted to its standard pattern when CO2 was supplied during the subsequent 24h. Although A. angustifolia consistently engages in CAM as its principal photosynthetic pathway, its relatively limited photosynthetic plasticity does not preclude it from occupying a range of habitats, from relatively mesic tropical environments in Panama to drier habitats in Mexico. PMID:24648568

  1. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-05-11

    We demonstrate a simple and scalable strategy for synthesizing hierarchical porous NiCo(2)O(4) nanowires which exhibit a high specific capacitance of 743 F g(-1) at 1 A g(-1) with excellent rate performance (78.6% capacity retention at 40 A g(-1)) and cycling stability (only 6.2% loss after 3000 cycles). This journal is © The Royal Society of Chemistry 2012

  2. Self-paced exercise in hot and cool conditions is associated with the maintenance of %V̇O2peak within a narrow range.

    PubMed

    Périard, Julien D; Racinais, Sébastien

    2015-05-15

    This study examined the time course and extent of decrease in peak oxygen uptake (V̇O2peak) during self-paced exercise in HOT (35°C and 60% relative humidity) and COOL (18°C and 40% relative humidity) laboratory conditions. Ten well-trained cyclists completed four consecutive 16.5-min time trials (15-min self-paced effort with 1.5-min maximal end-spurt to determine V̇O2peak) interspersed by 5 min of recovery on a cycle ergometer in each condition. Rectal temperature increased significantly more in HOT (39.4 ± 0.7°C) than COOL (38.6 ± 0.3°C; P < 0.001). Power output was lower throughout HOT compared with COOL (P < 0.001). The decrease in power output from trial 1 to 4 was ∼16% greater in HOT (P < 0.001). Oxygen uptake (V̇o2) was lower throughout HOT than COOL (P < 0.05), except at 5 min and during the end-spurt in trial 1. In HOT, V̇O2peak reached 97, 89, 85, and 85% of predetermined maximal V̇o2, whereas in COOL 97, 94, 93, and 92% were attained. Relative exercise intensity (%V̇O2peak) during trials 1 and 2 was lower in HOT (∼84%) than COOL (∼86%; P < 0.05), decreasing slightly during trials 3 and 4 (∼80 and ∼85%, respectively; P < 0.05). However, heart rate was higher throughout HOT (P = 0.002), and ratings of perceived exertion greater during trials 3 and 4 in HOT (P < 0.05). Consequently, the regulation of self-paced exercise appears to occur in conjunction with the maintenance of %V̇O2peak within a narrow range (80-85% V̇O2peak). This range widens under heat stress, however, when exercise becomes protracted and a disassociation develops between relative exercise intensity, heart rate, and ratings of perceived exertion. Copyright © 2015 the American Physiological Society.

  3. The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?

    PubMed

    Schaun, Gustavo Z

    2017-12-08

    Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.

  4. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.

    PubMed

    Rhee, Oonhee; Lee, Gibaek; Choi, Jinsub

    2016-06-15

    The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm(-2) even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment.

  5. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures.

    PubMed

    Isaacks, R E; Bender, A S; Kim, C Y; Prieto, N M; Norenberg, M D

    1994-03-01

    Uptake of myo-inositol by astrocytes in hypertonic medium (440 mosm/kg H2O) was increased near 3-fold after incubation for 24 hours, which continued for 72 hours, as compared with the uptake by cells cultured in isotonic medium (38 nmoles/mg protein). myo-Inositol uptake by astrocytes cultured in hypotonic medium (180 mosm/kg H2O) for periods up to 72 hours was reduced by 74% to 8 to 10 nmoles/mg protein. Astrocytes incubated in either hypotonic or hypertonic medium for 24 hours and then placed in isotonic medium reversed the initial down- or up-regulation of uptake. Activation of chronic RVD and RVI correlates with regulation of myo-inositol uptake. A 30 to 40 mosm/kg H2O deviation from physiological osmolality can influence myo-inositol homeostasis. The intracellular content of myo-inositol in astrocytes in isotonic medium was 25.6 +/- 1.3 micrograms/mg protein (28 mM). This level of myo-inositol is sufficient for this compound to function as an osmoregulator in primary astrocytes and it is likely to contribute to the maintenance of brain volume.

  6. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  7. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  8. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer

    PubMed Central

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-01-01

    Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230

  9. Kinetics of Reduction of CaO-FeO x -MgO-PbO-SiO2 Slags by CO-CO2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Sharif; Wright, Steven

    2017-08-01

    Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10-6 to 4 × 10-5 mol O cm-2 s-1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.

  10. Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells.

    PubMed

    Bai, Yu-Chi; Hsia, Yu-Chun; Lin, Yu-Ting; Chen, Kuan-Hao; Chou, Fong-In; Yang, Chia-Min; Chuang, Yung-Jen

    2017-11-01

    Feasibility and efficacy of boric acid (BA)-mediated boron neutron capture therapy (BNCT) was first demonstrated by eliminating hepatocellular carcinoma (HCC) in a rat model. Furthermore, selective uptake of BA by liver tumor cells was shown in a rabbit model. To gain further insight, this study aimed to investigate the mechanisms of transportation and selective uptake of BA in HepG2 liver tumor cells. Transportation of BA in HepG2 cells was analyzed by time-course assays and by analyzing the rate of diffusion versus the concentration of BA. The effect of different tumor conditions on BA uptake was studied by treating HepG2 cells with 25 μg 10 B/ml BA under different concentrations of glucose, at different pH and in the presence of water-soluble cholesterol. HepG2 cells mainly uptake BA by simple diffusion. Cell membrane permeability may also contribute to tumor-specific uptake of BA. The selective uptake of BA was achieved primarily by diffusion, while other factors, such as low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture.

    PubMed

    Xiong, TianTian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-05-02

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight) -1 ] and cabbage [4448 mg (kg of dry weight) -1 ], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day -1 ), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  12. NO2 uptake under practically relevant conditions on BaO/Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudiyanselage, Kumudu; Szanyi, János

    2012-02-01

    The formation of nitrites and nitrates (Ba(NOx)2) under practically relevant conditions (PNO2 up to 1.0 Torr and T = 500 K) and their thermal decomposition on BaO (>20 monolayer equivalent (MLE))/Pt(1 1 1) were studied using temperature programmed desorption (TPD), infrared reflection absorption (IRA), and Xray photoelectron (XP) spectroscopies. The exposure of BaO to 1.0 × 10-8 Torr NO2 at 500 K leads to the formation of a Ba(NOx)2 layer with small, disordered crystalline nitrate clusters. Under these conditions (PNO2 = 1.0 × 10-8 Torr and T = 500 K) only the top portion of the BaO layer converts tomore » Ba(NOx)2 and the nitrites in this Ba(NOx)2 layer stay without converting completely to nitrates even after 100 min of NO2 exposure. In the thermal decomposition of Ba(NOx)2, first nitrites decompose, releasing NO and then the decomposition of nitrates occurs via two pathways releasing NO2 and NO + O2. At 500 K and PNO2 ≥ 1.0 × 10-7 Torr, first NO2 reacts with BaO to form small disordered crystalline Ba(NO3)2 particles and then these particles agglomerate to form large, well-ordered (bulk-like) crystalline nitrates as the NO2 exposure increases. The thermal decomposition of these well-ordered, bulk-like crystalline nitrate aggregates occurs in two steps releasing NO2 and NO + O2 in each step in two different temperature regions. NO2 pressure ≥1.0 × 10-5 Torr is required for the complete oxidation of initially formed nitrites to nitrates and the full nitration of the BaO layer at 500 K sample temperature. We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US

  13. Falloff curve and specific rate constants for the reaction NO/sub 2/ + NO/sub 2/ /r reversible/ N/sub 2/O/sub 4/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borrell, P.; Cobos, C.J.; Luther, K.

    1988-07-28

    The rate of association of NO/sub 2/ to N/sub 2/O/sub 4/ was measured in N/sub 2/ at pressures from 1 to 207 bar. This way the reaction was observed in a large section of its falloff range. The relaxation of NO/sub 2//N/sub 2/O/sub 4/ mixtures was followed after laser flash photolysis of N/sub 2/O/sub 4/ at 248 nm. From the results the falloff curve was constructed, which gives the high- and low-pressure rate constants at 298 K (in cm/sup 3/ molecule/sup /minus/1/ s/sup /minus/1/): k/sub ass//sup infinity/ = (8.3 /plus minus/ 1.0) /times/ 10/sup /minus/13/ and k/sub ass//sup 0/ =more » (1.4 /plus minus/ 0.2) /times/ 10/sup /minus/33/(N/sub 2/). Earlier measurements believed to be in the low-pressure regime, have not been free from falloff effects. The low value of k/sup infinity/ was analyzed with the statistic adiabatic channel model, and specific rate constants, k(E,J), were calculated. They increase very steeply with energy just above the reaction threshold and go through maxima at low excess energies. These unusual effects are analyzed theoretically and the strong contributions are pointed out of the low-frequency vibrations which disappear during the dissociation of N/sub 2/O/sub 4/.« less

  14. OH+ and H2O+: Probes of the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; PRISMAS; WISH

    2014-01-01

    The fast ion-molecule chemistry that occurs in the interstellar medium (ISM) is initiated by cosmic-ray ionization of both atomic and molecular hydrogen. Species that are near the beginning of the network of interstellar chemistry such as the oxygen-bearing ions OH+ and H2O+ can be useful probes of the cosmic-ray ionization rate. This parameter is of particular interest as, to some extent, it controls the abundances of several molecules. Using observations of OH+ and H2O+ made with HIFI on board Herschel, we have inferred the cosmic-ray ionization rate of atomic hydrogen in multiple distinct clouds along 12 Galactic sight lines. These two molecules also allow us to determine the molecular hydrogen fraction (amount of hydrogen nuclei in H2 versus H) as OH+ and H2O+ abundances are dependent on the competition between dissociative recombination with electrons and hydrogen abstraction reactions involving H2. Our observations of OH+ and H2O+ indicate environments where H2 accounts for less than 10% of the available hydrogen nuclei, suggesting that these species primarily reside in the diffuse, atomic ISM. Average ionization rates in this gas are on the order of a few times 10-16 s-1, with most values in specific clouds above or below this average by a factor of 3 or so. This result is in good agreement with the most up-to-date determination of the distribution of cosmic-ray ionization rates in diffuse molecular clouds as inferred from observations of H3+.

  15. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    PubMed

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  16. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  17. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2016-04-01

    Phytoremediation is a highly efficient technique for the elimination of trace elements from contaminated soils through the shoots and roots of plants. This study was carried out to investigate the effects of nano-titanium dioxide (TiO2) on Cd uptake by soybean plants. The objective of the present research was to examine the potential to improve the phytoextraction of Cd by the application of nano-TiO2 particles. The results showed that an addition of Cd to the soil significantly decreased plant growth and the biomass, pigment and protein contents. Increases in the proline content and malondialdehyde (MDA) indicate that Cd toxicity stresses the plants. Fourier transform infrared spectroscopy (FTIR) was used to determine variations in functional groups due to the Cd taken up into the shoot and root tissues of plants. An application of nano-TiO2 particles restricts Cd toxicity by increasing the photosynthetic rate and growth parameters of the plants. The uptake of Cd was also increased from 128.5 to 507.6 μg/plant with an increase in the nano-TiO2 concentration from 100 to 300 mg/kg in the soil. The application of nano-TiO2 significantly enhanced Cd uptake in the plants. The results of this study thus demonstrate that an application of nano-TiO2 can increase Cd uptake and minimize Cd stress in soybean plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle.

    PubMed

    Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D

    2014-03-15

    The Ca(2+) uptake properties of the sarcoplasmic reticulum (SR) were compared between type I and type II fibres of vastus lateralis muscle of young healthy adults. Individual mechanically skinned muscle fibres were exposed to solutions with the free [Ca(2+)] heavily buffered in the pCa range (-log10[Ca(2+)]) 7.3-6.0 for set times and the amount of net SR Ca(2+) accumulation determined from the force response elicited upon emptying the SR of all Ca(2+). Western blotting was used to determine fibre type and the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoform present in every fibre examined. Type I fibres contained only SERCA2 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.8, whereas type II fibres contained only SERCA1 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.6. Maximal Ca(2+) uptake rate was ∼0.18 and ∼0.21 mmol Ca(2+) (l fibre)(-1) s(-1) in type I and type II fibres, respectively, in good accord with previously measured SR ATPase activity. Increasing free [Mg(2+)] from 1 to 3 mM had no significant effect on the net Ca(2+) uptake rate at pCa 6.0, indicating that there was little or no calcium-induced calcium release occurring through the Ca(2+) release channels during uptake in either fibre type. Ca(2+) leakage from the SR at pCa 8.5, which is thought to occur at least in part through the SERCA, was ∼2-fold lower in type II fibres than in type I fibres, and was little affected by the presence of ADP, in marked contrast to the larger SR Ca(2+) leak observed in rat muscle fibres under the same conditions. The higher affinity of Ca(2+) uptake in the type I human fibres can account for the higher relative level of SR Ca(2+) loading observed in type I compared to type II fibres, and the SR Ca(2+) leakage characteristics of the human fibres suggest that the SERCAs are regulated differently from those in rat and contribute comparatively less to resting metabolic rate.

  20. Heterogeneous reaction kinetics and mechanism of the nitration of aerosolized protein by O3 and NO2

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Sosedova, Yulia; Rouvière, Aurélie; Ammann, Markus; Pöschl, Ulrich

    2010-05-01

    The effects of air pollution on allergic diseases are not yet well-understood. Proteins contained in biogenic aerosol particles (pollen, spores, bacteria, etc.), which accounts for up to 5% of urban air particulate matter, are efficiently nitrated in polluted environments before inhalation and deposition in the human respiratory tract [1], which is likely to trigger immune reactions for allergies. Proteins undergo a nitration reaction that leads to the formation of 3-nitrotyrosine residues. The kinetics and reaction mechanism of protein nitration are still largely unknown. The kinetics of nitration of protein particles by O3 and NO2 was measured using the short-lived radioactive tracer 13N. The routine for the online production of 13N-labeled nitrogen dioxide and the main experimental setup were reported previously [2]. Bovine serum albumin (BSA) was used as a model protein compound. Deliquesced NaCl particles were also used as a reference. Particles generated by an ultrasonic nebulizer were mixed with O3 (0 - 150 ppb) and NO2 (5 - 100 ppb) in a flow tube reactor under humid conditions (30 - 75 % RH), which lead to gel-like swelling of the protein [3, 4]. The reaction time was varied in the range of 4 -10 min by changing the position of the inlet of the reactor. The surface concentration of particles was monitored by a scanning mobility particle sizer (SMPS). After passing through the flow tube reactor, the gas and aerosol flow entered a narrow parallel-plate diffusion denuder coated to selectively absorb gas phase NO2, followed by a particle filter collecting the particles. The γ detectors were attached to each denuders and the filter to count the amount of gamma quanta, which are emitted in the decay of 13N. From the count-rate, the concentration of the corresponding species was derived, which was used for the calculation of uptake coefficients of NO2 (γNO2). In absence of O3 in the flow tube reactor, NO2 uptake by both BSA and deliquesced NaCl were below the

  1. Cellular uptake and cytotoxicity of a near-IR fluorescent corrole-TiO2 nanoconjugate.

    PubMed

    Blumenfeld, Carl M; Sadtler, Bryce F; Fernandez, G Esteban; Dara, Lily; Nguyen, Cathie; Alonso-Valenteen, Felix; Medina-Kauwe, Lali; Moats, Rex A; Lewis, Nathan S; Grubbs, Robert H; Gray, Harry B; Sorasaenee, Karn

    2014-11-01

    We are investigating the biological and biomedical imaging roles and impacts of fluorescent metallocorrole-TiO2 nanoconjugates as potential near-infrared optical contrast agents in vitro in cancer and normal cell lines. The TiO2 nanoconjugate labeled with the small molecule 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolato aluminum(III) (1-Al-TiO2) was prepared. The nanoparticle 1-Al-TiO2 was characterized by transmission electron microscopy (TEM) and integrating-sphere electronic absorption spectroscopy. TEM images of three different samples of TiO2 nanoparticles (bare, H2O2 etched, and 1-Al functionalized) showed similarity in shapes and sizes with an average diameter of 29nm for 1-Al-TiO2. Loading of 1-Al on the TiO2 surfaces was determined to be ca. 20-40mg 1-Al/g TiO2. Confocal fluorescence microscopy (CFM) studies of luciferase-transfected primary human glioblastoma U87-Luc cells treated with the nanoconjugate 1-Al-TiO2 as the contrast agent in various concentrations were performed. The CFM images revealed that 1-Al-TiO2 was found inside the cancer cells even at low doses (0.02-2μg/mL) and localized in the cytosol. Bioluminescence studies of the U87-Luc cells exposed to various amounts of 1-Al-TiO2 showed minimal cytotoxic effects even at higher doses (2-2000μg/mL) after 24h. A similar observation was made using primary mouse hepatocytes (PMH) treated with 1-Al-TiO2 at low doses (0.0003-3μg/mL). Longer incubation times (after 48 and 72h for U87-Luc) and higher doses (>20μg/mL 1-Al-TiO2 for U87-Luc and >3μg/mL 1-Al-TiO2 for PMH) showed decreased cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO.

    PubMed

    Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V

    2005-03-10

    The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.

  3. Decadal predictions of the North Atlantic CO2 uptake.

    PubMed

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A; Sienz, Frank

    2016-03-30

    As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean.

  4. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  5. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.

    PubMed

    Wei, Yuanyang; Yu, Danqing; Tong, Shitang; Jia, Charles Q

    2015-02-03

    Powder activated carbon (AC) injection is widely considered as the most viable technology for removing gaseous elemental mercury (Hg(0)) in flue gases of coal-fired power plants. However, sulfuric acid (H2SO4) can form on the external and internal surfaces of AC particles due to the presence of sulfur oxides, nitrogen oxides, oxygen, and moisture in flue gases. This work focuses on the effects of H2SO4 and O2 on the Hg(0) uptake capacity and reversibility of sulfur impregnated activated carbon (SIAC) under dynamic conditions. Experiments were conducted with 25 μg-Hg(0)/m(3) of nitrogen or air, using a semicontinuous flow fixed-bed reactor kept at 120 or 180 °C. H2SO4 had a profound hindering effect on Hg(0) uptake due to pore blockage. O2 significantly enhanced Hg(0) uptake and its reversibility, via the oxidation of Hg(0) which facilitated chemisorption and the subsequent physisorption onto chemically adsorbed Hg. Absorption of Hg in H2SO4 was unlikely a significant contributor, when Hg(0) concentrations were at levels of typical power plants (tens of ppb). The reversibility of and relative contributions of physisorption and chemisorption to Hg(0) uptake would change with Hg(0) concentrations in flue gases. These findings could be significant in developing a complete solution for Hg capture where the handling of spent sorbent materials and the possible secondary pollution need to be considered.

