Science.gov

Sample records for o9 sub-giant star

  1. On the interpretation of sub-giant branch morphologies of intermediate-age star clusters with extended main sequence turnoffs

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Girardi, Léo; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H.

    2015-06-01

    High-quality photometry of many star clusters in the Magellanic Clouds with ages of 1-2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several 108 yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by an SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.

  2. A Spitzer Transit of the Most Inflated Planet Known, Around an Extremely Bright Sub-giant Star

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas; Collins, Karen; Colon, Knicole; James, David; Kriedberg, Laura; Pepper, Joshua; Rodriguez, Joseph; Siverd, Robert; Stassun, Keivan; Stevens, Daniel

    2015-10-01

    KELT-11b is a newly discovered transiting Saturn-mass planet (Mp~0.22MJ) that promises to become a unique benchmark. KELT-11b orbits HD 93396,the second brightest star in the near-IR (K=6.122) and the third brightest star in the optical (V=8.04) to host a transiting giant planet. This makes KELT-11 comparable to the well-studied benchmarks HD 189733 and HD 209458. But unlike these other bright systems, KELT-11b's host star is a sub-giant, with log(g)~3.7. Thus KELT-11b is the first transiting giant planet known around a sub-giant star bright enough for precise follow-up observations. Furthermore, KELT-11b is the most inflated planet known, with the lowest surface gravity (log[g]~2.5) of any transiting planet. This makes it an exciting target for atmospheric characterization and studying the effect of post main-sequence evolution of a host star on a hot Jupiter. But to correctly interpret any follow-up observations, we will first need to measure accurate stellar and planetary parameters for the system via a precise transit observation. Unfortunately, this is effectively impossible to do from the ground. Spitzer's ability to provide high precision continuous photometry provides the only current way in which we may precisely observe a complete transit of KELT-11b. We therefore propose for 15.5 hours, to observe a single transit KELT-11b at 3.6um. This would reduce the uncertainties on the transit depth and stellar density by at least a factor of twenty, and will improve the model-derived stellar mass by at least a factor of ten, compared to ground-based observations. This will serve two goals. First, it will be a valuable legacy to the community, by providing a precise set of system parameters that will enable future observation and interpretation of this unique, bright, system. Second, an observation of a transit will allow us to strongly constrain the mass of KELT-11, and thus help resolve the disagreement over the true masses of the 'retired A stars' radial

  3. B fields in OB stars (BOB). Detection of a strong magnetic field in the O9.7 V star HD 54879

    NASA Astrophysics Data System (ADS)

    Castro, N.; Fossati, L.; Hubrig, S.; Simón-Díaz, S.; Schöller, M.; Ilyin, I.; Carrol, T. A.; Langer, N.; Morel, T.; Schneider, F. R. N.; Przybilla, N.; Herrero, A.; de Koter, A.; Oskinova, L. M.; Reisenegger, A.; Sana, H.; BOB Collaboration

    2015-09-01

    The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD 54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code fastwind results in an effective temperature and a surface gravity of 33 000 ± 1000 K and 4.0 ± 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD 54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although Hα shows a variable emission. The Hα emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD 54879 the most strongly magnetic, non-variable single O-star detected to date. Based on observations made with ESO telescopes at the La Silla and Paranal observatories under programme ID 191.D-0255(C, F).Appendix A is available in electronic form at http://www.aanda.org

  4. Radial dependence of line profile variability in seven O9-B0.5 stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Marcolino, W.; Hillier, D. J.; Donati, J.-F.; Bouret, J.-C.

    2015-02-01

    Context. Massive stars show a variety of spectral variabilities: discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, and radial velocity modulations. Aims: Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution and on high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Télescope Bernard Lyot at Pic du Midi. Methods: We investigated the variability of twelve spectral lines by means of the temporal variance spectrum. The selected lines probe the radial structure of the atmosphere from the photosphere to the outer wind. We also performed a spectroscopic analysis with atmosphere models to derive the stellar and wind properties and to constrain the formation region of the selected lines. Results: We show that variability is observed in the wind lines of all bright giants and supergiants on a daily timescale. Lines formed in the photosphere are sometimes variable, sometimes not. The dwarf stars do not show any sign of variability. If variability is observed on a daily timescale, it can also (but not always) be observed on hourly timescales, albeit with lower amplitude. There is a very clear correlation between amplitude of the variability and fraction of the line formed in the wind. Strong anti-correlations between the different parts of the temporal variance spectrum are observed. Conclusions: Our results indicate that variability is stronger in lines formed in the wind. A link between photospheric and wind variability is not obvious from our study, since wind variability is observed regardless of the level of photospheric variability. Different photospheric lines also show different degrees of variability. Appendices are available in electronic form at http://www.aanda.org

  5. A new paradigm for the X-ray emission of O stars from XMM-Newton observations of the O9.7 supergiant ζ Orionis

    NASA Astrophysics Data System (ADS)

    Pollock, A. M. T.

    2007-03-01

    XMM-Newton observations of the O supergiant ζ Orionis (O9.7 Ib) extend knowledge of its high-resolution spectrum beyond the C VI line at 33.7 Å and suggest a new framework for the interpretation of the X-ray spectra of single hot stars. All the lines are broad and asymmetric with similar velocity profiles. X-rays probably originate in the wind's terminal velocity regime in collisionless shocks controlled by magnetic fields rather than in cooling shocks in the acceleration zone. During post-shock relaxation, exchange of energy between ions and electrons is so slow that electron heating does not take place before hot gas is quenched by the majority cool gas. The observed plasma is not in equilibrium and the electron bremsstrahlung continuum is weak. Charge exchange, ionization and excitation are likely to be produced by protons. Fully thermalized post-shock velocities ensure high cross-sections and account for the observed line widths, with some allowance probably necessary for non-thermal particle acceleration. In general, the form of X-ray spectra in both single and binary stars is likely to be determined principally by the amount of post-shock electron heating: magnetically confined X-ray plasma in binary systems can evolve further towards the higher electron temperatures of equilibrium while in single stars this does not take place. The long mean-free path for Coulomb energy exchange between fast-moving ions may also inhibit the development of line-driven instabilities. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  6. Chemical abundances in the multiple sub-giant branch of 47 Tucanae: insights on its faint sub-giant branch component

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Casagrande, L.; Collet, R.; Dotter, A.; Johnson, C. I.; Lind, K.; Bedin, L. R.; Jerjen, H.; Aparicio, A.; Sbordone, L.

    2016-06-01

    The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10 per cent of the cluster mass and a bright-SGB hosting at least two distinct populations. We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, α elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 higher than the bright-SGB, which, considering random (±1.3) plus systematic errors (±0.3), means that their C+N+O is consistent within observational uncertainties. However, a small C+N+O enrichment for the faint-SGB, similar to what predicted on theoretical ground, cannot be excluded. The N and Na enrichment of the faint-SGB qualitatively agrees with this population possibly being He-enhanced, as suggested by theory. The iron abundance of the bright and faint-SGB is the same to a level of ˜0.10 dex, and no other significant difference for the analysed elements has been detected.

  7. The morphology of the sub-giant branch and red clump reveal no sign of age spreads in intermediate-age clusters

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Niederhofer, F.

    2015-04-01

    A recent surprise in stellar cluster research, made possible through the precision of Hubble Space Telescope photometry, was that some intermediate-age (1-2 Gyr) clusters in the Large and Small Magellanic Clouds have main-sequence turn-off (MSTO) widths that are significantly broader than would be expected for a simple stellar population (SSP). One interpretation of these extended MSTOs (eMSTOs) is that age spreads of the order of ˜500 Myr exist within the clusters, radically redefining our view of stellar clusters, which are traditionally thought of as single-age, single-metallicity stellar populations. Here we test this interpretation by studying other regions of the CMD that should also be affected by such large age spreads, namely the width of the sub-giant branch (SGB) and the red clump (RC). We study two massive clusters in the LMC that display the eMSTO phenomenon (NGC 1806 and NGC 1846) and show that both have SGB and RC morphologies that are in conflict with expectations if large age spreads exist within the clusters. We conclude that the SGB and RC widths are inconsistent with extended star formation histories within these clusters, hence age spreads are not likely to be the cause of the eMSTO phenomenon. Our results are in agreement with recent studies that also have cast doubt on whether large age spreads can exist in massive clusters; namely the failure to find age spreads in young massive clusters, a lack of gas/dust detected within massive clusters, and homogeneous abundances within clusters that exhibit the eMSTO phenomenon.

  8. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  9. Anti-solar differential rotation on the active sub-giant HU Virginis

    NASA Astrophysics Data System (ADS)

    Harutyunyan, G.; Strassmeier, K. G.; Künstler, A.; Carroll, T. A.; Weber, M.

    2016-08-01

    Context. Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. Aims: We aim to investigate the differential surface rotation on the primary star of the RS CVn binary, HU Vir, by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Methods: Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins V and I data for approximately 20 yrs. This data was used to determine the stellar rotation period and the active longitudes. Results: We confirm anti-solar DR with a surface shear parameter α of -0.029 ± 0.005 and -0.026 ± 0.009, using single-term and double-term differential rotation laws, respectively. These values are in good agreement with previously claimed results. The best fit is achieved assuming a solar-like double-term law with a lap time of ≈400 d. Our orbital solutions result in a period of 10.387678 ± 0.000003 days for the close orbit and 2726 ± 7 d (≈7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened V-band data reveals a strong single peak providing a rotation period of 10.391 ± 0.008 d, well synchronized to the short orbit. Based on

  10. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-11-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  11. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    SciTech Connect

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-08-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i < 10 km s{sup -1}), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to {approx}70 km s{sup -1}. For HB stars with T < 10,500 K there is a clear temperature-oxygen anticorrelation that can be understood if the star position along the HB is mainly determined by the He content. The hottest BSSs and HB stars (with temperatures T > 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = -2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  12. Large magnetoelectric coupling in Co4Nb2O9

    PubMed Central

    Fang, Y.; Song, Y. Q.; Zhou, W. P.; Zhao, R.; Tang, R. J.; Yang, H.; Lv, L. Y.; Yang, S. G.; Wang, D. H.; Du, Y. W.

    2014-01-01

    Magnetoelectric materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications for next-generation devices. Exploring new materials with outstanding magnetoelectric performance, especially the manipulation of magnetization by electric field, is of great importance. Here, we demonstrate the cross-coupling between magnetic and electric orders in polycrystalline Co4Nb2O9, in which not only magnetic-field-induced electric polarization but also electric field control of magnetism is observed. These results reveal rich physical phenomenon and potential applications in this compound. PMID:24463631

  13. The weak magnetic field of the O9.7 supergiant ζOrionisA

    NASA Astrophysics Data System (ADS)

    Bouret, J.-C.; Donati, J.-F.; Martins, F.; Escolano, C.; Marcolino, W.; Lanz, T.; Howarth, I. D.

    2008-09-01

    We report here the detection of a weak magnetic field of 50-100G on the O9.7 supergiant ζOrionisA (ζOriA), using spectropolarimetric observations obtained with NARVAL at the 2-m Télescope Bernard Lyot atop Pic du Midi (France). ζOriA is the third O star known to host a magnetic field (along with θ1OriC and HD191612), and the first detection on a `normal' rapidly rotating O star. The magnetic field of ζOriA is the weakest magnetic field ever detected on a massive star. The measured field is lower than the thermal equipartition limit (about 100G). By fitting non-local thermodynamic equilibrium (NLTE) model atmospheres to our spectra, we determined that ζOriA is a 40Msolar star with a radius of 25Rsolar and an age of about 5-6Myr, showing no surface nitrogen enhancement and losing mass at a rate of about 2 × 10-6Msolaryr-1. The magnetic topology of ζOriA is apparently more complex than a dipole and involves two main magnetic polarities located on both sides of the same hemisphere; our data also suggest that ζOriA rotates in about 7.0d and is about 40° away from pole-on to an Earth-based observer. Despite its weakness, the detected magnetic field significantly affects the wind structure; the corresponding Alfvén radius is however very close to the surface, thus generating a different rotational modulation in wind lines than that reported on the two other known magnetic O stars. The rapid rotation of ζOriA with respect to θ1OriC appears as a surprise, both stars having similar unsigned magnetic fluxes (once rescaled to the same radius); it may suggest that the subequipartition field detected on ζOriA is not a fossil remnant (as opposed to that of θ1 OriC and HD191612), but the result of an exotic dynamo action produced through magnetohydrodynamics (MHD) instabilities. Based on observations obtained at the Télescope Bernard Lyot (TBL), operated by the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France

  14. Discovery of New Iron Oxide Fe7O9 and its Solid Solution, (Mg,Fe2+)3Fe3+4O9

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Bykova, E.; Ovsyannikov, S. V.; McCammon, C. A.; Kupenko, I.; Ismailova, L.; Dubrovinsky, L. S.

    2015-12-01

    Iron oxides are fundamentally important compounds for Earth science. Particularly, the stability and properties of iron oxides are essential information to understand the structure and chemistry of the mantle. Here we report new high-pressure polymorphs of iron oxide Fe7O9 (Fe3+/Fe2+ = 4/3) and its Fe2+-Mg solid solution (Mg,Fe2+)3Fe3+4O9 that can be recovered at ambient conditions. We synthesized single crystals of the both compounds at about 24-26 GPa using a multi-anvil press. Single crystal X-ray diffraction (XRD) studies showed that the crystal structures of both Fe7O9 and (Mg,Fe2+)3Fe3+4O9 have monoclinic C2/m space groups, that differ from any other known lattices of iron oxides. Mössbauer spectra are in agreement with the crystal structure refined from single crystal XRD. This newly found Fe7O9 polymorph suggests that iron oxides may have more variable mixed valence state under high-pressure condition than previously thought. Based on analogy with Fe2+1+nFe3+2O4+n group, a Fe2+3±nFe3+4O9±n group might be also stable at certain high pressures and temperatures and oxygen fugacity.

  15. Thermoelectric transport properties of Ca3Co4- x Ni x O9+ δ oxide materials

    NASA Astrophysics Data System (ADS)

    Park, K.; Cha, J. S.; Nam, S. W.; Choi, S.-M.; Seo, W.-S.; Lee, S.; Lim, Y. S.

    2016-01-01

    Nano-sized Ca3Co4- x Ni x O9+ δ (0 ≤ x ≤ 0.3) thermoelectric powders are synthesized by using the solution combustion method, with aspartic acid as a combustion fuel. The synthesized Ca3Co4- x Ni x O9+ δ nano-sized powders exhibit a spherical-like shape and a smooth surface. Higher Ni content results in a smaller grain size and a higher porosity, resulting in a decrease in the electrical conductivity. However, the Seebeck coefficient of Ni-added Ca3Co4O9 is much higher than that of Ca3Co4O9. The highest power factor (1.4 × 10-4 Wm-1K-2), which is more than nine times larger than that of Ca3Co4O9, is attained for Ca3Co0.38Ni0.2O9+ δ at 800 °C. The addition of a small amount of Ni is highly effective in improving the thermoelectric properties of Ca3Co4O9. We believe that Ca3Co4- x Ni x O9+ δ is a potential p-type thermoelectric material for renewable energy conversion.

  16. Nearby Stars as Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2015-07-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.

  17. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure.

    PubMed

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth's interior.

  18. VizieR Online Data Catalog: F- and G-type stars in solar neighbourhood (Karatas+, 2005)

    NASA Astrophysics Data System (ADS)

    Karatas, Y.; Bilir, S.; Schuster, W. J.

    2006-04-01

    A new metallicity distribution and an age-metallicity relation are presented for 437 nearby F and G turn-off and sub-giant stars selected from radial velocity data of Nidever et al. (2002, Cat. ). Photometric metallicities are derived from uvby-H{beta} photometry, and the stellar ages from the isochrones of Bergbusch & VandenBerg (2001ApJ...556..322B) as transformed to uvby photometry using the methods of Clem et al. (2004, Cat. ). (2 data files).

  19. Low Temperature Structural Phase Transition of Ba3NaIr2O9

    SciTech Connect

    Conrad, H.; Loye, Z; Kim, S; Macquart, R; Smith, M; Lee, Y; Vogt, T

    2009-01-01

    Single crystal X-ray and synchrotron X-ray powder diffraction have been used to probe the structure of Ba3NaIr2O9 from 300 K down to 20 K. Ba3NaIr2O9 is found to undergo a structural transition from hexagonal symmetry, P63/mmc, at ambient temperature to monoclinic symmetry, C2/c, at low temperature. The evolution of the unit cell volume upon cooling is indicative of a higher order structural transition, and the symmetry breaking becomes apparent as the temperature is decreased. The low temperature monoclinic structure of Ba3NaIr2O9 contains strongly distorted [NaO6] and [IrO6] octahedra in comparison to the room temperature hexagonal structure.

  20. Structure modulations in nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si).

    PubMed

    Zhou, Zhengyang; Xu, Xiang; Fei, Rao; Mao, Jianggao; Sun, Junliang

    2016-04-01

    Incommensurately modulated borate structures of a new type were studied in detail in the nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si) using single-crystal X-ray diffraction techniques. The structures were solved by the charge-flipping algorithm in the superspace group I2(αβ0)0. The refinement results strongly suggest that the main structure modulation feature of Cs(2)TB4O9 is the ordering of the O atoms. With these modulated structure models, the unreasonable B-O distances in the average structures were explained as the ordering of BO4 and BO3.

  1. Structure modulations in nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si).

    PubMed

    Zhou, Zhengyang; Xu, Xiang; Fei, Rao; Mao, Jianggao; Sun, Junliang

    2016-04-01

    Incommensurately modulated borate structures of a new type were studied in detail in the nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si) using single-crystal X-ray diffraction techniques. The structures were solved by the charge-flipping algorithm in the superspace group I2(αβ0)0. The refinement results strongly suggest that the main structure modulation feature of Cs(2)TB4O9 is the ordering of the O atoms. With these modulated structure models, the unreasonable B-O distances in the average structures were explained as the ordering of BO4 and BO3. PMID:27048721

  2. Differential Astrometry to detect giant planets around A-stars

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Johnson, Keith; Swihart, Samuel; Ireland, Michael; Zhao, Ming; Ten Brummelaar, Theo

    2015-01-01

    The exoplanet field has remained vibrant and exciting due to the continuous development of new observing techniques and the refinement of older ones, both from the ground and from space. Here we propose to push the exoplanet frontier through the development of a new interferometric experiment that takes advantage of the Michigan Infrared Combiner (MIRC) on the CHARA Array, a visible and near-infrared interferometer boasting the longest baselines and finest angular resolution in the world. The ARMADA (ARrangement for Micro-Arcsecond Differential Astrometry) Project will search for astrometric wobble in a sample of hot stars (spectral type A,B) to search for giants planets in P<3 year orbits. Recent radial velocity (RV) work studying evolved sub-giants --``retired A stars" -- suggest up to a five-fold increase in the presence of massive gas giant planets in about 1 AU orbits compared to solar-type stars. Confirmation of this disputed result on A stars themselves would have profound effect on theories of planet formation but is difficult or impossible due to the broad, weak lines of hot stars. Using a novel etalon module already designed and fabricated to maintain precision wavelength calibration (Dl/l ~1x10-5), we aim to measure separations with <10 micro-arcsecond-level precision for binaries up to 0.25' separation.

  3. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    SciTech Connect

    Joner, Michael D.; Hintz, Eric G. E-mail: hintz@byu.edu

    2015-12-15

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hα index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature.

  4. Chemical and orbital fluctuations in Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Nakajima, Daisuke; Ishiguro, Yuki; Kimura, Kenta; Kimura, Tsuyoshi; Tsutsui, Satoshi; Baron, Alfred Q. R.; Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Ohwada, Kenji; Nakatsuji, Satoru

    2016-06-01

    Structural fluctuation in Ba3CuSb2O9 , which is proposed to exhibit a spin-orbital entangled state, has been studied by diffuse x-ray scattering, x-ray fluorescence holography, and inelastic x-ray scattering. Two kinds of spatial fluctuations are observed: temperature-independent and temperature-dependent ones. The former is related to Cu/Sb arrangement. The short-range chemical correlation in Ba3CuSb2O9 is honeycomblike, whereas the correlation length is as short as the diameter of the honeycomb unit. The temperature variation of ferro- and antiferro-orbital correlations is extracted from Huang scattering intensity distributions. Both of these correlations increase with decreasing temperature down to 60 K, which corresponds to the energy of magnetic interaction of Ba3CuSb2O9 . A wide distribution of the characteristic time scale of the orbital motion is proposed from the spatial fluctuation of the ionic arrangement in Ba3CuSb2O9 .

  5. Transport and Thermoelectric Properties of Ca3Co4O9 Thin Films

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Si, Weidong; Sutter, Eli; Sabatini, Robert

    2005-03-01

    It has been discovered recently that cobaltates have very large thermoelectric power, which shows that cobaltates hold great promise to be potential integrated heating spreading solution, such as thermal management of microprocessors. Among the cobaltates, Ca3Co4O9 and Ca2Co2O5 are exhibiting best thermoelectric properties. The ZT value for these calcium-cobaltates reaches as high as 2.7 at T >= 873 K, which clearly challenges the best conventional thermoelectric materials found in intermetallic compounds, such as Bi2Te3/Sb2Te3 alloys. The purpose of this work is to study the transport and thermoelectric properties of Ca3Co4O9 thin films. We have successfully grown the Ca3Co4O9 c-axis orientated thin films using Pulsed Laser Deposition (PLD) technique on various substrates, including Si, LaAlO3, Al2O3. The resistivity and thermoelectric power measurements show that these films have superior thermoelectric properties, similar to that found in the bulk samples. The detailed transport and thermoelectric properties of Ca3Co4O9 thin films will be discussed. This work was supported by the U. S. Dept. of Energy, Office of Basic Energy Science, under contract No. DE-AC-02-98CH10886.

  6. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure

    PubMed Central

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V.; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior. PMID:27605075

  7. Unusual full-colour phosphors: Na 3LnSi 3O 9

    NASA Astrophysics Data System (ADS)

    Ananias, D.; Carlos, L. D.; Rocha, J.

    2006-05-01

    Unusual full-colour phosphors, in the system Na 3LnSi 3O 9, have been prepared and their structure and photoluminescence properties characterized. Na 3(Y 1- aLn a)Si 3O 9 (Ln = Eu, Tb, Tm) materials are primary emitters, with chromaticity colour coordinates comparable or better than properties of the standard phosphors recommended by EBU for display devices, resulting from the emission of red (Eu 3+), green (Tb 3+) and blue (Tm 3+) light. The judicious choice and simultaneous incorporation of three different Ln 3+ ions in the Na 3LnSi 3O 9 lattice results in the integration of red, green and blue emissions in Na 3Y 0.915Tm 0.02Tb 0.04Eu 0.025Si 3O 9, affording a full-colour phosphor with ( x, y) CIE colour coordinates (0.324, 0.364) comparable to the properties of the CIE Illuminant D65, a standard for the EBU primary system colours.

  8. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure.

    PubMed

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth's interior. PMID:27605075

  9. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen

    PubMed Central

    Hart, Peter J.; O’Shaughnessy, Colette M.; Siggins, Matthew K.; Bobat, Saeeda; Kingsley, Robert A.; Goulding, David A.; Crump, John A.; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F.; MacLennan, Calman A.

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies. PMID:26741681

  10. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    PubMed

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  11. Structural and dielectric properties of Sr3(MgTa2)O9 and Sr3(ZnTa2)O9

    NASA Astrophysics Data System (ADS)

    Hoque, Md. M.; Dutta, Alo; Kumar, S.; Sinha, T. P.

    2015-07-01

    Herein, we report the crystal structures and morphological properties of Sr3(MgTa2)O9 (SMT) and Sr3(ZnTa2)O9 (SZT) synthesized by solid state ceramic method along with the results of alternating current impedance spectroscopic (ACIS) study in a frequency range from 50 Hz to 1 MHz at selective temperatures between 393 and 573 K. The crystal structures of SMT and SZT have been determined by Rietveld refinement of powder X-ray diffraction pattern using an initial structural model developed on the basis of literature survey. The results indicate that both the samples possess hexagonal structure of trigonal P 3 bar m 1 space group. The lattice parameters of SMT are a=b=5.65162 Å, c=6.94440 Å, α=β=90° and γ=120° and those of SZT are a=b=5.65832 Å, c=6.95911 Å and α=β=90° and γ=120°. SMT and SZT are isostructural and they exhibit 2:1 B site ordering with the staking sequence of {-Ta-Ta-Mg (Zn)-} (Mg for SMT and Zn for SZT) layer repeat on (111) plane of the pseudocells. The characteristic vibrational bands due to Ta-O, Mg-O and Zn-O bonds have been observed in the FTIR spectra of the samples. The FESEM micrographs of the samples show that the grains size ranges between 0.40 and 3.65 μm and 0.9 to 4.2 μm for SMT and SZT, respectively. To account for the polydispersive nature of the dielectric relaxation mechanism along with the effects of dc conductivity and localized space charges the variation of real (ε‧) and imaginary (ε″) parts of dielectric constant with frequency has been analytically interpreted in the framework of modified Cole-Cole model. SMT and SZT having the activation energies of 0.35 eV and 0.33 eV, respectively (obtained from the Arrhenius plot of dc conductivity), are semiconducting in nature. The electrical current conduction in the samples occurs by polaron hopping process. Further, we have shown that chemical property of A site cations has significant role in determining the dielectric properties of A3B‧B″2O9 type perovskites

  12. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  13. Influence of P ion on Sr2B5O9Cl:Eu for TL dosimetry

    NASA Astrophysics Data System (ADS)

    Oza, Abha H.; Dhoble, N. S.; Dhoble, S. J.

    2015-02-01

    This paper investigates luminescence properties of Sr2B5O9Cl:Eu phosphor prepared by modified solid state diffusion. The influence of Phosphorous ion as codopant is also explained in detail. The structural confirmation of the sample was done using the XRD technique. SEM revealed the microcrystalline nature of the prepared phosphor. The characteristic Eu2+ emission at 437 nm and 423 nm was observed for Sr2B5O9Cl:Eu and Sr2B5O9Cl:P,Eu, respectively under 338 nm excitation. Samples in powder form were irradiated with different doses under γ-ray irradiation with 60Co source and the TL glow curves for both Sr2B5O9Cl:Eu and Sr2B5O9Cl:P,Eu samples were studied. In case of Sr2B5O9Cl:Eu phosphor, single glow curve nature centered on 260 °C with a shoulder peak around 144 °C was observed. However; Sr2B5O9Cl:P,Eu have shown slight different and broad glow curve nature. The TL sensitivity in both the cases was compared with CaSO4:Dy phosphor. Sr2B5O9Cl:Eu sample have shown 1.17 times less sensitivity than CaSO4:Dy and for Sr2B5O9Cl:P,Eu it was found to be equal to CaSO4:Dy and Sr2B5O9Cl:P,Eu is 1.21 times more sensitive than Sr2B5O9Cl:Eu. Other TL properties like dose response, fading and reusability were studied for both the samples. The trapping parameters for both the samples were calculated using computerized glow curve deconvolution and reported in this paper.

  14. Local Probe Studies of the Quantum Honeycomb Antiferromagnet Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey; Bert, Fabrice; Kermarrec, Edwin; Payen, Christophe; Guillot-Deudon, Cathérine; Bonville, Pierre; Mendels, Philippe

    2013-03-01

    The 6H-perovskites, Ba3 M Sb2O9, have generated an enormous amount of interest in the last two years following the possible discovery of quantum spin liquid physics in two such materials. We present local probe studies (muon spin rotation and nuclear magnetic resonance) on the spin-1/2 honeycomb antiferromagnet Ba3CuSb2O9. We show that the system presents no spin freezing down to temperatures as low as 20 mK. NMR measurements show evidence of a spin gap and suggest that the material has a random singlet ground state rather than the alternative spin-orbital liquid state. We acknowledge support from ANR, EC FP6 and NSERC.

  15. Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal

    NASA Astrophysics Data System (ADS)

    Yin, L. H.; Zou, Y. M.; Yang, J.; Dai, J. M.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-07-01

    We have investigated the detailed magnetic, magnetoelectric (ME), magnetodielectric (MD) and thermal expansion properties in Co4Nb2O9 crystal. A magnetic-field-induced spin flop was observed below antiferromagnetic (AFM) transition temperature TN. Dielectric constant at applied magnetic field nearly diverges around the AFM transition, giving rise to a colossal MD effect as high as ˜138% around TN. Theoretical analysis of the ME and MD data revealed a major contribution of critical spin fluctuation to the colossal MD effect in Co4Nb2O9. These results suggest that linear ME materials with large ME coupling might be potentially used to realize large MD effect for future application.