  6. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  7. Constraints on global oceanic emissions of N2O from observations and models

    NASA Astrophysics Data System (ADS)

    Buitenhuis, Erik T.; Suntharalingam, Parvadha; Le Quéré, Corinne

    2018-04-01

    We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical method based on model perturbation simulations and their fit to a database of ΔpN2O (n = 6136). We evaluate two submodels of N2O production. The first submodel splits N2O production into oxic and hypoxic pathways following previous publications. The second submodel explicitly represents the redox transformations of N that lead to N2O production (nitrification and hypoxic denitrification) and N2O consumption (suboxic denitrification), and is presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling pathways (nitrification rates; NH4+ uptake; N2O yields under oxic, hypoxic and suboxic conditions) and determine a set of optimal model parameters by minimisation of a cost function against four databases of N cycle observations. Our estimate of the global oceanic N2O flux resulting from this cost function minimisation derived from observed and model ΔpN2O concentrations is 2.4 ± 0.8 and 2.5 ± 0.8 Tg N yr-1 for the two N2O submodels. These estimates suggest that the currently available observational data of surface ΔpN2O constrain the global N2O flux to a narrower range relative to the large range of results presented in the latest IPCC report.

  8. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases

    PubMed Central

    Cracknell, James A.; Wait, Annemarie F.; Lenz, Oliver; Friedrich, Bärbel; Armstrong, Fraser A.

    2009-01-01

    In biology, rapid oxidation and evolution of H2 is catalyzed by metalloenzymes known as hydrogenases. These enzymes have unusual active sites, consisting of iron complexed by carbonyl, cyanide, and thiolate ligands, often together with nickel, and are typically inhibited or irreversibly damaged by O2. The Knallgas bacterium Ralstonia eutropha H16 (Re) uses H2 as an energy source with O2 as a terminal electron acceptor, and its membrane-bound uptake [NiFe]-hydrogenase (MBH) is an important example of an “O2-tolerant” hydrogenase. The mechanism of O2 tolerance of Re MBH has been probed by measuring H2 oxidation activity in the presence of O2 over a range of potential, pH and temperature, and comparing with the same dependencies for individual processes involved in the attack by O2 and subsequent reactivation of the active site. Most significantly, O2 tolerance increases with increasing temperature and decreasing potentials. These trends correlate with the trends observed for reactivation kinetics but not for H2 affinity or the kinetics of O2 attack. Clearly, the rate of recovery is a crucial factor. We present a kinetic and thermodynamic model to account for O2 tolerance in Re MBH that may be more widely applied to other [NiFe]-hydrogenases. PMID:19934053

  9. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  10. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  11. Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides

    PubMed Central

    Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi; Koo, Ja-Won; Li, Hongzhe; Steyger, Peter S.

    2014-01-01

    Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity. PMID:25268124

  12. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  13. The Nucleation Rate of Single O2 Nanobubbles at Pt Nanoelectrodes.

    PubMed

    Soto, Álvaro Moreno; German, Sean R; Ren, Hang; van der Meer, Devaraj; Lohse, Detlef; Edwards, Martin A; White, Henry S

    2018-06-13

    Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O 2 nanobubbles resulting from the electrooxidation of H 2 O 2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, i nb p , is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, t ind , dramatically decreases as the applied current approaches i nb p , a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below i nb p , nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic t ind . We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, E a , which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O 2 molecules contained in the nucleus (50 to 900 molecules).

  14. Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.

    PubMed

    Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2015-08-14

    The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.

  15. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Ogino, Chiaki; Oshima, Shuhei; Sonoke, Shiro; Kuroda, Shun-ichi; Shimizu, Nobuaki

    2012-05-01

    Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO(2)) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO(2) NPs activated by external ultrasound irradiation (called TiO(2)/US treatment). The present study first examined the uptake behavior of TiO(2) NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24h. It took 6h for sufficient uptake of the TiO(2) NPs by the cells. Next, the effect of the TiO(2)/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm(2), 30s) to the cells which incorporated the TiO(2) NPs. Apoptosis was observed at 6h after the TiO(2)/US treatment. Although no apparent cell-injury was observed until 24h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO(2)/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO(2) (0.1mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm(2) for 60s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Carbonation and CO{sub 2} uptake of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Keun-Hyeok, E-mail: yangkh@kgu.ac.kr; Seo, Eun-A, E-mail: ssooaa@naver.com; Tae, Sung-Ho, E-mail: jnb55@hanyang.ac.kr

    This study developed a reliable procedure to assess the carbon dioxide (CO{sub 2}) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO{sub 2} per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, andmore » the substitution level of supplementary cementitious materials to the CO{sub 2} diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO{sub 2} diffusion coefficient and increased CO{sub 2} concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO{sub 2} uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO{sub 2} uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO{sub 2} emissions from concrete production, which roughly corresponds to 18%–21% of the CO{sub 2} emissions from the production of ordinary Portland cement. - Highlights:

  17. UPTAKE AND PHOTODEGRADATION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN SORBED TO GRASS FOLIAGE

    EPA Science Inventory

    Plant uptake rates were determined for airborne 2,3,7,8-TCDD using grass foliage. he primary elimination mechanisms for 2,3,7,8-TCDD from grass, photodegradation and volatility, were measured in natural sunlight, filtered sunlight which reduced UV-B radiation, and in the dark. ap...

  18. SO2 Initiates the Efficient Conversion of NO2 to HONO on MgO Surface.

    PubMed

    Ma, Qingxin; Wang, Tao; Liu, Chang; He, Hong; Wang, Zhe; Wang, Weihao; Liang, Yutong

    2017-04-04

    Nitrous acid (HONO) is an important source of hydroxyl radical (OH) that determines the fate of many chemically active and climate relevant trace gases. However, the sources and the formation mechanisms of HONO remain poorly understood. In this study, the effect of SO 2 on the heterogeneous reactions of NO 2 on MgO as a mineral dust surrogate was investigated. The reactivity of MgO to NO 2 is weak, while coexisting SO 2 can increase the uptake coefficients of NO 2 on MgO by 2-3 orders of magnitude. The uptake coefficients of NO 2 on SO 2 -aged MgO are independent of NO 2 concentrations in the range of 20-160 ppbv and relative humidity (0-70%RH). The reaction mechanism was demonstrated to be a redox reaction between NO 2 and surface sulfite. In the presence of SO 2 , NO 2 was reduced to nitrite under dry conditions, which could be further converted to gas-phase HONO in humid conditions. These results suggest that the reductive effect of SO 2 on the heterogeneous conversion of NO 2 to HONO may have a significant contribution to the unknown sources of HONO observed in polluted areas (for example, in China).

  19. Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms.

    PubMed

    Tyree, M T

    1983-10-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to -60 to -80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.

  20. UPTAKE OF BACTERIOPHAGE F2 THROUGH PLANT ROOTS

    EPA Science Inventory

    A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut r...

  1. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  2. Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils.

    PubMed

    Akhtar, Muhammad; Yaqub, Muhammad; Naeem, Asif; Ashraf, Muhammad; Hernandez, Vicente Espinosa

    2016-08-01

    Low phosphorus (P) efficiency from existing granular fertilisers necessitates searching for efficient alternatives to improve wheat productivity in calcareous soil. Multi-location trials have shown that phosphoric acid (PA) produced 16% higher wheat grain over commercial P fertilisers, i.e. diammonium phosphate (DAP) and triple superphosphate (TSP). Methods of P application significantly influenced grain yield and the efficiency of methods was observed in the order: PA placement below seed > PA, DAP or TSP fertigation > DAP or TSP broadcast. The sub-surface application of PA produced highest grain yields (mean of all rates), i.e. 4669, 4158 and 3910 kg ha(-1) in Bagh, Bhalwal and Shahpur soil series, respectively. Phosphoric acid at 66 kg P2 O5 ha(-1) was found more effective in increasing gain yield over that of control. Trend in grain P uptake was found similar to that observed for grain yield. Maximum P uptake by grain was recorded at the highest P rate and the lowest at zero P. The significant increase in P uptake with P rates was generally related to the increase in yield rather than its concentration in grain. Phosphorus agronomic efficiency (PAE) and phosphorus recovery efficiency (PRE) were found higher at lower P rate (44 kg P2 O5 ha(-1) ) and decreased with P application. However, PA applied by the either method resulted in higher PAE and PRE compared to DAP and TSP. Phosphoric acid is suggested as an efficient alternative to commercial granular P fertilisers for wheat production in alkaline calcareous soils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Z.; Reiske, H.R.; Wilson, D.B.

    1999-11-01

    Two different Cd{sup 2+} uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn{sup 2+} uptake system which also takes up Cd{sup 2+} and is induced by Mn{sup 2+} starvation. The calculated K{sub m} and V{sub max} are 0.26 {mu}M and 3.6 {mu}mol g of dry cell{sup {minus}1} min{sup {minus}1}, respectively. Unlike Mn{sup 2+} uptake, which is facilitated by citrate and related tricarboxylic acids, Cd{sup 2+} uptake is weakly inhibited by citrate. Cd{sup 2+} and Mn{sup 2+} are competitive inhibitors of each other, and the affinity of the system for Cd{sup 2+} is higher than that formore » Mn{sup 2+}. The other Cd{sup 2+} uptake system is expressed in Mn{sup 2+}-sufficient cells, and no K{sub m} can be calculated for it because uptake is nonsaturable. Mn{sup 2+} does not compete for transport through this system, nor does any other tested cation, i.e., Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Fe{sup 2+}, or Ni{sup 2+}. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn{sup 2+}-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn{sup 2+} for growth as the parental strain. Mn{sup 2+} starvation-induced Cd{sup 2+} uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn{sup 2+} or Cd{sup 2+} accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system.« less

  4. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system.

    PubMed

    Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus

    2017-12-01

    High nitrogen (N) inputs in Chinese vegetable and cereal productions played key roles in increasing crop yields. However, emissions of the potent greenhouse gas nitrous oxide (N 2 O) and atmospheric pollutant nitric oxide (NO) increased too. For lowering the environmental costs of crop production, it is essential to optimize N strategies to maintain high crop productivity, while reducing the associated N losses. We performed a 2 year-round field study regarding the effect of different combinations of poultry manure and chemical N fertilizers on crop yields, N use efficiency (NUE) and N 2 O and NO fluxes from a Welsh onion-winter wheat system in the North China Plain. Annual N 2 O and NO emissions averaged 1.14-3.82 kg N ha -1 yr -1 (or 5.54-13.06 g N kg -1 N uptake) and 0.57-1.87 kg N ha -1 yr -1 (or 2.78-6.38 g N kg -1 N uptake) over all treatments, respectively. Both N 2 O and NO emissions increased linearly with increasing total N inputs, and the mean annual direct emission factors (EF d ) were 0.39% for N 2 O and 0.19% for NO. Interestingly, the EF d for chemical N fertilizers (N 2 O: 0.42-0.48%; NO: 0.07-0.11%) was significantly lower than for manure N (N 2 O: 1.35%; NO: 0.76%). Besides, a negative power relationship between yield-scaled N 2 O, NO or N 2 O + NO emissions and NUE was observed, suggesting that improving NUE in crop production is crucial for increasing crop yields while decreasing nitrogenous gas release. Compared to the current farmers' fertilization rate, alternative practices with reduced chemical N fertilizers increased NUE and decreased annual N 2 O + NO emissions substantially, while crop yields remained unaffected. As a result, annual yield-scaled N 2 O + NO emissions were reduced by > 20%. Our study shows that a reduction of current application rates of chemical N fertilizers by 30-50% does not affect crop productivity, while at the same time N 2 O and NO emissions would be reduced significantly. Copyright © 2017 Elsevier Ltd. All rights

  5. Carbon Dioxide Impacts in the Deep-Sea: Is Maintaining a Metabolically Required CO2 Efflux Rate Challenging?

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.

    2011-12-01

    Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  6. Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Moon, Daniel R.; Taverna, Giorgio S.; Anduix-Canto, Clara; Ingham, Trevor; Chipperfield, Martyn P.; Seakins, Paul W.; Baeza-Romero, Maria-Teresa; Heard, Dwayne E.

    2018-01-01

    One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RHs) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that, when injecting the amount of TiO2 required to achieve the same cooling effect as the Mt Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.

  7. Upper limits for the rate constant for the reaction Br + H2O2 yields HB2 + HO2

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1980-01-01

    Upper limits for the rate constant for the reaction Br + H2O2 yields HBr + HO2 have been measured over the temperature range 298 to 417 K in a discharge flow system using a mass spectrometer as a detector. Results are k sub 1 less than 1.5 x 10 to the -15th power cu cm/s at 298 K and k sub 1 less than 3.0 x 10 to the -15th power cu cm/s at 417 K, respectively. The implication to stratospheric chemistry is discussed.

  8. Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.

    PubMed

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-03-01

    Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.

    PubMed

    Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B

    2010-12-17

    Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.

  10. Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.

    2004-06-01

    Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.

  11. Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.

    PubMed

    Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V

    2015-06-18

    Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.

  12. An evaluation of the rate of absorption of solar radiation in the O2(X3Sigma-g - b1Sigma-g) transition

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1993-01-01

    The rate at which molecular oxygen absorbs radiation in the O2(X3Sigma-g - b1Sigma-g) transition is calculated using a line-by-line radiative transfer model. This rate is critical to the determination of the population of the O2(b1Sigma-g) state required for studies of the O2(b1Sigma-g - X3Sigma-g) dayglow, the O2(a1Delta-g - X3Sigma-g) dayglow, and possibly the rates of oxidation of H2 and N2O. Previous evaluations of this rate (which is sometimes called the g-factor) have significantly overestimated its value. The rate is tabulated as a function of altitude, pressure, and solar zenith angle.

  13. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossoy, Anna, E-mail: annaeden@hi.is, E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute itmore » to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.« less

  14. Supercritical CO2 uptake by nonswelling phyllosilicates

    PubMed Central

    Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.

    2018-01-01

    Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499

  15. Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study.

    PubMed

    Liang, Weibin; Coghlan, Campbell J; Ragon, Florence; Rubio-Martinez, Marta; D'Alessandro, Deanna M; Babarao, Ravichandar

    2016-03-21

    Defect concentrations and their compensating groups have been systematically tuned within UiO-66 frameworks by using modified microwave-assisted solvothermal methods. Both of these factors have a pronounced effect on CO2 and H2O adsorption at low and high pressure.

  16. Observational Insights into N2O5 Heterogeneous Chemistry: Influencing Factors and Contribution to Wintertime Air Pollution

    NASA Astrophysics Data System (ADS)

    McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient

  17. Oceanic Uptake of Oxygen During Deep Convection Events Through Diffusive and Bubble-Mediated Gas Exchange

    NASA Astrophysics Data System (ADS)

    Sun, Daoxun; Ito, Takamitsu; Bracco, Annalisa

    2017-10-01

    The concentration of dissolved oxygen (O2) plays fundamental roles in diverse chemical and biological processes throughout the oceans. The balance between the physical supply and the biological consumption controls the O2 level of the interior ocean, and the O2 supply to the deep waters can only occur through deep convection in the polar oceans. We develop a theoretical framework describing the oceanic O2 uptake during open-ocean deep convection events and test it against a suite of numerical sensitivity experiments. Our framework allows for two predictions, confirmed by the numerical simulations. First, both the duration and the intensity of the wintertime cooling contribute to the total O2 uptake for a given buoyancy loss. Stronger cooling leads to deeper convection and the oxygenation can reach down to deeper depths. Longer duration of the cooling period increases the total amount of O2 uptake over the convective season. Second, the bubble-mediated influx of O2 tends to weaken the diffusive influx by shifting the air-sea disequilibrium of O2 toward supersaturation. The degree of compensation between the diffusive and bubble-mediated gas exchange depends on the dimensionless number measuring the relative strength of oceanic vertical mixing and the gas transfer velocity. Strong convective mixing, which may occur under strong cooling, reduces the degree of compensation so that the two components of gas exchange together drive exceptionally strong oceanic O2 uptake.

  18. Rare earth elements in apatite: Uptake from H{sub 2}O-bearing phosphate-fluoride melts and the role of volatile components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleet, M.E.; Pan, Yuanming

    The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less

  19. O2 and HR kinetics before and after International Space Station missions.

    PubMed

    Hoffmann, U; Moore, A D; Koschate, J; Drescher, U

    2016-03-01

    Heart rate (HR), pulmonary and muscle oxygen uptake ([Formula: see text]O2pulm, [Formula: see text]O2musc) kinetics after changes of work rate (WR) indicate regulatory characteristics related to aerobic metabolism. We analysed whether the kinetics of HR, [Formula: see text]O2pulm and [Formula: see text]O2musc are slowed after missions to the International Space Station (ISS). The changes of the kinetics were correlated with [Formula: see text]O2peak data. 10 astronauts [4 females, 6 males, age: 48.0 ± 3.8 years, height: 176 ± 7 cm, mass: 74.5 ± 15.9 kg (mean ± SD)] performed an incremental test to determine [Formula: see text]O2peak (before missions on L-110 days, after return on R+1/+10/+36 days), and a cardio-respiratory kinetics test (CRKT) with randomized 30-80 W WR changes to determine HR, [Formula: see text]O2pulm and [Formula: see text]O2musc kinetics by time-series analysis (L-236/-73, R+6/+21). Kinetics were summarized by maximum and related lag of cross-correlation function (CCFmax, CCFlag) of WR with the analysed parameter. Statistically, significant changes were also found for CCFmax([Formula: see text]O2musc) between L-236 and R+6 (P = 0.010), L-236 and R+21 (P = 0.030), L-72 and R+6 (P = 0.043). Between pre-to-post mission change in [Formula: see text]O2peak and CCFmax(HR), a correlation was shown (r SP = 0.67, P = 0.017). The [Formula: see text]O2musc kinetics changes indicate aerobic detraining effects which are present up to 21 days following space flight. The correlations between changes in [Formula: see text]O2peak and HR kinetics illustrate the key role of cardiovascular regulation in [Formula: see text]O2peak. The addition of CRKT to ISS flight is recommended to obtain information regarding the potential muscular and cardiovascular deconditioning. This allows a reduction in the frequency of higher intensity testing during flight.

  20. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor.

    PubMed

    Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas

    2016-03-01

    Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  1. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.

    PubMed

    Löw, M; Häberle, K-H; Warren, C R; Matyssek, R

    2007-03-01

    Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The

  2. Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants.

    PubMed

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2006-02-22

    One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).

  3. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Philibert, R.; Waldron, H.; Clark, D.

    2015-03-01

    The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations

  4. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  5. Supercritical CO2 uptake by nonswelling phyllosilicates.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  6. Supercritical CO 2 uptake by nonswelling phyllosilicates

    DOE PAGES

    Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...

    2018-01-16

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less

  7. Synergistic effects of TiO2 and Cu2O in UV/TiO2/zeolite-based systems on photodegradation of bisphenol A.

    PubMed

    Kuo, Chao-Yin; Wu, Chung-Hsin; Lin, Han-Yu

    2014-08-01

    In this study, TiO2/zeolite (TZ)-based composite was utilized to degrade bisphenol A (BPA) under ultraviolet (UV) irradiation. The effects of the TiO2 and Cu2O doses in TZ and Cu2O/TiO2/zeolite (CTZ) on the rate of BPA removal were identified, respectively. The surface area of TZ declined as the TiO2 loading increased. The photodegradation rate (k) of BPA in the TZ and CTZ systems fitted pseudo-first-order kinetics. Under UV (365 nm) irradiation, the k values of TiO2 (20%)/zeolite (80%), TiO2 (40%)/zeolite (60%), TiO2 (60%)/zeolite (40%), and TiO2 (80%)/zeolite (20%) were 0.51, 0.55, 0.97, and 0.91 h-1, respectively. In the UV (365nm)/TiO2 (60%)/zeolite (40%) system, the k values of CTZ with 1%, 5%, 10%, 20%, and 30% Cu2O added were 1.50, 1.04, 1.15, 1.88, and 0.47h-1, respectively. The photocatalytic activity of TZ was enhanced by adding Cu2O. The optimal dosage of TiO2 in the TZ system was 60% and that of Cu20 in the CTZ system was 20%. p-Hydroxybenzaldehyde (p-HBA), p-hydroxyacetophenone (p-HAP), p-hydroxybenzoic acid (p-HBA acid) and hydroquinone (HQ) were intermediates ofBPA photodegradation in the UV/TZ system and the rates of degradation followed the order HQ > p - HBA acid > BPA > p - HAP > p - HBA.

  8. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  9. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  10. Effectiveness of a group opt-in session on uptake and graduation rates for pulmonary rehabilitation.

    PubMed

    Graves, J; Sandrey, V; Graves, T; Smith, D L

    2010-08-01

    Pulmonary rehabilitation (PR) is an effective intervention in the treatment of patients with chronic obstructive pulmonary disease (COPD). Unfortunately some patients offered this treatment either fail to take up the offer or fail to complete the course. Studies have indicated a number of factors influencing uptake and completion rates. We describe the introduction of an intervention, the group opt-in session (GOIS), prior to individualised baseline assessment and entry to the PR course, with the intention being to improve uptake and completion rates. A 1.5-hour-long GOIS was offered as the first face-to-face contact to all patients referred for PR. Drop-out rates at all stages of the pathway from referral to graduation were collected on 200 patients prior to the introduction of the GOIS (non-GOIS group) and compared to the first 400 patients following introduction (the GOIS group). Possible independent predictors of course uptake and completion were examined in the GOIS group. The proportion of referred patients taking up the offer of individualised baseline assessment or a GOIS was similar (75% vs. 72.2%, p value not significant [ns]). However, since in the GOIS group the opt-in session preceded the individualised baseline assessment and some patients opted-out, a smaller proportion of referred patients underwent this assessment than in the non-GOIS group (58.7% vs. 75%, p < 0.001). In addition, dropouts following individualised baseline assessments were also reduced (7% vs. 22%, p < 0.001). Both of these factors reduced 'wasted' assessments. Similar proportions of patients referred began the PR course in both groups (53% vs. 51.7%, ns), but a higher proportion of patients graduated in the GOIS group (87.9% vs. 76.4%, p < 0.05). Drop-out rates due to illness were similar in both groups (8.5% pre vs. 6.8% post, ns). However, drop-out rates not due to illness were much higher in the non-GOIS group (15.1% vs. 5.3%, p < 0.001). In the GOIS group, patients who did not

  11. Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    da Conceição, Fabiano Tomazini; dos Santos, Carolina Mathias; de Souza Sardinha, Diego; Navarro, Guillermo Rafael Beltran; Godoy, Letícia Hirata

    2015-03-01

    The chemical weathering rate and atmospheric/soil CO2 consumption of Paraná flood basalts in the Preto Stream basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. Surface and rain water samples were collected in 2006, and analyses were performed to assess pH, temperature, dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS), including SO42-, NO3-, PO43 -, HCO3-, Cl-, SiO2, Ca2 +, Mg2 +, Na+ and K+. Fresh rocks and C horizon samples were also collected, taking into account their geological context, abundance and spatial distribution, to analyze major elements and mineralogy. The Preto Stream, downstream from the city of Ribeirão Preto, receives several elements/compounds as a result of anthropogenic activities, with only sulfate yielding negative flux values. The negative flux of SO42 - can be attributed to atmospheric loading that is mainly related to anthropogenic inputs. After corrections were made for atmospheric inputs, the riverine transport of dissolved material was found to be 30 t km- 2 y- 1, with the majority of the dissolved material transported during the summer (wet) months. The chemical weathering rate and atmospheric/soil CO2 consumption were 6 m/Ma and 0.4 · 106 mol km- 2 y- 1, respectively. The chemical weathering rate falls within the lower range of Paraná flood basalt denudation rates between 135 and 35 Ma previously inferred from chronological studies. This comparison suggests that rates of basalt weathering in Brazil's present-day tropical climate differ by at most one order of magnitude from those prevalent at the time of hothouse Earth. The main weathering process is the monosiallitization of anorthoclase, augite, anorthite and microcline. Magnetite is not weathered and thus remains in the soil profile.

  12. Influence of CeO{sub 2} NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yi; Wang, Chao

    2016-11-15

    The effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO{sub 2} NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P releasemore » rate was caused by the reversible states of Ce{sup 3+} and Ce{sup 4+}, which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO{sub 2} NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO{sub 2} NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce{sup 3+}. - Highlights: • CeO{sub 2} NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.« less

  13. Increasing uptake rates of cervical cancer screening amongst Hong Kong Chinese women: the role of the practitioner.

    PubMed

    Twinn, S; Cheng, F

    2000-08-01

    Women's attendance for regular cervical screening has been identified as a significant factor in the prevention of cervical cancer. Evidence suggests, however, that both extrinsic and intrinsic factors influence women's attendance patterns for screening. Extrinsic factors, in particular the practitioner undertaking the screening procedure, have been shown to influence women's return rates for further screening. In Hong Kong, where uptake rates amongst Chinese women remain comparatively low, a study was undertaken to examine Chinese women's experiences and perceptions of cervical screening undertaken by either a female doctor or nurse. A multiple case study design using both qualitative and quantitative methods of data collection was employed. This paper reports the findings from the qualitative data obtained from 52 women participating in 12 focus group interviews held in the two case studies. Thematic analysis of the data demonstrated the importance of the caring nature, communication skills, experience and expertise of the practitioner to women's attendance pattern for screening. The experience and expertise of the practitioner, described by women as teaching, minimizing pain and discomfort and being considerate, were considered more influential to uptake rates than the professional discipline of the practitioner. Findings such as these indicate the importance of the influence of the practitioner in determining uptake rates for cervical screening amongst this population group.

  14. Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication

    PubMed Central

    Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands

  15. Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.

    PubMed

    Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.

  16. Responses of photosynthetic O2 evolution to PPFD in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae).

    PubMed

    Martin, C E; McKee, J M; Schmitt, A K

    1989-09-01

    Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.

  17. Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung

    2013-10-01

    Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.

  18. Imaging and modelling root water uptake

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Meunier, F.; Javaux, M.; Kaestner, A.; Carminati, A.

    2017-12-01

    Spatially resolved measurement and modelling of root water uptake is urgently needed to identify root traits that can improve capture of water from the soil. However, measuring water fluxes into roots of transpiring plants growing in soil remains challenging. Here, we describe an in-situ technique to measure local fluxes of water into roots. The technique consists of tracing the transport of deuterated water (D2O) in soil and roots using time series neutron radiography and tomography. A diffusion-convection model was used to model the transport of D2O in roots. The model includes root features such as the endodermis, xylem and the composite flow of water in the apoplastic and symplastic pathways. Diffusion permeability of root cells and of the endodermis were estimated by fitting the experiment during the night, when transpiration was negligible. The water fluxes at different position of the root system were obtained by fitting the experiments at daytime. The results showed that root water uptake was not uniform along root system and varied among different root types. The measured profiles of root water uptake into roots were used to estimate the radial and axial hydraulic of the roots. A three-dimensional model of root water uptake was used to fit the measured water fluxes by adjusting the root radial and axial hydraulic conductivities. We found that the estimated radial conductivities decreased with root age, while the axial conducances increased, and they are different among root types. The significance of this study is the development of a method to estimate 1) water uptake and 2) the radial and axial hydraulic conductivities of roots of transpiring plants growing in the soil.

  19. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Notestein, Justin M.

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less

  20. Pulse transit time measured by photoplethysmography improves the accuracy of heart rate as a surrogate measure of cardiac output, stroke volume and oxygen uptake in response to graded exercise.

    PubMed

    Pollonini, L; Padhye, N S; Re, R; Torricelli, A; Simpson, R J; Dacso, C C

    2015-05-01

    Heart rate (HR) is a valuable and widespread measure for physical training programs, although its description of conditioning is limited to the cardiac response to exercise. More comprehensive measures of exercise adaptation include cardiac output (Q̇), stroke volume (SV) and oxygen uptake (V̇O2), but these physiological parameters can be measured only with cumbersome equipment installed in clinical settings. In this work, we explore the ability of pulse transit time (PTT) to represent a valuable pairing with HR for indirectly estimating Q̇, SV and V̇O2 non-invasively. PTT was measured as the time interval between the peak of the electrocardiographic (ECG) R-wave and the onset of the photoplethysmography (PPG) waveform at the periphery (i.e. fingertip) with a portable sensor. Fifteen healthy young subjects underwent a graded incremental cycling protocol after which HR and PTT were correlated with Q̇, SV and V̇O2 using linear mixed models. The addition of PTT significantly improved the modeling of Q̇, SV and V̇O2 at the individual level ([Formula: see text] for SV, 0.548 for Q̇, and 0.771 for V̇O2) compared to predictive models based solely on HR ([Formula: see text] for SV, 0.503 for Q̇, and 0.745 for V̇O2). While challenges in sensitivity and artifact rejection exist, combining PTT with HR holds potential for development of novel wearable sensors that provide exercise assessment largely superior to HR monitors.

  1. Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake.

    PubMed

    Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Yates, Dustin T

    2017-08-01

    Recent studies show that adrenergic agonists and inflammatory cytokines can stimulate skeletal muscle glucose uptake, but it is unclear if glucose oxidation is similarly increased. Thus, the objective of this study was to determine the effects of ractopamine HCl (β1 agonist), zilpaterol HCl (β2 agonist), TNFα, and IL-6 on glucose uptake and oxidation rates in unstimulated and insulin-stimulated soleus muscle strips from adult Sprague-Dawley rats. Effects on phosphorylation of Akt (phospho-Akt), p38 MAPK (phospho-p38), and p44/42 MAPK (phospho-p44/42) was also determined. Incubation with insulin increased (P<0.05) glucose uptake by ∼47%, glucose oxidation by ∼32%, and phospho-Akt by ∼238%. Insulin also increased (P<0.05) phospho-p38, but only after 2h in incubation. Muscle incubated with β2 agonist alone exhibited ∼20% less (P<0.05) glucose uptake but ∼32% greater (P<0.05) glucose oxidation than unstimulated muscle. Moreover, co-incubation with insulin+β2 agonist increased (P<0.05) glucose oxidation and phospho-Akt compared to insulin alone. Conversely, β1 agonist did not appear to affect basal or insulin-stimulated glucose metabolism, and neither β agonist affected phospho-p44/42. TNFα and IL-6 increased (P<0.05) glucose oxidation by ∼23% and ∼33%, respectively, in the absence of insulin. This coincided with increased (P<0.05) phospho-p38 and phospho-p44/42 but not phospho-Akt. Furthermore, co-incubation of muscle with insulin+either cytokine yielded glucose oxidation rates that were similar to insulin alone, despite lower (P<0.05) phospho-Akt. Importantly, cytokine-mediated increases in glucose oxidation rates were not concomitant with greater glucose uptake. These results show that acute β2 adrenergic stimulation, but not β1 stimulation, directly increases fractional glucose oxidation in the absence of insulin and synergistically increases glucose oxidation when combined with insulin. The cytokines, TNFα and IL-6, likewise directly

  2. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.

  3. Impact of 60 days of 6° head down tilt bed rest on muscular oxygen uptake and heart rate kinetics: efficacy of a reactive sledge jump countermeasure.

    PubMed

    Koschate, J; Thieschäfer, L; Drescher, U; Hoffmann, U

    2018-06-26

    The effects of 60 days of head down tilt bed rest (HDBR) with and without the application of a reactive jump countermeasure were investigated, using a method which enables to discriminate between pulmonary ([Formula: see text]O 2 pulm) and muscular ([Formula: see text]O 2 musc) oxygen uptake kinetics to control for hemodynamic influences. 22 subjects were randomly allocated to either a group performing a reactive jumps countermeasure (JUMP; n = 11, male, 29 ± 7 years, 23.9 ± 1.3 kg m - 2 ) or a control group (CTRL; n = 11, male, 29 ± 6 years, 23.3 ± 2.0 kg m - 2 ). Heart rate (HR) and [Formula: see text]O 2 pulm were measured in response to repeated changes in work rate between 30 and 80 W before (BDC-9) and two times after HDBR (R+ 2, R+ 13). Kinetic responses of HR, [Formula: see text]O 2 pulm, and [Formula: see text]O 2 musc were assessed applying time series analysis. Higher maxima in cross-correlation functions (CCF max (x)) between work rate and the respective parameter indicate faster kinetics responses. Statistical analysis was performed applying multifactorial analysis of variance. CCF max ([Formula: see text]O 2 musc) and CCF max ([Formula: see text]O 2 pulm) were not significantly different before and after HDBR (P > 0.05). CCF max (HR) decreased following bed rest (JUMP: BDC-9: 0.30 ± 0.09 vs. R+ 2: 0.28 ± 0.06 vs. R+13: 0.28 ± 0.07; CTRL: 0.35 ± 0.09 vs. 0.27 ± 0.06 vs. 0.33 ± 0.07 P = 0.025). No significant differences between the groups were observed (P > 0.05). Significant alterations were found for CCF max of mean arterial blood pressure (mBP) after HDBR (JUMP: BDC-9: 0.21 ± 0.07 vs. R+ 2: 0.30 ± 0.13 vs. R+ 13: 0.28 ± 0.08; CTRL: 0.25 ± 0.07 vs. 0.38 ± 0.13 vs. 0.28 ± 0.08; P = 0.008). Despite hemodynamic changes, [Formula: see text]O 2 kinetics seem to be preserved for a longer period of HDBR, even without the application of a

  4. Quenching of I(2P1/2) by O3 and O(3P).

    PubMed

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  5. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  6. RAPID NITRATE UPTAKE RATES AND LARGE SHORT-TERM STORAGE CAPACITIES MAY EXPLAIN WHY OPPORTUNISTIC GREEN MACROALGAE DOMINATE SHALLOW EUTROPHIC ESTUARIES1.

    PubMed

    Kennison, Rachel L; Kamer, Krista; Fong, Peggy

    2011-06-01

    We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1  · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1  · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1  · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.

  7. In-situ activation of CuO/ZnO/Al.sub.2 O.sub.3 catalysts in the liquid phase

    DOEpatents

    Brown, Dennis M.; Hsiung, Thomas H.; Rao, Pradip; Roberts, George W.

    1989-01-01

    The present invention relates to a method of activation of a CuO/ZnO/Al.sub.2 O.sub.3 catalyst slurried in a chemically inert liquid. Successful activation of the catalyst requires the use of a process in which the temperature of the system at any time is not allowed to exceed a certain critical value, which is a function of the specific hydrogen uptake of the catalyst at that same time. This process is especially critical for activating highly concentrated catalyst slurries, typically 25 to 50 wt %. Activation of slurries of CuO/ZnO/Al.sub.2 O.sub.3 catalyst is useful in carrying out the liquid phase methanol or the liquid phase shift reactions.

  8. [Effects of Triton X-100 on the oxygen uptake rate of photosystem I particles treated at 70 degrees C].

    PubMed

    Chen, Wei; Yang, Zhen-Le; Li, Liang-Bi; Kuang, Ting-Yun

    2005-06-01

    The characteristics including oxygen uptake rates, fluorescence spectra and absorption spectra of photosystem I particles with or without Triton-X 100 treatment before or after the incubation at 70 degrees C for 10 min were compared. The oxygen uptake rates of photosystem I particles decreased after being incubated at 70 degrees C for 10 min, which could be recovered by the addition of Triton-X 100. Singlet oxygen was formed when the light-harvesting complex I was separated from the core complex of photosystem I, which resulted in high oxygen uptake rate. There was much difference in the fluorescence spectra of photosystem I particles between photosystem I particles treated with Triton-X 100 after the incubation at 70 degrees C for 10 min or not, which implies the ability of Triton-X 100 to promote the recovery of photosystem I particles after the incubation at 70 degrees C for 10 min.

  9. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.

    PubMed

    André, Marcel J

    2013-08-01

    Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by (18)O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of (18)O2 and (16)O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of

  10. Computer program for calculation of oxygen uptake

    NASA Technical Reports Server (NTRS)

    Castle, B. L.; Castle, G.; Greenleaf, J. E.

    1979-01-01

    A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.

  11. O2 availability impacts iron homeostasis in Escherichia coli.

    PubMed

    Beauchene, Nicole A; Mettert, Erin L; Moore, Laura J; Keleş, Sündüz; Willey, Emily R; Kiley, Patricia J

    2017-11-14

    The ferric-uptake regulator (Fur) is an Fe 2+ -responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O 2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O 2 availability. We found that the intracellular, labile Fe 2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe 2+ availability drove the formation of more Fe 2+ -Fur and, accordingly, more DNA binding. O 2 regulation of Fur activity required the anaerobically induced FeoABC Fe 2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O 2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.