  16. Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9

    NASA Astrophysics Data System (ADS)

    Tang, Yawei; Hunter, Emily C.; Battle, Peter D.; Sena, Robert Paria; Hadermann, Joke; Avdeev, Maxim; Cadogan, J. M.

    2016-10-01

    A polycrystalline sample of perovskite-like Sr3Fe2TeO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mössbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe3+ and Te6+ cations. However, the sample is prone to nano-twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr3Fe2TeO9 is thus the first example of a perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin-glass behaviour below ~80 K.

  17. Transport and structural properties of the Ho1Ba2Cu3O9 - delta superconductor

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ik; Golben, John P.; Song, Yi; Lee, Sang Young; Noh, Tae W.; Chen, Xiao-dong; Testa, Joe; Gaines, J. R.; Tettenhorst, Rodney T.

    1987-07-01

    The compound Ho1Ba2Cu3O9-δ has been found to be a high Tc superconductor. The onset of the superconducting transition is 88 K with zero resistance achieved at 87 K. The x-ray diffraction spectrum of this material shows it to be a single-phase perovskite similar to the Y1Ba2Cu3O9-δ compound but different from the K2NiF4 perovskite which is believed to be the superconducting phase for the La2(1-x) Ba2xCuO4-δ system. Possible oxygen deficiencies in several of the unit cell planes are discussed. The room-temperature resistance, the superconducting onset temperature, and the emergence of the single phase all depend upon the sample preparation firing conditions.

  18. Synthesis and Luminescence Properties of La2W2O9:Eu3+ Micron-Crystals.

    PubMed

    Zhang, Jiao; Yang, Yanmin; Yu, Fang; Liu, Yanzhou; Han, Boning; Mi, Chao; Liu, Linlin

    2016-04-01

    La2W2O9:2%Eu3+ phosphors were synthesized by a typical hydrothermal procedure. The samples were characterized by X-ray diffraction and scanning electron microscope (SEM). X-ray diffraction analysis showed that a stock solution pH value equal to 9 is the ideal value, while the crystallization of the hydroxyl sodium yttrium tungstate crystal is improved by increasing the PH values of stock solution within limits. Meanwhile, SEMs of different pH values were recorded. Additionally, photo-luminescence excitation (PLE) and emission (PL) spectra were measured. It was found that this phosphor can be effectively excited by C-T band (266 nm) and ultraviolet light 342 nm. The wave-lengths at 342 nm fit in nicely with the whole visible region, thus the La2W2O9:2%Eu3+ phosphors emit white light. Furthermore, the annealing temperature's impact on PLE and PL spectra was also studied. The Eu3+-doped La2W2O9 phosphor may be a better candidate than current method for solid-state lighting applications. PMID:27451723

  19. Star Light, Star Bright.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    1984-01-01

    Presents a technique for obtaining a rough measure of the brightness among different stars. Materials needed include a standard 35-mm camera, a plastic ruler, and a photo enlarger. Although a telescope can be used, it is not essential. (JN)

  20. Enhanced magnetic and photocatalytic properties of Bi2Fe4O9 semiconductor with large exposed (001) surface

    NASA Astrophysics Data System (ADS)

    Wu, Tianli; Liu, Lin; Pi, Mingyu; Zhang, Dingke; Chen, Shijian

    2016-07-01

    Magnetic photocatalysts have attracted an increasing attention for photodegradation of organic containments and easy recycling. In this work, magnetic, single-crystalline Bi2Fe4O9 samples have been synthesized through a facile hydrothermal process and the morphologies were modulated by adjusting the Bi3+/Fe3+ precursor molar ratio and NaOH concentration. The most well crystalline Bi2Fe4O9 nanoplates were formed by self-assembled anisotropic growth along the (001) plane, with large exposed (001) surface. The Bi2Fe4O9 nanoplates exhibit excellent photocatalytic degradation of rhodamine b (RhB) under visible light irradiation with the assistant of a small amount of H2O2. The excellent photocatalytic performance of the Bi2Fe4O9 nanoplates was ascribed to the lower recombination rate of the photogenerated electrons and holes on the (001) surface, which was confirmed by detecting the hydroxyl radicals. In addition, Bi2Fe4O9 samples exhibit morphology-dependent magnetic properties. The mechanisms of morphology-dependent magnetic, photoadsorbing and photocatalytic properties of Bi2Fe4O9 crystals are discussed systematically. The magnetic Bi2Fe4O9 photocatalyst allows efficient utilization of solar energy and possible catalyst recovery via magnetically-enhanced gravity separation.

  1. Singlet Ground State of the Quantum Antiferromagnet Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Quilliam, J. A.; Bert, F.; Kermarrec, E.; Payen, C.; Guillot-Deudon, C.; Bonville, P.; Baines, C.; Luetkens, H.; Mendels, P.

    2012-09-01

    We present local probe results on the honeycomb lattice antiferromagnet Ba3CuSb2O9. Muon spin relaxation measurements in a zero field down to 20 mK show unequivocally that there is a total absence of spin freezing in the ground state. Sb NMR measurements allow us to track the intrinsic susceptibility of the lattice, which shows a maximum at around 55 K and drops to zero in the low-temperature limit. The spin-lattice relaxation rate shows two characteristic energy scales, including a field-dependent crossover to exponential low-temperature behavior, implying gapped magnetic excitations.

  2. Reversible phase transition and relaxor behavior in Te2V2O9 single crystals grown by Czochralski technique

    NASA Astrophysics Data System (ADS)

    Shet, Tukaram; Varma, K. B. R.

    2016-09-01

    Te2V2O9 single crystals were grown along the polar c-axis via the Czochralski crystal growth technique. Dielectric studies carried out along the polar axis in a wide temperature range at different frequencies confirmed the relaxor nature of the Te2V2O9 single crystals. Temperature dependent polarized light optical microscopy along a-axis established a reversible phase transition around 614 K. Relaxor nature of Te2V2O9 was attributed to the compositional heterogeneity at micro/nano scale within the grown crystal as vanadium was observed to be present in different oxidation states by X-ray photoelectron spectroscopic studies.

  3. Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances

    NASA Astrophysics Data System (ADS)

    Sotelo, A.; Rasekh, Sh.; Torres, M. A.; Bosque, P.; Madre, M. A.; Diez, J. C.

    2015-01-01

    Three different synthesis methods producing nanometric grain sizes, coprecipitation with ammonium carbonate, oxalic acid, and by attrition milling have been studied to produce Ca3Co4O9 ceramics and compared with the classical solid state route. These three processes have produced high reactive precursors and all the organic material and CaCO3·have been decomposed in a single thermal treatment. Coprecipitation leads to pure Ca3Co4O9 phase, while attrition milling and classical solid state produce small amounts of Ca3Co2O6 secondary phase. Power factor values are similar for all three samples, being slightly lower for the ones produced by attrition milling. These values are much higher than the obtained in samples prepared by the classical solid state method, used as reference. The maximum power factor values determined at 800 °C (~0.43 mW/K2 m) are slightly higher than the best reported values obtained in textured ones which also show much higher density values.

  4. Thermoelectric transport in the layered Ca3Co4-xRhxO9 single crystals

    NASA Astrophysics Data System (ADS)

    Ikeda, Yusuke; Saito, Kengo; Okazaki, Ryuji

    2016-06-01

    We have examined an isovalent Rh substitution effect on the transport properties of the thermoelectric oxide Ca3Co4O9 using single-crystalline form. With increasing Rh content x, both the electrical resistivity and the Seebeck coefficient change systematically up to x = 0.6 for Ca3Co4-xRhxO9 samples. In the Fermi-liquid regime where the resistivity behaves as ρ = ρ 0 + A T 2 around 120 K, the A value decreases with increasing Rh content, indicating that the correlation effect is weakened by Rh 4d electrons with extended orbitals. We find that, in contrast to such a weak correlation effect observed in the resistivity of Rh-substituted samples, the low-temperature Seebeck coefficient is increased with increasing Rh content, which is explained with a possible enhancement of a pseudogap associated with the short-range order of spin density wave. In high-temperature range above room temperature, we show that the resistivity is largely suppressed by Rh substitution while the Seebeck coefficient becomes almost temperature-independent, leading to a significant improvement of the power factor in Rh-substituted samples. This result is also discussed in terms of the differences in the orbital size and the associated spin state between Co 3d and Rh 4d electrons.

  5. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires

    PubMed Central

    Liu, Wei; Pan, Wei; Luo, Jian; Godfrey, Andy; Ou, Gang; Wu, Hui; Zhang, Wei

    2015-01-01

    Improving the ionic conductivity of solid electrolytes at low temperatures represents a major challenge and an opportunity for enabling a variety of solid-state ionic devices for energy conversion and storage, as well as for environmental protection. Here we report a giant ionic conductivity of 0.20 Scm−1, achieved at 500 °C, in the La2Mo2O9 nanowires with a bamboo-wire morphology, corresponding to a 1000-fold enhancement in conductivity over conventional bulk material. Stabilization of the high-temperature phase is observed to account for about a 10-fold increase in the conductivity. We further demonstrate that fast surface conduction in ∼3 nm thick, partially ordered, surface ‘amorphous' films, under strain on the curved surfaces of the nanowires (as a non-autonomous surface phase or complexion), contributes to an enhancement of the conductivity by another two orders of magnitude. Exemplified here by the study of the La2Mo2O9 nanowires, new possibilities for improvement of conductivity and for miniaturization of solid-state ionic devices by the careful use of one-dimensional nanomaterials can be envisioned. PMID:26380943

  6. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Pan, Wei; Luo, Jian; Godfrey, Andy; Ou, Gang; Wu, Hui; Zhang, Wei

    2015-09-01

    Improving the ionic conductivity of solid electrolytes at low temperatures represents a major challenge and an opportunity for enabling a variety of solid-state ionic devices for energy conversion and storage, as well as for environmental protection. Here we report a giant ionic conductivity of 0.20 Scm-1, achieved at 500 °C, in the La2Mo2O9 nanowires with a bamboo-wire morphology, corresponding to a 1000-fold enhancement in conductivity over conventional bulk material. Stabilization of the high-temperature phase is observed to account for about a 10-fold increase in the conductivity. We further demonstrate that fast surface conduction in ~3 nm thick, partially ordered, surface `amorphous' films, under strain on the curved surfaces of the nanowires (as a non-autonomous surface phase or complexion), contributes to an enhancement of the conductivity by another two orders of magnitude. Exemplified here by the study of the La2Mo2O9 nanowires, new possibilities for improvement of conductivity and for miniaturization of solid-state ionic devices by the careful use of one-dimensional nanomaterials can be envisioned.

  7. Formation, stability and crystal structure of mullite-type Al6-xBxO9

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Hooper, T. J. N.; Murshed, M. M.; Dolotko, O.; Révay, Z.; Senyshyn, A.; Schneider, H.; Hanna, J. V.; Gesing, Th. M.; Fischer, R. X.

    2016-11-01

    Mullite-type Al6-xBxO9 compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO6 octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al6-xBxO9 with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by 11B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4 K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO3 groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model.

  8. Muon-Spin Rotation in Multiferroic Cu3Mo2O9 under Electric Fields

    NASA Astrophysics Data System (ADS)

    Kuroe, Haruhiko; Kuwahara, Hideki; Sekine, Tomoyuki; Watanabe, Isao; Raselli, Andrea-Raeto; Elender, Matthias; Biswas, Pabitra Kumar; Hase, Masashi; Oka, Kunihiko; Ito, Toshimitsu; Eisaki, Hiroshi

    It has been demonstrated that the muon spin rotation measurements under electric field give helpful information about the electrically induced magnetism, e.g., the cross correlation effects in multiferroic materials. We have developed an electric-field application system up to 500V for the Dolly spectrometer at the Paul Scherrer Institute. We report the electric-field effects on the μSR spectrum in the multiferroic material Cu3Mo2O9, where a slightly canted antiferromagnetic long-range order appears together with the ferroelectricity below 8K. In the muon-spin rotation spectrum at 1.5K, two kinds of the internal magnetic fields are clearly observed as a beating oscillation. The muon-spin spectrum depends on the electric fields along the c axis of the crystal along which the spontaneous electric polarization appears. From the fitting of the spectra in time and frequency domains, it is shown that the observation of the electric-field dependence on the muon-spin spectra clearly indicates a change of the internal magnetic fields induced by the application of the external electric fields. We propose a model with one muon-stopping site which explains the observed spectra qualitatively. This model is based on the magnetic excitations in Cu3Mo2O9 obtained from the inelastic neutron-scattering experiments.

  9. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  10. Stars and Star Myths.

    ERIC Educational Resources Information Center

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  11. Comparison of Cytokine Immune Responses to Brucella abortus and Yersinia enterocolitica Serotype O:9 Infections in BALB/c Mice

    PubMed Central

    Gu, Wenpeng; Wang, Xin; Qiu, Haiyan; Cui, Buyun; Zhao, Shiwen; Zheng, Han; Xiao, Yuchun; Liang, Junrong; Duan, Ran

    2013-01-01

    Brucella abortus and Yersinia enterocolitica serotype O:9 serologically cross-react in the immune response with the host; therefore, our aim was to compare the immune responses to these two pathogens. We selected typical B. abortus and Y. enterocolitica O:9 strains to study the cytokine immune response and the histopathological changes in livers and spleens of BALB/c mice. The data showed the cytokine responses to the two strains of pathogens were different, where the average levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-α) were higher with B. abortus infections than with Y. enterocolitica O:9 infections, especially for IFN-γ, while the IL-10 level was lower and the levels of IL-1β, IL-4, IL-5, and IL-6 were similar. The histopathological effects in the livers and spleens of the BALB/c mice with B. abortus and Y. enterocolitica O:9 infections were similar; however, the pathological changes in the liver were greater with B. abortus infections, while damage in the spleen was greater with Y. enterocolitica O:9 infections. These observations show that different cytokine responses and histopathological changes occur with B. abortus and Y. enterocolitica O:9 infections. PMID:24042115

  12. Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cygni

    NASA Astrophysics Data System (ADS)

    Harmanec, P.; Holmgren, D. E.; Wolf, M.; Božić, H.; Guinan, E. F.; Kang, Y. W.; Mayer, P.; McCook, G. P.; Nemravová, J.; Yang, S.; Šlechta, M.; Ruždjak, D.; Sudar, D.; Svoboda, P.

    2014-03-01

    Context. Rapid advancements in light-curve and radial-velocity curve modelling, as well as improvements in the accuracy of observations, allow more stringent tests of the theory of stellar evolution. Binaries with rapid apsidal advance are particularly useful in this respect since the internal structure of the stars can also be tested. Aims: Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cygrepresents one of the cornerstones of critical tests of stellar evolutionary theory for massive stars. Nevertheless, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyse all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. Methods: We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cygfor its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analysed earlier obtained blue electronic spectra. Reduction of the new spectra was carried out in the IRAF and SPEFO programs. Orbital elements were derived independently with the FOTEL and PHOEBE programs and via disentangling with the program KOREL . The final combined solution was obtained with the program PHOEBE . Results: Our analyses provide the most accurate value of the apsidal period of (47.805 ± 0.030) yr published so far and the following physical elements: M1 = 17.72 ± 0.35 M⊙, M2 = 17.73 ± 0.30 M⊙, R1 = 5.785 ± 0.091 R⊙, and R2 = 5.816 ± 0.063 R⊙. The disentangling thus resulted in the masses, which are somewhat higher than all previous determinations and virtually the same for both stars

  13. Lanthanum substitution for barium in YBa 2Cu 3O 9

    NASA Astrophysics Data System (ADS)

    Karen, P.; FjellvÅg, H.; Kjekshus, A.; Andresen, A. F.

    1991-07-01

    A detailed mapping is given for the existence range of the Y(Ba 1- yLa y) 2Cu 3O 9-δ solid solution phase with respect to y and δ. The findings are presented in the tetrahedral phase diagram of the Y(O) sbnd Ba(O) sbnd La(O) sbnd Cu(O) system. All samples were carefully prepared by citrate methods and gettering techniques giving high resolution in the degree of substitution y and oxygen content 9 - δ. The upper substitution limit of y = 0.36(2) can notably be exceeded if one at the same time allows substitution of Y by La, viz., by extending the phase region to include (Y 1- xLa x)(Ba 1- yLa y) 2Cu 3O 9-δ. For Y(Ba 1- yLa y) 2Cu 3O 9-δ, the lower limit for the oxygen content 9 - δ increases strongly with y, from 6.00(3) for y = 0.00 to, say, 6.45(3) for y = 0.20. The upper limit is approximately given as 9 - δ = 6.95 + y O,T [0.00 < y < 0.36(2)], i.e., the maximum formal Cu valency remains constant. Hence, oxygen contents well above seven per formula can be achieved, and for such samples the crystal symmetry eventually turns tetragonal, as seen by X-ray and neutron diffraction. A three-dimensional representation of the degree of orthorhombic distortion together with the parameters y and 9 - δ is made in the range where orthorhombic symmetry is adopted. For fully oxygenated samples (saturation at 340°C; PO 2 = 100 kPa; Cu valence constant: 2.30(1) according to iodometry), the symmetry change occurs at y O,T = 0.140(5); 9 - δ = 7.10. At the somewhat lower oxygen contents between 6.9 and 7.0, the domain of the orthorhombic state extends, e.g, to y O,T = 0.160(5) for 9 - δ = 6.98. An interesting consequence of this is that oxygen rich samples from the intermediate composition interval 0.14 < y < 0.16 undergo the phase transition sequence tetragonal to orthorhombic to tetragonal upon thermal removal of oxygen.

  14. Origin of magnetoelectric effect in Co4Nb2O9 and Co4Ta2O9 : The lessons learned from the comparison of first-principles-based theoretical models and experimental data

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Kolodiazhnyi, T. V.

    2016-09-01

    We report results of joint experimental and theoretical studies on magnetoelectric (ME) compounds Co4Nb2O9 and Co4Ta2O9 . On the experimental side, we present results of the magnetization and dielectric permittivity measurements in the magnetic field. On the theoretical side, we construct the low-energy Hubbard-type model for the magnetically active Co 3 d bands in the Wannier basis, using the input of the first-principles electronic structure calculations, solve this model in the mean-field Hartree-Fock approximation, and evaluate the electric polarization in terms of the Berry phase theory. Both experimental and theoretical results suggest that Co4Ta2O9 is magnetically softer than Co4Nb2O9 . Therefore, it is reasonable to expect that the antiferromagnetic structure of Co4Ta2O9 can be easier deformed by the external magnetic field, yielding larger polarization. This trend is indeed reproduced by our theoretical calculations, but does not seem to be consistent with the experimental behavior of the polarization and dielectric permittivity. Thus, we suggest that there should be a hidden mechanism controlling the ME coupling in these compounds, probably related to the magnetic striction or a spontaneous change of the magnetic structure, which breaks the inversion symmetry. Furthermore, we argue that unlike in other ME systems (e.g., Cr2O3 ), in Co4Nb2O9 and Co4Ta2O9 there are two crystallographic sublattices, which contribute to the ME effect. These contributions are found to be of the opposite sign and tend to compensate each other. The latter mechanism can be also used to control and reverse the electric polarization in these compounds.

  15. Laser site-selective spectroscopy of Eu3+ ions doped Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Kaczkan, M.; Turczyński, S.; Pawlak, D. A.; Wencka, M.; Malinowski, M.

    2016-08-01

    Eu3+ doped Y4Al2O9 (YAM) crystals were prepared by the micro-pulling down method. Optical-absorption and laser-selective-excitation techniques along with the luminescence decays have been used to reveal that Eu3+ ions in YAM occupy three distinct sites, which were characterized and discussed. The Stark energy levels of Eu3+ at three different sites in YAM were assigned from selectively excited emission spectra at 10 K. The intensity ratio of forced electric dipole (5D0 → 7F2) and magnetic dipole (5D0 → 7F1) transitions was discussed in order to obtain information about the degree of asymmetry of the luminescent centers. These results were confirmed by the luminescence lifetime measurements. The temperature dependent photo-luminescence spectra indicated that there is no energy transfer between different sites in the 10-300 K range.

  16. Exploring the spin-orbital ground state of Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Mila, Frédéric

    2014-09-01

    Motivated by the absence of both spin freezing and a cooperative Jahn-Teller effect at the lowest measured temperatures, we study the ground state of Ba3CuSb2O9. We solve a general spin-orbital model on both the honeycomb and the decorated honeycomb lattice, revealing rich phase diagrams. The spin-orbital model on the honeycomb lattice contains an SU(4) point, where previous studies have shown the existence of a spin-orbital liquid with algebraically decaying correlations. For realistic parameters on the decorated honeycomb lattice, we find a phase that consists of clusters of nearest-neighbor spin singlets, which can be understood in terms of dimer coverings of an emergent square lattice. While the experimental situation is complicated by structural disorder, we show qualitative agreement between our theory and a range of experiments.

  17. Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control

    NASA Astrophysics Data System (ADS)

    Chen, Huanbei; Zhai, Jiwei

    2012-08-01

    Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.

  18. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-11-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  19. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-07-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  20. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  1. Synthesis, crystal structure and electrical proprieties of new phosphate KCoP3O9

    NASA Astrophysics Data System (ADS)

    Ben Smida, Y.; Guesmi, A.; Georges, S.; Zid, M. F.

    2015-01-01

    Crystals of new tricyclophosphate KCoP3O9 have been grown from solid state reaction and characterized by single crystal X-ray diffraction. KCoP3O9 crystallizes in the hexagonal system, space group P 6 barc2, with a=6.616 (7) Å; c=9.788 (3) Å; V=371.06 (13) Å3, Z=2. The final agreement factors are R=0.014, ωR=0.038, S(F2)=1.231. The structure of the title compound can be described as a three-dimensional framework built up of corner sharing CoO6 and PO4 polyhedra containing wide tunnels oriented along [001] direction and others, less broad, along [100] and [010] directions. The structural model was validated by bond valence sum (BVS) and charge distribution (CD) methods. Ball milling was used to reduce the particles sizes of the synthesized powder. At the optimal sintering temperature of 800 °C, a relative density of 85% was obtained. The microstructure was characterized by scanning electron microscopy. The electrical conductivity was 8.4×10-7 S cm-1 and 1.7×10-4 S cm-1 at 480 °C and 680 °C respectively. The activation energy deduced from the slope is 2.2 eV at low temperature region and 1.2 eV at high temperature region. The BVS model is extended to simulate the ionic migration pathways of alkali cations in the anionic framework. The BVS calculation shows one-dimensional pathways migration along c-axis.

  2. Improvement in high-temperature thermoelectric properties by adding Mn for Co in Ca3Co4O9.

    PubMed

    Nam, S W; Choi, J W; Hwang, H K; Park, K

    2010-11-01

    Nano-sized Ca3Co(4-x)Mn(x)O9 (0 < or = x < or = 0.6) thermoelectric powders were synthesized by solution combustion method, using aspartic acid as fuel. The microstructure and high-temperature (500-800 degrees C) thermoelectric properties of the Ca3Co(4-x)Mn(x)O9 were investigated. The addition of Mn for Co in Ca3Co(4-x)Mn(x)O9 resulted in a decrease of the electrical conductivity and a significant increase of the Seebeck coefficient. Consequently, the power factor was remarkably enhanced by the addition of Mn. Ca3Co(3.7)Mn(0.3)O9 sample showed the highest value of the power factor (1.24 x 10(-4) Wm(-1) K(-2)) at 800 degrees C. We believe that the Ca3Co(4-x)Mn(x)O9 is strongly desirable as a novel high-temperature thermoelectric material for power generation.

  3. STAR System.

    ERIC Educational Resources Information Center

    Doverspike, James E.

    The STAR System is a developmental guidance approach to be used with elementary school children in the 5th or 6th grades. Two basic purposes underlie STAR: to increase learning potential and to enhance personal growth and development. STAR refers to 4 basic skills: sensory, thinking, adapting, and revising. Major components of the 4 skills are:…

  4. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  5. Microstructure and Growth Mechanism of Ca3Co4O9 Thin Films on Si and Glass Substrates

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Sutter, Eli; Si, Weidong; Li, Qiang

    2006-03-01

    It has been discovered recently that cobaltates have very large thermoelectric power, which shows that cobaltates hold great promise to be potential integrated heating spreading solution, such as thermal management of microprocessors. Among the cobaltates, Ca3Co4O9 is exhibiting best thermoelectric properties. We have successfully grown highly c-axis orientated Ca3Co4O9 thin films using Pulsed Laser Deposition (PLD) technique on amorphous substrates, such as glass. High-resolution electron microscopy (HREM), electron energy-loss spectroscopy (EELS) and dispersive x-ray spectrometry (EDS) have been used to study the chemical composition and microstructure of the films. The detailed microstructure and growth mechanism of Ca3Co4O9 thin films will be discussed.

  6. STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS

    NASA Astrophysics Data System (ADS)

    Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.

    2012-06-01

    Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.

  7. Hadron star models. [neutron stars

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  8. Synthesis, Structures, and Thermal Expansion of the La 2W 2- xMo xO 9 Series

    NASA Astrophysics Data System (ADS)

    Collado, J. A.; Aranda, M. A. G.; Cabeza, A.; Olivera-Pastor, P.; Bruque, S.

    2002-08-01

    The La 2W 2- xMo xO 9 series has been synthesized by the ceramic method. An alternative synthesis using microwave radiation is also reported. La 2W 2O 9 has two polymorphs and the low-temperature phase ( α) transforms to the high-temperature form ( β) at 1077°C. The influence of the W/Mo substitution in this phase transition has been investigated by DTA. The β structure for x≥0.7 compositions can be prepared as single phase at any cooling rate. The β phase for 0.3≤ x≤0.7 compounds can be prepared as single phase by quenching, whereas a mixture of α and β phases is obtained by slow cooling. The W/Mo ratio in both coexisting phases is different with the β-phase having a higher Mo content. The x=0.1 and 0.2 compounds have been prepared as mixtures of phases. The room temperature structure of β-La 2W 1.7Mo 0.3O 9 has been analyzed by the Rietveld method in P2 13 space group. The final R-factors were RWP=9.0% and RF=5.6% with a structure similar to that of β-La 2Mo 2O 9. Finally, the thermal expansion of both types of structures has been determined from a thermodiffractometric study. The thermal expansion coefficients were 2.9×10 -6 and 9.7×10 -6°C -1 for α-La 2W 2O 9 and β-La 2W 1.2Mo 0.8O 9, respectively.

  9. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9.

    PubMed

    Morán, A C; Olivera, N; Commendatore, M; Esteves, J L; Siñeriz, F

    2000-01-01

    A non-sterile biosurfactant preparation (surfactin) was obtained from a 24-h culture of Bacillus subtilis O9 grown on sucrose and used to study its effect on the biodegradation of hydrocarbon wastes by an indigenous microbial community at the Erlenmeyer-flask scale. Crude biosurfactant was added to the cultures to obtain concentrations above and below the critical micelle concentration (CMC). Lower concentration affected neither biodegradation nor microbial growth. Higher concentration gave higher cell concentrations. Biodegradation of aliphatic hydrocarbons increased from 20.9 to 35.5% and in the case of aromatic hydrocarbons from nil to 41%, compared to the culture without biosurfactant. The enhancement effect of biosurfactant addition was more noticeable in the case of long chain alkanes. Pristane and phytane isoprenoids were degraded to the same extent as n-C17 and n-C18 alkanes and, consequently, no decrease in the ratios n-C17/pri and n-C18/phy was observed. Rapid production of surfactin crude preparation could make it practical for bioremediation of ship bilge wastes. PMID:11194975

  10. Structure and magnetism of Sr3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Battle, Peter D.; Chin, Chun-Mann; Evers, Sophie I.; Westwood, Mark

    2015-07-01

    The crystal structure of the perovskite-related oxide Sr3NiSb2O9 has been refined from X-ray and neutron powder diffraction data; space group P21/n, a=5.64381(2), b=5.62299(2), c=7.95687(3) Å, β=90.014(2)°. The structure has two crystallographically-distinct six-coordinate cation sites with occupancies Sb 0.97(1), Ni 0.03 and Sb 0.36, Ni 0.64. The magnetic susceptibility has been measured over the temperature range 2≤T/K≤300. Fitting data recorded in the temperature range 150

  11. No evidence of disk destruction by OB stars

    NASA Astrophysics Data System (ADS)

    Richert, Alexander J. W.; Feigelson, Eric

    2015-01-01

    It has been suggested that the hostile environments observed in massive star forming regions are inhospitable to protoplanetary disks and therefore to the formation of planets. The Orion Proplyds show disk evaporation by extreme ultraviolet (EUV) photons from Theta1 Orionis C (spectral type O6). In this work, we examine the spatial distributions of disk-bearing and non-disk bearing young stellar objects (YSOs) relative to OB stars in 17 massive star forming regions in the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey. Any tendency of disky YSOs, identified by their infrared excess, to avoid OB stars would reveal complete disk destruction.We consider a sample of MYStIX that includes 78 O3-O9 stars, 256 B stars, 5,606 disky YSOs, and 5,794 non-disky YSOs. For each OB star, we compare the cumulative distribution functions of distances to disky and non-disky YSOs. We find no significant avoidance of OB stars by disky YSOs. This result indicates that OB stars are not sufficiently EUV-luminous and long-lived to completely destroy a disk within its ordinary lifetime. We therefore conclude that massive star forming regions are not clearly hostile to the formation of planets.