  12. O2 availability impacts iron homeostasis in Escherichia coli

    PubMed Central

    Beauchene, Nicole A.; Mettert, Erin L.; Moore, Laura J.; Keleş, Sündüz; Willey, Emily R.; Kiley, Patricia J.

    2017-01-01

    The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis. PMID:29087312

  13. Determination of Anaerobic Threshold by Monitoring the O2 Pulse Changes in Endurance Cyclists.

    PubMed

    Nikooie, Rohollah

    2016-06-01

    The purpose of this study was to determine the validity of anaerobic threshold (AnT)-equivalent to the second turn point for lactate (LTP2)-estimation using the O2 pulse changes in highly trained endurance cyclists who do not show heart rate deflection point (HRDP) during incremental testing. Sixteen endurance cyclists (age, 24.8 ± 4.7 years) and fifteen active men (age, 24.8 ± 3.7 years) performed an incremental cycling test to exhaustion. Pulmonary oxygen uptake (V[Combining Dot Above]O2) and other hemodynamic variables, heart rate, and blood lactate concentration were measured continuously throughout the test. O2 pulse anaerobic threshold (O2 pulse-AnT) was defined as the second turn point in O2 pulse-workload curve. LTP2 was considered as gold standard assessment of AnT and was applied to confirm the validity of O2 pulse-AnT. Intraclass correlation coefficients and the Bland-Altman method were used to determine the relationship and agreement between the O2 corresponding to LTP2 and O2 pulse-AnT, respectively. The active men and 68.7% of the endurance cyclists showed HRDP, whereas all subjects showed O2 pulse-AnT during incremental testing. In both groups, the values for V[Combining Dot Above]O2 corresponding to LTP2 were not significantly different from the V[Combining Dot Above]O2 at O2 pulse-AnT. The V[Combining Dot Above]O2 at LTP2 and O2 pulse-AnT were highly correlated (endurance cyclists: R = 0.68; standard error of estimate [SEE] = 3.74 ml·kg·min and active men: R = 0.58; SEE = 2.91 ml·kg·min) and Bland-Altman plot revealed the limit of agreement of O2 at LTP2 and O2 pulse-AnT differences between 5.1 and 8.6 ml·kg·min (95% CI). In summary, results of this study showed that the second turn point in the O2 pulse-workload curve occurs around LTP2. Therefore, using O2 pulse-AnT is recommended for the noninvasive determination of AnT in highly trained endurance cyclists who do not show HRDP during incremental exercise.

  14. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    PubMed

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  15. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  16. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture

    NASA Astrophysics Data System (ADS)

    Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.

    2011-10-01

    Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.

  17. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes.

    PubMed

    Macananey, Oscar; O'Shea, Donal; Warmington, Stuart A; Green, Simon; Egaña, Mikel

    2012-08-01

    Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (V(T)), 80% V(T), and mid-point between V(T) and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% V(T) (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% V(T) (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% V(T); and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.

  18. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    PubMed

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  19. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  20. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries

    PubMed Central

    Yeo, Yeolmae; Jung, Ji-Won; Park, Kyusung; Kim, Il-Doo

    2015-01-01

    Anatase TiO2 has been suggested as a potential sodium anode material, but the low electrical conductivity of TiO2 often limits the rate capability, resulting in poor electrochemical properties. To address this limitation, we propose graphene-wrapped anatase TiO2 nanofibers (rGO@TiO2 NFs) through an effective wrapping of reduced graphene oxide (rGO) sheets on electrospun TiO2 NFs. To provide strong electrostatic interaction between the graphene oxide (GO) sheets and the TiO2 NFs, poly(allylamine hydrochloride) (PAH) was used to induce a positively charged TiO2 surface by the immobilization of the -NH3+ group and to promote bonding with the negatively charged carboxylic acid (-COO−) and hydroxyl (-O−) groups on the GO. A sodium anode electrode using rGO@TiO2 NFs exhibited a significantly improved initial capacity of 217 mAh g−1, high capacity retention (85% after 200 cycles at 0.2C), and a high average Coulombic efficiency (99.7% from the second cycle to the 200th cycle), even at a 5C rate, compared to those of pristine TiO2 NFs. The improved electrochemical performances stem from highly conductive properties of the reduced GO which is effectively anchored to the TiO2 NFs. PMID:26355340

  1. [Methoxyflurane and ethanol do not inhibit the neuronal uptake of noradrenaline (uptake 1) at the desipramine binding site].

    PubMed

    Kress, H G; Schömig, E

    1990-07-01

    We recently demonstrated that the net accumulation of 3H-norepinephrine in the rat pheochromocytoma cell line PC12 was reduced by anesthetic concentrations of n-alkanols and the volatile anesthetics halothane, enflurane, isoflurane, and methoxyflurane. In PC12 cells, as in adrenergic neurons, norepinephrine is transported across the plasma membrane by a saturable, high-affinity, carrier-mediated mechanism (uptake1), which follows Michaelis-Menten kinetics, is energy- and sodium-dependent, and is inhibited by low concentrations of cocaine and the tricyclic antidepressant desipramine. Although uptake1 is the most important process for the removal of norepinephrine from the synaptic cleft, the net accumulation of norepinephrine within the neuron also depends on other factors including its vesicular uptake and storage within the granules, its metabolism by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT), and the efflux of its more lipophilic metabolites. In our previous report we could not exclude the contribution of any of these factors to the observed inhibitory effects of volatile substances. Therefore, the aim of the present study with ethanol and methoxyflurane was: (1) to elucidate further the exact mechanism responsible for the reduction of the norepinephrine accumulation; and (2) to investigate the anesthetics' interaction with the substrate recognition site, which is identical with the desipramine binding site on the norepinephrine carrier. METHODS. For 3H-norepinephrine uptake experiments, PC12 cells were cultured on dishes (60 mm, Nunc) coated with polyornithine. Reserpine (10 microM) was added to the culture 24 h before the experiment to deplete endogenous norepinephrine. The initial carrier-mediated transport rate (60 s) was measured as previously described. 3H-desipramine equilibrium binding was determined with isolated plasma membranes prepared from PC12 cells grown in suspension culture. The carrier-mediated uptake of 3H

  2. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  3. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    PubMed

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  4. Differential Growth of and Nanoscale TiO2 Accumulation in Tetrahymena thermophila by Direct Feeding versus Trophic Transfer from Pseudomonas aeruginosa

    PubMed Central

    Mielke, Randall E.; Priester, John H.; Werlin, Rebecca A.; Gelb, Jeff; Horst, Allison M.; Orias, Eduardo

    2013-01-01

    Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web. PMID:23851096

  5. Altitude Variation of the CO2(V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilov, A.; Kutepov, A.; She, C.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2010-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(v2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12)cu cm/s through 9.0 x 10(exp -12)cu cm/s that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate k(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado (41 N, 255E) as ground truth of the SABER/TIMED nearly simultaneous ( +/-10 minutes) and common volume (within +/-1 degree in latitude, +/-2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an 'optimal" value of k(CO2-O) needed to minimize the discrepancy between the simulated 15 micron CO2 radiance and that measured by the SABER/TIMED instrument. The k(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12)cu cm/s at 80 km to 5.2 x 10(exp -12)cu cm/s for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 pm radiance measurements and on the energy budget of MLT.

  6. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    NASA Technical Reports Server (NTRS)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  7. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. © 2014 Wiley Periodicals, Inc.

  8. Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Toop, J.

    1983-01-01

    It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.

  9. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  10. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  11. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  12. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  14. Ab initio and transition state theory study of the OH + HO2 → H2O + O2(3Σg-)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2.

    PubMed

    Monge-Palacios, M; Sarathy, S Mani

    2018-02-07

    Reactions of hydroxyl (OH) and hydroperoxyl (HO 2 ) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO 2 → H 2 O + O 2 ( 3 Σ g - )/O 2 ( 1 Δ g ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10 12 T 0.07  exp(1151/RT) + 8.00 × 10 12 T 0.32  exp(-6896/RT) and k(T) = 2.14 × 10 6 T 1.65  exp(-2180/RT) in cm 3 mol -1 s -1 , respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform H 2 O 2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H 2 mixtures. The simulation predicted a larger amount of O 2 ( 1 Δ g ) in H 2 O 2 decomposition than that predicted by Konnov's original model. These differences in the O 2 ( 1 Δ g ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H 2 O 2 decomposition and on the flame speeds and ignition delay times of different H 2 -oxidizer mixtures. However, if the oxidizer is seeded with O 3 , small differences appear in the flame speed. Given that O 2 ( 1 Δ g ) is much more reactive than O

  15. Cellular uptake of modified oligonucleotides: fluorescence approach

    NASA Astrophysics Data System (ADS)

    Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves

    2005-06-01

    Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.

  16. Maple Sap Uptake, Exudation, and Pressure Changes Correlated with Freezing Exotherms and Thawing Endotherms 1

    PubMed Central

    Tyree, Melvin T.

    1983-01-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches. Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight. These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw. PMID:16663208

  17. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  18. Kinetics of O{sub 2}({sup 1{Sigma}}) formation in the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Khvatov, N A; Nyagashkin, A Yu

    2011-02-28

    The dependence of the ratio of specific powers of dimole radiation of singlet oxygen in the 634 nm band and in the b - X band of the O{sub 2}({sup 1{Sigma}}) molecule in the O{sub 2}(X) - O{sub 2}({sup 1{Delta}}) - O{sub 2}({sup 1{Sigma}}) - H{sub 2}O - CO{sub 2} mixture on the CO{sub 2} concentration is measured. As a result, the rate constant of the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}}) at the temperature {approx}330 K is found to equal (4.5 {+-} 1.1) 10{sup -17} cm{sup 3} s{sup -1}.more » (active media)« less

  19. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  20. Absorption of solar radiation by O2 - Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Salawitch, R. J.; Mcelroy, M. B.

    1993-01-01

    An accurate line-by-line model is used to evaluate effects of absorption in the Schumann-Runge bands of O2 on transmission of UV radiation. The model is used to evaluate rates of photolysis for N2O, CFCl3, and CF2Cl2, and to infer global loss rates and instantaneous lifetimes appropriate for 1980. A parameterized version of the line-by-line model enabling rapid evaluation of transmission in the Schumann-Runge region is described. Photochemical calculations employing the parameterization and constrained by data from the Atmospheric Trace Molecule Spectroscopy experiment are used to examine the budget of odd oxygen. Consistent with previous studies, it is shown that photochemical loss of odd oxygen exceeds production by photolysis of O2 for altitudes above 40 km. The imbalance between production and loss is shown to be consistent with a source of odd oxygen proportional to the product of the mixing ratio and photolysis rate of ozone, which suggests that processes involving vibrationally excited O2 may play an important role in production of odd oxygen.

  1. Conversion of nitrogen oxides in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures subjected to a dc corona discharge

    NASA Astrophysics Data System (ADS)

    Dors, Mirosław; Mizeraczyk, Jerzy

    1996-10-01

    This paper concerns the influence of a direct current (dc) corona discharge on production and reduction of NO, NO2 and N2O in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures. The corona discharge was generated in a needle-to-plate reactor. The positively polarized electrode consisted of 7 needles. The grounded electrode was a stainless steel plate. The gas flow rate through the reactor was varied from 28 to 110 cm3/s. The time-averaged discharge current ranged from 0 to 6 mA. It was found that in the N2:O2:CO2 mixture the corona discharge produced NO, NO2 and N2O. In the N2:O2:CO2:NO2 mixture the reduction of NO2 was between 6-56%, depending on the concentration of O2, gas flow rate and corona discharge current. The NO2 reduction was accompanied by production of NO and N2O. The results show that efficient reduction of nitrogen oxides by a corona discharge cannot be expected in the mixtures containing N2 and O2 if reducing additives are not employed.

  2. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  3. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  4. Mechanism of Aluminum Inhibition of Net 45Ca2+ Uptake by Amaranthus Protoplasts 1

    PubMed Central

    Rengel, Zdenko; Elliott, Daphne C.

    1992-01-01

    Calcium ions serve as a second messenger in signal transduction and metabolic regulation. Effects of Al on calcium homeostasis remain to be elucidated. Short-term net 45Ca2+ uptake by Amaranthus tricolor protoplasts was monitored from uptake media prepared to test the influence of pH, Al, and various inhibitors. Accumulation of 45Ca2+ increased during the first 3 to 6 minutes and then leveled off or declined. Al and Ca2+ channel blockers (verapamil and bepridil) decreased net 45Ca2+ uptake. This decrease was more pronounced when Al and bepridil were both present in uptake media, but Al did not aggravate verapamil-induced reduction of net 45Ca2+ uptake. Erythrosin B and calmidazolium each increased net 45Ca2+ uptake, probably by interfering with Ca2+ efflux. This effect was undetectable in the presence of Al. Mycophenolic acid decreased net 45Ca2+ uptake; guanosine alleviated this effect. Al-induced reduction of net 45Ca2+ uptake was not aggravated by mycophenolic acid. Net 45Ca2+ uptake was generally less at pH 4.5 than at 5.5 for all treatments. It is concluded that Al ions affect net 45Ca2+ uptake by binding to the verapamil-specific channel site that is different from the bepridil-specific one, as well as by interfering with the action of guanosine 5′-triphosphate-binding proteins. PMID:16668688

  5. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer

    NASA Astrophysics Data System (ADS)

    Baer, Steven E.; Connelly, Tara L.; Sipler, Rachel E.; Yager, Patricia L.; Bronk, Deborah A.

    2014-12-01

    Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24 h in the dark with additions of 15NH4+ at -1.5, 6, 13, and 20°C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification.

  6. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    PubMed

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  7. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  8. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.

    PubMed

    Chueh, William C; Falter, Christoph; Abbott, Mandy; Scipio, Danien; Furler, Philipp; Haile, Sossina M; Steinfeld, Aldo

    2010-12-24

    Because solar energy is available in large excess relative to current rates of energy consumption, effective conversion of this renewable yet intermittent resource into a transportable and dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low conversion efficiencies, particularly with CO(2) reduction, as well as utilization of precious materials have limited the practical generation of solar fuels. By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO(2) and H(2)O, yielding CO and H(2), respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale and design rather than by chemistry.

  9. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells.

    PubMed

    Manzano, Susana; Williamson, Gary

    2010-12-01

    The effect of polyphenols, phenolic acids and tannins (PPTs) from strawberry and apple on uptake and apical to basolateral transport of glucose was investigated using Caco-2 intestinal cell monolayers. Substantial inhibition on both uptake and transport was observed by extracts from both strawberry and apple. Using sodium-containing (glucose transporters SGLT1 and GLUT2 both active) and sodium-free (only GLUT2 active) conditions, we show that the inhibition of GLUT2 was greater than that of SGLT1. The extracts were analyzed and some of the constituent PPTs were also tested. Quercetin-3-O-rhamnoside (IC₅₀ =31 μM), phloridzin (IC₅₀=146 μM), and 5-caffeoylquinic acid (IC₅₀=2570 μM) contributed 26, 52 and 12%, respectively, to the inhibitory activity of the apple extract, whereas pelargonidin-3-O-glucoside (IC₅₀=802 μM) contributed 26% to the total inhibition by the strawberry extract. For the strawberry extract, the inhibition of transport was non-competitive based on kinetic analysis, whereas the inhibition of cellular uptake was a mixed-type inhibition, with changes in both V(max) and apparent K(m) . The results in this assay show that some PPTs inhibit glucose transport from the intestinal lumen into cells and also the GLUT2-facilitated exit on the basolateral side. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Responses of CH(4), CO(2) and N(2)O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains.

    PubMed

    Li, Kaihui; Gong, Yanming; Song, Wei; He, Guixiang; Hu, Yukun; Tian, Changyan; Liu, Xuejun

    2012-06-01

    To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH(4), CO(2) and N(2)O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH(4) uptake, CO(2) and N(2)O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO(2) and N(2)O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO(2) and N(2)O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO(2) and N(2)O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  12. Effect of Sulfate on Selenium Uptake And Chemical Speciation in Convolvulus Arvensis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Jimenez, G.; Peralta-Video, J.R.; Rosa, G.de la

    2007-08-08

    Hydroponic experiments were performed to study several aspects of Se uptake by C. arvensis plants. Ten day old seedlings were exposed for eight days to different combinations of selenate (SeO{sub 4}{sup 2-}), sulfate (SO{sub 4}{sup 2-}), and selenite (SeO{sub 3}{sup 2-}). The results showed that in C. arvensis, SO{sub 4}{sup 2-} had a negative effect (P < 0.05) on SeO{sub 4}{sup 2-} uptake. However, a positive interaction produced a significant increase in SO{sub 4}{sup 2-} uptake when SeO{sub 4}{sup 2-} was at high concentration in the media. X-ray absorption spectroscopy studies showed that C. arvensis plants converted more than 70%more » of the supplied SeO{sub 3}{sup 2-} into organoselenium compounds. However, only approximately 50% of the supplied SeO{sub 4}{sup 2-} was converted into organoselenium species while the residual 50% remained in the inorganic form. Analysis using LC-XANES fittings confirmed that the S metabolic pathway was affected by the presence of Se. The main Se compounds that resembled those Se species identified in C. arvensis were Se-cystine, Se-cysteine, SeO{sub 3}{sup 2-}, and SeO{sub 4}{sup 2-}, whereas for S the main compounds were cysteine, cystine, oxidized glutathione, reduced glutathione, and SO{sub 4}{sup 2-}. The results of these studies indicated that C. arvensis could be considered as a possible option for the restoration of soil moderately contaminated with selenium even in the presence of sulfate.« less

  13. Arsenite oxidation by H 2O 2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.

    1999-09-01

    The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2→products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).

  14. Hepatitis A and B vaccination--the rate of uptake and course completion in patients with hepatitis C.

    PubMed

    Fredericks, Trinity; Kwan, Kellie; Mak, Donna

    2010-10-01

    Western Australian general practitioners may order Department of Health funded hepatitis A and B vaccines for patients newly notified with hepatitis C to prevent complications associated with co-infections. The aim of this study was to determine vaccination uptake of hepatitis C patients through this program. We reviewed hepatitis C notifications and hepatitis A and B vaccine orders received in 2007 and 2008 to determine the rate of vaccine uptake and course completion. Vaccination orders for initial doses were received for 37% (448/1209) of patients. Vaccination uptake was positively associated with age and non- Aboriginality. Final vaccination doses were ordered for 30% of patients for whom an initial order had been received. Uptake of hepatitis A and B vaccination was higher than that of similar populations. However, vaccination course completion was low. General practitioners need to emphasise to their patients the importance of completing a vaccine course.