  12. Manipulating Thermal Conductivity by Interfacial Modification of Misfit-Layered Cobaltites Ca3Co4O9

    NASA Astrophysics Data System (ADS)

    Fujii, Susumu; Yoshiya, Masato

    2016-03-01

    The phonon thermal conductivities of misfit-layered Ca3Co4O9, Sr3Co4O9, and Ba3Co4O9 were calculated using the perturbed molecular dynamics method to clarify the impact of lattice misfit on the phonon thermal conduction in misfit-layered cobaltites. Substitution of Sr and Ba for Ca substantially modified the magnitude of the lattice misfit between the CoO2 and rock salt (RS) layers, because of the different ionic radii, increasing overall phonon thermal conductivity. Further analyses with intentionally changed atomic masses of Ca, Sr, or Ba revealed that smaller ionic radius at the Ca site in the RS layer, instead of heavier atomic mass, is a critical factor suppressing the overall thermal conductivity of Ca3Co4O9, since it determines not only the magnitude of lattice misfit but also the dynamic interference between the two layers, which governs the phonon thermal conduction in the CoO2 and RS layers. This concept was demonstrated for Sr-doped Ca3Co4O9 as an example of atomistic manipulation for better thermoelectric properties. Phonon thermal conductivities not only in the RS layer but also in the CoO2 layer were reduced by the substitution of Sr for Ca. These results provide another strategy to improve the thermal conductivity of this class of misfit cobaltites, that is, to control the thermal conductivity of the CoO2 layer responsible for electronic and thermal conductivity by atomistic manipulation in the RS layer adjacent to the CoO2 layer.

  13. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  14. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  15. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  16. Identification of the methyl phosphate substituent at the non-reducing terminal mannose residue of the O-specific polysaccharides of Klebsiella pneumoniae O3, Hafnia alvei PCM 1223 and Escherichia coli O9/O9a LPS.

    PubMed

    Kubler-Kielb, Joanna; Whitfield, Chris; Katzenellenbogen, Ewa; Vinogradov, Evgeny

    2012-01-10

    O-specific polysaccharides of Gram-negative bacteria are synthesized by two different mechanisms: polymerization of the pre-formed O-repeating unit or sequential addition of the monosaccharides to the growing polysaccharide chain. In the second case, growth of the polymer can be further subdivided into two groups depending on the presence or absence of a special monosaccharide or non-sugar substituent that terminates the glycan. A family of polymannose O-polysaccharides provides prototypes for the chain terminating process. Polysaccharides of Klebsiella pneumoniae O3, Hafnia alvei PCM 1223, and Escherichia coli O9 have the same penta-mannose repeating unit. E. coli O9a has tetra-mannose repeat and this structure can be produced by mutants of E. coli O9. The mechanism of biosynthesis of H. alvei 1223 O-polysaccharide has not been reported. Here we show that all above polysaccharides contain the same modification at the non-reducing end; presence of a methyl phosphate group at O-3 of α-mannopyranose, that serves as the signal for termination of the chain elongation. PMID:22169179

  17. Muon spin rotation study of spin dimers on a triangular lattice in Ba3 MRu2 O9

    NASA Astrophysics Data System (ADS)

    Ziat, Djamel; Verrier, Aimé; Quilliam, Jeffrey; Aczel, Adam; Sinclair, Ryan; Chen, Qiang; Zhou, Haidong

    The family of hexagonal perovskites, Ba3 MA2 O9 has recently been proven to be fertile ground for the discovery of new, exotic magnetic phases, including several quantum spin liquid candidates. The 6H-perovskites can also accommodate spin dimers on a triangular lattice, as in the ruthenate materials Ba3MRu2O9. We will present measurements on materials containing M3 + (M = Y, La, Lu, In), which give rise to mixed valence Ru4.5 + ions wherein the orbital and charge degrees of freedom must also be considered. In particular, muon spin rotation (µSR) experiments, have allowed us to probe the nature of the magnetically ordered ground state of these materials at low temperatures.

  18. Effects of Lu and Ni Substitution on Thermoelectric Properties of Ca3Co4O9+ δ

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Qian, Haoji; Gan, Jinyu; Wei, Wei; Wang, Zhihe; Tang, Guodong

    2016-08-01

    Effects of (Lu, Ni) co-doping on the thermoelectric properties of Ca3Co4O9+ δ (CCO) have been systematically investigated from 20 K to 350 K. The electrical resistivity and thermopower of (Lu, Ni) co-doped samples increase, while their thermal conductivity is significantly depressed as compared to that of pristine CCO. The figure of merit ( ZT) of co-doped samples is higher than those of Lu-doped samples and pristine CCO. A maximum ZT of 0.0185 is achieved at 350 K for Ca2.9Lu0.1Co3.9Ni0.1O9+ δ . We demonstrate that the simultaneous increase of spin entropy and phonon scattering induced by (Lu, Ni) co-doping boosts ZT of CCO. This study indicates that (Lu, Ni) co-doping may promise an effective way to improve thermoelectric properties of the CCO system.

  19. Effect of RF power on structural and magnetic properties of La doped Bi2Fe4O9 thin films

    NASA Astrophysics Data System (ADS)

    Santhiya, M.; Pugazhvadivu, K. S.; Balakrishnan, L.; Tamilarasan, K.

    2016-05-01

    Effect of RF power on structural and magnetic properties of lanthanum (La3+) doped Bi2Fe4O9 thin films grown on p-Si substrates by radio frequency (RF) magnetron sputtering has studied in this investigation. It is observed that the sputtering power affects the crystalline nature and magnetic properties of grown thin films. X-ray diffraction and Raman spectrum confirms that the Bi2Fe4O9 (BFO) thin films were crystallized well with orthorhombic structure. The BFO thin films which was prepared at sputtering power of 100 W have good crystallinity than those prepared at 40 W. The magnetic properties are investigated by vibrating sample magnetometer. The magnetic hysteresis perceptive loop shows that the anti-ferromagnetic behavior of the sample at room temperature. These results confirms that the crystallinity and magnetic properties of the BFO thin films were enhanced at the higher sputtering power (100 W).

  20. A comparison of lyman alpha and HeI lambda 10830 line structure and variations in early-type star atmospheres

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1977-01-01

    Fabry-Perot interferometric profiles for fifty of the early-type stars including supergiants, eclipsing binaries, Bp and Ap stars, Be and shell stars, and variable stars have been obtained. Results for beta Persei (Algol) just before primary and secondary eclipses show strong emission profiles lasting about 0.1 phase. An absorption line was seen during secondary eclipse. Bright supergiant stars (O9-A2) show time-variable, complicated absorption/emission profiles similar to those obtained for the Be/shell stars.

  1. Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9

    NASA Astrophysics Data System (ADS)

    Dai, Jia; Zhou, Ping; Wang, Peng-Shuai; Pang, Fei; Munsie, Tim J.; Luke, Graeme M.; Zhang, Jin-Shan; Yu, Wei-Qiang

    2015-12-01

    We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW˜ -55 K and the low Neel temperature TN˜ 1.45 K give a frustration factor f = | θCW/TN | ≈ 38, suggesting that Ca3CoNb2O9 resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling (ZFC) and field cooling (FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3CoNb2O9 is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374364 and 11222433), the National Basic Research Program of China (Grant No. 2011CBA00112). Research at McMaster University supported by the Natural Sciences and Engineering Research Council. Work at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  2. Local Probe Study of S=1 Spin Liquid Candidate Ba3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey; Bert, Fabrice; Mendels, Philippe; Orain, Jean-Christophe; Manseau, Anthoni; Darie, Céline; Payen, Christophe; Guillot-Deudon, Catherine

    2015-03-01

    The family of hexagonal perovskites, Ba3 M Sb2O9, has attracted a considerable amount of attention in recent years, with the discovery of several spin liquid candidates. For M = Cu, the material is fairly disordered and likely exhibits a honeycomb-like lattice whereas in other cases the structure consists of triangular planes of spins. Three different structural phases of Ba3NiSb2O9 have been discovered, depending on synthesis pressure. Two of these phases (6HA and 6HB) consist of triangular planes of S = 1 moments, and differ primarily by the stacking of these planes. Here, we present muon spin rotation (μSR) and 121Sb nuclear magnetic resonance (NMR) results on a high-pressure synthesis of this material, 6HB-Ba3NiSb2O9. Most importantly, we demonstrate that there are no signs of magnetic ordering or spin freezing down to temperatures as low as 20 mK, making this material a plausible spin liquid candidate. Furthermore our NMR results are indicative of gapless excitations, consistent with previous specific heat and magnetic susceptibility results.

  3. Magnetism and multiferroicity of an isosceles triangular lattice antiferromagnet Sr3NiNb2O9.

    PubMed

    Lee, M; Choi, E S; Ma, J; Sinclair, R; Dela Cruz, C R; Zhou, H D

    2016-11-30

    Various experimental measurements were performed to complete the phase diagram of a weakly distorted triangular lattice system, Sr3NiNb2O9 with Ni(2+) , spin-1 magnetic ions. This compound possesses an isosceles triangular lattice with two shorter bonds and one longer bond. It shows a two-step magnetic phase transition at [Formula: see text] K and [Formula: see text] K at zero magnetic field, characteristic of an easy-axis anisotropy. In the magnetization curves, a series of magnetic phase transitions was observed such as an up-up-down phase at [Formula: see text] T with 1/3 of the saturation magnetization (M sat) and an oblique phase at [Formula: see text] T with [Formula: see text]/3 M sat. Intriguingly, the magnetic phase transition below T N2 is in tandem with the ferroelectricity, which demonstrates multiferroic behaviors. Moreover, the multiferroic phase persists in all magnetically ordered phases regardless of the spin structure. The comparison between the phase diagrams of Sr3NiNb2O9 and its sister compound with an equilateral triangular lattice antiferromagnet Ba3NiNb2O9 (Hwang et al 2012 Phys. Rev. Lett. 109 257205), illustrates how a small imbalance among exchange interactions change the magnetic ground states of the TLAFs. PMID:27661860

  4. Magnetism and multiferroicity of an isosceles triangular lattice antiferromagnet Sr3NiNb2O9.

    PubMed

    Lee, M; Choi, E S; Ma, J; Sinclair, R; Dela Cruz, C R; Zhou, H D

    2016-11-30

    Various experimental measurements were performed to complete the phase diagram of a weakly distorted triangular lattice system, Sr3NiNb2O9 with Ni(2+) , spin-1 magnetic ions. This compound possesses an isosceles triangular lattice with two shorter bonds and one longer bond. It shows a two-step magnetic phase transition at [Formula: see text] K and [Formula: see text] K at zero magnetic field, characteristic of an easy-axis anisotropy. In the magnetization curves, a series of magnetic phase transitions was observed such as an up-up-down phase at [Formula: see text] T with 1/3 of the saturation magnetization (M sat) and an oblique phase at [Formula: see text] T with [Formula: see text]/3 M sat. Intriguingly, the magnetic phase transition below T N2 is in tandem with the ferroelectricity, which demonstrates multiferroic behaviors. Moreover, the multiferroic phase persists in all magnetically ordered phases regardless of the spin structure. The comparison between the phase diagrams of Sr3NiNb2O9 and its sister compound with an equilateral triangular lattice antiferromagnet Ba3NiNb2O9 (Hwang et al 2012 Phys. Rev. Lett. 109 257205), illustrates how a small imbalance among exchange interactions change the magnetic ground states of the TLAFs.

  5. Synthesis and structural properties of thermoelectric Ca3-xAgxCo4O9+δ powders.

    PubMed

    Park, Kyeongsoon; Hakeem, Deshmukh Abdul; Cha, Jae Sung

    2016-04-28

    A series of Ca3-xAgxCo4O9+δ (0 ≤ x ≤ 0.2) powders is prepared by the Pechini sol-gel method. The effect of dispersants on the size and morphology of the Ca2.9Ag0.1Co4O9+δ powders is investigated. The desired powders are obtained after calcinations of the dried powders at 800 °C for 12 h. The structural and morphological properties are studied with the help of XRD patterns, FE-SEM images, FT-IR spectra, Raman spectra, and XPS spectra. It is found that a mixed valence (+3 and +4) of Co exists in a CdI2-type CoO2 layer, while a mixed valence (+2, +3, and +4) exists in the CoO of a rock salt-type Ca2CoO3 layer. The mixed-valence state in the CoO2 layer can improve the high-temperature thermoelectric properties of Ca3Co4O9 systems. PMID:26988740

  6. Collective versus local Jahn-Teller distortion in Ba3CuSb2O9 : Raman scattering study

    NASA Astrophysics Data System (ADS)

    Drichko, Natalia; Broholm, Collin; Kimura, K.; Ishii, R.; Nakasutji, Satoru

    2016-05-01

    We present temperature dependent Raman spectra of single crystals of two different samples of the spin-orbital liquid candidate Ba3CuSb2O9 . The "hexagonal" sample is known to show no magnetic order down to low temperatures, while the "orthorhombic" sample undergoes a crossover into an orthorhombic crystal structure below TJT of approximately 200 K and shows spin freezing at 110 μ K . Our Raman scattering results demonstrate a strong influence of disorder in both samples. The frequencies of stretching vibrations of oxygens associated with CuSbO9 octahedra indicate a difference in the crystal structure between the hexagonal and orthorhombic samples even at room temperature. On cooling below TJT we observe new bands in the spectra of the orthorhombic sample due to a lowering of symmetry of the unit cell and a collective Jahn-Teller distortion. The spectra of the hexagonal sample show that average hexagonal symmetry is maintained at least down to 20 K. An analysis of the band shape of stretching oxygen vibrations suggests a weak disordered local Jahn-Teller distortion in the hexagonal sample of Ba3CuSb2O9 which increases slightly on cooling. This Jahn-Teller distortion is either static or dynamic with a frequency below 1.5 THz.

  7. Magnetism and multiferroicity of an isosceles triangular lattice antiferromagnet Sr3NiNb2O9

    NASA Astrophysics Data System (ADS)

    Lee, M.; Choi, E. S.; Ma, J.; Sinclair, R.; Dela Cruz, C. R.; Zhou, H. D.

    2016-11-01

    Various experimental measurements were performed to complete the phase diagram of a weakly distorted triangular lattice system, Sr3NiNb2O9 with Ni2+ , spin-1 magnetic ions. This compound possesses an isosceles triangular lattice with two shorter bonds and one longer bond. It shows a two-step magnetic phase transition at {{T}\\text{N1}}∼ 5.1 K and {{T}\\text{N2}}∼ 5.5 K at zero magnetic field, characteristic of an easy-axis anisotropy. In the magnetization curves, a series of magnetic phase transitions was observed such as an up-up-down phase at {μ0}{{H}c1}∼ 10.5 T with 1/3 of the saturation magnetization (M sat) and an oblique phase at {μ0}{{H}c2}∼ 16 T with \\sqrt{3} /3 M sat. Intriguingly, the magnetic phase transition below T N2 is in tandem with the ferroelectricity, which demonstrates multiferroic behaviors. Moreover, the multiferroic phase persists in all magnetically ordered phases regardless of the spin structure. The comparison between the phase diagrams of Sr3NiNb2O9 and its sister compound with an equilateral triangular lattice antiferromagnet Ba3NiNb2O9 (Hwang et al 2012 Phys. Rev. Lett. 109 257205), illustrates how a small imbalance among exchange interactions change the magnetic ground states of the TLAFs.

  8. Preparation and spectral characteristics of Ce3+-activated boroaluminate LaAl2B3O9

    NASA Astrophysics Data System (ADS)

    Qiao, Xuebin; Cheng, Yu; Qin, Chuanxiang; Tao, Zhengxu; Huang, Yanlin; Cai, Peiqing; Chen, Cuili; Seo, Hyo Jin

    2015-02-01

    Ce3+-activated (1.0-10 mol%) aluminoborate LaAl2B3O9 was prepared via the chemical sol-gel method. The phosphors were characterized by X-ray diffraction and scanning electron microscopy measurements. The luminescence performances such as photoluminescence excitation and emission spectra, the thermal quenching, and the luminescence decay curves (lifetimes) were detected to the phosphors. The influences of Ce3+ activator concentration on the phase evolution and luminescence properties were investigated. Ce3+ ion has only one crystallographic site occupying on La3+ site in LaAl2B3O9 lattice, which results in the typical doublet blue emission band due to 4 f 65 d → 4 f 7 transition. The 2FJ ( J = 7/2, 5/2) energy gap of Ce3+ ions in this host is about 2,100 cm-1. In total, 7 mol% of Ce3+-doped LaAl2B3O9 exhibits the brightest blue luminescence color with CIE coordinates of ( x = 0.149, y = 0.123) and an absolute quantum efficiency of 76.0 %. The thermal stability of the luminescence was evaluated by the temperature-dependent luminescence intensity. The luminescence of phosphor shows a good thermal quenching with a high activation energy of Δ E = 0.34 eV, indicating it could be used at operation temperature 100-150 °C.

  9. Synthesis and structural properties of thermoelectric Ca3-xAgxCo4O9+δ powders.

    PubMed

    Park, Kyeongsoon; Hakeem, Deshmukh Abdul; Cha, Jae Sung

    2016-04-28

    A series of Ca3-xAgxCo4O9+δ (0 ≤ x ≤ 0.2) powders is prepared by the Pechini sol-gel method. The effect of dispersants on the size and morphology of the Ca2.9Ag0.1Co4O9+δ powders is investigated. The desired powders are obtained after calcinations of the dried powders at 800 °C for 12 h. The structural and morphological properties are studied with the help of XRD patterns, FE-SEM images, FT-IR spectra, Raman spectra, and XPS spectra. It is found that a mixed valence (+3 and +4) of Co exists in a CdI2-type CoO2 layer, while a mixed valence (+2, +3, and +4) exists in the CoO of a rock salt-type Ca2CoO3 layer. The mixed-valence state in the CoO2 layer can improve the high-temperature thermoelectric properties of Ca3Co4O9 systems.

  10. Detection of Yersinia enterocolitica serotype O:9 in the faeces of cattle with false positive reactions in serological tests for brucellosis in Ireland.

    PubMed

    O'Grady, Don; Kenny, Kevin; Power, Seamus; Egan, John; Ryan, Fergus

    2016-10-01

    Intestinal infection by Yersinia enterocolitica serotype O:9 (YeO9) in cattle has been linked to false positive serological reactivity (FPSR) in diagnostic tests for brucellosis. Although eradicated in Ireland, brucellosis monitoring still identifies seropositive animals, usually one or two (termed singletons) per herd, which are classed as FPSR. To investigate a link between FPSR and YeO9, faeces and blood were collected from singleton FPSR cattle, and from companion animals, in eight selected herds with more than one FPSR animal, for YeO9 culture and Brucella serology. YeO9 was isolated from 76/474 (16%) FPSR singletons in 309 herds, but not from any of 621 animals in 122 control non-FPSR herds. In the FPSR herds 52/187 (27.8%) animals were culture positive, and 17% of the isolates were from seronegative animals. Seropositive animals were more likely to have a rising antibody titre when culture positive.

  11. Detection of Yersinia enterocolitica serotype O:9 in the faeces of cattle with false positive reactions in serological tests for brucellosis in Ireland.

    PubMed

    O'Grady, Don; Kenny, Kevin; Power, Seamus; Egan, John; Ryan, Fergus

    2016-10-01

    Intestinal infection by Yersinia enterocolitica serotype O:9 (YeO9) in cattle has been linked to false positive serological reactivity (FPSR) in diagnostic tests for brucellosis. Although eradicated in Ireland, brucellosis monitoring still identifies seropositive animals, usually one or two (termed singletons) per herd, which are classed as FPSR. To investigate a link between FPSR and YeO9, faeces and blood were collected from singleton FPSR cattle, and from companion animals, in eight selected herds with more than one FPSR animal, for YeO9 culture and Brucella serology. YeO9 was isolated from 76/474 (16%) FPSR singletons in 309 herds, but not from any of 621 animals in 122 control non-FPSR herds. In the FPSR herds 52/187 (27.8%) animals were culture positive, and 17% of the isolates were from seronegative animals. Seropositive animals were more likely to have a rising antibody titre when culture positive. PMID:27687940

  12. STARS no star on Kauai

    SciTech Connect

    Jones, M.

    1993-04-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem.

  13. Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.

    1993-01-01

    We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.

  14. Properties of two-dimensional insulators: A DFT study of bimetallic oxide CrW2O9 clusters adsorption on MgO ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Zhang, Hui; Zhao, Ling; Xiong, Wei; Huang, Xin; Wang, Bin; Zhang, Yongfan

    2016-08-01

    Periodic density functional theory calculations have been performed to study the electronic properties of bimetallic oxide CrW2O9 clusters adsorbed on MgO/Ag(001) ultrathin films (<1 nm). Our results show that after deposition completely different structures, electronic properties and chemical reactivity of dispersed CrW2O9 clusters on ultrathin films are observed compared with that on the thick MgO surface. On the thick MgO(001) surface, adsorbed CrW2O9 clusters are distorted significantly and just a little electron transfer occurs from oxide surface to clusters, which originates from the formation of adsorption dative bonds at interface. Whereas on the MgO/Ag(001) ultrathin films, the resulting CrW2O9 clusters keep the cyclic structures and the geometries are similar to that of gas-phase [CrW2O9]-. Interestingly, we predicted the occurrence of a net transfer of one electron by direct electron tunneling from the MgO/Ag(001) films to CrW2O9 clusters through the thin MgO dielectric barrier. Furthermore, our work reveals a progressive Lewis acid site where spin density preferentially localizes around the Cr atom not the W atoms for CrW2O9/MgO/Ag(001) system, indicating a potentially good bimetallic oxide for better catalytic activities with respect to that of pure W3O9 clusters. As a consequence, present results reveal that the adsorption of bimetallic oxide CrW2O9 clusters on the MgO/Ag(001) ultrathin films provide a new perspective to tune and modify the properties and chemical reactivity of bimetallic oxide adsorbates as a function of the thickness of the oxide films.

  15. Correlation between structure and oxygen ion dynamics in Y substituted La2Mo2O9 ionic conductors

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2016-09-01

    We have measured the ac conductivity and dielectric spectra for La2-xYxMo2O9 (0.05 ≤ x ≤ 0.20) in wide temperature and frequency ranges. We have obtained the mean square displacement and the spatial extent of nonrandom sub-diffusive regions for oxygen ions by analyzing the ac conductivity and dielectric spectra respectively. The structure of the samples has been studied using X-ray photoelectron spectra, X-ray and electron diffraction. It is observed that the composition dependence of these characteristic lengths is correlated with the distance between oxygen ions obtained from structural studies.

  16. Phase equilibrium relations in the binary systems LiPO 3CeP 3O 9 and NaPO 3CeP 3O 9

    NASA Astrophysics Data System (ADS)

    Rzaigui, Mohamed; Ariguib, Najia Kbir

    1981-10-01

    The LiPO 3CeP 3O 9 and NaPO 3CeP 3O 9 systems have been investigated for the first time by DTA, X-ray diffraction, and infrared spectroscopy. Each system forms a single 1:1 compound. LiCe(PO 3) 4 melts in a peritectic reaction at 980°C. NaCe(PO 3) 4 melts incongruently, too, at 865°C. These compounds have a monoclinic unit cell with the parameters: a = 16.415(6), b = 7,042(6), c = 9.772(7)Å; β = 126.03(5)°; Z = 4; space group {C 2}/{c} for LiCe (PO 3) 4; and a = 9.981(4), b = 13.129(6), c = 7.226(5) Å, β = 89.93(4)°, Z = 4, space group {P2 1}/{n} for NaCe(PO 3) 4. It is established that both compounds are mixed polyphosphates with chain structure of the type | MIIMIIIII (PO 3) 4| ∞MII: alkali metal, MIIIII: rare earth.

  17. Star quality.

    PubMed

    Dent, Emma

    2007-09-20

    Around 150 wards are participating in the voluntary Star Wards scheme to provide mental health inpatients with more activities with therapeutic value. Suggested activities range from a library, to horse riding Internet access and comedy. Service users are particularly keen to have more exercise, which can be a challenge in inpatient settings. PMID:17970387

  18. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  19. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  20. Structural chemistry and magnetic properties of the perovskite SrLa2Ni2TeO9

    NASA Astrophysics Data System (ADS)

    Paria Sena, Robert; Hadermann, Joke; Chin, Chun-Mann; Hunter, Emily C.; Battle, Peter D.

    2016-11-01

    A polycrystalline sample of SrLa2Ni2TeO9 has been synthesized using a standard ceramic method and characterized by neutron diffraction, magnetometry and electron microscopy. The compound adopts a monoclinic, perovskite-like structure with space group P21/n and unit cell parameters a=5.6008(1), b=5.5872(1), c=7.9018(2) Å, β=90.021(6)° at room temperature. The two crystallographically-distinct B sites are occupied by Ni2+ and Te6+ in ratios of 83:17 and 50:50. Both ac and dc magnetometry suggest that the compound is a spin glass below 35 K but the neutron diffraction data show that some regions of the sample are antiferromagnetic. Electron microscopy revealed twinning on a nanoscale and local variations in composition. These defects are thought to be responsible for the presence of two distinct types of antiferromagnetic ordering. The magnetic properties of SrLa2Ni2TeO9 are discussed in terms of cation ordering in the microstructure.

  1. Chiral separation of acidic compounds using an O-9-(tert-butylcarbamoyl)quinidine functionalized monolith in micro-liquid chromatography.

    PubMed

    Wang, Qiqin; Zhu, Peijie; Ruan, Meng; Wu, Huihui; Peng, Kun; Han, Hai; Somsen, Govert W; Crommen, Jacques; Jiang, Zhengjin

    2016-04-29

    An O-9-(tert-butylcarbamoyl) quinidine (t-BuCQD) functionalized polymeric monolithic capillary column was prepared by the in situ copolymerization method. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy and micro-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained for this monolithic column. The chiral recognition ability of the resulting monolith was also evaluated using 47 N-derivatized amino acids, eight N-derivatized dipeptides, and two herbicides. Under the selected conditions, the enantiomers of all chiral analytes were baseline separated with exceptionally high selectivity and resolution using micro-LC. It is worth noting that this chiral stationary phase (CSP) containing quinidine with a tert-butyl carbamate residue as chiral selector exhibits much higher enantioselectivity and diastereoselectivity than the previously developed O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD) based CSP for N-derivatized amino acids and dipeptides. These results indicate that this novel quinidine-based polymeric monolith can be used as an effective tool for the enantioseparation of chiral acidic compounds.

  2. Synthesis and luminescence properties of novel Ce3+ doped BaZrSi3O9 phosphors

    NASA Astrophysics Data System (ADS)

    Liu, Shiqi; Liang, Yujun; Zhu, Yingli; Wu, Xingya; Xu, Rui; Tong, Miaohui; Li, Kai

    2016-10-01

    The novel phosphors BaZrSi3O9:Ce3+(BZS:Ce3+) have been successfully synthesized by the conventional solid-state reaction. The phase purity and crystal structure were obtained by X-ray diffraction (XRD) measurements and Rietveld refinement. The photoluminescence spectroscopy revealed that the as-prepared phosphors exhibited a bright blue emission under the excitation by near ultraviolet light and the PL emission peaks of BZS:xCe3+ showed a red-shift from 432 nm to 451 nm on the Ce3+ concentration increasing. The corresponding red-shift mechanism has been discussed. The concentration quenching behavior was observed. The luminescence decay curves and lifetime values were analyzed. This phosphor exhibited high internal quantum efficiency. Thermal quenching luminescence properties showed that the emitting intensity was remained 44.60% of that measured at room temperature when the temperature increased to 398 K. The results indicate that the BaZrSi3O9:Ce phosphor is a promising blue-emitting phosphor for the application as an ultraviolet-convertible phosphor.

  3. Structure and microstructure of hexagonal Ba3Ti2RuO9 by electron diffraction and microscopy.

    PubMed

    Maunders, Christian; Etheridge, Joanne; Wright, Natasha; Whitfield, Harold J

    2005-04-01

    We have used electron microscopy and diffraction to refine the structure and investigate the microstructure of Ba(3)Ti(2)RuO(9). The parent compound is hexagonal BaTiO(3) with the space group P6(3)/mmc. Using convergent-beam electron diffraction (CBED) combined with electron-sensitive image plates we have found that the space group of Ba(3)Ti(2)RuO(9) is the non-centrosymmetric group P6(3)mc at room temperature and at approximately 110 K. This is consistent with the Ru and Ti atoms occupying alternate face-sharing octahedral sites in the 0001 direction. This maintains the c-glide, but breaks the mirror normal to the c axis and consequently removes the centre of symmetry. Using powder X-ray diffraction, we have measured the lattice parameters from polycrystalline samples to be a = 5.7056 +/- 0.0005, c = 14.0093 +/- 0.0015 A at room temperature. Using high-resolution electron microscopy (HREM) we observed highly coherent, low-strain {10\\bar 10} grain boundaries intersecting at 60 and 120 degrees . From CBED we deduce that adjacent grains are identical but for the relative phase of the Ti and Ru atom ordering along the c axis. HREM also revealed occasional stacking faults, normal to the c-axis. PMID:15772447

  4. Synthesis and thermoluminescence characterizations of Sr2B5O9Cl:Dy3+ phosphor for TL dosimetry.

    PubMed

    Oza, Abha H; Dhoble, N S; Park, K; Dhoble, S J

    2015-09-01

    The photoluminescence (PL) and thermoluminescence (TL) displayed by Dy-activated strontium haloborate (Sr2 B5 O9 Cl) were studied. A modified solid-state reaction was employed for the preparation of the phosphor. Photoluminescence spectra showed blue (484 nm) and yellow (575 nm) emissions due to incorporation of Dy(3+) into host matrix. The Dy-doped (0.5 mol%) Sr2 B5 O9 Cl was studied after exposure to γ-irradiation and revealed a prominent glow curve at 261°C with a small hump around 143°C indicating that two types of traps were generated. The glow peak at the higher temperature side (261°C) was more stable than the lower temperature glow peak. The TL intensity was 1.17 times less than that of the standard CaSO4 :Dy thermoluminescence dosimetry (TLD) phosphor, the phosphor showed a linear dose-response curve for different γ-ray irradiation doses (0.002-1.25 Gy) and fading of 5-7% was observed for higher temperature peaks upon storage. Trapping parameters and their estimated error values have been calculated by Chen's peak shape method and by the initial rise method. Values of activation energies estimated by both these techniques were comparable. The slight difference in activation energy values calculated by Chen's peak shape method indicated the formation of two kinds of traps Furthermore, slight differences in frequency values are due to various escaping and retrapping probabilities.

  5. Disorder-Driven Spin-Orbital Liquid Behavior in the Ba3X Sb2O9 Materials

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Mila, Frédéric

    2015-10-01

    Recent experiments on the Ba3X Sb2O9 family have revealed materials that potentially realize spin- and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X2 +-Sb5 + dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, Tfrz , at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba3 CuSb2 O9 . At T =Tfrz we find a complicated "branching" structure of superexchange-linked X2 + clusters, which form a fractal pattern with fractal dimension df=1.90 . We show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalized orphan spins.

  6. Chiral separation of acidic compounds using an O-9-(tert-butylcarbamoyl)quinidine functionalized monolith in micro-liquid chromatography.

    PubMed

    Wang, Qiqin; Zhu, Peijie; Ruan, Meng; Wu, Huihui; Peng, Kun; Han, Hai; Somsen, Govert W; Crommen, Jacques; Jiang, Zhengjin

    2016-04-29

    An O-9-(tert-butylcarbamoyl) quinidine (t-BuCQD) functionalized polymeric monolithic capillary column was prepared by the in situ copolymerization method. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy and micro-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained for this monolithic column. The chiral recognition ability of the resulting monolith was also evaluated using 47 N-derivatized amino acids, eight N-derivatized dipeptides, and two herbicides. Under the selected conditions, the enantiomers of all chiral analytes were baseline separated with exceptionally high selectivity and resolution using micro-LC. It is worth noting that this chiral stationary phase (CSP) containing quinidine with a tert-butyl carbamate residue as chiral selector exhibits much higher enantioselectivity and diastereoselectivity than the previously developed O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD) based CSP for N-derivatized amino acids and dipeptides. These results indicate that this novel quinidine-based polymeric monolith can be used as an effective tool for the enantioseparation of chiral acidic compounds. PMID:27038701

  7. Observations of Co4+ in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9.

    PubMed

    Klie, R F; Qiao, Q; Paulauskas, T; Gulec, A; Rebola, A; Öğüt, S; Prange, M P; Idrobo, J C; Pantelides, S T; Kolesnik, S; Dabrowski, B; Ozdemir, M; Boyraz, C; Mazumdar, D; Gupta, A

    2012-05-11

    Ca3Co4O9 has a unique structure that leads to exceptionally high thermoelectric transport. Here we report the achievement of a 27% increase in the room-temperature in-plane Seebeck coefficient of Ca3Co4O9 thin films. We combine aberration-corrected Z-contrast imaging, atomic-column resolved electron energy-loss spectroscopy, and density-functional calculations to show that the increase is caused by stacking faults with Co4+-ions in a higher spin state compared to that of bulk Ca3Co4O9. The higher Seebeck coefficient makes the Ca3Co4O9 system suitable for many high temperature waste-heat-recovery applications.

  8. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  9. A novel tunable white light emitting multiphase phosphor obtained from Ba2TiP2O9 by introducing Eu3+

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Wan, Jieqiong; Ni, Jia; Lu, Zhouguang; Ma, Ruguang; Zhou, Yao; Wang, Jiacheng; Liu, Qian

    2016-04-01

    Tunable white light was realized in samples Ba2(1- x)TiP2O9:2 xEu ( x = 0-0.80) by introducing orange-red light emitting Eu3+ in self-activated blue-green light emitting matrix Ba2TiP2O9. The sample Ba2(1- x)TiP2O9:2 xEu is a multiphase system consisting of Ba2TiP2O9, EuPO4 and TiO2 when x is greater than or equal to 0.20. The tunable light from blue-green to bluish-white, to white, and eventually to pinky-white of samples Ba2(1- x)TiP2O9:2 xEu under UV light excitation is attributed to the light mixture of tunable blue-green light from Ti4+-O2- charge transfer transition in Ba2TiP2O9 and orange-red light from Eu3+ 4f-4f transition mostly in EuPO4. The Commission International de l'Eclairage chromaticity coordinates, correlated color temperature and color rendering index were tuned from (0.262, 0.339), 9492 K and 74 for matrix sample Ba2TiP2O9 to (0.324, 0.346), 5876 K and 87 for sample Ba2(1- x)TiP2O9:2 xEu ( x = 0.40) under UV light excitation. Therefore, a kind of promising UV-excited white light emitting multiphase phosphor was obtained.

  10. Tomographic separation of composite spectra - The components of the O-star spectroscopic binary AO Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Bagnuolo, William G., Jr.; Gies, Douglas R.

    1991-01-01

    The UV photospheric lines of the short-period, double-lined O-star spectroscopic binary AO Cas are analyzed. Archival data from IUE (16 spectra uniformly distributed in orbital phase) were analyzed with a tomography algorithm to produce the separate spectra of the two stars in six spectral regions. The spectral classifications of the primary and secondary, O9.5 III and O8 V, respectively, were estimated through a comparison of UV line ratios with those in spectral standard stars. An intensity ratio of 0.5-0.7 (primary brighter) at 1600 A is compatible with the data.

  11. Local Jahn-Teller distortions and orbital ordering in Ba3Cu1 +xSb2 -xO9 investigated by neutron scattering

    NASA Astrophysics Data System (ADS)

    Li, Bing; Louca, Despina; Feygenson, Mikhail; Brown, Craig M.; Copley, John R. D.; Iida, Kazuki

    2016-01-01

    A spin-orbital quantum liquid state is theoretically proposed in the honeycomb lattice of Ba3CuSb2O9 , enabled by dynamic short-range correlations between the spin and orbital degrees of freedom. Using neutron diffraction, the local atomic structure of Ba3Cu1 +xSb2 -xO9 at x =0 and 0.1 is obtained via the pair density function analysis. The results indicate that both compositions exhibit local Jahn-Teller (JT) distortions with the elongated CuO3 octahedral configuration. In Ba3Cu1.1Sb1.9O9 , JT ordering of the distorted CuO3 octahedra gives rise to the orthorhombic symmetry with ferro-orbital order. On the other hand, in Ba3CuSb2O9 , even though the CuO3 octahedra are JT distorted, there is no long-range ordering hence the symmetry is hexagonal. Furthermore, the local singlet excitation at 5.8 meV observed in Ba3CuSb2O9 below 50 K is absent in Ba3Cu1.1Sb1.9O9 . Instead, an excitation at 2.5 meV is observed in the latter, which is likely associated with short-range spin order.

  12. Local Jahn-Teller distortions and orbital ordering in Ba3Cu1+xSb2-xO9 investigated by neutron scattering

    DOE PAGES

    Li, Bing; Feygenson, Mikhail; Brown, Craig M.; Copley, John R. D.; Iida, Kazuki

    2016-01-15

    In this study, a spin-orbital quantum liquid state is theoretically proposed in the honeycomb lattice of Ba3CuSb2O9, enabled by dynamic short-range correlations between the spin and orbital degrees of freedom. Using neutron diffraction, the local atomic structure of Ba3Cu1+xSb2-xO9 at x = 0 and 0.1 is obtained via the pair density function analysis. The results indicate that both compositions exhibit local Jahn-Teller (JT) distortions with the elongated CuO3 octahedral configuration. In Ba3Cu1.1Sb1.9O9, JT ordering of the distorted CuO3 octahedra gives rise to the orthorhombic symmetry with ferro-orbital order. On the other hand, in Ba3CuSb2O9, even though the CuO3 octahedra aremore » JT distorted, there is no long-range ordering hence the symmetry is hexagonal. Furthermore, the local singlet excitation at 5.8 meV observed in Ba3CuSb2O9 below 50 K is absent in Ba3Cu1.1Sb1.9O9. Instead, an excitation at 2.5 meV is observed in the latter, which is likely associated with short-range spin order.« less

  13. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    SciTech Connect

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-03-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M {sub ☉} are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars.

  14. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  15. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen.

    PubMed

    Liston, Sean D; Clarke, Bradley R; Greenfield, Laura K; Richards, Michele R; Lowary, Todd L; Whitfield, Chris

    2015-01-01

    The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane. PMID:25422321

  16. Exceptional Stars

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Hansen, B.; van Kerkwijk, M.; Phinney, E. S.

    2005-12-01

    As part of our Interdisciplinary Scientist effort (PI, Kulkarni) for the Space Interferometry Mission (SIM) we proposed an investigation with SIM of a number of exceptional stars. With SIM we plan to observe dozens of nearby white dwarfs and search for planets surviving the evolution away from the main sequence as well as (newly formed) planets formed in the circumbinary disks of post-AGB binaries or as a result of white dwarf mergers. We propose to measure the proper motion of a sample of X-ray binaries and Be star binaries with the view of understanding the originof high latitude objects and inferring natal kicks and pre-supernova orbits. We plan to observe several compact object binaries to determine the mass of the compact star. Of particular importance is the proposed observation of SS 433 (for which we propose to use the spectrometer on SIM to measure the proper motion of the emission line clumps embedded in the relativistic jets). Separately we are investigating the issue of frame tie between SIM and the ecliptic frame (by observing binary millisecond pulsars with SIM; the position of these objects is very well determined by pulsar timing) and the degree to which highly precise visibility amplitude measurements can be inverted to infer binary parameters.

  17. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm.

    PubMed

    Gao, Z L; Liu, S D; Zhang, J J; Zhang, S J; Zhang, W G; He, J L; Tao, X T

    2013-03-25

    In this paper, the spontaneous Raman spectra and second harmonic generation (SHG) properties at 589 nm of a novel Raman crystal BaTeMo(2)O(9) (BTM) were investigated. The BTM crystal was cut along the type-II SHG phase-matching direction for the first-order Raman shift at 1178 nm to realize the SRS and SHG simultaneously. Pumped by a nanosecond 1064 nm laser source, a self-frequency-doubled BTM Raman laser operating at 589 nm has been demonstrated for the first time. At the pump pulse energy of 48 mJ, the maximum yellow laser output pulse energy of 5.6 mJ was obtained with an optical-to-optical conversion efficiency of 11.7%. Our results show that BTM crystal is one of the promising candidate Raman materials to generate yellow laser radiation.

  18. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  19. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  20. Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the two-stage sintering technique

    NASA Astrophysics Data System (ADS)

    Khamman, Orawan; Jainumpone, Jiraporn; Watcharapasorn, Anucha; Ananta, Supon

    2016-08-01

    The potential utilization of two-stage sintering for the production of very dense and pure nickel diniobate (Ni4Nb2O9) ceramics with low firing temperature was demonstrated. The effects of the designed sintering conditions on the phase formation, densification and microstructure of the ceramics were characterized by using X-ray diffraction (XRD), Archimedes method and scanning electron microscopy (SEM), respectively. The minor phase of columbite NiNb2O6 tended to form together with the desired Ni4Nb2O9 phase, depending on the sintering conditions. Optimization of the sintering conditions may lead to a single-phase Ni4Nb2O9 ceramics with an orthorhombic structure. The ceramics doubly sintered at 950/1250 °C for 4 h exhibited a maximum density of ~92%. Microstructures with denser angular grain-packing were generally found in the sintered Ni4Nb2O9 ceramics. However, the grains were irregular in shape when the samples were sintered at 1050/1250 °C. Two-stage sintering was also found to enhance the ferroelectric behavior of the Ni4Nb2O9 ceramic.

  1. One-step preparation of carbon nanotubes doped mesoporous birnessite K2Mn4O9 achieving 77% of theoretical capacitance by a facile redox reaction

    NASA Astrophysics Data System (ADS)

    Kang, Litao; Li, Peiyang; Tao, Keyu; Wang, Xiaomin; Liang, Wei; Gao, Yanfeng

    2016-01-01

    A facile, scalable and cost-efficient redox reaction is developed to prepare micro-powders of a quasi-crystallised, mesoporous birnessite-type manganese oxide, K2Mn4O9. In 1 M KOH electrolyte, the K2Mn4O9 powder shows a high specific capacitance of 754 F g-1 at 1 A g-1 (calculated with the net weight of K2Mn4O9 micro-powder only). Meanwhile, the electrode retains 91% of its initial capacitance after 5000 cycles at a high current density of 5 A g-1. By simply adding carbon nanotubes (CNTs) into the reaction system, the specific capacitances of as-prepared K2Mn4O9/CNTs composites are further increased to 929 and 1055 F g-1 at 1 A g-1 in 1 and 6 M KOH electrolyte (corresponding to 69 and 77% of the theoretical capacitance of MnO2), or 600 and 674 F g-1 at 5 A g-1, respectively. Significantly, a maximum energy density of 62 Wh kg-1 at a power density of 852 W kg-1 could be achieved based on a K2Mn4O9/CNTs//activated carbon asymmetric supercapacitor (ASC). At the same time, the ASC device exhibits a decent long cycle life with 85% specific capacitance retained after 1000 cycles, suggesting its wide application potential in low-cost high energy density storage systems.

  2. A novel hexanuclear titanium(iv)-oxo-iminodiacetate cluster with a Ti6O9 core: single-crystal structure and photocatalytic activities.

    PubMed

    Ni, Lubin; Liang, Dashuai; Cai, Yin; Diao, Guowang; Zhou, Zhaohui

    2016-05-01

    A new family of hexanuclear titanium(iv)-oxo-carboxylate cluster K7H[Ti6O9(ida)6]Cl2·13H2O {Ti6O9} has been synthesized via the H2O2-assisted reaction between TiCl4 and iminodiacetate ligands. This cluster was fully characterized by single-crystal X-ray diffraction and a wide range of analytical methods, including FT-IR, UV/vis spectroscopy as well as electrochemistry and thermogravimetric analysis. As a new type of carboxylate substituted Ti-oxo-cluster, the structural motif of the {Ti6O9} cluster consists of one symmetric {Ti6O6} hexagonal prism with two staggered triangular {Ti3O3} subunits linked by three μ2-O bridges. The {Ti6O9} polyanions are linked by K(+) cations to form a novel 3D architecture. The structural information and stability of the {Ti6O9} polyanion in aqueous solution were thoroughly investigated by solid-state/solution NMR, ESI-MS spectroscopy. Moreover, this Ti-oxo cluster exhibits remarkable potential as a visible-light homogeneous photocatalyst for degradation of rhodamine B (RhB). Finally, a proposed peroxotitanium(iv)-mediated photocatalytic pathway involved is illustrated by spectroscopic data.

  3. Biaxial crystal α-BaTeMo(2)O(9): theory study of large birefringence and wide-band polarized prisms design.

    PubMed

    Gao, Z L; Wu, Q; Liu, X T; Sun, Y X; Tao, X T

    2015-02-23

    α-BaTeMo(2)O(9) is a novel biaxial crystal with wide-band transmittance spectrum. The refractive index dispersion curves and birefringence of the α-BaTeMo(2)O(9) crystal were obtained in spectral range of 0.4~5 μm. The origin of the birefringence for the crystal has been calculated and interpreted on the basis of the crystal structure combined with theoretical studies. The polarized directions and formulations of refractive index of optical waves in biaxial α-BaTeMo(2)O(9) were investigated by solving the refractive index ellipsoid equations. Furthermore, polarized prisms based on the α-BaTeMo(2)O(9) crystal used in spectral ranges of 0.4~2.7 μm and 0.48~4.5 μm were designed and characterized. The extinction ratios of both prisms were determined to be larger than 10000:1, which would satisfy the practical requirements. The impacts on extinction ratio for biaxial and uniaxial crystals were also discussed. To our knowledge, it is the first report about biaxial crystals for the polarized prisms, and the results show that the α-BaTeMo(2)O(9) crystal is a promising material for polarized optical components, especially in the range of 3~5 μm.

  4. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  5. Biaxial crystal α-BaTeMo(2)O(9): theory study of large birefringence and wide-band polarized prisms design.

    PubMed

    Gao, Z L; Wu, Q; Liu, X T; Sun, Y X; Tao, X T

    2015-02-23

    α-BaTeMo(2)O(9) is a novel biaxial crystal with wide-band transmittance spectrum. The refractive index dispersion curves and birefringence of the α-BaTeMo(2)O(9) crystal were obtained in spectral range of 0.4~5 μm. The origin of the birefringence for the crystal has been calculated and interpreted on the basis of the crystal structure combined with theoretical studies. The polarized directions and formulations of refractive index of optical waves in biaxial α-BaTeMo(2)O(9) were investigated by solving the refractive index ellipsoid equations. Furthermore, polarized prisms based on the α-BaTeMo(2)O(9) crystal used in spectral ranges of 0.4~2.7 μm and 0.48~4.5 μm were designed and characterized. The extinction ratios of both prisms were determined to be larger than 10000:1, which would satisfy the practical requirements. The impacts on extinction ratio for biaxial and uniaxial crystals were also discussed. To our knowledge, it is the first report about biaxial crystals for the polarized prisms, and the results show that the α-BaTeMo(2)O(9) crystal is a promising material for polarized optical components, especially in the range of 3~5 μm. PMID:25836424

  6. Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba_{3}ZnIr_{2}O_{9}.

    PubMed

    Nag, Abhishek; Middey, S; Bhowal, Sayantika; Panda, S K; Mathieu, Roland; Orain, J C; Bert, F; Mendels, P; Freeman, P G; Mansson, M; Ronnow, H M; Telling, M; Biswas, P K; Sheptyakov, D; Kaushik, S D; Siruguri, Vasudeva; Meneghini, Carlo; Sarma, D D; Dasgupta, Indra; Ray, Sugata

    2016-03-01

    We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK. PMID:26991199

  7. Rapid synthesis and characterization of (Ca 1- xBa x) 3Co 4O 9 thin films using combinatorial methods

    NASA Astrophysics Data System (ADS)

    Minami, H.; Itaka, K.; Kawaji, H.; Wang, Q. J.; Koinuma, H.; Lippmaa, M.

    2002-09-01

    We have successfully fabricated high-quality thin film of Ca 3Co 4O 9, an oxide with superior thermoelectric properties, on a lattice matched TiO 2 (1 0 0) substrate using PLD. In order to investigate the effect of elemental substitution on thermoelectric properties, we fabricated a composition-spread library of (Ca 1- xBa x) 3Co 4O 9 (0≤ x≤0.2), having linear compositional variation x along one direction of the substrate surface. A pin-probe type multi-channel measurement system was developed to quickly measure the thermoelectric properties (Seebeck coefficient and electric conductivity) of the library for the rapid characterization. The good correspondence of the data for Ca 3Co 4O 9 film with those for bulk sample verifies that we can accelerate the exploration of thermoelectric oxides at least 10 times faster than the conventional one-by-one approach.

  8. Origin of the Spin-Orbital Liquid State in a Nearly J =0 Iridate Ba3ZnIr2O9

    NASA Astrophysics Data System (ADS)

    Nag, Abhishek; Middey, S.; Bhowal, Sayantika; Panda, S. K.; Mathieu, Roland; Orain, J. C.; Bert, F.; Mendels, P.; Freeman, P. G.; Mansson, M.; Ronnow, H. M.; Telling, M.; Biswas, P. K.; Sheptyakov, D.; Kaushik, S. D.; Siruguri, Vasudeva; Meneghini, Carlo; Sarma, D. D.; Dasgupta, Indra; Ray, Sugata

    2016-03-01

    We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5 + (5 d4) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J =0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

  9. Center-to-limb variation of intensity and polarization in continuum spectra of FGK stars for spherical atmospheres

    NASA Astrophysics Data System (ADS)

    Kostogryz, N. M.; Milic, I.; Berdyugina, S. V.; Hauschildt, P. H.

    2016-02-01

    Aims: One of the necessary parameters needed for the interpretation of the light curves of transiting exoplanets or eclipsing binary stars (as well as interferometric measurements of a star or microlensing events) is how the intensity and polarization of light changes from the center to the limb of a star. Scattering and absorption processes in the stellar atmosphere affect both the center-to-limb variation of intensity (CLVI) and polarization (CLVP). In this paper, we present a study of the CLVI and CLVP in continuum spectra, taking into consideration the different contributions of scattering and absorption opacity for a variety of spectral type stars with spherical atmospheres. Methods: We solve the radiative transfer equation for polarized light in the presence of a continuum scattering, taking into consideration the spherical model of a stellar atmosphere. To cross-check our results, we developed two independent codes that are based on Feautrier and short characteristics methods, respectively, Results: We calculate the center-to-limb variation of intensity (CLVI) and polarization (CLVP) in continuum for the Phoenix grid of spherical stellar model atmospheres for a range of effective temperatures (4000-7000 K), gravities (log g = 1.0-5.5), and wavelengths (4000-7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our codes and compare our calculations for the solar atmosphere with published photometric and polarimetric measurements. We also show that our two codes provide similar results in all considered cases. Conclusions: For sub-giant and dwarf stars (log g = 3.0-4.5), the lower gravity and lower effective temperature of a star lead to higher limb polarization of the star. For giant and supergiant stars (log g = 1.0-2.5), the highest effective temperature yields the largest polarization. By decreasing the effective temperature of a star down to 4500-5500 K (depending on log g), the limb polarization decreases and

  10. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    SciTech Connect

    Lagioia, E. P.; Bono, G.; Buonanno, R.; Milone, A. P.; Stetson, P. B.; Prada Moroni, P. G.; Dall'Ora, M.; Aparicio, A.; Monelli, M.; Calamida, A.; Ferraro, I.; Iannicola, G.; Gilmozzi, R.; Matsunaga, N.; Walker, A.

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  11. Lighting up stars in chemical evolution models: the CMD of Sculptor

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; de Boer, T. J. L.; Cignoni, M.; Tosi, M.

    2016-08-01

    We present a novel approach to draw the synthetic colour-magnitude diagram (CMD) of galaxies, which can provide - in principle - a deeper insight in the interpretation and understanding of current observations. In particular, we `light up' the stars of chemical evolution models, according to their initial mass, metallicity and age, to eventually understand how the assumed underlying galaxy formation and evolution scenario affects the final configuration of the synthetic CMD. In this way, we obtain a new set of observational constraints for chemical evolution models beyond the usual photospheric chemical abundances. The strength of our method resides in the very fine grid of metallicities and ages of the assumed data base of stellar isochrones. In this work, we apply our photochemical model to reproduce the observed CMD of the Sculptor dSph and find that we can reproduce the main features of the observed CMD. The main discrepancies are found at fainter magnitudes in the main sequence turn-off and sub-giant branch, where the observed CMD extends towards bluer colours than the synthetic one; we suggest that this is a signature of metal-poor stellar populations in the data, which cannot be captured by our assumed one-zone chemical evolution model.

  12. Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Basu, S.; Huber, D.; Serenelli, A.; Casagrande, L.; Silva Aguirre, V.; Ball, W. H.; Creevey, O. L.; Gizon, L.; Handberg, R.; Karoff, C.; Lutz, R.; Marques, J. P.; Miglio, A.; Stello, D.; Suran, M. D.; Pricopi, D.; Metcalfe, T. S.; Monteiro, M. J. P. F. G.; Molenda-Żakowicz, J.; Appourchaux, T.; Christensen-Dalsgaard, J.; Elsworth, Y.; García, R. A.; Houdek, G.; Kjeldsen, H.; Bonanno, A.; Campante, T. L.; Corsaro, E.; Gaulme, P.; Hekker, S.; Mathur, S.; Mosser, B.; Régulo, C.; Salabert, D.

    2014-01-01

    We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the

  13. [Study on the Preparation of Ba3Si6O9N4 : Eu(2+) Phosphor and the Characterization of Their Luminescence Properties].

    PubMed

    Pan, Hua-yan; Wang, Le; Luo, Dong; Li, Yang-hui; Zhang, Hong; Shen, Ye

    2016-03-01

    Ba3Si6O9N4 : Eu(2+) phosphors were synthesized by two-step synthesis processes based on high temperature solid phase using BaSiO3 as a precursor. The influence mechanism of the Eu(2+) doping concentration to the luminescence properties of Ba3Si6O9N4 : Eu(2+) phosphors were mainly investigated. This paper made a comparison between the luminescence properties of Ba3Si6ON4 : Eu(2+) phosphors prepared by two-step processes and solid- state reaction method. The results showed that the Ba3Si6O9N4 : Eu(3+) phosphors synthesized by two-step processes had higher purity and higher crystallinity. There exists concentration quenching in Ba3Si6O9N4 : Eu(2+) phosphors for both two-step processes and solid-state reaction when the doping concentration x is more than 9%. Both the concentration quenching mechanism of Ba3 Si 09 N4 : EuI+ phosphor prepared by solid-state reaction and two-step processes is electric dipole-dipole interaction. The emission peak of Ba3Si6O9N4 : Eu(2+) phosphors (peak 489 nm) prepared by two-step processes had a blue shift compared to the emission peak of Ba3Si6O9N4 : Eu2+ phosphors (peak 512nm) prepared by solid-state reaction. The emission peak of Ba3Si6O9N4 : Eu2+ phosphors prepared by two-step processes relatively close to the theoretical value (480 nm). The spectrum analysis result showed that the element component of Ba3Si6O3N4 : Eu2+ phosphors prepared by two-step processes was closer to the theoretical value, it means that the two-step processes can effectively reduce the lattice defects. The Ba3Si6O9N4 : Eu(2+) phosphors synthesized by two-step processes had better thermal stability, which demonstrates to be a highly promising phosphor for white-LED applications. PMID:27400500

  14. Magnetoelectric Coupling, Ferroelectricity, and Magnetic Memory Effect in Double Perovskite La3Ni2NbO9.

    PubMed

    Dey, K; Indra, A; De, D; Majumdar, S; Giri, S

    2016-05-25

    We observe ferroelectricity in an almost unexplored double perovskite La3Ni2NbO9. Ferroelectricity appears below ∼60 K, which is found to be correlated with the significant magnetostriction. A reasonably large value of spontaneous electric polarization is recorded to be ∼260 μC/m(2) at 10 K for E = 5 kV/cm, which decreases signifi- cantly upon application of a magnetic field (H), suggesting considerable magnetoelectric coupling. The dielectric permittivity is also influenced by H below the ferroelectric transition. The magnetodielectric response scales linearly to the squared magnetization, as described by the Ginzburg-Landau theory. Meticulous studies of static and dynamic features of dc magnetization and frequency dependent ac susceptibility results suggest spin-glass state below 29 K. Intrinsic magnetic memory effect is observed from zero-field cooled magnetization and isothermal remanent magnetization studies, also pointing spin-glass state below 29 K. Appearance of ferroelectricity together with a significant magnetoelectric coupling in absence of conventional long-range magnetic order is promising for searching new magnetoelectric materials. PMID:27136317

  15. Atomic vapour deposition (AVD) of SrBi 2Ta 2O 9 using an all alkoxide precursor

    NASA Astrophysics Data System (ADS)

    Chalker, Paul R.; Potter, Richard J.; Roberts, John L.; Jones, Anthony C.; Smith, Lesley M.; Schumacher, Marcus

    2004-12-01

    A "single-source" Sr-Ta heterometal alkoxide precursor, Sr[Ta(OEt) 5(dmae)] 2 (dmae=OCH 2CH 2NMe 2), has been used for atomic vapour deposition (AVD) of SrBi 2Ta 2O 9 (SBT). This single-source precursor is designed to alleviate the mismatch between conventional Sr and Ta sources. Strontium tantalate thin films were deposited on silicon using the Sr[Ta(OEt) 5(dmae)] 2, and the optimum temperatures for deposition of strontium tantalate with a Sr:Ta ratio of 0.5 was found to be ˜510 °C. Deposition of Bi-oxide films using Bi(mmp) 3 (mmp=OCMe 2CH 2OMe) indicates similar decomposition behaviour to the Sr-Ta alkoxide precursor, demonstrating its suitability as a complementary source of Bi for SBT. The co-incorporation of Bi and Sr within the SBT films is promoted through the deposition of bismuth oxide/strontium tantalate super lattices. After post-growth annealing the super lattices are converted to strontium bismuth tantalate thin films.