  15. Quenching of I(2P 1/2) by O 3 and O( 3P)

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Antonov, I. O.; Ruffner, S.; Heaven, M. C.

    2006-02-01

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P 1/2) by O atoms and O 3 may impact the efficiency of discharge driven iodine lasers. In the present study we have measured the rate constants for quenching of I(2P 1/2) by O( 3P) atoms and O 3 using pulsed laser photolysis techniques. The rate constant for quenching by O 3, 1.8x10 -12 cm 3 s -1, was found to be a factor of five smaller than the literature value. The rate constant for quenching by O( 3P) was 1.2x10 -11 cm 3 s -1. This was six times larger than a previously reported upper bound, but consistent with estimates obtained by modeling the kinetics of discharge-driven laser systems.

  16. Altitude Variation of the CO2 (V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilovi, Artem; Kutepov, Alexander; She, Chiao-Yao; Smith, Anne K.; Pesnell, William Dean; Goldberg, Richard A.

    2010-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (mlt), the quenching of CO2(N2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12) cubic centimeters per second through 9.0 x 10(exp -12) cubic centimeters per second that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate K(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the colorado state university narrow-band sodium (Na) lidar located at fort collins, colorado (41N, 255E) as ground truth of the saber/timed nearly simultaneous (plus or minus 10 minutes) and common volume (within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an "optimal" value of K(CO2-O) needed to minimize the discrepancy between the simulated 15 mm CO2 radiance and that measured by the saber/timed instrument. The K(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12) cubic centimeters per second at 80 km to 5.2 x 10(exp -12) cubic centimeters pers second for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 mm radiance measurements and on the energy budget of mlt.

  17. CO2 Uptake and Fixation by a Thermoacidophilic Microbial Community Attached to Precipitated Sulfur in a Geothermal Spring▿ †

    PubMed Central

    Boyd, Eric S.; Leavitt, William D.; Geesey, Gill G.

    2009-01-01

    Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring's source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat. PMID:19429558

  18. Written pretest information and germline BRCA1/2 pathogenic variant testing in unselected breast cancer patients: predictors of testing uptake.

    PubMed

    Nilsson, Martin P; Nilsson, Erik D; Silfverberg, Barbro; Borg, Åke; Loman, Niklas

    2018-06-06

    This study aimed to evaluate predictors of testing uptake among unselected breast cancer patients who were offered germline BRCA1/2 testing in a prospective study. Pretest information was provided by a standardized invitation letter instead of in-person counseling. Data was abstracted from medical records. Using multivariate logistic regressions, predictors of testing uptake were analyzed. The overall uptake of testing was 67% (539 of 805 patients). Low uptake rates were found for patients aged ≥80 years (33%), and patients born outside of Europe (37%). In adjusted analysis, age ≥80 years (odds ratio [OR] 0.10; P = 0.002), psychiatric disorders (OR 0.46; P = 0.006), occupation requiring at least 3 years of university or college education (OR 2.03; P = 0.003), and breast cancer or ovarian cancer in first-degree or second-degree relatives (OR 1.66; P = 0.02) were independently associated with uptake of BRCA1/2 testing. Somatic comorbidity in patients aged <70 years was associated with lower testing uptake. Testing uptake varies across different subgroups according to patient-related factors that are readily available in the medical records. Knowledge about these factors enables health care professionals to identify patients who are less likely to pursue genetic testing.

  19. Ecological Controls on N2O Emission in Surface Litter and Near-surface Soil of a Managed Grassland: Modelling and Measurements

    NASA Astrophysics Data System (ADS)

    Grant, Robert; Neftel, Albrecht; Calanca, Pierluigi

    2016-04-01

    Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (q) and temperature (Ts) is greatest. To determine whether temporal variability in q and Ts of surface litter and near-surface soil could explain that in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and q and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors at an hourly time-scale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2 - 5 days) with maximum N2O effluxes that varied from < 1 mg N m-2 h-1 in early spring and autumn to > 3 mg N m-2 h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0 - 2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth, and by O2 limitation from wetting relative to O2 demand from respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O emissions was not simply related to surface and near-surface q and Ts. Modelled N2O emissions were found to be sensitive to defoliation intensity and timing (relative to that of fertilization) which controlled plant N uptake and soil q and Ts prior to and during emission events. In a model

  20. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    PubMed

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  1. A kinetic study of Ca-containing ions reacting with O, O2, CO2 and H2O: implications for calcium ion chemistry in the upper atmosphere.

    PubMed

    Broadley, Sarah; Vondrak, Tomas; Wright, Timothy G; Plane, John M C

    2008-09-14

    A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca+ in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO+ + O --> Ca+ + O2) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO+ + CO --> Ca+ + CO2, 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca+.CO2 + O2 --> CaO2+ + CO2, 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca+.CO2 + H2O --> Ca+.H2O + CO2) = (13.0 +/- 4.0) x 10(-10); and k(Ca+.H2O + O2 --> CaO2+ + H2O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm3 molecule(-1) s(-1). The quoted uncertainties are a combination of the 1 sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca+.CO2 + CO2 --> Ca+.(CO2)2, 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca+.H2O + H2O --> Ca+.(H2O)2) = (1.6 +/- 1.1) x 10(-27); and k(CaO2+ + O2 --> CaO2+.O2) < 1 x 10(-31) cm6 molecule(-2) s(-1). These recombination rate coefficients, as well as those for the ligand-switching reactions listed above, were then interpreted using a combination of high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO+ and O was explained using quantum chemistry calculations on the lowest 2A', 2A'' and 4A'' potential energy surfaces. These calculations indicate that reaction mostly occurs on the 2A' surface, leading to production of Ca+ (2S) + O2(1 Delta g). The importance of this reaction for controlling the lifetime of Ca+ in the upper mesosphere and lower

  2. Accumulation of deuterium oxide in body fluids after ingestion of D/sub 2/O-labeled beverages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.M.; Lamb, D.R.; Burgess, W.A.

    A simple low-cost procedure was developed to compare the temporal profiles of deuterium oxide (D/sub 2/O) accumulation in body fluids after ingestion of D/sub 2/O-labeled solutions. D/sub 2/O concentration was measured in plasma and saliva samples taken at various intervals after ingestion of 20 ml of D/sub 2/O mixed with five solutions differing in carbohydrate and electrolyte concentrations. An infrared spectrometer was used to measure D/sub 2/O in purified samples obtained after a 48-h incubation period during which the water (D/sub 2/O and H/sub 2/O) in the sample was equilibrated with an equal volume of distilled water in a sealedmore » diffusion dish. The procedure yields 100% recoveries of 60-500 ppm D/sub 2/O with an average precision of 5%. When compared with values for distilled water, D/sub 2/O accumulation in serial samples of plasma and saliva was slower for ingested solutions containing 40 and 15% glucose and faster for hypotonic saline and a 6% carbohydrate-electrolyte solution. These differences appear to reflect known differences in gastric emptying and intestinal absorption of these beverages. Therefore, this technique may provide a useful index of the rate of water uptake from ingested beverages into the body fluids.« less

  3. Relationship between root water uptake and soil respiration: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  4. The effect of N2/+/ recombination on the aeronomic determination of the charge exchange rate coefficient of O/+//2D/ with N2

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Orsini, N.

    1978-01-01

    The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).

  5. Microstructure and mechanical properties of eutectic B2O3-UO2 ceramic composites solidified at different cooling rates

    NASA Astrophysics Data System (ADS)

    Yusufu, Aikebaier; Uno, Masayoshi

    2018-02-01

    The removal of nuclear debris from damaged reactors by drilling or cutting requires an understanding of various properties of the solidified debris, such as mechanical properties (hardness, fractural features, strength, etc.) and microstructural properties like porosity, which have a significant impact on the mechanical properties. In this study, B2O3-UO2 composites were prepared by the eutectic reaction as solidified samples of mock fuel debris with a wide variety of porosities, and the porosity dependence of the mechanical properties under compression were characterized to obtain fundamental data on the complicated fuel debris. The porous eutectic B2O3-UO2 (B2O3/UO2 atomic ratio = 0.225:0.775) samples were successfully prepared by solidification of the molten phase below 2073 K, and the porosity increased as the pore network developed as the cooling rate was decreased. The nano- and microhardness as well as Young's moduli of the eutectic B2O3-UO2 samples were higher than those of UO2. However, the compressive strengths of the eutectic B2O3-UO2 samples were lower than that of UO2, and they decreased as the porosity increased. All samples showed typical brittle fracturing behavior. The low-porosity samples showed a linear elastic step up to a sudden rupture, whereas the high-porosity samples exhibited two main regimes: a linear elastic region that can be attributed to pore-edge bending or face stretching; a zigzag step that is related to the progression of pore collapse.

  6. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  7. High HPV vaccination uptake rates for adolescent girls after regional governmental funding in Shiki City, Japan.

    PubMed

    Hayashi, Y; Shimizu, Y; Netsu, S; Hanley, S; Konno, R

    2012-08-10

    In Japan, the bivalent HPV vaccine was approved in October, 2009 and became available as a non-routine vaccine from December, 2009. While routine vaccinations are free, the cost and responsibility for non-routine vaccinations are left to the individual. In exceptional circumstances regional governments fund non-routine vaccinations. This was the case in Shiki City, Saitama Prefecture, where a high uptake rate for individual (non-school based) HPV vaccination was obtained. On January 20, 2010, the mayor of Shiki City announced to the media his decision to vaccinate adolescent girls in Shiki City against HPV. A project team for HPV vaccination was set up in the city's Health Promotion Center. To gain mutual consent for HPV vaccination, senior health professionals, city officials, the head of the board of education, school principals and health-care teachers met several times. The cohort to be vaccinated was 1254 girls aged 12-15 years. Individual notifications were mailed to each girl on April 23, 2010, along with information about the HPV vaccine. As of April 10th, 2011, the uptake rate for girls aged 15 years old was 90.7% for the 1st dose. The vaccine registry is managed by the health care system of the city. The success of the HPV vaccination program and high uptake rates in Shiki City is a good model for the nationwide HPV vaccination program that started in February, 2011. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Sensory Innervation of the Gills: O2-Sensitive Chemoreceptors and Mechanoreceptors

    PubMed Central

    Burleson, Mark L.

    2009-01-01

    Summary Physical characteristics of water (O2 solubility and capacitance) dictate that cardiovascular and ventilatory performance be controlled primarily by the need for oxygen uptake rather than carbon dioxide excretion, making O2 receptors more important in fish than in terrestrial vertebrates. An understanding of the anatomy and physiology of mechanoreception and O2 chemoreception in fishes is important, because water breathing is the primitive template upon which the forces of evolution have modified into the various cardioventilatory modalities we see in extant terrestrial species. Key to these changes are the O2-sensitive chemoreceptors and mechanoreceptors, their mechanisms and central pathways. PMID:19193399

  9. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  10. Effect of hyperoxia on uptake and metabolism of 5-hydroxytryptamine and β-phenylethylamine in rat lung: a sex difference

    PubMed Central

    Ben-Harari, R.R.; Lanir, A.; Youdim, M.B.H.

    1981-01-01

    1 The uptake of 5-hydroxytryptamine (5—HT) and β-phenylethylamine (PEA) and their deamination by monoamine oxidase (MAO) were studied in perfused lung from male and female rats exposed to 100% O2 at 1 ATA for up to 60 h. 2 The uptake and metabolism of 5-HT in lungs from both male and female rats was not changed by exposure to O2. 3 The uptake and metabolism of PEA by lungs from male rats was unchanged. Uptake of PEA by lungs from female rats was inhibited 20% and 62% after 37 h and 50 h exposure respectively. 4 MAO activity, both in vitro and in perfused lung, was increased towards PEA after 35 h of hyperoxia. 5 Metabolism of PEA in perfused lung, measured over 30 min, was inhibited 52% after 50 h of O2 hyperoxia. 6 These results show that exposure to high concentrations of O2 damages lung, resulting in inhibition of uptake of PEA and consequently in inhibition of metabolism of PEA. 7 These results also indicate that, in lung from female rats, MAO-type B is more susceptible to changes in O2 tension than MAO type A. PMID:7236995

  11. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies

    PubMed Central

    Jensen-Kondering, Ulf; Williamson, David J.; Sitnikov, Sergey; Sawiak, Stephen J.; Aigbirhio, Franklin I.; Hong, Young T.

    2017-01-01

    Purpose Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Methods Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. Results As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Conclusions Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications

  12. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies.

    PubMed

    Fryer, Tim D; Ejaz, Sohail; Jensen-Kondering, Ulf; Williamson, David J; Sitnikov, Sergey; Sawiak, Stephen J; Aigbirhio, Franklin I; Hong, Young T; Baron, Jean-Claude

    2017-01-01

    Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging.

  13. Molten Salt Synthesis and High Rate Performance of the ‘‘Desert-Rose’’ form of LiCoO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Chen; C Grey

    2011-12-31

    The synthesis of a novel nanostructure of LiCoO{sub 2}, and its performance as a cathode for a high-rate lithium ion battery, is described. The LiCoO{sub 2} nanostructure resembles the morphology of a known natural mineral: 'desert rose' gypsum. A range of measurement techniques are used to investigate the growth mechanism of this structure and the origin of its high rate charge/discharge properties.

  14. Selective Iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    PubMed Central

    2012-01-01

    Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218

  15. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.

    PubMed

    Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin

    2013-08-28

    A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.

  16. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake

    PubMed Central

    Young, Adrian; Gardiner, Danielle

    2018-01-01

    Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS) production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-)/hydrogen peroxide (H2O2) release from isolated muscle mitochondria. Disulfiram, a powerful chemical S-glutathionylation catalyst, was used to S-glutathionylate mitochondrial proteins and ascertain if it can alter ROS production. It was found that O2●-/H2O2 release rates from permeabilized muscle mitochondria decreased with increasing doses of disulfiram (100–500 μM). This effect was highest in mitochondria oxidizing succinate or palmitoyl-carnitine, where a ~80–90% decrease in the rate of ROS release was observed. Similar effects were detected in intact mitochondria respiring under state 4 conditions. Incubation of disulfiram-treated mitochondria with DTT (2 mM) restored ROS release confirming that these effects were associated with protein S-glutathionylation. Disulfiram treatment also inhibited phosphorylating and proton leak-dependent respiration. Radiolabelled substrate uptake experiments demonstrated that disulfiram inhibited pyruvate import but had no effect on carnitine uptake. Immunoblot analysis of complex I revealed that it contained several protein S-glutathionylation targets including NDUSF1, a subunit required for NADH oxidation. Taken together, these results demonstrate that O2●-/H2O2 release from muscle mitochondria can be altered by protein S-glutathionylation. We attribute these changes to the protein S-glutathionylation complex I and inhibition of mitochondrial pyruvate carrier. PMID:29444156

  17. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake.

    PubMed

    Gill, Robert M; O'Brien, Marisa; Young, Adrian; Gardiner, Danielle; Mailloux, Ryan J

    2018-01-01

    Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS) production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-)/hydrogen peroxide (H2O2) release from isolated muscle mitochondria. Disulfiram, a powerful chemical S-glutathionylation catalyst, was used to S-glutathionylate mitochondrial proteins and ascertain if it can alter ROS production. It was found that O2●-/H2O2 release rates from permeabilized muscle mitochondria decreased with increasing doses of disulfiram (100-500 μM). This effect was highest in mitochondria oxidizing succinate or palmitoyl-carnitine, where a ~80-90% decrease in the rate of ROS release was observed. Similar effects were detected in intact mitochondria respiring under state 4 conditions. Incubation of disulfiram-treated mitochondria with DTT (2 mM) restored ROS release confirming that these effects were associated with protein S-glutathionylation. Disulfiram treatment also inhibited phosphorylating and proton leak-dependent respiration. Radiolabelled substrate uptake experiments demonstrated that disulfiram inhibited pyruvate import but had no effect on carnitine uptake. Immunoblot analysis of complex I revealed that it contained several protein S-glutathionylation targets including NDUSF1, a subunit required for NADH oxidation. Taken together, these results demonstrate that O2●-/H2O2 release from muscle mitochondria can be altered by protein S-glutathionylation. We attribute these changes to the protein S-glutathionylation complex I and inhibition of mitochondrial pyruvate carrier.

  18. Theoretical studies on the coupling interactions in H2SO4···HOO˙···(H2O)n (n = 0-2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang

    2011-01-21

    A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.

  19. Effects of reactant rotational excitation on H + O2--> OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations.

    PubMed

    Lin, Shi Ying; Guo, Hua; Lendvay, György; Xie, Daiqian

    2009-06-21

    We examine the impact of initial rotational excitation on the reactivity of the H + O(2)--> OH + O reaction. Accurate Chebyshev wave packet calculations have been carried out for the upsilon(i) = 0, j(i) = 9 initial state of O(2) and the J = 50 partial wave. In addition, we present Gaussian-weighted quasi-classical trajectory and phase space theory calculations of the integral cross section and thermal rate constant for the title reaction. These theoretical results suggest that the initial rotational excitation significantly enhances reactivity with an amount comparable to the effect of initial vibrational state excitation. The inclusion of internally excited reactants is shown to improve the agreement with experimental rate constant.

  20. Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Lina; Zhai, Wei; Chen, Long; Li, Deping; Ma, Xiaoxin; Ai, Qing; Xu, Xiaoyan; Hou, Guangmei; Zhang, Lin; Feng, Jinkui; Si, Pengchao; Ci, Lijie

    2018-07-01

    Nanostructured spinel LiMn2O4 and super P composite with much enhanced electrochemical performance especially ultrahigh rate capability as the cathode for aqueous hybrid supercapacitors is synthesized by ball milling commercial LiMn2O4 particles together with super P. The as-prepared composite delivers a high capacitance of 306 F g-1 at the current density of 1 A g-1 and superb rate ability of 228.6 F g-1 at 40 A g-1 in 1 M Li2SO4 aqueous electrolyte. The capacitance of the nanostructured composite is 3.5 times higher than that of pristine LiMn2O4 even being charged and discharged 80 times faster. The excellent performances are ascribed to the nanosized LiMn2O4 well dispersed into the conductive carbon matrix. LiMn2O4 and super P composite//active carbon hybrid supercapacitor is assembled and the energy density can reach up to 21.58 Wh kg-1 at 293.16 W kg-1 and 13 Wh kg-1 at 5200 W kg-1. The hybrid device also shows an excellent cycling performance, which retains 85% of the initial capacitance after 4500 cycles. This work provides an effectively facile way to produce high performance LiMn2O4-based cathodes for hybrid suercapacitors in practical applications.

  1. CO₂ uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds.

    PubMed

    Wang, Tsinghai; Xiao, Da-Cheng; Huang, Chih-Hung; Hsieh, Yi-Kong; Tan, Chung-Sung; Wang, Chu-Fang

    2014-04-15

    In this paper, we demonstrate a means of simultaneously solving two serious environmental issues by reutilization of calcinated mixture of pulverized waste oyster shells blending with poly(methyl methacrylate) (PMMA) nanospheres to prepare CaO-based sorbents for CO2 capture. After 10 cycles of isothermal carbonation/calcination at 750°C, the greatest CO2 uptake (0.19 g CO2/g sorbent) was that for the sorbent featuring 70 wt% of PMMA, which was almost three times higher than that (0.07 g CO2/g sorbent) of untreated waste oyster shell. The greater CO2 uptake was likely a result of particle size reduction and afterwards surface basicity enhancement and an increase in the volume of mesopores and macropores. Following simplified life cycle assessment, whose all input values were collected from our experimental results, suggested that a significant CO2 emission reduction along with lesser human health and ecosystems impacts would be achieved immediately once waste is reutilized. Most importantly, the CO2 uptake efficiency must be greater than 20% or sorbents prepared from limestone mining would eventually produce a net positive CO2 emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The significance of respiration timing in the energetics estimates of free-ranging killer whales (Orcinus orca).

    PubMed

    Roos, Marjoleine M H; Wu, Gi-Mick; Miller, Patrick J O

    2016-07-01

    Respiration rate has been used as an indicator of metabolic rate and associated cost of transport (COT) of free-ranging cetaceans, discounting potential respiration-by-respiration variation in O2 uptake. To investigate the influence of respiration timing on O2 uptake, we developed a dynamic model of O2 exchange and storage. Individual respiration events were revealed from kinematic data from 10 adult Norwegian herring-feeding killer whales (Orcinus orca) recorded with high-resolution tags (DTAGs). We compared fixed O2 uptake per respiration models with O2 uptake per respiration estimated through a simple 'broken-stick' O2-uptake function, in which O2 uptake was assumed to be the maximum possible O2 uptake when stores are depleted or maximum total body O2 store minus existing O2 store when stores are close to saturated. In contrast to findings assuming fixed O2 uptake per respiration, uptake from the broken-stick model yielded a high correlation (r(2)>0.9) between O2 uptake and activity level. Moreover, we found that respiration intervals increased and became less variable at higher swimming speeds, possibly to increase O2 uptake efficiency per respiration. As found in previous studies, COT decreased monotonically versus speed using the fixed O2 uptake per respiration models. However, the broken-stick uptake model yielded a curvilinear COT curve with a clear minimum at typical swimming speeds of 1.7-2.4 m s(-1) Our results showed that respiration-by-respiration variation in O2 uptake is expected to be significant. And though O2 consumption measurements of COT for free-ranging cetaceans remain impractical, accounting for the influence of respiration timing on O2 uptake will lead to more consistent predictions of field metabolic rates than using respiration rate alone. © 2016. Published by The Company of Biologists Ltd.

  3. Initial Net CO2 Uptake Responses and Root Growth for a CAM Community Placed in a Closed Environment

    PubMed Central

    NOBEL, PARK S.; BOBICH, EDWARD G.

    2002-01-01

    To help understand carbon balance between shoots and developing roots, 41 bare‐root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass‐panelled sealable room at day/night air temperatures of 25/15 °C. Net CO2 uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO2 uptake rate measured for south‐east‐facing younger parts of the shoots averaged 1·94 µmol m–2 s–1 at night, considerably higher than the community‐level nocturnal net CO2 uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO2 uptake is twice as high for south‐east‐facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0·10 µmol m–2 s–1 over the 13‐week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13‐week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above‐ground biomass gains. PMID:12466099

  4. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  5. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-08-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial ∘Bé densities as compared with higher initial ∘Bé densities.

  6. Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production

    USGS Publications Warehouse

    Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec

    2017-01-01

    Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).

  7. Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K

    NASA Astrophysics Data System (ADS)

    Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.

    2005-12-01

    Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the

  8. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.

    PubMed

    Angert, A; Biraud, S; Bonfils, C; Henning, C C; Buermann, W; Pinzon, J; Tucker, C J; Fung, I

    2005-08-02

    An increase in photosynthetic activity of the northern hemisphere terrestrial vegetation, as derived from satellite observations, has been reported in previous studies. The amplitude of the seasonal cycle of the annually detrended atmospheric CO(2) in the northern hemisphere (an indicator of biospheric activity) also increased during that period. We found, by analyzing the annually detrended CO(2) record by season, that early summer (June) CO(2) concentrations indeed decreased from 1985 to 1991, and they have continued to decrease from 1994 up to 2002. This decrease indicates accelerating springtime net CO(2) uptake. However, the CO(2) minimum concentration in late summer (an indicator of net growing-season uptake) showed no positive trend since 1994, indicating that lower net CO(2) uptake during summer cancelled out the enhanced uptake during spring. Using a recent satellite normalized difference vegetation index data set and climate data, we show that this lower summer uptake is probably the result of hotter and drier summers in both mid and high latitudes, demonstrating that a warming climate does not necessarily lead to higher CO(2) growing-season uptake, even in high-latitude ecosystems that are considered to be temperature limited.

  9. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates formore » the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.« less

  10. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    PubMed

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  11. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    PubMed Central

    Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.

    2017-01-01

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079

  12. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization

    NASA Astrophysics Data System (ADS)

    Cheshme Khavar, Amir Hossein; Moussavi, Gholamreza; Mahjoub, Ali Reza

    2018-05-01

    The present work was focused on the preparation of TiO2@rGO nanocomposite using an innovative facile synthesis method and the investigation of its photocatalytic activity in a UVA/LED photoreactor. The XRD patterns indicated anatase structure for all samples. Presence of rGO in nanocomposites was confirmed by FT-IR and Raman spectra. Also, mono-dispersed TiO2 nanoparticles on rGO sheet were shown in the SEM and HRTEM images. The prepared TiO2@rGO nanocomposite was used as the photocatalyst for degradation of acetaminophen (ACT) in the photoreactor illuminated with UVA/LEDs having the intensity of 95 μW/cm2. The complete degradation of 50 mg/L ACT was attained within 50 min in the LED/TiO2@rGO process while P25/LED process only showed 17% ACT degradation under similar experimental conditions. The photocatalytic activity was strongly affected by the rGO to TiO2 ratio in the nanocomposites and the highest photocatalytic activity was observed at 3.0 wt.% of rGO. Reaction with free radOH was the main mechanism involved in the ACT photodegradation in the TiO2@rGO/LED process under the selected conditions. The performance of LED/TiO2@rGO process improved by four and three times in ACT degradation and mineralization, respectively, at the presence of H2O2. As made TiO2@rGO nanocompsite could preserve its catalytic activity during five consecutive recycles in the process. Accordingly, TiO2@rGO nanocomposite is an active and stable catalyst in the UVA/LED photoreactor for high rate degradation of pharmaceuticals in the contaminated water.

  14. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  15. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  16. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.

    PubMed

    Yin, Chongshan; Wang, Lingtao; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2017-06-21

    The free volumes and proton conductivities of Nafion membranes were investigated at different humidities by positron annihilation lifetime spectroscopy (PALS) and using an electrochemical workstation, respectively. The results showed that the variation in o-Ps lifetime τ o-Ps was closely associated with the microstructure evolution and the development of hydrophilic ion clusters in Nafion membranes as a function of water uptake, regardless of metal oxide additives. In particular, with increasing relative humidity, the maximum value of τ o-Ps in the Nafion membranes corresponded to the formation of numerous water channels for proton transportation. Numerous well-connected water channels in Nafion-TiO 2 hybrid membranes could be formed at a much lower relative humidity (∼40% RH) than in the pristine one (∼75% RH), due to the better water retention ability of the Nafion-TiO 2 membranes. Further, a percolation behavior of proton conductivity at high water uptake in Nafion membranes was observed, which showed that the percolation of ionic-water clusters occurred at the water uptake of ∼4.5 wt%, and ∼6 wt% was basically enough for the formation of a well-connected water channel network.

  17. Which factors predict proposal and uptake of psychological counselling after BRCA1/2 test result disclosure?

    PubMed

    Maheu, Christine; Bouhnik, Anne-Deborah; Nogues, Catherine; Mouret-Fourme, Emmanuelle; Stoppa-Lyonnet, Dominique; Lasset, Christine; Berthet, Pascaline; Fricker, Jean-Pierre; Caron, Olivier; Luporsi, Elizabeth; Gladieff, Laurence; Julian-Reynier, Claire

    2014-04-01

    The aim of this study is to prospectively determine the factors contributing to whether unaffected women from BRCA1/2 families reported that clinicians proposed psychological consultations and that they had attended these consultations during the genetic testing process. A prospective study was performed on a national cohort, using self-administered questionnaires to determine the rates of proposal and use of psychological services at the time of BRCA1/2 test result disclosure (N = 533) and during the first year after disclosure (N = 478) among unaffected French women from BRCA1/2 families who had undergone genetic testing for BRCA1/2. Multivariate adjustment was carried out using logistic regression models fitted using generalized estimation equations, with the genetic testing centre as the clustering variable. At the time of BRCA1/2 test result disclosure, a psychological consultation was proposed by cancer geneticists to 72% and 32% of the carriers (N = 232) and noncarriers (N = 301), respectively (p < 0.001). One year after disclosure, 21% of the carriers had consulted a psychologist, versus 9% of the noncarriers (p < 0.001). Both the proposal and the uptake depended on the women's BRCA1/2 mutation carrier status (proposal adjusted odds ratio (AOR): 4.9; 95% confidence interval (CI) 3.4-7.2; uptake AOR: 2.2; 95% CI 1.2-4.0), their level of education (proposal AOR: 1.7; 95% CI 1.1-2.7; uptake AOR: 4.5; 95% CI 1.7-12.1) and the distress they experienced about their genetic test results (proposal AOR: 1.02; 95% CI 1.01-1.03; uptake AOR: 1.04; 95% CI 1.02-1.06) CONCLUSIONS: Determinants of the proposal/uptake of psychological consultations in the BRCA1/2 testing process highlight the need for inventive strategies to reach the different types of women's profiles. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Endothelin‐1 suppresses insulin‐stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells

    PubMed Central

    Hoshi, Akimasa; Harada, Takuya; Higa, Tsunaki; Karki, Sarita; Terada, Koji; Higashi, Tsunehito; Mai, Yosuke; Nepal, Prabha; Mazaki, Yuichi; Miwa, Soichi

    2016-01-01

    Background and Purpose Endothelin‐1 (ET‐1) reduces insulin‐stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET‐1 of insulin signalling. Experimental Approach We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET‐1 on insulin‐stimulated glucose uptake was assessed with [3H]‐2‐deoxy‐d‐glucose ([3H]2‐DG). The C‐terminus region of GPCR kinase 2 (GRK2‐ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus‐mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short‐interfering RNA (siRNA). Key Results In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr308 and Ser473, which was suppressed by ET‐1. The inhibitory effects of ET‐1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2‐ct and knockdown of GRK2. Insulin increased [3H]2‐DG uptake rate in a concentration‐dependent manner. ET‐1 noncompetitively antagonized insulin‐stimulated [3H]2‐DG uptake. Blockade of ETA receptors, overexpression of GRK2‐ct and knockdown of GRK2 prevented the ET‐1‐induced suppression of insulin‐stimulated [3H]2‐DG uptake. In L6 myotubes overexpressing FLAG‐tagged GRK2, ET‐1 facilitated the interaction of endogenous Akt with FLAG‐GRK2. Conclusions and Implications Activation of ETA receptors with ET‐1 suppressed insulin‐induced Akt phosphorylation at Thr308 and Ser473 and [3H]2‐DG uptake in a GRK2‐dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance. PMID:26660861

  19. A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface

    NASA Astrophysics Data System (ADS)

    Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang

    2017-04-01

    To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.

  20. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  1. The effect of iron content and dissolved O2 on dissolution rates of clinopyroxene at pH 5.8 and 25°C: Preliminary results

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1996-01-01

    Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.

  2. Accelerated Rates of Nitrogen Cycling and N2O Production in Salt Marsh Sediments due to Long-Term Fertilization

    NASA Astrophysics Data System (ADS)

    Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.

    2014-12-01

    Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (< 10% of ambient concentration) of 15NH4+ + 14NO3- or 15NO3- + 14NH4+. An additional parallel incubation with 15NH4+ + 14NO3- and 1 mM of allylthiourea (ATU) was included to measure rates of anaerobic ammonia oxidation (anammox). Well-homogenized slurries filled about 10% of the volume in the gas-tight incubation vials, and the rest of the volume was replaced with an O2/He (20%/80%) mixture. The production of 29N2, 44N2O and 45N2O were determined using isotope ratio mass spectrometry. The rate of total N2O production in fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.

  3. Clinical and Psychosocial Factors Influencing Retinal Screening Uptake Among Young Adults with Type 2 Diabetes.

    PubMed

    Lake, A J; Rees, G; Speight, J

    2018-05-24

    Young adults with type 2 diabetes (T2D, 18-39 years) experience early-onset and rapid progression of diabetic retinopathy (DR), the leading cause of vision loss for working age adults. Despite this, uptake of retinal screening, the crucial first step in preventing vision loss from DR, is low. The aim of this review is to summarize the clinical and psychosocial factors affecting uptake of retinal screening. Barriers include lack of diabetes-related symptoms, low personal DR risk perception, high rates of depression and diabetes-related distress, fatalism about inevitability of complications, time and financial constraints, disengagement with existing diabetes self-management services, and perceived stigma due to having a condition associated with older adults. Young adults with T2D are an under-researched population who face an accumulation of barriers to retinal screening. Tailored interventions that address the needs, characteristics, and priorities of young adults with T2D are warranted.

  4. Kinetic Studies of Iron Deposition in Horse Spleen Ferritin Using H2O2 and O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Lowery, Thomas J., Jr.; Bunker, Jared; Zhang, Bo; Costen, Robert; Watt, Gerald D.

    2004-01-01

    The reaction of horse spleen ferritin (HoSF) with Fe(2+) at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approx. 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe(2+) was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H202 reactions were well defined from 15 to 40 C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approx. 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 per second) and H2O2 (0.67 per second) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 micromolar. This low value and reported Fe2(+)/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated.

  5. Reactivity of alkaline lignite fly ashes towards CO{sub 2} in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin Back; Michael Kuehn; Helge Stanjek

    2008-06-15

    The reaction kinetics between alkaline lignite fly ashes and CO{sub 2} (pCO{sub 2} = 0.01-0.03 MPa) were studied in a laboratory CO{sub 2} flow-through reactor at 25-75{sup o}C. The reaction is characterized by three phases that can be separated according to the predominating buffering systems and the rates of CO{sub 2} uptake. Phase I (pH > 12, < 30 min) is characterized by the dissolution of lime, the onset of calcite precipitation and a maximum uptake, the rate of which seems to be limited by dissolution of CO{sub 2}. Phase II (pH < 10.5, 10-60 min) is dominated by themore » carbonation reaction. CO{sub 2} uptake in phase III (pH < 8.3) is controlled by the dissolution of periclase (MgO) leading to the formation of dissolved magnesium-bicarbonate. Phase I could be significantly extended by increasing the solid-liquid ratios and temperature, respectively. At 75{sup o}C the rate of calcite precipitation was doubled leading to the neutralization of approximately 0.23 kg CO{sub 2} per kg fly ash within 4.5 h, which corresponds to nearly 90% of the total acid neutralizing capacity. 21 refs., 5 figs., 1 tab.« less

  6. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  7. Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh; Barati, Mansoor

    2018-04-01

    The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.

  8. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes.

    PubMed

    Gutiérrez, Tomás; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Contreras-Ferrat, Ariel; Vasquez-Trincado, César; Morales, Pablo E; Lopez-Crisosto, Camila; Sotomayor-Flores, Cristian; Chiong, Mario; Rothermel, Beverly A; Lavandero, Sergio

    2014-11-07

    Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.

  9. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.

    PubMed

    Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil

    2017-04-01

    In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.

  10. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil.

    PubMed

    Dai, Yu; Di, Hong J; Cameron, Keith C; He, Ji-Zheng

    2013-11-01

    Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) are important drivers of a key step of the nitrogen cycle - nitrification, which affects the production of the potent greenhouse gas, nitrous oxide (N2O). A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of AOB and AOA and on N2O emissions in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied to some of the N treatments at 10 kg ha(-1). The results showed that the AOB amoA gene copy numbers were greater than those of AOA. The highest ratio of the AOB to AOA amoA gene copy numbers was 106.6 which occurred in the urine-N 600 treatment. The AOB amoA gene copy numbers increased with increasing nitrogen application rates. DCD had a significant impact in reducing the AOB amoA gene copy numbers especially in the high nitrogen application rates. N2O emissions increased with the N application rates. DCD had the most significant effect in reducing the daily and total N2O emissions in the highest nitrogen application rate. The greatest reduction of total N2O emissions by DCD was 69% in the urine-N 600 treatment. The reduction in the N2O emission factor by DCD ranged from 58% to 83%. The N2O flux and NO3(-)-N concentrations were significantly correlated to the growth of AOB, rather than AOA. This study confirms the importance of AOB in nitrification and the effect of DCD in inhibiting AOB growth and in decreasing N2O emissions in grazed pasture soils under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. High failure rates after (131)I therapy in Graves hyperthyroidism patients with large thyroid volumes, high iodine uptake, and high iodine turnover.

    PubMed

    de Jong, Jeroen A F; Verkooijen, Helena M; Valk, Gerlof D; Zelissen, Pierre M J; de Keizer, Bart

    2013-06-01

    The objective of this study was to identify patient characteristics positively and independently associated with I-iodide treatment failure in a large cohort of patients with Graves hyperthyroidism treated with either a calculated "standard" activity of 3.7 MBq/mL (0.1 mCi) or 7.4 MBq/mL (0.2 mCi) of thyroid volume. Data on 385 consecutive patients were prospectively collected. Clinical treatment outcome up to 1 year in relation to thyroid volume, 5- and 24-hour I uptake, 5/24-hour I uptake ratio, and the administered activity of radioiodine were analyzed. Overall treatment results were hypothyroidism in 46%, euthyroidism in 29%, and recurrent hyperthyroidism in 26% of patients. Thyroid volume (P = 0.000), 5/24-hour uptake ratio (P = 0.000), and 5- and 24-hour uptake alone (respectively, P = 0.000 and P = 0.002) were significantly associated with therapy outcome. Patients with a combination of a thyroid volume greater than 50 mL and a 5/24-hour uptake ratio 0.8 or greater showed treatment failure in 70% and 42% (respectively, 3.7 MBq/mL, n = 20; and 7.4 MBq/mL, n = 41).Thyroid volume and 5/24-hour uptake ratio were positively and independently associated with recurrent hyperthyroidism (respectively, odds ratio [OR], 5.3; 95% confidence interval [CI], 2.39-11.76; and OR, 2.97; 95% CI, 1.59-5.59). Higher activities of 7.4 MBq/mL I were associated with a lower risk of treatment failure (OR, 0.34; 95% CI, 0.18-0.62). Large thyroid volumes and high 5/24-hour uptake ratios are positively and independently associated with recurrent hyperthyroidism following I therapy in Graves hyperthyroidism. Higher success rates can be achieved when account is taken of these poor prognostic factors. In consequence, these patients should be treated with activities greater than 7.4 MBq/mL.