  16. Ionic conductivity and dielectric relaxation in Y doped La2Mo2O9 oxide-ion conductors

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2014-10-01

    In this work, we have studied electrical conductivity and dielectric properties of polycrystalline La2-xYxMo2O9 (0.05 ≤ x ≤ 0.3) compounds in the temperature range from 358 K to 1088 K and the frequency range from 10 Hz to 3 GHz. The bulk and grain boundary contributions to the overall conductivity of these compounds show Arrhenius type behavior at low temperatures. The random free-energy barrier model has been used to analyze the frequency dependence of the conductivity. The charge carrier relaxation time and its activation energy have been determined from the analysis of the conductivity spectra using this model. The results obtained from the random free-energy barrier model satisfy Barton-Nakajima-Namikawa relation. The conduction mechanism has been also predicted using random free-energy barrier model and the scaling formalism. We have observed that the dielectric relaxation peaks arise from the diffusion of oxygen ions via vacancies.

  17. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Peng, Dengfeng; Wang, Xusheng; Xu, Chaonan; Yao, Xi; Lin, Jian; Sun, Tiantuo

    2012-05-01

    Er3+ doped CaBi2Ta2O9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er3+ doped CBT ceramics were investigated as a function of Er3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4S3/2 and 4F9/2 to 4I15/2, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  18. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  19. Lifestyles of the Stars.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  20. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  1. Origins of the thick disk of the Milky Way Galaxy as traced by the elemental abundances of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ruchti, Gregory Randal

    2010-12-01

    Understanding the formation and evolution of disks in galaxies in the early universe is very important for understanding the forms of galaxies today. Recent studies of the Milky Way Galaxy, an ideal galaxy for analyzing individual stars within its disk, indicate that the formation of the Galactic disk is very complex. Most of these studies, however, contain very few stars at low metallicities. Metal-poor stars are important, because they are potential survivors of the earliest star formation in the disk of the Milky Way Galaxy. I therefore measured elemental abundances of a statistically significant sample of metal-poor ([Fe/H] ≲ - 1.0) stars in the disk of the Galaxy, chosen from the RAVE survey in order to study the early formation history of the Galactic disk. I report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 dwarf/sub-giant metal-poor thick-disk candidate stars. I found that the [alpha/Fe] ratios are enhanced implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star forming region had a short duration. The relative lack of scatter in the [alpha/Fe] ratios implies good mixing in the interstellar medium prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star initial mass function. I further looked for radial or vertical gradients in metallicity or alpha-enhancement for the metal-poor thick disk, never before done for such a sample. I found no radial gradient and a moderate vertical gradient in my derived iron abundance, and only minimal-amplitude gradients in [alpha/Fe]. In addition, I show that the distribution of orbital eccentricities for my metal-poor thick-disk stars requires that the thick disk was formed primarily in situ, with direct accretion being extremely minimal. I conclude that the alpha-enhancement of the metal-poor thick disk, and the lack of obvious radial or

  2. Excellent stability of plasma-sprayed bioactive Ca 3ZrSi 2O 9 ceramic coating on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-05-01

    In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca 3ZrSi 2O 9 was synthesized. The aim of this study was to fabricate Ca 3ZrSi 2O 9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca 3ZrSi 2O 9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca 3ZrSi 2O 9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.

  3. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    SciTech Connect

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  4. Absence of Jahn−Teller transition in the hexagonal Ba3CuSb2O9 single crystal

    PubMed Central

    Katayama, Naoyuki; Kimura, Kenta; Han, Yibo; Nasu, Joji; Drichko, Natalia; Nakanishi, Yoshiki; Halim, Mario; Ishiguro, Yuki; Satake, Ryuta; Nishibori, Eiji; Yoshizawa, Masahito; Nakano, Takehito; Nozue, Yasuo; Wakabayashi, Yusuke; Ishihara, Sumio; Hagiwara, Masayuki; Sawa, Hiroshi; Nakatsuji, Satoru

    2015-01-01

    With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose−Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin–orbital entanglement in FeSc2S4. To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin–orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn−Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn−Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin–orbital entangled quantum liquid state. PMID:26170280

  5. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  6. The Cambridge Double Star Atlas

    NASA Astrophysics Data System (ADS)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  7. The Millennium Star Atlas

    NASA Astrophysics Data System (ADS)

    Sinnott, R. W.

    1997-08-01

    Derived from Hipparcos and Tycho observations, the Millennium Star Atlas is a set of 1548 charts covering the entire sky to about magnitude 11. It stands apart from all previous printed atlases in completeness to magnitude 10 and in uniformity around the sky. The generous chart scale has made possible a number of innovations never before seen in a star atlas: arrows on high-proper-motion stars, double-star ticks conveying separation and position angle for a specific modern epoch, distance labels for nearby stars, and variable stars coded by amplitude, period, and type. Among the nonstellar objects plotted, more than 8000 galaxies are shown with aspect ratio and orientation.

  8. The Pistol Star

    NASA Astrophysics Data System (ADS)

    Najarro, F.; Figer, D. F.

    1998-06-01

    Results of an spectroscopic investigation of the Pistol star are presented. The near-infrared spectra and photometry data are fit with stellar wind models to find that the star is extraordinarily luminous, L = 106.7±0.5 L⊙, making it one of the most luminous stars known. Coupled with the relatively cool temperature, Teff = 10^{4.17_{ - 0.06}^{ + 0.19} } K, the star is clearly in violation of the Humphreys-Davidson limit. The derived line of sight velocity of the star assures its membership in the Quintuplet cluster. This, along with the inferred extinction, places the star at the Galactic Center.

  9. Effect of cation substitution on structural transition: synthesis, characterization and theoretical studies of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6.

    PubMed

    Yang, Yun; Su, Xin; Pan, Shilie; Yang, Zhihua

    2015-10-21

    Single crystals of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6 have been successfully synthesized through conventional high-temperature solid-state reactions. They are structurally characterized by single crystal X-ray diffraction and exhibit three-dimensional crystal structures consisting of isolated planar BO3 as fundamental building blocks. Interestingly, for the centrosymmetric crystal structure of NaCaBO3 (Na3Ca3B3O9), as 2/3 of the Na(+) ions are substituted by Ca(2+) ions, NaCa4B3O9 is obtained and crystallizes in the noncentrosymmetric space group Ama2 (crystal class mm2). A second harmonic generation (SHG) test of the title compound by the Kurtz-Perry method shows that NaCa4B3O9 can be phase matchable with an effective SHG coefficient approximately one-half that of KH2PO4 (KDP). Studies of their optical properties as well as band structure calculations based on density functional theory methods have been also performed. NaCa4B3O9 possesses a moderate birefringence of about 0.05 at 1064 nm. To explain the difference in optical nonlinearity we compared the electronic structures of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals, in particular at the bottom of the conduction band (CB) and the top of the valence band (VB), since they are known to play a primary role in SHG. These electronic structures are responsible for the optical-nonlinearity of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals. PMID:26387438

  10. K[AsW2O9], the first member of the arsenate-tungsten bronze family: Synthesis, structure, spectroscopic and non-linear optical properties

    NASA Astrophysics Data System (ADS)

    Alekseev, Evgeny V.; Felbinger, Olivier; Wu, Shijun; Malcherek, Thomas; Depmeier, Wulf; Modolo, Giuseppe; Gesing, Thorsten M.; Krivovichev, Sergey V.; Suleimanov, Evgeny V.; Gavrilova, Tatiana A.; Pokrovsky, Lev D.; Pugachev, Alexey M.; Surovtsev, Nikolay V.; Atuchin, Victor V.

    2013-08-01

    K[AsW2O9], prepared by high-temperature solid-state reaction, is the first member of the arsenate-tungsten bronze family. The structure of K[AsW2O9] is based on a 3-dimensional (3D) oxotungstate-arsenate framework with the non-centrosymmetric P212121 space group, a=4.9747(3) Å, b=9.1780(8) Å, c=16.681(2) Å. The material was characterized using X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman and infrared (IR) spectroscopic techniques. The results of DSC demonstrate that this phase is stable up to 1076 K. Second harmonic generation (SHG) measurements performed on a powder sample demonstrate noticeable (0.1 of LiIO3) non-linear optical (NLO) activity.

  11. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  12. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  13. Astrophysics: Stars fight back

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2014-12-01

    Galaxies contain fewer stars than predicted. The discovery of a massive galactic outflow of molecular gas in a compact galaxy, which forms stars 100 times faster than the Milky Way, may help to explain why. See Letter p.68

  14. 'Polaris, Mark Kummerfeldt's Star, and My Star.'

    ERIC Educational Resources Information Center

    McLure, John W.

    1984-01-01

    In most astronomy courses, descriptions of stars and constellations reveal the western European origins of the astronomers who named them. However, it is suggested that a study of non-western views be incorporated into astronomy curricula. Descriptions of various stars and constellations from different cultures and instructional strategies are…

  15. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca3Co4O9 by a starch assisted sol-gel combustion method

    NASA Astrophysics Data System (ADS)

    Agilandeswari, K.; Ruban Kumar, A.

    2014-09-01

    In this present work we discussed the synthesis of pure Ca3Co4O9 ceramic powder by a starch assisted sol-gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA-DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca3Co4O9 at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150-300 nm. Optical properties of Ca3Co4O9 ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca3Co4O9 that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M-H curve shows the hysteresis loop with saturation magnetization (Ms) and confirms the presence of soft magnetic materials.

  16. Rare-earth-free red-emitting K2Ge4O9:Mn(4+) phosphor excited by blue light for warm white LEDs.

    PubMed

    Ding, Xin; Wang, Qian; Wang, Yuhua

    2016-03-21

    A series of novel K2Ge4O9:Mn(4+) phosphors with red emission under blue light excitation have been synthesized successfully by traditional high-temperature solid-state reaction. The structure of K2Ge4O9 has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction with Rietveld refinement. The PL properties have been investigated by measuring diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature-dependent spectra. The KGO:0.1% Mn(4+) phosphor can emit red light peaking at 663 nm under UV or blue light excitation. The critical quenching concentration of Mn(4+) was about 0.1 mol%. The concentration quenching mechanism could be a d-d interaction for the Mn(4+) center. The CIE chromaticity coordinates and FWHM are (0.702, 0.296) and 20 nm, which demonstrated that the K2Ge4O9:Mn(4+) has a high color purity. By tuning the weight ratio of yellow and red phosphors, the fabricated white LEDs, using a 455 nm InGaN blue chip combined with a blend of the yellow phosphor YAG:Ce(3+) and the red-emitting KGO:Mn(4+) phosphor driven by a 40 mA current, can get white light with chromaticity coordinates (0.405, 0.356) and CCT 3119 K. These results indicated that K2Ge4O9:Mn(4+) is a potential red phosphor to match blue LED chips to get warm white light. PMID:26923078

  17. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  18. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  19. Electron diffraction and microscopy study of the structure and microstructure of the hexagonal perovskite Ba3Ti2MnO9.

    PubMed

    Maunders, Christian; Whitfield, Harold J; Hay, David G; Etheridge, Joanne

    2007-06-01

    This paper reports a structural and microstructural investigation of the hexagonal perovskite Ba(3)Ti(2)MnO(9) using electron microscopy and diffraction. Convergent-beam electron diffraction (CBED) revealed the structure has the non-centrosymmetric space group P6(3)mc (186) at room temperature and at approximately 110 K. Compared with the centrosymmetric parent structure BaTiO(3), with space group P6(3)/mmc, this represents a break in mirror symmetry normal to the c axis. This implies the Ti and Mn atoms are ordered on alternate octahedral sites along the 0001 direction in Ba(3)Ti(2)MnO(9). Using high-resolution electron microscopy (HREM), we observed occasional 6H/12R interfaces on (0001) planes, however, no antiphase boundaries were observed, as were seen in Ba(3)Ti(2)RuO(9). Using powder X-ray Rietveld refinement we have measured the lattice parameters from polycrystalline samples to be a = 5.6880 +/- 0.0005, c = 13.9223 +/- 0.0015 A at room temperature. PMID:17507751

  20. Synthesis, characterization and theoretical studies of nonlinear optical crystal Sr2B5O9(OH)·H2O.

    PubMed

    Zhang, Fangyuan; Zhang, Fangfang; Qun, Jing; Pan, Shilie; Yang, Zhihua; Jia, Dianzeng

    2015-04-28

    Strontium borate Sr2B5O9(OH)·H2O (space group C2, No. 5) has been synthesized in high yields using a facile hydrothermal method. The UV-Vis-NIR diffuse reflectance spectrum shows that it has a wide transparency range extending from UV to NIR with the short-wavelength cut off edge below 190 nm. Second-harmonic generation (SHG) has been measured with a 1064 nm laser using the Kurtz and Perry technique, which shows that Sr2B5O9(OH)·H2O is phase matchable and the powder SHG effect is approximately 3 times that of KDP. It also has a high thermal stability up to 500 °C which has been identified by TG, DSC and variable-temperature PXRD. These properties make it possible for application as a UV nonlinear optical (NLO) material. Based on the electronic band structure, the optical refractive indices, birefringence, and SHG coefficients of Sr2B5O9(OH)·H2O are calculated, which are consistent with experiments. In addition, the electronic structure, SHG-weighted electron density and real-space atom-cutting analyses are performed to elucidate the origin of its NLO properties. PMID:25803617

  1. America's Star Libraries

    ERIC Educational Resources Information Center

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  2. Managing the star performer.

    PubMed

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas. PMID:23767124

  3. A novel Pd3O9@α-Al2O3 catalyst under a hydroxylated effect: high activity in the CO oxidation reaction.

    PubMed

    Li, Qiaohong; Wei, Yongqin; Sa, Rongjian; Ma, Zuju; Wu, Kechen

    2015-12-28

    Considering the importance of palladium-based and doped metal-oxide catalysts in CO oxidation, we design a new Pd3O9@α-Al2O3 catalyst and simulate its efficiency under a hydroxylated effect. The structure, electronic structure and oxidation activity of the hydroxylated Pd3O9@α-Al2O3(0001) surface are investigated by density functional theory. Under the O-rich growth conditions, Pd preferentially replaces Al. The lowest formation energy of the Pd-doped α-Al2O3(0001) surface is 0.21 eV under conditions wherein the coverage of the Pd-doped α-Al2O3 is 0.75 on a pre-hydroxylated surface and the water coverage is 0.25, which leads to formation of a Pd3O9 cluster embedded in the Al2O3(0001) surface. The reaction mechanisms of CO oxidization have been elucidated first by CO adsorption and migration, second by O(v) formation with the first CO2 release, then by the first foreign O2 filling and CO co-adsorption, and finally by the second CO2 desorption and restoration of the hydroxylated Pd3O9@α-Al2O3(0001) surface. The rate-determining step is the formation of the first CO2 in the whole catalytic cycle. The results also indicate that the energy barrier for CO oxidization is obviously reduced compared to that of the undoped surface, which implies that the introduction of Pd can efficiently improve the oxidation reactivity of the α-Al2O3(0001) surface. Compared to the synthesized Ir1/FeO(x) (1.41 eV) and Pt1/FeO(x) (0.79 eV) catalysts, the reaction activation barrier of CO oxidation is lowered by 0.65 eV and 0.03 eV, respectively. Therefore, the Pd3O9@α-Al2O3 catalyst shows superior catalytic activity in CO oxidation. The present results enrich the understanding of the catalytic oxidation of CO by palladium-based catalysts and provide a clue for fabricating palladium-based catalysts with low cost and high activity.

  4. A novel Pd3O9@α-Al2O3 catalyst under a hydroxylated effect: high activity in the CO oxidation reaction.

    PubMed

    Li, Qiaohong; Wei, Yongqin; Sa, Rongjian; Ma, Zuju; Wu, Kechen

    2015-12-28

    Considering the importance of palladium-based and doped metal-oxide catalysts in CO oxidation, we design a new Pd3O9@α-Al2O3 catalyst and simulate its efficiency under a hydroxylated effect. The structure, electronic structure and oxidation activity of the hydroxylated Pd3O9@α-Al2O3(0001) surface are investigated by density functional theory. Under the O-rich growth conditions, Pd preferentially replaces Al. The lowest formation energy of the Pd-doped α-Al2O3(0001) surface is 0.21 eV under conditions wherein the coverage of the Pd-doped α-Al2O3 is 0.75 on a pre-hydroxylated surface and the water coverage is 0.25, which leads to formation of a Pd3O9 cluster embedded in the Al2O3(0001) surface. The reaction mechanisms of CO oxidization have been elucidated first by CO adsorption and migration, second by O(v) formation with the first CO2 release, then by the first foreign O2 filling and CO co-adsorption, and finally by the second CO2 desorption and restoration of the hydroxylated Pd3O9@α-Al2O3(0001) surface. The rate-determining step is the formation of the first CO2 in the whole catalytic cycle. The results also indicate that the energy barrier for CO oxidization is obviously reduced compared to that of the undoped surface, which implies that the introduction of Pd can efficiently improve the oxidation reactivity of the α-Al2O3(0001) surface. Compared to the synthesized Ir1/FeO(x) (1.41 eV) and Pt1/FeO(x) (0.79 eV) catalysts, the reaction activation barrier of CO oxidation is lowered by 0.65 eV and 0.03 eV, respectively. Therefore, the Pd3O9@α-Al2O3 catalyst shows superior catalytic activity in CO oxidation. The present results enrich the understanding of the catalytic oxidation of CO by palladium-based catalysts and provide a clue for fabricating palladium-based catalysts with low cost and high activity. PMID:26308732

  5. Ponderable soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  6. Star field simulator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Star Field Simulator has been developed to serve as a source of radiation for the ASTRO Star Tracker. The star tracker and simulator are components of a motion compensation test facility located at Marshall Space Flight Center in Huntsville, Alabama. Preflight tests and simulations using various levels of guide stars are performed in the test facility to establish performance of the motion compensation system before being used in a flight environment. The ASTRO Star Tracker operates over a wide dynamic range of irradiance corresponding to visual stellar magnitudes of -0.8 to 8. A minimum of three simulated guide stars with variable magnitudes are needed to fully test the Star Tracker performance under simulated mission conditions.

  7. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Endl, M.; Csizmadia, Sz.; Gandolfi, D.; Jorda, L.; Grziwa, S.; Carone, L.; Pasternacki, T.; Aigrain, S.; Almenara, J. M.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Cabrera, J.; Cavarroc, C.; Cochran, W. B.; Deleuil, M.; Deeg, H. J.; Díaz, R.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gillon, M.; Guillot, T.; Hatzes, A.; Hébrard, G.; Léger, A.; Llebaria, A.; Lammer, H.; MacQueen, P. J.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Parviainen, H.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Weingrill, J.; Wuchterl, G.

    2012-09-01

    CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days. The planetary bulk density is (1.36 ± 0.48) × 103 kg m-3, very similar to the bulk density of Jupiter, and follows an M1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 ± 0.09 solar masses and 1.95 ± 0.2 solar radii. The star and the planet exchange extremetidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q∗/k2∗ ≤ 107. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.

  8. X-Ray Emission from Magnetically Torqued Disks of Oe/Be Stars

    SciTech Connect

    Li, Q.; Cassinelli, J. P.; Brown, J. C.; Waldron, W. L; Miller, N. A.

    2008-01-10

    The near-main-sequence B stars show a sharp dropoff in their X-ray-to-bolometric luminosity ratio in going from B1 to later spectral types. Here we focus attention on the subset of these stars that are also Oe/Be stars, to test the concept that the disks of these stars form by magnetic channeling of wind material toward the equator. Calculations are made of the X-rays expected from the magnetically torqued disk (MTD) model for Be stars discussed by Cassinelli et al., Maheswaran, and Brown et al. In this model, the wind outflow from Be stars is channeled and torqued by a magnetic field such that the flows from the upper and lower hemispheres of the star collide as they approach the equatorial zone. X-rays are produced by the material that enters the shocks above and below the disk region and radiatively cools and compresses while moving toward the MTD central plane. The model predictions are compared with ROSAT observations obtained for an O9.5 star, ζ Oph, by Berghöfer et al. and for seven Be stars from Cohen et al. Two types of fitting models are used to compare predictions with observations of X-ray luminosity versus spectral type. Extra consideration is also given here to the well-studied Oe star ζ Oph, for which we haveChandra observations of the X-ray line profiles of the triad of He-like lines from the ion Mg XI. Thus, the X-ray properties add to the list of observables that can be explained within the context of the MTD concept. This list already includes the Hα equivalent widths and white-light polarization of Be stars.

  9. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars. PMID:27214049

  10. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  11. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼1{{M}ȯ} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}ȯ} and luminosities  >{{10}10}{{L}ȯ} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  12. Intergalactic Star Formation

    NASA Astrophysics Data System (ADS)

    Boquien, Médéric

    2007-11-01

    The work presented here is about star formation in the unusual environment of collisional debris studied for the first time as such. These peculiar regions have an interstellar medium, and in particular a metallicity, similar to that of star forming regions in galactic discs while not undergoing similar environment effects such as density waves in the spiral arms for instance. This study has been conducted with a selection of exceptional systems that have ejected large quantities of gas into the intergalactic medium while also showing some intergalactic star forming regions. Principal Investigator as well as archive spectroscopy and imaging from multi-wavelength observations ranging from far ultraviolet to mid-infrared have been used. Withal a model has been built in order to reproduce the spectral energy distributions of intergalactic star forming regions and constrain the star formation histories, their extinctions and their fraction of stars coming from the parent galaxies' discs. Comparisons have been performed on the estimation of star formation rates between infrared, Halpha and ultraviolet wavelengths. This thesis has brought the following main new results: * some regions seem to be deprived of any old stellar population, and these are ideal laboratories in which to study star formation ; * the mid-infrared star formation rate estimator is as reliable as it is in spiral galaxies ; * the scatter in the estimation of star formation rates in various bands is similar to that of spiral galaxies and is mainly due to age effects ; * the combination of the extinction uncorrected Halpha line with mid-infrared yields a good estimation of the actual star formation rate ; * an important part of star formation, which can be as high as 85%, takes place in the intergalactic medium showing that in a young universe, in which this type of system is much more common than in the nearby universe, star formation from collisional debris can be an important factor of enrichment of

  13. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  14. Star formation regions in galaxies: Star complexes and spiral arms

    NASA Astrophysics Data System (ADS)

    Efremov, Iurii N.

    This book describes observational data on star formation regions (from young star clusters to spiral arms) in the Milky Way and other galaxies. It is concluded that not only high-luminosity stars but also star clusters and associations are forming together in vast complexes. It is claimed that these complexes are the primary, fundamental entities of star formation.

  15. V 3903 Sagittarii: a massive main-sequence (O7V+O9V) detached eclipsing binary

    NASA Astrophysics Data System (ADS)

    Vaz, L. P. R.; Cunha, N. C. S.; Vieira, E. F.; Myrrha, M. L. M.

    1997-11-01

    We present for the first time an analysis based on uvby light curves, Hβ indices and on new spectroscopic data of the massive detached double-lined O-type eclipsing binary V 3903Sgr. The uvby light curves are analysed with the WINK (initial solutions) and the Wilson-Devinney (WD, final solution) programs. Both codes were used in their extended versions, with stellar atmospheres and taking into account the geometric distortions and photometric effects caused by proximity of the components. The spectroscopic CCD observations were analysed with the harmonic ``Wilsing-Russell'' and the ``Lehman-Filhes'' methods. We conclude that V 3903Sgr is one of the rare O-type detached systems where both components are still on the initial phases of the main sequence, with an age of either 1.6x10(6) yrs or 2.5x10(6) yrs (depending on the evolutionary model adopted) at a distance of ~1500pc, the same as for the Lagoon Nebula (Messier8) complex, of which the system is probably a member. We determine the absolute dimensions: M_A=27.27+/-0.55, R_A=8.088+/-% 0.086, M_B=19.01+/-0.44 and R_B=6.125+/-0.060 (solar units). There is no evidence of mass transfer and the system is detached. The orbit is circular, and both components show synchronous rotation, despite their early evolutionary stage. The absolute dimensions determined should be representative for normal single stars. Amongst the massive systems (M>17Msun) with precise absolute dimensions (errors <2%), V 3903Sgr is that with the most massive primary, with the largest mass difference between the components, and it is the youngest one. Based on data collected with the 60$\\,$cm and 1.6$\\,$m telescopes at the Pico dos Dias Observatory, Na\\-tional Laboratory of Astrophysics, LNA-CNPq, Bra\\-só\\-polis, MG, Brazil and with the Danish 50$\\,$cm telescope (SAT) at the European Southern Observatory (ESO), La Silla, Chile

  16. Phase compatibilities of YBa2Cu3O(9-delta) type structure in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Fjellvag, H.; Kjekshus, A.

    1990-01-01

    Electrical transport properties of the oxidic high T(sub c) superconductors are significantly affected by the presence of minor amounts of various elements adventing as impurities, e.g., from the chemical environment during manufacturing. YBa2Cu3O(9-delta) is prone to an extinction of the superconductivity on (partial) substitution of all four elemental components. E.g., Pr (for Y), La (for Ba), Zn (for Cu) or peroxygroup (for O) substituents will alter some of the superconductivity preconditions, like mixed valence state in Cu3O7/O(9-delta) network or structural distortion of the network. Although various pseudoternary chemical equilibrium phase diagrams of the Y(O)-Ba(O)-Cu(O) system now are available, no consensus is generally shown, however, this is partly due to lack of compatible definitions of the equilibrium conditions. Less information is available about the phase compatibilities in the appropriate quaternary phase diagram (including oxygen) and virtually no information exists about any pentenary phase diagrams (including one impurity). Unfortunately, complexity of such systems, stemming both from number of quaternary or pentenary compounds and from visualizing the five-component phase system, limits this presentation to more or less close surroundings of the YBa2Cu3O(9-delta) type phase in appropriate pseudoquaternary or pseudopseudoternary diagrams, involving Y-Ba-Cu and O, O-CO2, alkaline metals, Mg and alkaline earths, and Sc and most of the 3-d and 4-f elements. The systems were investigated by means of x ray diffraction, neutron diffraction and chemical analytical methods on samples prepared by sol-gel technique from citrates. The superconductivity was characterized by measuring the diamagnetic susceptibility by SQUID.

  17. Microstructural evolution and electrical properties of base-metal electroded BaTi4O9 materials with B-Si-Ba-Zn-O glass system.

    PubMed

    Chou, Chen-Chia; Su, Yu-Hsuan; Liu, Ze-Ming; Utami, Brianti Satrianti; Chen, Cheng-Sao; Chu, Li-Wen

    2012-09-01

    Barium titanate-based microwave dielectrics usually require relatively high temperatures to sinter, which prevents the use of base metals such as copper for electrodes. In this work, BaTi(4)O(9) microwave dielectric ceramics co-fired with copper electrodes are made possible by adding B-Si-Ba- Zn-O glass to induce liquid-phase sintering at sufficiently low temperature and in reduced atmosphere. The microstructures and electric properties of the BaTi(4)O(9) ceramics thus obtained are carefully examined and studied. Proper glass composition may significantly facilitate mass transportation in the low-temperature co-fired ceramic (LTCC) material, resulting in better densification without serious degradation of electric properties. Although the B2O3/SiO2 ratio enhances the glass mobility during sintering, the BaO/ZnO ratio contributes to the chemical affinity of glass to BaTi(4)O(9) ceramics. In addition, various Ba-Ti-O phases with different Ba/Ti ratios may be found in the specimen through the X-ray diffraction patterns when the BaO/ZnO ratio is varied. If the BaO/ZnO ratio is high and the glass flows easily in the material, the Ba(4)Ti(13)O(30) phase is formed. If the BaO/ZnO ratio is low and the glass flows easily in the material, the BaTi(6)O(13) phase appears. We find that glass-induced Ba(4)Ti(13)O(30) transformation may significantly decrease Qxf values in the BT4-BSBZ materials. Therefore, the appropriate glass composition must be selected to ensure the phase stability of dielectrics to achieve the best performance possible.

  18. STAR in CTO PCI: When is STAR not a star?

    PubMed

    Hira, Ravi S; Dean, Larry S

    2016-04-01

    Subintimal tracking and reentry (STAR) has been used as a bailout strategy and involves an uncontrolled dissection and recanalization into the distal lumen to reestablish vessel patency. In the current study, thrombolysis in myocardial infarction (TIMI) flow < 3 was the only variable which they found to be significantly associated with restenosis and reocclusion after stent placement. It may be reasonable to consider second generation drug eluting stent placement in patients receiving STAR that have TIMI 3 flow, however, this should only be done if there is no compromise of major side branches. If unsure, we recommend to perform balloon angioplasty without stenting.

  19. The First Stars

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2010-10-01

    The standard cosmological model predicts that the first cosmological objects are formed when the age of the universe is a few hundred million years. Recent theoretical studies and numerical simulations consistently suggest that the first objects are very massive primordial stars. We introduce the key physics and explain why the first stars are thought to be massive, rather than to be low-mass stars. The state-of-the-art simulations include all the relevant atomic and molecular physics to follow the thermal evolution of a prestellar gas cloud to very high ``stellar'' densities. Evolutionary calculations of the primordial stars suggest the formation of massive blackholes in the early universe. Finally, we show the results from high-resolution simulations of star formation in a low-metallicity gas. Vigorous fragmentation is triggered in a star-forming gas cloud at a metallicity of as low as Z = 10-5Zsolar.

  20. Luminescence from the 5D1,2,3 excited states of Eu3+ in Y4Al2O9 crystal

    NASA Astrophysics Data System (ADS)

    Kaczkan, Marcin

    2016-09-01

    The site-selective emission originating from 5D1,2,3 energy levels of Eu3+ in Y4Al2O9 (YAM) monoclinic bulk crystal is investigated. Energy and Stark splitting of excited states of europium in YAM are determined based on the low temperature absorption and emission spectra. Luminescence decays of three different sites of Eu3+ ions are measured as a function of temperature and europium concentration. The cross-relaxation among the Eu3+ ions are observed and discussed. Non-resonant mechanisms responsible for the temperature quenching of 5D1 emission are proposed.

  1. Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents.

  2. DFT-based ab initio study of structural and electronic properties of lithium fluorooxoborate LiB6O9F and experimentally observed second harmonic generation

    NASA Astrophysics Data System (ADS)

    Andriyevsky, B.; Doll, K.; Cakmak, G.; Jansen, M.; Niemer, A.; Betzler, K.

    2011-09-01

    An ab initio density functional theory-based study of the electronic band structure, the elastic, electric, elastoelectric, and linear and nonlinear optical properties of the new ion conductor LiB6O9F, has been performed. The computed band structure reveals a wide direct band gap. The coefficients of the second order nonlinear susceptibility χ(2) were found to be comparable to those of KH2PO4. Corresponding experimental investigations of second harmonic generation comply with the respective ab initio calculations.

  3. A classification system for O-B2 stars based on the Si IV and C IV resonance lines

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.

    1981-01-01

    Low-dispersion ultraviolet spectra from Skylab Experiment S-019 are used to explore the variations of Si IV and C IV line strengths with temperature and luminosity. These considerations lead to a classification system in which the Si/C ratio is used to discriminate luminosity among the O stars and temperature among the O9-B2 stars of lower luminosity. Stars falling in these two regimes may be distinguished either by the presence of C IV emission or on the basis of C IV absorption strength. The log(Si IV/C IV) vs C IV diagram is proposed as a primary tool in such a classification system. The rapid variation in the Si IV/C IV ratio from less than 1/10 at O9 to greater than 10 at B1.5 for luminosity class III-V stars appears to be an especially useful criterion for the temperature classification of stars in this spectral range.

  4. First Circumstellar Disk around a Massive Star

    NASA Astrophysics Data System (ADS)

    1998-06-01

    arrow). Earlier observations with radio telescopes of the object G339.88-1.26 , deeply embedded in an interstellar nebula, had been interpreted in terms of the possible existence of a circumstellar disk around a high-mass star. It was concluded that the star responsible for heating the surrounding gas must be very hot and also that it must be intrinsically very bright. The star, most likely of spectral type O9, would have a luminosity 10,000 times higher than that of the Sun and a mass of about 20 times that of the Sun. From the measured velocity, the likely distance of this object is about 10,000 light-years. The object is associated with several "spots" of very strong radio emission from methanol molecules (methanol masers). Interestingly, they form a chain in the sky and the measured velocities of the individual spots are indicative for orbital motion in a rotating disk around the central star. The circumstellar disk ESO PR Photo 22/98 ESO PR Photo 22b/98 [JPEG, 640k] The TIMMI 10 µm image of the inclined dust disk around a hot O9 star at the G339.88-1.26 radio source. The diameter of the disk is of the order of 5 arcsec, i.e. at the most probable distance to the object (10,000 lightyears) it is 20,000 times larger than the diameter of the Earth's orbit around the Sun. The new TIMMI observations of G339.88-1.26 showed an elliptical object with strong infrared radiation. The peak of this radiation (as seen in the sky) coincides with the peak of the radio emission. Furthermore, the apparent orientation of the disk is well aligned with that of the methanol maser "spots". There is little doubt that this object is indeed the infrared image of a circumstellar disk, viewed at an angle. As far as known, this is the first direct image of a disk around a very massive star. At a wavelength of 10 µm, however, the central star that is responsible for heating the dust disc, cannot be seen in spite of its rather high luminosity. This is because it radiates mostly in the ultra

  5. VizieR Online Data Catalog: Colour indices of selected OB stars (Krelowski+, 2012)

    NASA Astrophysics Data System (ADS)

    Krelowski, J.; Strobel, A.

    2012-01-01

    Tables contain V magnitudes and colour indices: (B-V), (U-V), (1500-V), (1800-V), (2200-V), (3300-V), (J-V), (H-V) and (K-V) of selected stars of spectral types: O9V, B0V, B1V, B1Ve, B2V and B3V. Spectral type of each star is according to SIMBAD. The stars are identified with their HD/BD numbers or names. The used photometry was taken from: U,B,V (in the Johnson System) from SIMBAD magnitudes at 5 ANS passbands (15, 18, 22, 25, 33) from Wesselius et al. (1982, Cat. II/97) J, H, K from IR 2MASS Catalog (Kleinmann et al., 1994Ap&SS.217...11K). (6 data files).

  6. Strange nonchaotic stars.

    PubMed

    Lindner, John F; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-02-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  7. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  8. Delta Scuti stars: Theory

    SciTech Connect

    Guzik, J.A.

    1998-03-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one`s understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying {delta} Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for {delta} Scuti stars, using FG Vir, {delta} Scuti, and CD-24{degree} 7599 as examples.

  9. Massive soliton stars

    SciTech Connect

    Chiu, Hongyee )

    1990-05-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers. 27 refs.

  10. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  11. Strange Nonchaotic Stars

    NASA Astrophysics Data System (ADS)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  12. Combinations of 148 navigation stars and the star tracker

    NASA Technical Reports Server (NTRS)

    Duncan, R.

    1980-01-01

    The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.

  13. Two-Step Antiferromagnetic Transitions and Ferroelectricity in Spin-1 Triangular-Lattice Antiferromagnetic Sr3NiTa2O9.

    PubMed

    Liu, Meifeng; Zhang, Huimin; Huang, Xin; Ma, Chunyang; Dong, Shuai; Liu, Jun-Ming

    2016-03-21

    We report the low-temperature characterizations on structural, specific heat, magnetic, and ferroelectric behaviors of transition metal oxide compound Sr3NiTa2O9. It is suggested that Sr3NiTa2O9 is a spin-1 triangular lattice Heisenberg quantum antiferromagnet which may have weak easy-axis anisotropy. At zero magnetic field, a two-step transition sequence at T(N1) = 3.35 K and T(N2) = 2.74 K, respectively, is observed, corresponding to the up-up-down (uud) spin ordering and 120° spin ordering, respectively. The two transition points shift gradually with increasing magnetic field toward the low temperature, accompanying an evolution from the 120° spin structure (phase) to the normal oblique phases. Ferroelectricity in the 120° phase is clearly identified. The first-principles calculations confirm the 120° phase as the ground state whose ferroelectricity originates mainly from the electronic polarization. PMID:26934503

  14. Dilute ferrimagnetism of ilmenites Mn3FeTiSbO9 and Mn4FeTi2SbO12

    NASA Astrophysics Data System (ADS)

    Bazuev, G. V.; Korolev, A. V.; Golovkin, B. G.

    2016-07-01

    Metastable solid solutions (SS) Mn3FeTiSbO9 and Mn4FeTi2SbO12 with the ilmenite structure (space group R bar 3) have been prepared by quenching at normal conditions. The compositions of the compounds have been justified using EDX spectroscopy and X-ray diffraction. The magnetic properties of SSs have been analyzed by comparison with ferrimagnetic ilmenite Mn2FeSbO6 ( T N = 269 K) as a natural mineral and ceramics obtained at high pressure and high temperature. The solid solutions have been characterized as dilute magnetic systems formed as a result of substitution of nonmagnetic cations Ti4+ for a part of Fe3+ and Sb5+ cations. Mn3FeTiSbO9 is considered as a ferromagnetic with T N = 171 K and Mn4FeTi2SbO12 as a magnetic with the concentration of magnetic clusters below the percolation threshold.

  15. Magnetic phase diagram and multiferroicity of Ba3MnNb2O9 : A spin -52 triangular lattice antiferromagnet with weak easy-axis anisotropy

    DOE PAGES

    Lee, M.; Choi, E. S.; Huang, X.; Ma, J.; Dela Cruz, C. R.; Matsuda, M.; Tian, W.; Dun, Z. L.; Dong, S.; Zhou, H. D.

    2014-12-01

    Here we have performed magnetic, electric, thermal and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba3MnNb2 O9. All results suggest that Ba3MnNb2 O9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at TN1 = 3.4 K and TN2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 spin structure in ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 spin structure evolves into up-up-down (uud) and oblique phases showing successive magneticmore » phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Ultimately, multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases.« less

  16. High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Zhao, Ming-Lei; Wang, Chun-Ming; Zang, Guo-Zhong; Ming, Bao-Quan; Qi, Peng; Zhang, Shujun; Shrout, Thomas R.

    2006-07-01

    The effect of (LiCe) substitution for A site on the properties of (NaBi)0.48◻0.04Bi2Nb2O9 (NB◻N)-based ceramics was investigated. The coercive fields (EC) of NB◻N)-based ceramics were significantly decreased from 61.0to32.5kV/cm and the Curie temperature (TC) gradually decreases from 820to803°C with increasing the (LiCe) modification. The piezoelectric coefficient d33, planar coupling factor kp, and mechanical quality factor Q of (NaBi)0.38(LiCe)0.05◻0.14Bi2Nb2O9 ceramic were found to be 27pC/N, 11.2%, and 2600, respectively, together with the high TC (˜809°C) and stable piezoelectric properties, demonstrating that the (LiCe) modified NB◻N-based material a promising candidate for high temperature applications.

  17. Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Xia; Qu, Shao-Bo; Du, Hong-Liang; Li, Ye; Xu, Zhuo

    2012-03-01

    The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan δ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.04□0.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 °C, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.

  18. Growth, optical and EPR properties of Li1.72Na0.28Ge4O9 single crystals pure and slightly doped with Cr

    NASA Astrophysics Data System (ADS)

    Jasik, Anna; Berkowski, Marek; Kaczmarek, Slawomir M.; Suchocki, Andrzej; Kaminska, Agata; Leniec, Grzegorz; Nowakowski, Piotr; Domukhovski, Viktor

    2012-04-01

    Single crystals of lithium-sodium-tetragermanate, a member of the solid solution series Li2-xNa x Ge4O9 with x=0.28, pure and slightly doped with Cr3+ ions (0.03 mol.% and 0.1 mol.%), were grown in ambient atmosphere by the Czochralski technique from stoichiometric melt. The crystals with dimensions up to 20 mm in diameter and 50 mm in length were obtained. The crystal structure has been determined by means of X-ray diffraction. Phase analysis and structural refinement of the Li1.72Na0.28Ge4O9 crystals were performed by X-ray powder diffraction using Ni-filtered Cu K α radiation with a Siemens D5000 diffractometer. The absorption, excitation and photoluminescence spectra of the crystals were measured in the UV-VIS and IR range at low temperatures. EPR investigations were performed using a conventional X-band Bruker ELEXSYS E 500 CW-spectrometer operating at 9.5 GHz with 100 kHz magnetic field modulation. Temperature and angular dependences of the EPR spectra of the crystal samples were recorded in the 3-300 K temperature range.

  19. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  20. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction.

    PubMed

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO - TiO2 -3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  1. An acentric calcium borate Ca2[B5O9]·(OH)·H2O: synthesis, structure, and nonliner optical property.

    PubMed

    Wei, Qi; Cheng, Jian-Wen; He, Chao; Yang, Guo-Yu

    2014-11-01

    A novel noncentrosymmetric calcium borate, Ca2[B5O9]·(OH)·H2O (1), was synthesized under solvothermal condition using mixed solvents of pyridine and H2O. Compound 1 crystallizes in the monoclinic space group Cc. Its structure contains [B5O12] units and features a three-dimensional (3D) pcu net with nine-membered ring (9-MR) channels along the b-axis, where the Ca(2+) cations, OH(-) ions, and H2O molecules are located. Each Ca polyhedron shares three edges and one vertex with four neighbors to form a 3D dia Ca-O network. The pcu B-O net and dia Ca-O net are further interpenetrated to give the final denser net. The second harmonic generation (SHG) measurement shows that compound 1 is a type I phase-matchable material with a strong SHG response of ∼3 times that of KH2PO4. In addition, it exhibits a wide transparency range with a short UV cutoff edge below 200 nm. These results reveal that the compound is a potential deep-UV nonlinear optical material. The Vienna ab initio theoretical studies indicate the good SHG response is derived from the synergistic effect of the π-conjugated systems of BO3 groups and distorted CaO9 polyhedra. PMID:25317482

  2. GLOBAL STAR FORMATION REVISITED

    SciTech Connect

    Silk, Joseph; Norman, Colin E-mail: norman@stsci.edu

    2009-07-20

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  3. The Pistol Star

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Najarro, Francisco; Morris, Mark; McLean, Ian S.; Geballe, Thomas R.; Ghez, Andrea M.; Langer, Norbert

    1998-10-01

    We present new near-infrared data and analysis, which indicate that the Pistol Star is one of the most luminous stars known, adding another test point for massive star formation and stellar evolution theories. We estimate an extinction of AK = 3.2 +/- 0.5 using the near-infrared colors of the star and of surrounding stars in the young Quintuplet cluster. Using our wind/atmosphere code, we find two families of models that fit the spectral energy distribution and detailed line profiles. The lower luminosity models give L = 106.6+/-0.2 L⊙ and Teff = 104.15+/-0.01 K, while the higher luminosity models give L = 107.2+/-0.2 L⊙ and Teff = 104.33+/-0.01 K; the error in luminosity assumes an uncertainty of +/-0.5 in AK, while the error in Teff is constrained by detailed line modeling. The models also reveal a helium enriched surface. As previously existing stellar evolution models do not extend to such high luminosities, we employ new evolutionary tracks for very massive stars to determine the initial mass and age of the Pistol Star, and estimate Minitial = 200-250 M⊙ and an age of 1.7-2.1 Myr. The inferred luminosity and temperature place the star in a sparsely populated zone in the H-R diagram where luminous blue variables (LBVs) are often found. This is consistent with our evolutionary models, which predict that the star is in an unstable evolutionary stage. We interpret the star and its surrounding nebula as an LBV that has recently ejected large amounts of material. Our K-band speckle-imaging data reveal the star to be single down to a projected separation of 110 AU.

  4. VizieR Online Data Catalog: Far-UV spectral atlas of O-type stars (Smith, 2012)

    NASA Astrophysics Data System (ADS)

    Smith, M. A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas (Cat. J/ApJS/186/175), to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. (4 data files).

  5. Star Trek in the Schools

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1977

    1977-01-01

    Describes specific educational programs for using the Star Trek TV program from kindergarten through college. For each grade level lesson plans, ideas for incorporating Star Trek into future classes, and reports of specific programs utilizing Star Trek are provided. (SL)

  6. Observations of FK Comae stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1981-01-01

    Observations on the FK Comae stars are described. FK Com, UZ Lib and HD 199178 are compared and related as a group of stars. The crucial observational tests of the proposed evolutionary status of these stars are noted.

  7. Neutron Star Compared to Manhattan

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  8. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  9. Populations of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lloyd Evans, T.

    2011-09-01

    Carbon stars in the Galaxy do not constitute a single family, but may be divided over several types with distinctive spectroscopic and photometric properties. A subtype of the N stars, characterised by high velocities and weak CN bands, may have been captured by the Milky Way from a cannibalised dwarf galaxy.

  10. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  11. Science through ARts (STAR)

    ERIC Educational Resources Information Center

    Densmore, Marycay; Kolecki, Joseph C.; Miller, Allan; Petersen, Ruth; Terrell, Mike

    2005-01-01

    Science Through ARts (STAR) is a free, international, cross-curricular program thematically aligned with "The Vision for Space Exploration," a framework of goals and objectives published by NASA in February 2004. Through the STAR program, students in grades 5 through 12 are encouraged to apply their knowledge in creative ways as they approach a…

  12. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  13. Party with the Stars.

    ERIC Educational Resources Information Center

    Blaine, Lloyd

    1997-01-01

    Describes a Star Party which involves comparing the different colors of the stars, demonstrating how astronomers measure the sky with degrees, determining the cardinal direction, discussing numerous stories that ancient civilizations gave to constellations, exercising science process skills, and using science instruments. (JRH)

  14. Science Through ARts (STAR)

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  15. 'Marginal' BY Draconis stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1987-01-01

    Spectroscopic observations of 52 dK-dM stars, obtained at 640-665 nm (with spectral resolution 70-90 pm) using CCD detectors on the coude-feed telescope at KPNO since 1982, are reported. Data for four stars found to have diluted absorption or weak emission above continuum at H-alpha are presented in tables and spectra and discussed in detail. These objects (Gliese numbers 256, 425A, 900, and 907.1) are shown to be 'marginal' BY Dra stars, single objects of age 2.5-3 Gyr with activity and rotational velocity (3-5 km/s) between those of normal dM stars and those of true BY Dra stars. An explanation based on evolution from the BY Dra stage through marginal BY Dra to inactive dM is proposed.

  16. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  17. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  18. First detections of FS Canis Majoris stars in clusters. Evolutionary state as constrained by coeval massive stars

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-03-01

    Context. FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary state remains a puzzle. These stars are surrounded by compact disks of warm dust of unknown origin. Hitherto, membership of FS CMa stars to coeval populations has never been confirmed. Aims: The discovery of low-luminosity line emitters in the young massive clusters Mercer 20 and Mercer 70 prompts us to investigate the nature of such objects. We intend to confirm membership to coeval populations in order to characterize these emission-line stars through the cluster properties. Methods: Based on ISAAC/VLT medium-resolution spectroscopy and NICMOS/HST photometry of massive cluster members, new characterizations of Mercer 20 and Mercer 70 are performed. Coevality of each cluster and membership of the newly-discovered B[e] objects are investigated using our observations as well as literature data of the surroundings. Infrared excess and narrow-band photometric properties of the B[e] stars are also studied. Results: We confirm and classify 22 new cluster members, including Wolf-Rayet stars and blue hypergiants. Spectral types (O9-B1.5 V) and radial velocities of B[e] objects are compatible with the remaining cluster members, while emission features of Mg ii, Fe ii], and [Fe ii] are identified in their spectra. The ages of these stars are 4.5 and 6 Myr, and they show mild infrared excesses. Conclusions: We confirm the presence of FS CMa stars in the coeval populations of Mercer 20 and Mercer 70. We discuss the nature and evolutionary state of FS CMa stars, discarding a post-AGB nature and introducing a new hypothesis about mergers. A new search method for FS CMa candidates in young massive clusters based on narrow-band Paschen-α photometry is proposed and tested in photometric data of other clusters, yielding three new candidates. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program IDs 083.D

  19. Catch a Star!

    NASA Astrophysics Data System (ADS)

    2006-11-01

    ESO and the European Association for Astronomy Education are launching today the 2007 edition of 'Catch a Star!', their international astronomy competition for school students. Now in its fifth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. Students are invited to 'become astronomers' and embark on a journey to explore the Universe. ESO PR Photo 42/06 The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, 'Catch a Star!' also includes an artwork competition, 'Catch a Star Artists'. "'Catch a Star!' offers a unique opportunity for students to learn more about astronomy and about the methods scientists use to discover new things about the Universe", said Douglas Pierce-Price, Education Officer at ESO. In teams, students choose an astronomical topic to study and produce an in-depth report. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes or a telescope of the future can contribute to their investigations of the subject. As well as the top prize - a trip to one of ESO's observatory sites in Chile - visits to observatories in Germany, Austria and Spain, and many other prizes are also available to be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. The first editions of 'Catch a Star!' have attracted several hundred entries from more than 25 countries worldwide. Previous winning entries have included "Star clusters and the structure of the Milky Way" (Budapest, Hungary), "Vega" (Acqui Terme, Italy) and "Venus

  20. Making star teams out of star players.

    PubMed

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing. PMID:23390743

  1. Pseudosynchronization of Heartbeat Stars

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara; Thompson, Susan E.; Hambleton, Kelly; Fuller, Jim; Shporer, Avi; Isaacson, Howard T.; Howard, Andrew; Kurtz, Donald

    2016-01-01

    A type of eccentric binary star that undergoes extreme dynamic tidal forces, known as Heartbeat stars, were discovered by the Kepler Mission. As the two stars pass through periastron, the tidal distortion causes unique brightness variations. Short period, eccentric binary stars, like these, are theorized to pseudosynchronize, or reach a rotational frequency that matches the weighted average orbital angular velocity of the system. This pseudosynchronous rate, as predicted by Hut (1981), depends on the binary's orbital period and eccentricity. We tested whether sixteen heartbeat stars have pseudosynchronized. We measure the rotation rate from obvious spot signatures in the light curve. We measure the eccentricity by fitting the light curve using PHOEBE and are actively carrying out a radial velocity monitoring program with Keck/HIRES in order to improve these orbital parameters. Our initial results show that while most heartbeat stars appear to have pseudosynchronized we find stars with rotation frequencies both longer and shorter than this rate. We thank the SETI Institute REU program, the NSF, and the Kepler Guest Observer Program for making this work possible.

  2. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  3. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Mendez-Abreu, Jairo; Gallagher, John S.; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-07-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus Hα to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ˜ {10}6 {M}⊙ and an ionization rate of 6.4× {10}51 s-1, equivalent to ˜2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ˜1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73 ± 0.51. Fourteen young clusters in the head are more massive than {10}4 {M}⊙ , suggesting a clustering fraction of 30%-45%. Wispy filaments of Hα emission and young stars extend away from the galaxy. Shells and holes in the head H ii region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H ii region, although hot gas might escape through the holes. The star formation surface density determined from Hα in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of ˜3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt-Schmidt rate by a factor of ≥slant 5.

  4. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Mendez-Abreu, Jairo; Gallagher, John S.; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-07-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus Hα to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ˜ {10}6 {M}ȯ and an ionization rate of 6.4× {10}51 s‑1, equivalent to ˜2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ˜1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of ‑1.73 ± 0.51. Fourteen young clusters in the head are more massive than {10}4 {M}ȯ , suggesting a clustering fraction of 30%–45%. Wispy filaments of Hα emission and young stars extend away from the galaxy. Shells and holes in the head H ii region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H ii region, although hot gas might escape through the holes. The star formation surface density determined from Hα in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of ˜3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt–Schmidt rate by a factor of ≥slant 5.

  5. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba_{3}CoSb_{2}O_{9}.

    PubMed

    Ma, J; Kamiya, Y; Hong, Tao; Cao, H B; Ehlers, G; Tian, W; Batista, C D; Dun, Z L; Zhou, H D; Matsuda, M

    2016-02-26

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba_{3}CoSb_{2}O_{9}. Besides confirming that the Co^{2+} magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Thus, our results call for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects. PMID:26967439

  6. Vibrational spectroscopy of the borate mineral tunellite SrB6O9(OH)2·3(H2O) - Implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei

    2014-02-01

    Tunellite is a strontium borate mineral with formula: SrB6O9(OH)2·3(H2O) and occurs as colorless crystals in the monoclinic pyramidal crystal system. An intense Raman band at 994 cm-1 was assigned to the BO stretching vibration of the B2O3 units. Raman bands at 1043, 1063, 1082 and 1113 cm-1 are attributed to the in-plane bending vibrations of trigonal boron. Sharp Raman bands observed at 464, 480, 523, 568 and 639 cm-1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3567 and 3614 cm-1, attributed to OH units. The molecular structure of a natural tunellite has been assessed by using vibrational spectroscopy.

  7. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9

    DOE PAGES

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; Cao, H. B.; Ehlers, Georg; Tian, Wei; Batista, C. D.; Dun, Z. L.; Zhou, H. D.; Matsuda, Masaaki

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Besides confirming that the Co2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results call for a new theoreticalmore » framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less

  8. Local structural distortion induced by antiferromagnetic ordering in Bi2Fe4O9 studied by using a neutron total scattering analysis

    NASA Astrophysics Data System (ADS)

    Jeong, I.-K.; Hur, N.

    2016-07-01

    To unravel the origin of the dielectric anomaly at the antiferromagnetic ordering of magnetoelectric Bi2Fe4O9, we performed neutron powder diffraction measurements at temperatures across the Néel temperature, T N. Both local structures and long-range symmetry were studied by using the complementary analyses of atomic pair distribution function (PDF) and Rietveld methods at temperatures of 300 K, 250 K, and 200 K. We found that the PDF peaks that reflected local atomic arrangements exhibited a noticeable variation at temperature below T N without long-range symmetry change. The implication of the PDF evolution is discussed in view of a local structural distortion at the onset of antiferromagnetic ordering.

  9. Frustrated Quantum Critical Theory of Putative Spin-Liquid Phenomenology in 6H-B-Ba3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hermele, M.; Radzihovsky, L.

    2012-07-01

    A recently discovered material, 6H-B-Ba3NiSb2O9 was found to display unusual low-temperature phenomenology, interpreted as a quantum spin liquid with spin S=1 on a triangular lattice. We study a spin S=1 exchange model on an AB stacked triangular lattice near its quantum paramagnet-to-spiral transition, driven by easy-plane single-ion anisotropy. We demonstrate that the frustrated inter- and intralayer exchanges induce contour lines of low-energy excitations that lead to a broad crossover regime of linear-temperature dependence of the specific heat. Based on this and various other predictions, we argue that the observed phenomenology can be understood in terms of a conventional picture of a proximity to this frustrated critical point.

  10. Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H-B-Ba(3)NiSb(2)O(9).

    PubMed

    Chen, G; Hermele, M; Radzihovsky, L

    2012-07-01

    A recently discovered material, 6H-B-Ba(3)NiSb(2)O(9) was found to display unusual low-temperature phenomenology, interpreted as a quantum spin liquid with spin S=1 on a triangular lattice. We study a spin S=1 exchange model on an AB stacked triangular lattice near its quantum paramagnet-to-spiral transition, driven by easy-plane single-ion anisotropy. We demonstrate that the frustrated inter- and intralayer exchanges induce contour lines of low-energy excitations that lead to a broad crossover regime of linear-temperature dependence of the specific heat. Based on this and various other predictions, we argue that the observed phenomenology can be understood in terms of a conventional picture of a proximity to this frustrated critical point. PMID:23031118

  11. Gapless quantum spin liquid ground state in the spin-1 antiferromagnet 6HB-Ba3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Quilliam, J. A.; Bert, F.; Manseau, A.; Darie, C.; Guillot-Deudon, C.; Payen, C.; Baines, C.; Amato, A.; Mendels, P.