  12. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  13. Systematic XAS study on the reduction and uptake of Tc by magnetite and mackinawite.

    PubMed

    Yalçıntaş, Ezgi; Scheinost, Andreas C; Gaona, Xavier; Altmaier, Marcus

    2016-11-28

    The mechanisms for the reduction and uptake of Tc by magnetite (Fe 3 O 4 ) and mackinawite (FeS) are investigated using X-ray absorption spectroscopy (XANES and EXAFS), in combination with thermodynamic calculations of the Tc/Fe systems and accurate characterization of the solution properties (pH m , pe, [Tc]). Batch sorption experiments were performed under strictly anoxic conditions using freshly prepared magnetite and mackinawite in 0.1 M NaCl solutions with varying initial Tc(vii) concentrations (2 × 10 -5 and 2 × 10 -4 M) and Tc loadings (400-900 ppm). XANES confirms the complete reduction of Tc(vii) to Tc(iv) in all investigated systems, as predicted from experimental (pH m + pe) measurements and thermodynamic calculations. Two Tc endmember species are identified by EXAFS in the magnetite system, Tc substituting for Fe in the magnetite structure and Tc-Tc dimers sorbed to the magnetite {111} faces through a triple bond. The sorption endmember is favoured at higher [Tc], whereas incorporation prevails at low [Tc] and less alkaline pH conditions. The key role of pH in the uptake mechanism is interpreted in terms of magnetite solubility, with higher [Fe] and greater recrystallization rates occurring at lower pH values. A TcS x -like phase is predominant in all investigated mackinawite systems, although the contribution of up to 20% of TcO 2 ·xH 2 O(s) (likely as surface precipitate) is observed for the highest investigated loadings (900 ppm). These results provide key inputs for an accurate mechanistic interpretation of the Tc uptake by magnetite and mackinawite, so far controversially discussed in the literature, and represent a highly relevant contribution to the investigation of Tc retention processes in the context of nuclear waste disposal.

  14. Uptake and storage of anthropogenic CO2 in the pacific ocean estimated using two modeling approaches

    NASA Astrophysics Data System (ADS)

    Li, Yangchun; Xu, Yongfu

    2012-07-01

    A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2, whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO2. The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon. The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB. The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific, except for the subtropical South Pacific. This, to large extent, leads to the difference in the surface anthropogenic CO2 concentration between the two runs. The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850. This is probably not caused by dissolved inorganic carbon (DIC), but rather by a factor independent of time. In both runs, the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.

  15. Kinetics of OH- and Cl-initiated oxidation of CH2dbnd CHC(O)O(CH2)2CH3 and CH2dbnd CHCH2C(O)O(CH2)2CH3 and fate of the alkoxy radicals formed

    NASA Astrophysics Data System (ADS)

    Rivela, Cynthia; Blanco, María B.; Teruel, Mariano A.

    2016-05-01

    Rate coefficients of the reactions of OH and Cl radicals with vinyl and allyl butyrate were determined for the first time at 298 K and 1 atm using the relative method to be (in cm3 molecule-1 s-1): k1(OH + CH2dbnd CHC(O)O(CH2)2CH3) = (2.61 ± 0.31) × 10-11, k2(Cl + CH2dbnd CHC(O)O(CH2)2CH3) = (2.48 ± 0.89) × 10-10, k3(OH + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.89 ± 0.31) × 10-11, and k4(Cl + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.25 ± 0.96) × 10-10. Reactivity trends and atmospheric lifetimes of esters are presented. Additionally, a product study shown butyric acid and polifunctional products for the reactions of vinyl and allyl butyrate, respectively and general mechanism is proposed.

  16. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    PubMed

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  17. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    PubMed Central

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  18. Band diagram and rate analysis of thin film spinel LiMn 2O 4 formed by electrochemical conversion of ALD-grown MnO

    DOE PAGES

    Young, Matthias J.; Schnabel, Hans-Dieter; Holder, Aaron M.; ...

    2016-09-22

    Nanoscale spinel lithium manganese oxide is of interest as a high-rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn 2O 4) between 20 and 200 nm in thickness by room-temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn 2O 4 thin films in electrolytes containing Li +, Na +, K +, and Mg 2+ are investigated. A unified electrochemical band-diagram (UEB) analysis of LiMn 2O 4 informed by screened hybrid density functional theory calculationsmore » is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn 2O 4. It is shown that the incorporation of Li + or other cations into the host manganese dioxide spinel structure (λ-MnO 2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn 2O 4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn 2O 4 arises from bulk electronic charge-switching which does not require compensating cation mass transport. As a result, the hybrid ALD-electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion-incorporation charge storage.« less

  19. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  1. Occurrence of H2-Uptake Hydrogenases in Bradyrhizobium sp. (Lupinus) and Their Expression in Nodules of Lupinus spp. and Ornithopus compressus1

    PubMed Central

    Murillo, Jesús; Villa, Ana; Chamber, Manuel; Ruiz-Argüeso, Tomás

    1989-01-01

    Fifty-four strains of Bradyrhizobium sp. (Lupinus) from worldwide collections were screened by a colony hybridization method for the presence of DNA sequences homologous to the structural genes of the Bradyrhizobium japonicum hydrogenase. Twelve strains exhibited strong colony hybridization signals, and subsequent Southern blot hybridization experiments showed that they fell into two different groups on the basis of the pattern of EcoRI fragments containing the homology to the hup probe. All strains in the first group (UPM860, UPM861, and 750) expressed uptake hydrogenase activity in symbiosis with Lupinus albus, Lupinus angustifolius, Lupinus luteus, and Ornithopus compressus, but both the rate of H2 uptake by bacteroids and the relative efficiency of N2 fixation (RE = 1 - [H2 evolved in air/acetylene reduced]) by nodules were markedly affected by the legume host. L. angustifolius was the less permissive host for hydrogenase expression in symbiosis with the three strains (average RE = 0.76), and O. compressus was the more permissive (average RE = 1.0). None of the strains in the second group expressed hydrogenase activity in lupine nodules, and only one exhibited low H2-uptake activity in symbiosis with O. compressus. The inability of these putative Hup+ strains to induce hydrogenase activity in lupine nodules is discussed on the basis of the legume host effect. Among the 42 strains showing no homology to the B. japonicum hup-specific probe in the colony hybridization assay, 10 were examined in symbiosis with L. angustifolius. The average RE for these strains was 0.51. However, one strain, IM43B, exhibited high RE values (higher than 0.80) and high levels of hydrogenase activity in symbiosis with L. angustifolius, L. albus, and L. luteus. In Southern blot hybridization experiments, no homology was detected between the B. japonicum hup-specific DNA probe and total DNA from vegetative cells or bacteroids from strain IM43B even under low stringency hybridization

  2. M2 polarization enhances silica nanoparticle uptake by macrophages.

    PubMed

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  3. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  4. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    PubMed Central

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  5. Carrier-mediated uptake of nobiletin, a citrus polymethoxyflavonoid, in human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi; Kato, Yoshihisa; Endo, Tetsuya

    2014-07-01

    The mechanism of intestinal absorption of nobiletin (NBL) was investigated using Caco-2 cells. The uptake of NBL from the apical membranes of Caco-2 cells was rapid and temperature-dependent and the presence of metabolic inhibitors, NaN3 and carbonylcyanide p-trifluoromethoxyphenylhydrazone, did not cause a decrease in NBL uptake. The relationship between the initial uptake of NBL and its concentration was saturable, suggesting the involvement of a carrier-mediated process. The Km and uptake clearance (Vmax/Km) values for NBL were 50.6 and 168.1μl/mg protein/min, respectively. This clearance value was about 9-fold greater than that of the non-saturable uptake clearance (Kd: 18.5μl/mg protein/min). The presence of structurally similar compounds, such as quercetin and luteolin, competitively inhibited NBL uptake. These results suggest that uptake of NBL from the apical membranes of Caco-2 cells is mainly mediated by an energy-independent facilitated diffusion process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Probing properties of the interfacial perimeter sites in TiO x /Au/SiO 2 with 2-propanol decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi Y.; Kung, Harold H.

    The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less

  7. Improving pneumococcal and herpes zoster vaccination uptake: expanding pharmacist privileges.

    PubMed

    Taitel, Michael S; Fensterheim, Leonard E; Cannon, Adam E; Cohen, Edward S

    2013-09-01

    To investigate how state-authorized pharmacist immunization privileges influence pharmacist intervention effectiveness in delivering pneumococcal and herpes zoster vaccinations and assess the implications these privileges have on vaccination rates. Cross-sectional study of Walgreens vaccination records from August 2011 to March 2012. A random sample of patients having a claim for influenza vaccination in the study period was selected. Vaccination uptake rates for pneumococcal disease and herpes zoster were calculated for previously unvaccinated patients at high risk for these conditions. Rates were examined by state-level pharmacist privileges. For states authorizing immunization by protocol or prescriptive authority, the 1-year pneumococcal vaccination uptake rate for previously unvaccinated, high-risk persons was 6.6%, compared with 2.5% for states requiring a prescription (P <.0001), and 2.8% for states with no authorization (P <.0001). For herpes zoster, the 1-year vaccination uptake rate was 3.3% for states authorizing per protocol/prescriptive authority, compared with 2.8% (not significant, P <.05) for states authorizing by prescription, and 1.0% for states with no authorization (P <.0001). A 148% increase of pneumococcal vaccination and a 77% increase of herpes zoster vaccination would result if all states granted pharmacists full immunization privileges. This analysis demonstrates that states that offer pharmacists full immunization privileges have higher vaccination uptake rates than states with restricted or no authorization. Considering the suboptimal vaccination rates of pneumonia and shingles and the public health goals of 2020, states with limited or no immunization authorization for pharmacists should consider expanding pharmacist privileges for these vaccinations.

  8. High rate DC-reactive sputter deposition of Y 2O 3 film on the textured metal substrate for the superconducting coated conductor

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sup; Park, Chan; Ko, Rock-Kil; Shi, Dongqui; Chung, Jun-Ki; Ha, Hong-Soo; Park, Yu-Mi; Song, Kyu-Jeong; Youm, Do-Jun

    2005-10-01

    Y2O3 film was directly deposited on Ni-3at%W substrate by DC reactive sputtering. DC reactive sputtering was carried out using metallic Y target and water vapor for oxidizing the elements of metallic target on the substrate. The detailed conditions of DC reactive sputtering for depositions of Y2O3 films were investigated. The window of water vapor for proper growth of Y2O3 films was determined by sufficient oxidations of the Y2O3 films and the non-oxidation of the target surface, which was required for high rate sputtering. The window turned out to be fairly wide in the chamber used. As the sputtering power was raised, the deposition rate increased without narrowing the window. The fabricated Y2O3 films showed good texture qualities and surface morphologies. The YBCO film deposited directly on the Y2O3 buffered Ni-3at%W substrate showed Tc, Ic (77 K, self field), and Jc (77 K, self field) of 89 K, 64 A/cm and 1.1 MA/cm2, respectively.

  9. Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Cox, David F.

    2018-09-01

    The oxidation of clean and Na precovered MnO(100) has been investigated by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD) of adsorbed water. XPS results indicate that Mn3O4-like and Mn2O3-like surfaces can be formed by various oxidation treatments of clean and nearly-stoichiometric MnO(100), while a NaMnO2-like surface can be produced by the oxidation of MnO(100) pre-covered with multilayers of metallic Na. Water TPD results indicate that water adsorption/desorption is sensitive to the available oxidation states of surface Mn cations, and can be used to distinguish between surfaces exposing Mn2+and Mn3+ cations, or a combination of these oxidation states. Carbon dioxide and water TPD results from the NaMnO2-like surface indicate that pre-adsorbed water blocks the uptake of CO2, while water displaces pre-adsorbed CO2. No indication of a strong reactive interaction is observed between CO2, water and the NaMnO2-like surface under the conditions of our study.

  10. Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET.

    PubMed

    Hofheinz, Frank; Hoff, Jörg van den; Steffen, Ingo G; Lougovski, Alexandr; Ego, Kilian; Amthauer, Holger; Apostolova, Ivayla

    2016-12-01

    We have demonstrated recently that the tumor-to-blood standard uptake ratio (SUR) is superior to tumor standardized uptake value (SUV) as a surrogate of the metabolic uptake rate K m of fluorodeoxyglucose (FDG), overcoming several of the known shortcomings of the SUV approach: excellent linear correlation of SUR and K m from Patlak analysis was found using dynamic imaging of liver metastases. However, due to the perfectly standardized uptake period used for SUR determination and the comparatively short uptake period, these results are not automatically valid and applicable for clinical whole-body examinations in which the uptake periods (T) are distinctly longer and can vary considerably. Therefore, the aim of this work was to investigate the correlation between SUR derived from clinical static whole-body scans and K m-surrogate derived from dual time point (DTP) measurements. DTP (18)F-FDG PET/CT was performed in 90 consecutive patients with histologically proven non-small cell lung cancer (NSCLC). In the PET images, the primary tumor was delineated with an adaptive threshold method. For determination of the blood SUV, an aorta region of interest (ROI) was delineated manually in the attenuation CT and transferred to the PET image. Blood SUV was computed as the mean value of the aorta ROI. SUR values were computed as ratio of tumor SUV and blood SUV. SUR values from the early time point of each DTP measurement were scan time corrected to 75 min postinjection (SURtc). As surrogate of K m, we used the SUR(T) slope, K slope, derived from DTP measurements since it is proportional to the latter under the given circumstances. The correlation of SUV and SURtc with K slope was investigated. The prognostic value of SUV, SURtc, and K slope for overall survival (OS) and progression-free survival (PFS) was investigated with univariate Cox regression in a homogeneous subgroup (N=31) treated with primary chemoradiation. Correlation analysis revealed for both, SUV and SURtc, a

  11. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.

    PubMed

    Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François

    2012-01-01

    Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.

  12. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry

    PubMed Central

    2013-01-01

    Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs. PMID:23388071

  13. Diffusion reaction of oxygen in HfO2/SiO2/Si stacks.

    PubMed

    Ferrari, S; Fanciulli, M

    2006-08-03

    We study the oxidation mechanism of silicon in the presence of a thin HfO2 layer. We performed a set of annealing in 18O2 atmosphere on HfO2/SiO2/Si stacks observing the 18O distribution in the SiO2 layer with time-of-flight secondary ion mass spectrometry (ToF-SIMS). The 18O distribution in HfO2/SiO2/Si stacks upon 18O2 annealing suggests that what is responsible for SiO2 growth is the molecular O2, whereas no contribution is found of the atomic oxygen to the oxidation. By studying the dependence of the oxidation velocity from oxygen partial pressure and annealing temperature, we demonstrate that the rate-determining step of the oxidation is the oxygen exchange at the HfO2/SiO2 interface. When moisture is chemisorbed in HfO2 films, the oxidation of the underlying silicon substrate becomes extremely fast and its kinetics can be described as a wet silicon oxidation process. The silicon oxidation during O2 annealing of the atomic layer deposited HfO2/Si is fast in its early stage due to chemisorbed moisture and becomes slow after the first 10 s.

  14. Inhibitory Effect of Crizotinib on Creatinine Uptake by Renal Secretory Transporter OCT2.

    PubMed

    Arakawa, Hiroshi; Omote, Saki; Tamai, Ikumi

    2017-09-01

    Crizotinib, a tyrosine kinase inhibitor, exhibits some cases of an increase in serum creatinine levels. Creatinine is excreted by not only glomerular filtration but also active secretion by organic cation transporters such as organic cation transporter 2 (OCT2). In the present study, we evaluated in vitro inhibitory effect of crizotinib on OCT2 by directly measuring creatinine uptake by OCT2. Coincubation of crizotinib reduced uptake of [ 14 C]creatinine by cultured HEK293 cells expressing OCT2 (HEK293/OCT2) in a concentration-dependent manner with IC 50 values of 1.58 ± 0.24 μM. Preincubation or both preincubation and coincubation (preincubation/coincubation) with crizotinib showed stronger inhibitory effect on [ 14 C]creatinine uptake compared with that in coincubation alone with IC 50 values of 0.499 ± 0.076 and 0.347 ± 0.040 μM, respectively. These IC 50 values of crizotinib on [ 3 H]N-methyl-4-phenylpyridinium acetate uptake by OCT2 were 10-20 times higher than those of [ 14 C]creatinine uptake. Furthermore, preincubation of crizotinib inhibited creatinine uptake by OCT2 in an apparently competitive manner. In conclusion, crizotinib at a clinically relevant concentration has the potential to inhibit creatinine transport by OCT2, suggesting an increase of serum creatinine levels in clinical use. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability.

    PubMed

    Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E

    2009-06-01

    Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.

  16. Irrigation frequency alters nutrient uptake in container-grown Rhododendron plants grown with different rates of nitrogen

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilize...

  17. Bymixer system can measure O2 uptake and CO2 elimination in the anesthesia circle circuit.

    PubMed

    Rosenbaum, Abraham; Kirby, Christopher W; Breen, Peter H

    2007-06-01

    The ability to measure carbon dioxide elimination (Vco(2)), oxygen uptake (Vo(2)), and R (respiratory exchange ratio, Vco(2)/Vo(2)) during anesthesia may help the non-invasive detection of critical events (e.g., abrupt decrease in cardiac output) and metabolic upset (e.g., onset of anaerobic metabolism). We have developed a new clinical bymixer (inline mixing chamber) that can measure mixed inspired and expired gas fractions in the anesthesia circle circuit. The addition of a standard anesthesia gas analyzer and flowmeter, and a new airway temperature and humidity sensor, allow determinations of Vco(2) and Vo(2) at the airway opening of the circle circuit. Over a range of tidal volume and frequency, Vco(2) and Vo(2) were compared to reference values generated by the combustion of metered liquid ethanol in a new metabolic lung simulator. By linear regression, bymixer-flow measurements of Vco(2) (slope = 1.02, Y-intercept = -5.31, coefficient of determination, R(2) = 0.998) and Vo(2) (slope = 1.05, Y-intercept = -4.34, R(2) = 0.993) correlated closely to the reference values generated by the metabolic lung simulator. Limits of agreement analysis generated percent errors (mean +/- 1.96 SD) of -1.2 +/- 7.2% for Vco(2) and 2.5 +/- 9.8% for Vo(2). The new clinical bymixer is compact, lightweight, disposable, inexpensive, and has a fast and adjustable response time (time constant about 14 sec). Anesthesia circle circuit integrity is maintained. Bymixer-flow measurements of Vco(2) and Vo(2) are accurate and may add to clinical monitoring under anesthesia and surgery.