    2016-06-01

    We present an in-depth study of the magnetic properties of the spin-1 antiferromagnet 6HB-Ba3NiSb2O9 . μ SR measurements demonstrate that this material shows no static magnetism down to temperatures as low as 20 mK, making it a likely candidate for a quantum spin liquid state. 121Sb NMR shift measurements show that the local, intrinsic susceptibility levels off at temperatures below ˜60 K. The NMR spin-lattice relaxation rate 1 /T1 is essentially constant in temperature and the muon relaxation rate exhibits a low-temperature relaxation plateau, all indications of gapless spin excitations. Our local probe measurements are discussed in the context of several theories proposed for this material.

  12. A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice.

    PubMed

    De Montijo-Prieto, Soumi; Moreno, Encarnación; Bergillos-Meca, Triana; Lasserrot, Agustín; Ruiz-López, María-Dolores; Ruiz-Bravo, Alfonso; Jiménez-Valera, María

    2015-10-01

    Lactobacillus plantarum C4, previously isolated from kefir and characterized as a potential probiotic strain, was tested for its protective and immunomodulatory capacity in a murine model of yersiniosis. The inoculation of BALB/c mice with a low pathogenicity serotype O9 strain of Yersinia enterocolitica results in a prolonged intestinal infection with colonization of Peyer's patches. Pretreatment with C4 was without effect on fecal excretion of yersiniae, but shortened the colonization of Peyer's patches. This protective effect was associated with pro-inflammatory status in the intestinal mucosa (TNF-α production in infected mice was increased by C4) and an increase in total IgA secretion. At a systemic level, C4 did not promote a pro-inflammatory response, although production of the immunoregulatory cytokine IFN-γ was enhanced. These findings suggest that L. plantarum C4 can increase resistance to intestinal infections through its immunomodulatory activity.

  13. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  14. Strange nonchaotic stars.

    PubMed

    Lindner, John F; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-02-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars. PMID:25699444

  15. Mariner 9 star photography.

    NASA Technical Reports Server (NTRS)

    Thorpe, T. E.

    1973-01-01

    Mariner 9 achieved successful photography of the stars, the purpose of the experiment being to measure camera parameters associated with point source photometry, and to examine the feasibility of using stars as invariant calibration sources and a reference for optical navigation. The Mariner 9 camera-B photography demonstrated photometric response consistency over a limited sample of data to better than 15%. Camera performance verified the ability to model vidicon response characteristics as well as demonstrated an imaging capability sufficient to permit the use of stars for photometric calibration.

  16. Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica O:9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep, and goats.

    PubMed Central

    Díaz-Aparicio, E; Aragón, V; Marín, C; Alonso, B; Font, M; Moreno, E; Pérez-Ortiz, S; Blasco, J M; Díaz, R; Moriyón, I

    1993-01-01

    Hapten polysaccharides of Brucella smooth M and A serotypes were prepared from Brucella sp. and Yersinia enterocolitica O:9 by previously described hydrolytic (O chain) or nonhydrolytic (native hapten [NH]) procedures. The purified polysaccharides differed only in the presence (O chain) or absence (NH) of lipopolysaccharide core sugars. The polysaccharides were compared by reverse radial immunodiffusion for the diagnosis of brucellosis in cattle (Brucella abortus biotype 1 [A serotype] and Brucella melitensis biotype 3 [AM serotype]), sheep (B. melitensis biotypes 1 [M serotype] and 3), and goats (B. melitensis biotype 1). The reverse radial immunodiffusion test with the NH from B. melitensis 16 M (serotype M) showed the highest sensitivity (89.6 to 97.3%), regardless of the host species and the serotype of the infecting Brucella sp. Y. enterocolitica O:9 NH (A serotype) was useful for diagnosing disease in cattle infected with B. abortus biotype 1, but not in cattle infected with B. melitensis biotype 3, sheep, or goats. The different results obtained with the serotype M and A polysaccharides and the sera from animals infected with M, A, and AM serotypes of Brucella spp. showed that in naturally infected animals, a large proportion of the antibodies are directed to or react with a previously defined common epitope(s) (J. T. Douglas and D. A. Palmer, J. Clin. Microbiol. 26:1353-1356, 1988) different from the A or M epitopes. By using the radial immunodiffusion test with B. melitensis 16M NH, it was possible to differentiate infected from vaccinated cattle, sheep, and goats with a sensitivity and specificity similar to that of the complement fixation test. PMID:8308104

  17. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Eliseev, E. A.; Semchenko, A. V.; Fomichov, Y. M.; Glinchuk, M. D.; Sidsky, V. V.; Kolos, V. V.; Pleskachevsky, Yu. M.; Silibin, M. V.; Morozovsky, N. V.; Morozovska, A. N.

    2016-05-01

    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed. Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi2Ta2O9 particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of SryBi2+xTa2O9 nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.

  18. Ba4KFe3O9: A Novel Ferrite Containing Discrete Six-member Rings of Corner-sharing FeO4 Tetrahedra

    PubMed Central

    Zhao, Qingbiao; Nellutla, Saritha; Son, Won-Joon; Vaughn, Shae A.; Ye, Longfei; Smith, Mark D.; Caignaert, Vincent; Lufaso, Michael; Pekarek, Thomas M.; Smirnov, Alex I.; Whangbo, Myung-Hwan

    2011-01-01

    Single crystals of a new iron containing oxide, Ba4KFe3O9, were grown from a hydroxide melt and the crystal structure was determined by single crystal x-ray diffraction. This ferrite represents the first complex oxide containing isolated 6-member rings of corner sharing FeO4 tetrahedra. Mössbauer measurements are indicative of two tetrahedral high-spin Fe3+ coordination environments. The observed magnetic moment (~3.9 BM) at 400 K is significantly lower than the calculated spin-only (~5.2 BM) value indicating the presence of strong antiferromagnetic interactions in the oxide. Our density functional calculations confirm the strong antiferromagnetic coupling between adjacent Fe3+ sites within each 6-member ring and estimate the nearest neighbor spin exchange integral as ~200 K; next nearest neighbor interactions are shown to be negligible. The lower than expected effective moment for Ba4KFe3O9 calculated from χT data is explained as resulting from the occupation of lower lying magnetic states in which more spins are paired. X-band (9.5 GHz) electron paramagnetic resonance (EPR) spectra of powder sample consist of a single line at g~2.01 that is characteristic of Fe3+ ions in a tetrahedral environment, thus, confirming the Mössbauer results. Further analysis of the EPR line shape reveals the presence of two types of Fe6 magnetic species with an intensity ratio of ~1:9. Both species have Lorentzian line shapes and indistinguishable g-factors but differ in the peak-to-peak line widths (δBpp). The line width ratio δBpp(major)/δBpp(minor) ~ 3.6 correlates well with the ratio of the Weiss constants, θminor/θmajor ~ 4. PMID:21905756

  19. On the conversion of neutron stars into quark stars

    NASA Astrophysics Data System (ADS)

    Pagliara, Giuseppe

    2014-03-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of 1053 erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  20. Mass loss of massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2015-12-01

    In this contribution we review the properties of the winds of massive stars. We focus on OB stars, red supergiants, Luminous Blue Variables (LBVs) and Wolf-Rayet stars. For each type of star, we summarize the main wind properties and we give a brief description of the physical mechanism(s) responsible for mass loss.

  1. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF O-TYPE STARS

    SciTech Connect

    Smith, Myron A.

    2012-10-15

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 A for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 A. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of 'missed' features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  2. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  3. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars stars are ∼250 K cooler than their MS counterparts. Lastly, we present (1) a modern T {sub eff}, optical/IR color, and BC sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  4. Improving the surface brightness-color relation for early-type stars using optical interferometry⋆

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Mourard, D.; Graczyk, D.; Aroui, H.; Chesneau, O.; Delaa, O.; Pietrzyński, G.; Gieren, W.; Ligi, R.; Meilland, A.; Perraut, K.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Vargas, N.; Scott, N.

    2014-10-01

    Context. The method of distance determination of eclipsing binaries consists in combining the radii of both components determined from spectro-photometric observations with their respective angular diameters derived from the surface brightness-color relation (SBC). However, the largest limitation of the method comes from the uncertainty on the SBC relation: about 2% for late-type stars (or 0.04 magnitude) and more than 10% for early-type stars (or 0.2 mag). Aims: The aim of this work is to improve the SBC relation for early-type stars in the -1 ≤ V - K ≤ 0 color domain, using optical interferometry. Methods: Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V - K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to V - K ≃ 4 using 100 additional measurements. Results: We determined the uniform disk angular diameter for the eight following stars: γ Ori, ζ Per, 8 Cyg, ι Her, λ Aql, ζ Peg, γ Lyr, and δ Cyg with V - K color ranging from -0.70 to 0.02 and typical precision of about 1.5%. Using our total sample of 132 stars with V - K colors index ranging from about - 1 to 4, we provide a revised SBC relation. For late-type stars (0 ≤ V - K ≤ 4), the results are consistent with previous studies. For early-type stars (- 1 ≤ V - K ≤ 0), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or ≃7% in terms of angular diameter. Conclusions: We derive for the first time a SBC relation for stars between O9 and A3, which

  5. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVIC , 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T eff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T eff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T eff scale for pre-MS stars is within sime100 K of dwarfs at a given spectral type for stars stars are ~250 K cooler than their MS counterparts. Lastly, we present (1) a modern T eff, optical/IR color, and BC sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  6. The origin of stars

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.

    Where do stars come from and how do they form? These are profound questions which link the nature of our Universe to the roots of mankind. Yet, until a recent revolution in understanding, the proposed answers have been raw speculation. Now, accompanying penetrating observations, a new picture has come into prominence. This book presents the latest astounding observations and scientific ideas covering star formation, star birth and early development. It encompasses all aspects, from the dramatic stories of individual objects, to the collective influence of entire stellar systems. The very first stars to come into existence and the nurturing of planets are discussed to provide the reader with a comprehensive overview. Presenting background information with only the essential mathematics, this book will appeal to scientists wishing to expand their horizons, students seeking solid foundations, and general readers with enquiring minds.

  7. Discovery of variable stars

    NASA Technical Reports Server (NTRS)

    Kurochkin, N. Y.

    1973-01-01

    Instrumented methods of discovering variable stars are reviewed, specifically the blink comparator, color contrast method, positive-negative method, and television method. Among the empirical methods discussed, the Van Gent method is the most important.

  8. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  9. Winds from cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1995-01-01

    Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.

  10. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  11. Spectroscopy among the stars.

    PubMed

    Winnewisser, G

    1996-06-01

    The space between the stars is not void, but filled with interstellar matter, mainly composed of dust and gas, which gather in large interstellar clouds. In our Galaxy these interstellar clouds are distributed along a thin, but extended layer which basically traces out the spiral distribution of matter: the stars, the gas, and the dust component. Up to the present time more than 100 different molecules have been identified in interstellar molecular clouds. The majority of the interstellar molecules constitute carbon containing organic substances. During the past years, overwhelming evidence has been gathered, mainly through spectroscopic observations, that interstellar molecular clouds provide the birthplaces for stars. In fact detailed high spectral and spatial resolution spectroscopic measurements reveal physical and chemical processes of the intricate star formation process.

  12. Worlds around other stars

    NASA Astrophysics Data System (ADS)

    Black, David C.

    1991-01-01

    The possible, though tentative, detection of planetary companions to other stars which may be capable of supporting life as we know it through the use of a new generation of detectors and telescopes, combined with some innovative detection techniques, is discussed. The current view of the origin of the solar system, based on the nebular hypothesis, is discussed as it pertains to the formation of how and where planets form and, hence, how and where to search for them. Both direct methods of search for other planetary systems, which involve detecting reflected light or infrared radiation form the planets themselves, and indirect methods, which involve the scrutinization of a star for signs that it is responding to the gravitational tug of an orbiting planet, are discussed at length. In particular, various methods for detecting minute velocity perturbations of stars are discussed. It is noted that the study of brown dwarfs may also provide clues on the formation of stars and planets.

  13. Temperature of neutron stars

    NASA Astrophysics Data System (ADS)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  14. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  15. Women and the Stars.

    ERIC Educational Resources Information Center

    Spradley, Joseph L.

    1990-01-01

    Described are the contributions of 15 women astronomers to the modern understanding of the stars. Discussed are early women pioneers, early spectrographic studies, and recent women astronomers. A list of 29 references is included. (CW)

  16. Ultrabass Sounds of the Giant Star xi Hya

    NASA Astrophysics Data System (ADS)

    2002-05-01

    then represented by "ξ" . [3]: In astrophysical terms, xi Hya is currently in the hydrogen shell-burning phase, having left the main sequence some time ago and now near the sub-giant/giant border.

  17. Sounds of a Star

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  18. The Pistol Star

    NASA Astrophysics Data System (ADS)

    Figer, D. F.; Morris, M.; McLean, I. S.; Ghez, A. M.; Najarro, F.; Geballe, T. R.; Serabyn, E.; Rich, R. M.

    1998-01-01

    We present near-infrared spectra, photometry (JHK(') nbL), and Keck K-band speckle images of the ``Pistol Star.'' We also present HST/NICMOS Paschen-alpha images and near-infrared spectra of the surrounding HII region (G0.15-0.05), the ``Pistol.'' The stellar spectra cover the J, H, and K bands at low resolution, and between 1.80 to 1.96 \\micron, 2.10 to 2.26 \\micron, and 4.02 to 4.08 \\micron\\ at moderate resolution. The spectra of the Pistol cover the K-band at low resolution and 1.80 to 1.96 \\micron\\ at moderate resolution. The stellar data are fit with wind/atmosphere models to find that the star is extraordinarily luminous, having L = 10(6.7({+0.5}_{-0.5})) L_sun, making it one of the most luminous stars known; the range in luminosity is primarily due to uncertainties in extinction and intrinsic spectral energy distribution of the star. Coupled with the relatively cool temperature, T_eff = 10(4.17({+0.19}_{-0.06})) K, the star is clearly in violation of the Humphreys-Davidson limit. The line of sight velocity of the star is confirmed to be ~ 130 kms(-1) , assuring membership in the Quintuplet cluster. This, along with the inferred extinction, places the star at the Galactic Center. The spectra of the Pistol confirm that the ionized gas has smoothly varying velocity gradients superposed on a bulk velocity of 130 kms(-1) . Radio and near-infrared hydrogen-to-helium line ratios suggest that the Pistol may have extrasolar helium abundance and that it must be excited, in part, by a star which is hotter than the Pistol Star. The morphology of the gas, the velocities in the gas, and the location of the star in the HR diagram suggest that the gas in G0.15-0.05 is matter which was ejected from the star.

  19. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  20. Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Hughes, D.; Murdin, P.

    2001-07-01

    The biblical Star of Bethlehem, which heralded the birth of Jesus Christ, is only mentioned in the Gospel of St Matthew 2. The astrologically significant 7 bc triple conjunction of Jupiter and Saturn in the constellation of Pisces is the most likely candidate, although a comet/nova in 5 bc and a comet in 4 bc cannot be ruled out. There is also the possibility that the star was simply fictitious....

  1. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  2. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  3. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  4. The Stars Surrounding WR 55

    NASA Astrophysics Data System (ADS)

    Turner, David G.; Forbes, Douglas

    2005-09-01

    Photoelectric UBV photometry is presented for stars in a field closely adjacent to the Wolf-Rayet star WR 55 (WN7) in a search for a possible parent cluster. There is a group of at least eight stars ~7' south-southeast of the WR star forming a newly discovered, sparsely populated open cluster (designated C1331-622), but the stars are only 819+/-26 pc distant, less than a quarter of the predicted distance to WR 55.

  5. STAR facility tritium accountancy

    SciTech Connect

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  6. STAR Facility Tritium Accountancy

    SciTech Connect

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  7. Seeing Stars in Serpens

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope.

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

  8. Barium Stars: Theoretical Interpretation

    NASA Astrophysics Data System (ADS)

    Husti, Laura; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio

    2009-09-01

    Barium stars are extrinsic Asymptotic Giant Branch (AGB) stars. They present the s-enhancement characteristic for AGB and post-AGB stars, but are in an earlier evolutionary stage (main sequence dwarfs, subgiants, red giants). They are believed to form in binary systems, where a more massive companion evolved faster, produced the s-elements during its AGB phase, polluted the present barium star through stellar winds and became a white dwarf. The samples of barium stars of Allen & Barbuy (2006) and of Smiljanic et al. (2007) are analysed here. Spectra of both samples were obtained at high-resolution and high S/N. We compare these observations with AGB nucleosynthesis models using different initial masses and a spread of 13C-pocket efficiencies. Once a consistent solution is found for the whole elemental distribution of abundances, a proper dilution factor is applied. This dilution is explained by the fact that the s-rich material transferred from the AGB to the nowadays observed stars is mixed with the envelope of the accretor. We also analyse the mass transfer process, and obtain the wind velocity for giants and subgiants with known orbital period. We find evidence that thermohaline mixing is acting inside main sequence dwarfs and we present a method for estimating its depth.

  9. Collapsing Enormous Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    One of the big puzzles in astrophysics is how supermassive black holes (SMBHs) managed to grow to the large sizes weve observed in the very early universe. In a recent study, a team of researchers examines the possibility that they were formed by the direct collapse of supermassive stars.Formation MysterySMBHs billions of times as massive as the Sun have been observed at a time when the universe was less than a billion years old. But thats not enough time for a stellar-mass black hole to grow to SMBH-size by accreting material so another theory is needed to explain the presence of these monsters so early in the universes history. A new study, led by Tatsuya Matsumoto (Kyoto University, Japan), poses the following question: what if supermassive stars in the early universe collapsed directly into black holes?Previous studies of star formation in the early universe have suggested that, in the hot environment of these primordial times, stars might have been able to build up mass much faster than they can today. This could result in early supermassive stars roughly 100,000 times more massive than the Sun. But if these early stars end their lives by collapsing to become massive black holes in the same way that we believe massive stars can collapse to form stellar-mass black holes today this should result in enormously violent explosions. Matusmoto and collaborators set out to model this process, to determine what we would expect to see when it happens!Energetic BurstsThe authors modeled the supermassive stars prior to collapse and then calculated whether a jet, created as the black hole grows at the center of the collapsing star, would be able to punch out of the stellar envelope. They demonstrated that the process would work much like the widely-accepted collapsar model of massive-star death, in which a jet successfully punches out of a collapsing star, violently releasing energy in the form of a long gamma-ray burst (GRB).Because the length of a long GRB is thought to

  10. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  11. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  12. Tuning the charge states of CrW2O9 clusters deposited on perfect and defective MgO(001) surfaces with different color centers: A comprehensive DFT study.

    PubMed

    Zhu, Jia; Zhang, Hui; Tong, Yawen; Wang, Chengxing; Wang, Bin; Huang, Xin; Zhang, Yongfan

    2016-05-01

    The structures and electronic properties of bimetallic oxide CrW2O9 clusters supported on the perfect and defective MgO(001) surfaces with three different color centers, FS (0), FS (+), and FS (2+) centers, respectively, have been investigated by density functional theory calculations. Our results show that the configurations, adsorption energies, charge transfers, and bonding modes of dispersed CrW2O9 clusters are sensitive to the charge states of the FS centers. Compared with the gas-phase configuration, the CrW2O9 clusters supported on the defective surfaces are distorted dramatically, which exhibit different chain structures. On the perfect MgO surface, the depositions of clusters do not involve obvious charge transfer, while the situation is quite different on the defective MgO(001) surfaces in which significant electron transfer occurs from the surface to the cluster. Interestingly, this effect becomes more remarkable for electron-rich oxygen vacancies (FS (0) center) than that for electron-poor oxygen vacancies (FS (+) and FS (2+) centers). Furthermore, our work reveals a progressive Brønsted acid sites where spin density preferentially localized around the Cr atoms not the W atoms for all kinds of FS-centers, indicating the better catalytic activities can be expected for CrW2O9 cluster on defective MgO(001) surfaces with respect to the W3O9 cluster. PMID:27155646

  13. Tuning the charge states of CrW2O9 clusters deposited on perfect and defective MgO(001) surfaces with different color centers: A comprehensive DFT study

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Zhang, Hui; Tong, Yawen; Wang, Chengxing; Wang, Bin; Huang, Xin; Zhang, Yongfan

    2016-05-01

    The structures and electronic properties of bimetallic oxide CrW2O9 clusters supported on the perfect and defective MgO(001) surfaces with three different color centers, FS0, FS+, and FS2+ centers, respectively, have been investigated by density functional theory calculations. Our results show that the configurations, adsorption energies, charge transfers, and bonding modes of dispersed CrW2O9 clusters are sensitive to the charge states of the FS centers. Compared with the gas-phase configuration, the CrW2O9 clusters supported on the defective surfaces are distorted dramatically, which exhibit different chain structures. On the perfect MgO surface, the depositions of clusters do not involve obvious charge transfer, while the situation is quite different on the defective MgO(001) surfaces in which significant electron transfer occurs from the surface to the cluster. Interestingly, this effect becomes more remarkable for electron-rich oxygen vacancies (FS0 center) than that for electron-poor oxygen vacancies (FS+ and FS2+ centers). Furthermore, our work reveals a progressive Brønsted acid sites where spin density preferentially localized around the Cr atoms not the W atoms for all kinds of FS-centers, indicating the better catalytic activities can be expected for CrW2O9 cluster on defective MgO(001) surfaces with respect to the W3O9 cluster.

  14. Magnetic fields in A stars besides Ap stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.

    2014-11-01

    I review ongoing efforts to understand the incidence of magnetism in intermediate-mass stars that are different from the magnetic Ap stars. This includes the search for magnetic fields in chemically peculiar stars of the Am and HgMn types as well as in normal A and late-B stars. I discuss different techniques for detecting weak stellar magnetic fields, and present a critical evaluation of recent magnetic detections in non-Ap stars. Special attention is given to the magnetic status of HgMn stars and to the discovery of weak polarization signatures in Sirius and Vega.

  15. Life Cycle of Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  16. Models of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  17. ON THE MULTIPLICITY OF THE ZERO-AGE MAIN-SEQUENCE O STAR HERSCHEL 36

    SciTech Connect

    Arias, Julia I.; Barba, Rodolfo H.; Gamen, Roberto C.; Apellaniz, Jesus MaIz; Alfaro, Emilio J.; Sota, Alfredo; Bidin, Christian Moni

    2010-02-10

    We present the analysis of high-resolution optical spectroscopic observations of the zero-age main-sequence O star Herschel 36 spanning six years. This star is definitely a multiple system, with at least three components detected in its spectrum. Based on our radial-velocity (RV) study, we propose a picture of a close massive binary and a more distant companion, most probably in wide orbit about each other. The orbital solution for the binary, whose components we identify as O9 V and B0.5 V, is characterized by a period of 1.5415 {+-} 0.0006 days. With a spectral type O7.5 V, the third body is the most luminous component of the system and also presents RV variations with a period close to 498 days. Some possible hypotheses to explain the variability are briefly addressed and further observations are suggested.

  18. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  19. Circulation of Stars

    NASA Astrophysics Data System (ADS)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  20. Star Caught Smoking

    NASA Astrophysics Data System (ADS)

    2007-08-01

    VLTI Snapshots Dusty Puff Around Variable Star Using ESO's Very Large Telescope Interferometer, astronomers from France and Brazil have detected a huge cloud of dust around a star. This observation is further evidence for the theory that such stellar puffs are the cause of the repeated extreme dimming of the star. ESO PR Photo 34a/07 ESO PR Photo 34a/07 Dust Cloud in a R CrB Star (Artist's Impression) R Coronae Borealis stars are supergiants exhibiting erratic variability. Named after the first star that showed such behaviour [1], they are more than 50 times larger than our Sun. R Coronae Borealis stars can see their apparent brightness unpredictably decline to a thousandth of their nominal value within a few weeks, with the return to normal light levels being much slower. It has been accepted for decades that such fading could be due to obscuration of the stellar surface by newly formed dusty clouds. This 'Dust Puff Theory' suggests that mass is lost from the R Coronae Borealis (or R CrB for short) star and then moves away until the temperature is low enough for carbon dust to form. If the newly formed dust cloud is located along our line-of-sight, it eclipses the star. As the dust is blown away by the star's strong light, the 'curtain' vanishes and the star reappears. RY Sagittarii is the brightest member in the southern hemisphere of this family of weird stars. Located about 6,000 light-years away towards the constellation of Sagittarius (The Archer), its peculiar nature was discovered in 1895 by famous Dutch astronomer Jacobus Cornelius Kapteyn. In 2004, near-infrared adaptive optics observations made with NACO on ESO's Very Large Telescope allowed astronomers Patrick de Laverny and Djamel Mékarnia to clearly detect the presence of clouds around RY Sagittarii. This was the first direct confirmation of the standard scenario explaining the light variations of R CrB stars by the presence of heterogeneities in their envelope surrounding the star. ESO PR Photo 32e

  1. Nursery of New Stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is a Hubble Space Telescope image (right) of a vast nebula called NGC 604, which lies in the neighboring spiral galaxy M33, located 2.7 million light-years away in the constellation Triangulum. This is a site where new stars are being born in a spiral arm of the galaxy. Though such nebulae are common in galaxies, this one is particularly large, nearly 1,500 light-years across. The nebula is so vast it is easily seen in ground-based telescopic images (left). At the heart of NGC 604 are over 200 hot stars, much more massive than our Sun (15 to 60 solar masses). They heat the gaseous walls of the nebula making the gas fluoresce. Their light also highlights the nebula's three-dimensional shape, like a lantern in a cavern. By studying the physical structure of a giant nebula, astronomers may determine how clusters of massive stars affect the evolution of the interstellar medium of the galaxy. The nebula also yields clues to its star formation history and will improve understanding of the starburst process when a galaxy undergoes a 'firestorm' of star formation. The image was taken on January 17, 1995 with Hubble's Wide Field and Planetary Camera 2. Separate exposures were taken in different colors of light to study the physical properties of the hot gas (17,000 degrees Fahrenheit, 10,000 degrees Kelvin

  2. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  3. Series of compositions Bi2(M‧xM1-x)4O9 (M‧, M=Al, Ga, Fe; 0≤x≤1) with mullite-type crystal structure: Synthesis, characterization and 18O/16O exchange experiment

    NASA Astrophysics Data System (ADS)

    Debnath, T.; Rüscher, C. H.; Fielitz, P.; Ohmann, S.; Borchardt, G.

    2010-11-01

    Series of compositions Bi 2( M'xM1- x) 4O 9 with x=0.0, 0.1,…, 1.0 and M'/ M=Ga/Al, Fe/Al and Fe/Ga were synthesized by dissolving appropriate amounts of corresponding metal nitrate hydrates in glycerine, followed by gelation, calcination and final heating at 800 °C for 24 h. The new compositions with M'/ M=Ga/Al form solid-solution series, which are isotypes to the two other series M'/ M=Fe/Al and Fe/Ga. The XRD data analysis yielded in all cases a linear dependence of the lattice parameters related on x. Rietveld structure refinements of the XRD patterns of the new compounds, Bi 2(Ga xAl 1- x) 4O 9 reveal a preferential occupation of Ga in tetrahedral site (4 h). The IR absorption spectra measured between 50 and 4000 cm -1 of all systems show systematic shifts in peak positions related to the degree of substitution. Samples treated in 18O 2 atmosphere (16 h at 800 °C, 200 mbar, 95% 18O 2) for 18O/ 16O isotope exchange experiments show a well-separated IR absorption peak related to the M- 18O c- M vibration, where O c denotes the common oxygen of two tetrahedral type MO 4 units. The intensity ratio of M- 18O c/ M- 16O c IR absorption peaks and the average crystal sizes were used to estimate the tracer diffusion coefficients of polycrystalline Bi 2Al 4O 9 ( D=2×10 -22 m 2s -1), Bi 2Fe 4O 9 ( D=5×10 -21 m 2s -1), Bi 2(Ga/Al) 4O 9 ( D=2×10 -21 m 2s -1) and Bi 2Ga 4O 9 ( D=2×10 -20 m 2s -1).

  4. Neutron star crusts

    NASA Technical Reports Server (NTRS)

    Lorenz, C. P.; Ravenhall, D. G.; Pethick, C. J.

    1993-01-01

    We calculate properties of neutron star matter at subnuclear densities using an improved nuclear Hamiltonian. Nuclei disappear and the matter becomes uniform at a density of about 0.6n(s), where n(s) of about 0.16/cu fm is the saturation density of nuclear matter. As a consequence, the mass of matter in the crusts of neutron stars is only about half as large as previously estimated. In about half of that crustal mass, nuclear matter occurs in shapes very different from the roughly spherical nuclei familiar at lower densities. The thinner crust and the unusual nuclear shape have important consequences for theories of the rotational and thermal evolution of neutron stars, especialy theories of glitches.

  5. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  6. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  7. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  8. Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr 5BiNi 2O 9.6

    NASA Astrophysics Data System (ADS)

    Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre

    2011-12-01

    A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.

  9. Electrical properties and water incorporation in A-site deficient perovskite La1-xBaxNb3O9-0.5x

    NASA Astrophysics Data System (ADS)

    Animitsa, I.; Iakovleva, A.; Belova, K.

    2016-06-01

    Barium doped A-site deficient perovskites La1-xBaxNb3O9-0.5x (x=0-0.05) were synthesized by the solid state method, their structure, electrical properties and state of oxygen-hydrogen groups have been investigated. These phases were found to be able to incorporate water from the gas phase and to exhibit proton transport. Hydration is accompanied by the formation of different forms of oxygen-hydrogen groups: OH- - groups and H3O+ - ions. The total conductivities of doped samples increased in a wet atmosphere due to the appearance of proton current carriers (at the temperatures below 700 °C), but the conductivity increased insignificantly (~0.25 order of magnitude) because of a low doping level and, consequently, small concentration of protons. TG-measurements confirmed relatively low water content (below 0.2%). The total conductivity depends substantially on x and exhibits a minimum on σ-f(x) dependencies. It has been suggested that such behavior is a manifestation of a mixed cation effect.

  10. Spin S=1 ``Quantum spin liquid'': quantum criticality in 6H-B-Ba3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Hermele, Michael; Radzihovsky, Leo

    2012-02-01

    We present a minimal model for a recently discovered material 6H-B-Ba3NiSb2O9 which was proposed as a candidate for S=1 quantum spin liquid on a triangular lattice. Our spin-1 model lies on a stacked multilayer triangular lattice. In our minimal model, we point out the competition between Heisenberg exchange interactions, which favor magnetic ordering, and the easy-plane single-ion anisotropy, which favors a uniform quantum paramagnetic state with S^z =0 state at each site. We argue that the system is close to the quantum critical point separating these two phases and on the quantum paramagnetic phase side. Viewing the system as a three dimensional multilayer structure, we find that the frustrated interlayer and intralayer exchange interaction induces nodal lines of low energy spin excitations at the quantum critical point. Moreover, due to the quasi-2D nature of the system and proximity to the quantum critical point, we show there exists a broad intermediate temperature regime with linear temperature dependence of specific heat. Various other predictions and suggestions for experiments are discussed.

  11. Stacked Pt/SrBi2Ta2-xNbxO9/Pt/IrOx/Ir Capacitor on Poly Plug

    NASA Astrophysics Data System (ADS)

    Kweon, Soon Yong; Choi, Si Kyung; Yang, Woo Seok; Yeom, Seung Jin; Roh, Jae Sung

    2002-01-01

    A Pt/SrBi2Ta2-xNbxO9(SBTN)/Pt/IrOx/Ir capacitor was successfully fabricated up to the stage of metal-1 etching process on a polysilicon plug for mega-bit ferroelectric random access memory. The integration processes include the chemical-mechanical polishing technique, buried TiN barrier structure and electrode technologies for high thermal stability, and a low-temperature process for SBTN film. The thickness of the iridium layer was the most important factor in controlling the contact resistance of the plug. The Pt thickness also affected the contact resistance of the plug. The best contact resistance of the plug was about 2.0 kΩ/plug at the maximum process temperature of 750°C for 3 min in oxygen ambient at the contact size of φ 0.30 μm. Hysteresis curves of the SBTN capacitor were obtained after the metal-1 etching process. The capacitor size dependency of the polarization was not observed in the range of 0.30-25 μm2 and the values of the sensing polarization were about 10 μC/cm2 at the applied voltage of 3 V@. In addition, the capacitor exhibited no fatigue loss up to 5× 1010 cycles at the switching voltage of 3 V.@

  12. Preparation and Characterization of SrBi2(Ta1-xNbx)2O9 Thin Films by Metalorganic Chemical Vapor Deposition from Two Organometallic Source Bottles

    NASA Astrophysics Data System (ADS)

    Mitsuya, Masatoshi; Ishikawa, Katsuyuki; Nukaga, Norimasa; Funakubo, Hiroshi

    2000-06-01

    SrBi2(Ta1-xNbx)2O9 (SBTN) thin films were first prepared on Pt/Ti/SiO2/Si substrates by metalorganic chemical vapor deposition (MOCVD) with high compositional reproducibility. Bi(CH3)3, a mixture of Sr[Ta(O\\cdotC2H5)6]2 and Sr[Nb(O\\cdotC2H5)6]2, and O2 gas were used as sources. The Nb/(Ta+Nb) ratio in the film was almost the same as that of the source materials. The film, deposited at 500°C following heat treatment at 800°C for 30 min in O2 atmosphere, consisted of an almost single phase of SBTN@. The remanent polarization and the coercive field of the 330 nm-thick film were 8.5 μC/cm2 and 91 kV/cm, respectively. This film showed negligible fatigue after 5× 1010 polarization switching cycles.

  13. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9

    PubMed Central

    Brzóstkowska, Marta; Raczkowska, Adrianna; Brzostek, Katarzyna

    2012-01-01

    The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression. PMID:23264953

  14. Spin-orbital short-range order in the honeycomb-based quantum magnet Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Satoru

    2013-03-01

    The realization of quantum correlated matter beyond one dimension has been vigorously pursued in geometrically frustrated spin systems for decades. In frustrated magnetic materials, however, symmetry breaking of orbital and chemical origin is usually found to induce semi-classical spin freezing. In this talk, I present a contrast case where spins and possibly orbitals remain in a liquid state down to low temperature even in a highly disordered structure of 6H-perovskite Ba3CuSb2O9. Our comprehensive experimental analysis indicates that the geometrical frustration of Wannier's Ising antiferromagnet on a triangular lattice can be exploited to build a nano-structured bipartite honeycomb lattice from electric dipolar spin-1/2 molecules. Despite a strong local Jahn-Teller distortion about the Cu2+ ion, the resulting spin-orbital random bond lattice not only retains hexagonal symmetry averaged over time and space, but it supports a gapless excitation spectrum without spin freezing down to ultralow temperatures. This is the work based on the collaboration with K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, C. Broholm. This work is partially supported by Grant-in-Aid for Scientific Research (No. 20340089,21684019) from JSPS, by Grant-in-Aid for Scientific Research on Priority Areas (No. 1951010,19052003) from MEXT, Japan.

  15. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  16. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  17. Atmospheres around Neutron Stars

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  18. Computational astrophysics: Pulsating stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The field of computational astrophysics in pulsating star studies has grown considerably since the advent of the computer. Initially calculations were done on the IBM 704 with 32K of memory and now we use the CRAY YMP computers with considerably more memory. Our early studies were for models of pulsating stars using a 1D Lagrangian hydrodynamic code (SPEC) with radiation diffusion. The radiative transfer was treated in the equilibrium diffusion approximation and the hydrodynamics was done utilizing the approximation of artificial viscosity. The early calculations took many hours of 704 CPU time. Early in 1965 we decided to improve on the usual treatment of the radiative transfer used in our codes by utilizing the method of moments, the so-called variable Eddington approximation. In this approximation the material energy field is uncoupled from the radiation energy field and the angular dependence is introduced through the Eddington factor. A multigroup frequency dependent method may also be applied. The Eddington factor is determined by snapshots of the stars structure utilizing a y-line approximation. The full radiative transfer approximation appears necessary in order to understand the light curves for W Virginia stars and may be important for the light curves of RR Lyrae stars. A detailed radiative transfer method does not appear to be necessary for the understanding of Cepheid light curves. A recent improvement to our models for pulsating stars is in the use of an adaptive mesh scheme to resolve the sharp features in the nonlinear hydrodynamic structure. From these improved structures, better analysis of the radius, velocity, and light curves could be obtained.

  19. Weighing the Smallest Stars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  20. American Urban Star Fest

    NASA Astrophysics Data System (ADS)

    Pazmino, John

    2003-12-01

    Over the last couple of decades New York City implemented, and continues to carry out, several schemes of eradicating luminous graffiti. One result has been the gradual recovery of the natural night sky. By 1994 the normal clear sky transparency over Manhattan deepened to fourth magnitude and has been slowly creeping deeper, until in 2002 it is at magnitude 4 to 4.5. In the spring of 1995, during some lazing on a Manhattan rooftop under a sky full of stars, several New York astronomers hatched the idea of letting the whole people celebrate the renewed starry sky. In due course they, through the Amateur Astronomers Association, engaged the New York City Parks Department and the Urban Park Rangers in an evening of quiet picnicking to enjoy the stars in their natural sky. Thus the Urban Star Fest was born. The event thrilled about 3,000 visitors in Central Park's Sheep Meadow on Saturday 30 September 1995. This year's Fest, the eighth in the series demonstrated the City's upper skyline of stars on Saturday 5 October 2002 to about 2,200 enthused visitors. Although the Fest is always noted as cancelable for inclement weather, so far, it has convened every year, with attendance ranging from 4,000 down to a mere 1,000, this latter being under the smoke plume of the World Trade Center in 2001. Despite this swing in attendance, the American Urban Star Fest is America's largest regularly scheduled public astronomy event. Of course, special occasions, like comets or eclipses, can and do attract far larger interest both in the city and elsewhere. The presentation shows the setup and program of the American Urban Star Fest, to illustrate how the general public can actively become aware of the night sky and see for themselves the result of their very own efforts at removing light pollution--and note where improvement is yet to come.

  1. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  2. The DQ Herculis stars

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1994-01-01

    We review the properties of the DQ Herculis stars: cataclysmic variables containing an accreting, magnetic, rapidly rotating white dwarf. These stars are characterized by strong X-ray emission, high-excitation spectra, and very stable optical and X-ray pulsations in their light curves. There is considerable resemblance to their more famous cousins, the AM Herculis stars, but the latter class is additionally characterized by spin-orbit synchronism and the presence of strong circular polarization. We list eighteen stars passing muster as certain or very likely DQ Her stars. The rotational periods range from 33 s to 2.0 hr. Additional periods can result when the rotating searchlight illuminates other structures in the binary. A single hypothesis explains most of the observed properties: magnetically channeled accretion within a truncated disk. Some accretion flow still seems to proceed directly to the magnetosphere, however. The white dwarfs' magnetic moments are in the range 10(sup 32) - 10(sup 34) G cc, slightly weaker than in AM Her stars but with some probable overlap. The more important reason why DQ Hers have broken synchronism is probably their greater accretion rate and orbital separation. The observed L(sub x)/L(sub V) values are surprisingly low for a radially accreting white dwarf, suggesting that most of the accretion energy is not radiated in a strong shock above the magnetic pole. The fluxes can be more satisfactorily explained if most of the radial infall energy manages to bypass the shock and deposit itse lf directly in the white dwarf photosphere, where it should emerge as extreme ultraviolet (EUV) radiation. This also provides an adequate source of ionizing photons to power the high-excitation optical and UV emission lines. This is probably the DQ Her analog to the famous 'soft X-ray excess' in AM Her stars. However, unlike the AM Her case, this radiation has not been directly observed, so the analogy must not (yet) be embraced too firmly. There is

  3. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  4. GeoSTAR

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Gaier, T.; Tanner, A.; Kangaslahti, P.; Brown, S.

    2006-12-01

    The Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR, is a new concept for a microwave atmospheric sounder intended for geostationary satellites such as the GOES weather satellites operated by NOAA. A small but fully functional prototype has recently been developed at the Jet Propulsion Laboratory to demonstrate the feasibility of using aperture synthesis in lieu of the large solid parabolic dish antenna that is required with the conventional approach. Spatial resolution requirements dictate such a large aperture in GEO that the conventional approach has not been feasible, and it is only now with the GeoSTAR approach that a GEO microwave sounder can be contemplated. Others have proposed GEO microwave radiometers that would operate at sub-millimeter wavelengths to circumvent the large-aperture problem, but GeoSTAR is the only viable approach that can provide full sounding capabilities equal to or exceeding those of the AMSU systems now operating on LEO weather satellites and which have had tremendous impact on numerical weather forecasting. GeoSTAR will satisfy a number of important measurement objectives, many of them identified by NOAA as unmet needs in their GOES-R pre-planned product improvements (P3I) lists and others by NASA in their research roadmaps and as discussed in a white paper submitted to the NRC Decadal Survey. The performance of the prototype has been outstanding, and this proof of concept represents a major breakthrough in remote sensing capabilities. The GeoSTAR concept is now at a stage of development where an infusion into space systems can be initiated either on a NASA sponsored research mission or on a NOAA sponsored operational mission. GeoSTAR is an ideal candidate for a joint "research to operations" mission, and that may be the most likely scenario. Additional GeoSTAR related technology development and other risk reduction activities are under way, and a GeoSTAR mission is feasible in the GOES-R/S time frame, 2014-2016. This

  5. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  6. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  8. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira

  9. A Star on Earth

    SciTech Connect

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  10. The FK Comae stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Stencel, R. E.

    1981-01-01

    The paper presents IUE observations of three very rapidly rotating G-K giants (v sin i = 100 km/s). The UV spectra show strong chromospheric and transition region emission lines similar to (and in excess of) the RS CVn binaries. These stars show no evidence for radial velocity variations in excess of plus or minus 3 to plus or minus 20 km/s, arguing against duplicity. As a class, they lend support to the rotation-activity hypothesis. Coalesced W UMa binaries, rather than single stars, are the possible progenitors for these FK Com variables.

  11. Isolating Triggered Star Formation

    SciTech Connect

    Barton, Elizabeth J.; Arnold, Jacob A.; Zentner, Andrew R.; Bullock, James S.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of

  12. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2016-07-12

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  13. Mesopotamian Star Lists

    NASA Astrophysics Data System (ADS)

    Horowitz, Wayne

    Sumerian and Akkadian names of stars and constellations occur in cuneiform texts for over 2,000 years, from the third millennium BC down to the death of cuneiform in the early first millennium AD, but no fully comprehensive list was ever compiled in antiquity. Lists of stars and constellations are available in both the lexical tradition and astronomical-astrological tradition of the cuneiform scribes. The longest list in the former is that in the series Urra = hubullu, in the latter, those in Mul-Apin.

  14. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  15. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  16. Detection of a large sample of γ Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Aerts, C.; Yakushechkin, A.; Debosscher, J.; Degroote, P.; Bloemen, S.; Pápics, P. I.; de Vries, B. L.; Lombaert, R.; Hrudkova, M.; Frémat, Y.; Raskin, G.; Van Winckel, H.

    2013-08-01

    Context. The launches of the MOST, CoRoT, and Kepler missions opened up a new era in asteroseismology, the study of stellar interiors via interpretation of pulsation patterns observed at the surfaces of large groups of stars. These space missions deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars. Aims: Our ultimate goal is a detection and analysis of an extended sample of γ Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. This kind of diagnostic can be used to deduce the internal rotation law and to estimate the amount of rotational mixing in the near core regions. Methods: We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus (γ Dor) candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. The spectroscopic data are analysed to determine the fundamental parameters like Teff, log g, vsini, and [M/H]. Results: We find that all stars for which spectroscopic estimates of Teff and log g are available fall into the region of the HR diagram, where the γ Dor and δ Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature; log g measurements suggest luminosity class IV-V, i.e. sub-giant or main-sequence stars. From the Kepler photometry, we identify 45 γ Dor-type pulsators, 14 γ Dor/δ Sct hybrids, and 10 stars, which are classified as "possibly γ Dor/δ Sct hybrid pulsators". We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes. Conclusions: We have shown that our photometric classification based on the

  17. Photographic photometry of variable stars

    NASA Technical Reports Server (NTRS)

    Kholopov, P. N.

    1973-01-01

    Photographic methods of determining stellar magnitude and measuring brightness of variable stars on negatives include the photoelectric method and the contascope. Calibration curves are usually plotted by the UBV method. Magnitudes of comparison stars can be determined from photographs.

  18. The Death of a Star

    ERIC Educational Resources Information Center

    Thorne, Kip S.

    1971-01-01

    Theories associated with the gravitational collapse of a star into black holes" are described. Suggests that the collapse and compression might go through the stages from white dwarf star to neutron core to black hole." (TS)

  19. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  20. Finding Planets around other stars

    NASA Video Gallery

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  1. A Vanishing Star Revisited

    NASA Astrophysics Data System (ADS)

    1999-07-01

    VLT Observations of an Unusual Stellar System Reinhold Häfner of the Munich University Observatory (Germany) is a happy astronomer. In 1988, when he was working at a telescope at the ESO La Silla observatory, he came across a strange star that suddenly vanished off the computer screen. He had to wait for more than a decade to get the full explanation of this unusual event. On June 10-11, 1999, he observed the same star with the first VLT 8.2-m Unit Telescope (ANTU) and the FORS1 astronomical instrument at Paranal [1]. With the vast power of this new research facility, he was now able to determine the physical properties of a very strange stellar system in which two planet-size stars orbit each other. One is an exceedingly hot white dwarf star , weighing half as much as the Sun, but only twice as big as the Earth. The other is a much cooler and less massive red dwarf star , one-and-a-half times the size of planet Jupiter. Once every three hours, the hot star disappears behind the other, as seen from the Earth. For a few minutes, the brightness of the system drops by a factor of more than 250 and it "vanishes" from view in telescopes smaller than the VLT. A variable star named NN Serpentis ESO PR Photo 30a/99 ESO PR Photo 30a/99 [Preview - JPEG: 400 x 468 pix - 152k] [Normal - JPEG: 800 x 936 pix - 576k] [High-Res - JPEG: 2304 x 2695 pix - 4.4M] Caption to ESO PR Photo 30a/99 : The sky field around the 17-mag variable stellar system NN Serpentis , as seen in a 5 sec exposure through a V(isual) filter with VLT ANTU and FORS1. It was obtained just before the observation of an eclipse of this unsual object and served to centre the telescope on the corresponding sky position. The field shown here measures 4.5 x 4.5 armin 2 (1365 x 1365 pix 2 ; 0.20 arcsec/pix). The field is somewhat larger than that shown in Photo 30b/99 and has the same orientation to allow comparison: North is about 20° anticlockwise from the top and East is 90° clockwise from that direction. The

  2. RADIAL STABILITY IN STRATIFIED STARS

    SciTech Connect

    Pereira, Jonas P.; Rueda, Jorge A. E-mail: jorge.rueda@icra.it

    2015-03-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case.

  3. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  4. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.

    2016-09-01

    Nearly all types of massive stars with radiatively driven stellar winds are X-ray sources that can be observed by the presently operating powerful X-ray telescopes. In this review I briefly address recent advances in our understanding of stellar winds obtained from X-ray observations. X-rays may strongly influence the dynamics of weak winds of main sequence B-type stars. X-ray pulsations were detected in a β Cep type variable giving evidence of tight photosphere-wind connections. The winds of OB dwarfs with subtypes later than O9V may be predominantly in a hot phase, and X-ray observations offer the best window for their studies. The X-ray properties of OB supergiants are largely determined by the effects of radiative transfer in their clumped stellar winds. The recently suggested method to directly measure mass-loss rates of O stars by fitting the shapes of X-ray emission lines is considered but its validity cannot be confirmed. To obtain robust quantitative information on stellar wind parameters from X-ray spectroscopy, a multiwavelength analysis by means of stellar atmosphere models is required. Independent groups are now performing such analyses with encouraging results. Joint analyses of optical, UV, and X-ray spectra of OB supergiants yield consistent mass-loss rates. Depending on the adopted clumping parameters, the empirically derived mass-loss rates are a factor of a few smaller or comparable to those predicted by standard recipes (Vink et al., 2001). All sufficiently studied O stars display variable X-ray emission that might be related to corotating interaction regions in their winds. In the latest stages of stellar evolution, single red supergiants (RSG) and luminous blue variable (LBV) stars do not emit observable amounts of X-rays. On the other hand, nearly all types of Wolf-Rayet (WR) stars are X-ray sources. X-ray spectroscopy allows a sensitive probe of WR wind abundances and opacities.

  5. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  6. WFOV star tracker camera

    SciTech Connect

    Lewis, I.T. ); Ledebuhr, A.G.; Axelrod, T.S.; Kordas, J.F.; Hills, R.F. )

    1991-04-01

    A prototype wide-field-of-view (WFOV) star tracker camera has been fabricated and tested for use in spacecraft navigation. The most unique feature of this device is its 28{degrees} {times} 44{degrees} FOV, which views a large enough sector of the sky to ensure the existence of at least 5 stars of m{sub v} = 4.5 or brighter in all viewing directions. The WFOV requirement and the need to maximize both collection aperture (F/1.28) and spectral input band (0.4 to 1.1 {mu}m) to meet the light gathering needs for the dimmest star have dictated the use of a novel concentric optical design, which employs a fiber optic faceplate field flattener. The main advantage of the WFOV configuration is the smaller star map required for position processing, which results in less processing power and faster matching. Additionally, a size and mass benefit is seen with a larger FOV/smaller effective focal length (efl) sensor. Prototype hardware versions have included both image intensified and un-intensified CCD cameras. Integration times of {le} 50 msec have been demonstrated with both the intensified and un-intensified versions. 3 refs., 16 figs.

  7. Trek to the Stars

    ERIC Educational Resources Information Center

    Rubinstein, Robert E.

    1977-01-01

    "Star Trek", which was aired on television for three years, brought the creatures and conflicts of the "outer reaches" of space into our living rooms. Here its new episodes and reruns are analyzed by elementary students as part of a social studies/elementary science curriculum. (Author/RK)

  8. NuStar

    Integrated Risk Information System (IRIS)

    NuStar ; CASRN 85509 - 19 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  9. Stabilizing Star Wars

    SciTech Connect

    Weinberg, A.M.; Barkenbus, J.N.

    1984-01-01

    An orderly replacement of offensive with defensive nuclear weapons is part of the defense-protected build-down (DPB) strategy described by Weinberg and Barkenbus. Differing from the administration's Star Wars approach by relying on interceptor missiles rather than costly and unproven lasers and particle beams, the plan also calls for a simultaneous freeze on offensive weapons. (DCK)

  10. The Astounding Stars.

    ERIC Educational Resources Information Center

    Montgomery, Angela; And Others

    1983-01-01

    Studying about stellar constellations provides children with an opportunity to learn about ancient myths and mathematics at the same time. An interdisciplinary teaching unit combines information about myths associated with the zodiac signs and instructions for plotting the coordinates of stars. (PP)

  11. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  12. Reaching for the Stars.

    ERIC Educational Resources Information Center

    Roper-Davis, Sharon

    1999-01-01

    Describes "Reaching for the Stars," a program which develops teaming and mentoring skills in senior physics students. Phase 1 requires student pairs to design a rocket; Phase 2 pairs seniors with gifted second graders who build the rocket from written instructions; and in Phase 3, pairs of seniors create a children's storybook explaining one of…

  13. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  14. Magnetic Dynamos and Stars

    SciTech Connect

    Eggleton, P P

    2007-02-15

    Djehuty is a code that has been developed over the last five years by the Lawrence Livermore National Laboratory (LLNL), from earlier code designed for programmatic efforts. Operating in a massively parallel environment, Djehuty is able to model entire stars in 3D. The object of this proposal was to continue the effort to introduce magneto-hydrodynamics (MHD) into Djehuty, and investigate new classes of inherently 3D problems involving the structure, evolution and interaction of stars and planets. However, towards the end of the second year we discovered an unexpected physical process of great importance in the evolution of stars. Consequently for the third year we changed direction and concentrated on this process rather than on magnetic fields. Our new process was discovered while testing the code on red-giant stars, at the 'helium flash'. We found that a thin layer was regularly formed which contained a molecular-weight inversion, and which led therefore to Rayleigh-Taylor instability. This in turn led to some deeper-than-expected mixing, which has the property that (a) much {sup 3}He is consumed, and (b) some {sup 13}C is produced. These two properties are closely in accord with what has been observed over the last thirty years in red giants, whereas what was observed was largely in contradiction to what earlier theoretical models predicted. Thus our new 3D models with Djehuty explain a previously-unexplained problem of some thirty years standing.

  15. Reaching for the Stars

    ERIC Educational Resources Information Center

    Terry, Dorothy Givens

    2012-01-01

    Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…

  16. Multipath star switch controller

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1980-01-01

    Device concept permits parallel computers to scan several commonnetwork-connected data stations at maximum rate. Sequencers leap-frog to bypass ports already being serviced by another computer. Two-path system for 16-port star switch controller is cost effective if added bandwidth or increased reliability is desired. Triple-path system would be cost effective for 32-port controller.

  17. Sleeping under the stars

    NASA Astrophysics Data System (ADS)

    Zirkel, Jack

    Sherlock Holmes and Dr. Watson went on a camping trip. As they lay down for the night, Holmes said, “Watson, look up at the sky and tell me what you see.”Watson:“! see millions and millions of stars.”

  18. Neutron Star Mysteries

    NASA Astrophysics Data System (ADS)

    Mathews, G. J.; Fragile, P. C.; Suh, I.; Wilson, J. R.

    2003-04-01

    Neutron stars provide a unique laboratory in which to explore the nuclear equation of state at high densities. Nevertheless, their interior structure and equation of state have remained a mystery. Recently, a number of advances have been made toward unraveling this mystery. The first direct optical images of a nearby neutron star have been obtained from HST. High quality data for X-ray emission from low-mass X-ray binaries, including observations of nearly coherent oscillations (NCO's) and quasi-periodic oscillations (QPOs) now exist. The existence of a possible absorption feature as well as pulsar light curves and glitches, and studies of soft-gamma repeaters, have all led to significant new constraints on the mass-radius relation and maximum mass of neutron stars. We also discuss how models of supernova explosion dynamics and the associated r-process nucleosynthesis also constrain the nuclear equation of state, along with heavy-ion and monopole resonance data. Recent work on the search for the Friedman-Chandrasekhar-Schutz instability and the effects of internal magnetic fields are also discussed. The overall constraints on the neutron star equation of state are summarized.

  19. Physics of the Stars

    ERIC Educational Resources Information Center

    Haig, G. Y.

    1974-01-01

    Describes how astrophysics can be a do-it-yourself project within a school boy's budget and background, by giving detailed instruction on equipment construction. In addition, this article describes many experiments to undertake, with the equipment, such as determining color temperature, star spectra, chemical composition and others. (BR)

  20. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  1. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  2. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  3. StarLogo TNG

    NASA Astrophysics Data System (ADS)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  4. Reading Stars. 2013 Report

    ERIC Educational Resources Information Center

    National Literacy Trust, 2013

    2013-01-01

    The National Literacy Trust's Premier League Reading Stars has now been running for 10 years. During this time, hundreds of thousands of children and families have been inspired by the power of football to develop a love of reading. Although the programme has grown and evolved over this period, the premise remains the same: harnessing the…

  5. Chemical Compositions of Stars

    NASA Astrophysics Data System (ADS)

    Leckrone, D.; Murdin, P.

    2000-11-01

    In 1835, in a famously inaccurate forecast, the French philosopher Auguste Comte wrote of stars that, `We understand the possibility of determining their shapes, their distances, their sizes and their movements; whereas we would never know how to study by any means their chemical composition…'. At the close of the 20th century the accurate measurement of the abundances of the chemical elements in...

  6. Wishing on a Star.

    ERIC Educational Resources Information Center

    Shoemaker, Donna

    1990-01-01

    Matching the celebrity graduate to the celebration calls for careful coordination of styles, schedules, and expectations. In producing a star-studded extravaganza using alumni, make sure the campus has the right resources. Often the celebrity will take the initiative in shaping the nature of their commitment. (MLW)

  7. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  8. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  9. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  10. Study on luminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors prepared by co-precipitation.

    PubMed

    Meng, Qingyu; Hua, Ruinian; Chen, Baojiu; Tian, Yue; Lu, Shuchen; Sun, Linan

    2011-01-01

    Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors with different concentrations have been prepared by co-precipitation. XRD (X-ray diffraction) and SEM (scanning electron microscopy) were used to investigate the structure and morphology. The emission spectra, excitation spectra and fluorescence decay curves were measured, and partial J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated. Furthermore, concentration quenching curves of Eu3+ in different hosts were drawn. The photoluminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors have been studied. The results indicate that Eu3+ 5D0-7F2 