  18. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    PubMed

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.

  19. Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern hardwoods

    Treesearch

    Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser

    2016-01-01

    We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...

  20. Influence of solution deposition rate on properties of V2O5 thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-07-01

    Vanadium oxide (V2O5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films' crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V2O5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  1. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    PubMed

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reactions of small negative ions with O2(a 1[Delta]g) and O2(X 3[Sigma]g-)

    NASA Astrophysics Data System (ADS)

    Midey, Anthony; Dotan, Itzhak; Seeley, J. V.; Viggiano, A. A.

    2009-02-01

    The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3[Sigma]g-) and O2(a 1[Delta]g) in a selected ion flow tube (SIFT). Only NH2- and CH3O- were found to react with O2(X) and both reactions were slow. CH3O- reacted by hydride transfer, both with and without electron detachment. NH2- formed both OH-, as observed previously, and O2-, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6-, SF4-, SO3- and CO3- were found to react with O2(a 1[Delta]g) with rate constants less than 10-11 cm3 s-1. NH2- reacted rapidly with O2(a 1[Delta]g) by charge transfer. The reactions of HO2- and SO2- proceeded moderately with competition between Penning detachment and charge transfer. SO2- produced a SO4- cluster product in 2% of reactions and HO2- produced O3- in 13% of the reactions. CH3O- proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1[Delta]g) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2- and HO2- reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2- studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289-290].

  3. Uptake and metabolic effects of salicylic acid on the pulvinar motor cells of Mimosa pudica L.

    PubMed

    Dédaldéchamp, Fabienne; Saeedi, Saed; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2014-01-01

    In this paper, the salicylic acid (o-hydroxy benzoic acid) (SA) uptake by the pulvinar tissues of Mimosa pudica L. pulvini was shown to be strongly pH-dependent, increasing with acidity of the assay medium. This uptake was performed according to a unique affinity system (K(m) = 5.9 mM, V(m) = 526 pmol mgDW(-1)) in the concentration range of 0.1-5 mM. The uptake rate increased with increasing temperature (5-35 °C) and was inhibited following treatment with sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), suggesting the involvement of an active component. Treatment with p-chloromercuribenzenesulfonic acid (PCMBS) did not modify the uptake, indicating that external thiol groups were not necessary. KCl, which induced membrane depolarization had no significant effect, and fusicoccin (FC), which hyperpolarized cell membrane, stimulated the uptake, suggesting that the pH component of the proton motive force was likely a driving force. These data suggest that the SA uptake by the pulvinar tissues may be driven by two components: an ion-trap mechanism playing a pivotal role and a putative carrier-mediated mechanism. Unlike other benzoic acid derivatives acting as classical respiration inhibitors (NaN3 and KCN), SA modified the pulvinar cell metabolism by increasing the respiration rate similar to CCCP and 2,4-dinitrophenol (DNP). Furthermore, SA inhibited the osmoregulated seismonastic reaction in a pH dependent manner and induced characteristic damage to the ultrastructural features of the pulvinar motor cells, particularly at the mitochondrial level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. A comparison of deconvolution and the Rutland-Patlak plot in parenchymal renal uptake rate.

    PubMed

    Al-Shakhrah, Issa A

    2012-07-01

    Deconvolution and the Rutland-Patlak (R-P) plot are two of the most commonly used methods for analyzing dynamic radionuclide renography. Both methods allow estimation of absolute and relative renal uptake of radiopharmaceutical and of its rate of transit through the kidney. Seventeen patients (32 kidneys) were referred for further evaluation by renal scanning. All patients were positioned supine with their backs to the scintillation gamma camera, so that the kidneys and the heart are both in the field of view. Approximately 5-7 mCi of (99m)Tc-DTPA (diethylinetriamine penta-acetic acid) in about 0.5 ml of saline is injected intravenously and sequential 20 s frames were acquired, the study on each patient lasts for approximately 20 min. The time-activity curves of the parenchymal region of interest of each kidney, as well as the heart were obtained for analysis. The data were then analyzed with deconvolution and the R-P plot. A strong positive association (n = 32; r = 0.83; R (2) = 0.68) was found between the values that obtained by applying the two methods. Bland-Altman statistical analysis demonstrated that ninety seven percent of the values in the study (31 cases from 32 cases, 97% of the cases) were within limits of agreement (mean ± 1.96 standard deviation). We believe that R-P analysis method is expected to be more reproducible than iterative deconvolution method, because the deconvolution technique (the iterative method) relies heavily on the accuracy of the first point analyzed, as any errors are carried forward into the calculations of all the subsequent points, whereas R-P technique is based on an initial analysis of the data by means of the R-P plot, and it can be considered as an alternative technique to find and calculate the renal uptake rate.

  5. Effect of CeO2 coprecipitation on the electrochemical performance of Li(Li,Ni,Mn,Co)O2-CeO2-C composite cathode materials

    NASA Astrophysics Data System (ADS)

    Kurilenko, K. A.; Shlyakhtin, O. A.; Petukhov, D. I.; Garshev, A. V.

    2017-06-01

    Composite electrode materials Li[Li0.13Ni0.2Mn0.47Co0.2]O2 (LNMC)-CeO2-С are obtained by the coprecipitation of Co, Ni, Mn and Ce hydroxides followed by the coating of LNMC-CeO2 composites with pyrolytic carbon. The introduction of 5% CeO2 promotes the reduction of LNMC grain size from 190-230 to 100-170 nm and the corresponding increase in the electrochemical capacity of LNMC-CeO2 composite. The pyrolytic coating consists of the network of 2-5 nm polymer-carbon particles at the surface of LNMC crystallites. The electrochemical impedance spectroscopy data, which was performed after the galvanostatic cycling, demonstrated considerably lower charge transfer resistance of the carbon-coated composites compared to the bare LNMC and the LNMC-CeO2 composites. The values of the discharge capacity of LNMC-CeO2-C composites are superior to the capacity of LMNC-CeO2 and LMNC-C composites at all discharge rates (C/10 - 5C). The increase of the upper boundary of potentials to 4.8 V after cycling at 5C (U - 2÷4.6 V) promotes the increase of low rate electrochemical capacity of LNMC-CeO2-C composite to 220 mAh g-1.

  6. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited.

    PubMed

    Raemy, David O; Limbach, Ludwig K; Rothen-Rutishauser, Barbara; Grass, Robert N; Gehr, Peter; Birbaum, Karin; Brandenberger, Christina; Günther, Detlef; Stark, Wendelin J

    2011-04-01

    Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Higher Precision of Heart Rate Compared with VO2 to Predict Exercise Intensity in Endurance-Trained Runners.

    PubMed

    Reis, Victor M; den Tillaar, Roland Van; Marques, Mario C

    2011-01-01

    The aim of the present study was to assess the precision of oxygen uptake with heart rate regression during track running in highly-trained runners. Twelve national and international level male long-distance road runners (age 30.7 ± 5.5 yrs, height 1.71 ± 0.04 m and mass 61.2 ± 5.8 kg) with a personal best on the half marathon of 62 min 37 s ± 1 min 22 s participated in the study. Each participant performed, in an all-weather synthetic track five, six min bouts at constant velocity with each bout at an increased running velocity. The starting velocity was 3.33 m·s(-1) with a 0.56 m·s(-1) increase on each subsequent bout. VO2 and heart rate were measured during the runs and blood lactate was assessed immediately after each run. Mean peak VO2 and mean peak heart rate were, respectively, 76.2 ± 9.7 mL·kg(-1)·min(-1) and 181 ± 13 beats·min(-1). The linearity of the regressions between heart rate, running velocity and VO2 were all very high (r > 0.99) with small standard errors of regression (i.e. Sy.x < 5% at the velocity associated with the 2 and 4 mmol·L(-1) lactate thresholds). The strong relationships between heart rate, running velocity and VO2 found in this study show that, in highly trained runners, it is possible to have heart rate as an accurate indicator of energy demand and of the running speed. Therefore, in this subject cohort it may be unnecessary to use VO2 to track changes in the subjects' running economy during training periods. Key pointsHeart rate is used in the control of exercise intensity in endurance sports.However, few studies have quantified the precision of its relationship with oxygen uptake in highly trained runners.We evaluated twelve elite half-marathon runners during track running at various intensities and established three regressions: oxygen uptake / heart rate; heart rate / running velocity and oxygen uptake / running velocity.The three regressions presented, respectively, imprecision of 4,2%, 2,75% and 4,5% at the

  8. Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Dejang, N.; Limpichaipanit, A.; Watcharapasorn, A.; Wirojanupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S.

    2011-12-01

    Al2O3 /xZrO2 (where x = 0, 3, 13, and 20 wt.%) composite coatings were deposited onto mild steel substrates by atmospheric plasma spraying of mixed α-Al2O3 and nano-sized monoclinic-ZrO2 powders. Microstructural investigation showed that the coatings comprised well-separated Al2O3 and ZrO2 lamellae, pores, and partially molten particles. The coating comprised mainly of metastable γ-Al2O3 and tetragonal-ZrO2 with trace of original α-Al2O3 and monoclinic-ZrO2 phases. The effect of ZrO2 addition on the properties of coatings were investigated in terms of microhardness, fracture toughness, and wear behavior. It was found that ZrO2 improved the fracture toughness, reduced friction coefficient, and wear rate of the coatings.

  9. Association between socioeconomic deprivation and colorectal cancer screening outcomes: Low uptake rates among the most and least deprived people

    PubMed Central

    Auge, Josep M.; Sala, Maria; Román, Marta; Castells, Antoni; Macià, Francesc; Comas, Mercè; Guiriguet, Carolina; Bessa, Xavier; Castells, Xavier

    2017-01-01

    Background Screening with faecal occult blood tests reduces colorectal cancer-related mortality; however, age, sex and socioeconomic factors affect screening outcomes and could lead to unequal mortality benefits. The aim of this study was to describe the main outcomes of the population-based Barcelona colorectal cancer screening programme (BCRCSP) by deprivation. Methods Retrospective study of the eligible population of the first round of the BCRCSP. Participants’ postal addresses were linked with the MEDEA database to obtain the deprivation quintiles (Dq). Chi-squared tests were used to compare proportions across variables and logistic regression was used to estimate the adjusted effects of age, sex and deprivation on uptake, FIT positivity, colonoscopy adherence and advanced neoplasia detection rate. Results Overall uptake was 44.7%, higher in Dq2, 3 and 4 (OR 1.251, 1.250 and 1.276, respectively) than in the least deprived quintile (Dq 1), and lowest in Dq5 (OR 0.84). Faecal immunochemical test (FIT) positivity and the percentage of people with detectable faecal haemoglobin below the positivity threshold increased with deprivation. The advanced neoplasia detection rate was highest in Dq4. Conclusion Unlike most regions where inequalities are graded along the socioeconomic continuum, inequalities in the uptake of colorectal cancer screening in Spain seem to be concentrated first in the most disadvantaged group and second in the least deprived group. The correlation of deprivation with FIT-positivity and faecal haemoglobin below the positivity threshold is worrying due to its association with colorectal cancer and overall mortality. PMID:28622365

  10. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    PubMed

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  11. Gaseous Nitrogen Losses from Tropical Savanna Soils of Northern Australia: Dynamics, Controls and Magnitude of N2O, NO, and N2 emissions

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hickler, T.; Hutley, L. B.; Butterbach-Bahl, K.

    2014-12-01

    Tropical savanna covers a large fraction of the global land area and thus may have a substantial effect on the global soil-atmosphere exchange of nitrogen. The pronounced seasonality of hygric conditions in this ecosystem affects strongly microbial process rates in the soil. As these microbial processes control the uptake, production, and release of nitrogen compounds, it is thought that this seasonality finally leads to strong temporal dynamics and varying magnitudes of gaseous losses to the atmosphere. However, given their areal extent and in contrast to other ecosystems, still few in-situ or laboratory studies exist that assess the soil-atmosphere exchange of nitrogen. We present laboratory incubation results from intact soil cores obtained from a natural savanna site in Northern Australia, where N2O, NO, and N2 emissions under controlled environmental conditions were investigated. Furthermore, in-situ measurements of high temporal resolution at this site recorded with automated static and dynamic chamber systems are discussed (N2O, NO). This data is then used to assess the performance of a process-based biogeochemical model (LandscapeDNDC), and the potential magnitude and dynamics of components of the site-scale nitrogen cycle where no measurements exist (biological nitrogen fixation and nitrate leaching). Our incubation results show that severe nutrient limitation of the soil only allows for very low N2O emissions (0.12 kg N ha-1 yr-1) and even a periodic N2O uptake. Annual NO emissions were estimated at 0.68 kg N ha-1 yr-1, while the release of inert nitrogen (N2) was estimated at 6.75 kg N ha-1 yr-1 (data excl. contribution by pulse emissions). We observed only minor N2O pulse emissions after watering the soil cores and initial rain events of the dry to wet season transition in-situ, but short-lived NO pulse emissions were substantial. Interestingly, some cores exhibited a very different N2O emission potential, indicating a substantial spatial variability of

  12. CO oxidation and O2 removal on meteoric material in Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Carrillo-Sánchez, Juan Diego; Nesvorný, David; Pokorný, Petr; Plane, John M. C.

    2017-11-01

    The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus' atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley-Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) - (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) - (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3T(K) - (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus' troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted

  13. O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands

    Treesearch

    N.E. Grulke; H.K. Preisler; C. Rose; J. Kirsch; L. Balduman

    2002-01-01

    • The effect of O3 exposure or uptake on carbon acquisition (net assimilation (A) or gross photosynthesis (Pg)), with and without drought stress, is reported here in 40-yr-old-ponderosa pine (Pinus ponderosa) trees. • Maximum daily gas exchange was...

  14. Short-duration respirometry underestimates metabolic rate for discontinuous breathers.

    PubMed

    Winwood-Smith, Hugh S; White, Craig R

    2018-06-07

    Metabolic rate is commonly estimated from rates of gas exchange. An underappreciated factor that can influence estimates is patterns of pulmonary respiration. Amphibians display discontinuous respiratory patterns, often including long apnoeas, in addition to cutaneous gas exchange. The contribution of cutaneous exchange increases at low temperatures when metabolic rate is low. Due to the relatively low permeability of skin, measurements that disproportionately capture cutaneous exchange can produce underestimates of metabolic rate. The permeability of amphibian skin to CO 2 is greater than O 2 , therefore calculating the ratio of whole-animal CO 2 emission to O 2 uptake (the respiratory exchange ratio, RER) can be used to avoid underestimates of metabolic rate by ensuring that observed values of RER fall within the normal physiological range (∼0.7 to 1). Using data for cane toads Rhinella marina we show that short-duration measurements lead to underestimates of metabolic rate and overestimates of RER. At low temperatures this problem is exacerbated, requiring over 12 hours for RER to fall within the normal physiological range. Many published values of metabolic rate in animals that utilise cutaneous exchange may be underestimates. © 2018. Published by The Company of Biologists Ltd.

  15. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhang, Shasha; Liu, Lanlan; Zhou, Lixiang; Fan, Wenhua

    2015-01-01

    Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O solution at different supply rates. Specific surface area and arsenic (III) removal capacity of schwertmannite have also been studied. Results showed that pH decreased from ~3.48 to ~1.96, ~2.06, ~2.12, ~2.14, or ~2.17 after 60 h reaction when the ferrous ions solution received the following corresponding amounts of H2O2: 1.80 mL at 2 h (treatment 1); 0.90 mL at 2 h and 14 h (treatment 2); 0.60 mL at 2, 14, and 26 h (treatment 3); 0.45 mL at 2, 14, 26, and 38 h (treatment 4), or 0.36 mL at 2, 14, 26, 38, and 50 h (treatment 5). Slow H2O2 supply significantly inhibited the total iron precipitation efficiency but improved the specific surface area or arsenic (III) removal capacity of schwertmannite. For the initial 50.0 μg/L arsenic (III)-contaminated water under pH ~7.0 and using 0.25 g/L schwertmannite as an adsorbent, the total iron precipitation efficiency, specific surface area of the harvested schwertmannite, and schwertmannite arsenic(III) removal efficiency were 29.3%, 2.06 m2/g, and 81.1%, respectively, in treatment 1. However, the above parameters correspondingly changed to 17.3%, 16.30 m2/g, and 96.5%, respectively, in treatment 5.

  16. Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill

    PubMed Central

    2013-01-01

    The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds. PMID:23406834

  17. Polyphenol-rich beverages enhance zinc uptake and metallothionein expression in Caco-2 cells.

    PubMed

    Sreenivasulu, Kilari; Raghu, Pullakhandam; Nair, K Madhavan

    2010-05-01

    The effect of red wine (RW), red grape juice (RGJ), green tea (GT), and representative polyphenols on Caco-2 cell (65)Zn uptake was explored. RW, RGJ, and GT enhanced the uptake of zinc from rice matrix. Fractionation of RW revealed that enhancing activity of zinc uptake was exclusively resided in the polyphenol fraction. Among the polyphenols tested, only tannic acid and quercitin stimulated the uptake of zinc while others did not influence the uptake. In tune with these results, only tannic acid and quercitin competed with zinquin (a zinc selective fluorophore) for zinc in vitro. Although all the polyphenols tested appear to enhance the expression of metallothionein (MT), the induction was higher with tannic acid, quercitin, and RW extract. Furthermore, phytic acid abrogated the tannic acid-induced MT expression. These results suggest that polyphenol-rich beverages, tannic acid, and quercitin bind and stimulate the zinc uptake and MT expression in Caco-2 cells.

  18. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    PubMed

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  19. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    PubMed

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  20. Communication: Equilibrium rate coefficients from atomistic simulations: The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction at temperatures relevant to the hypersonic flight regime.

    PubMed

    Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus

    2015-03-07

    The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20,000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions.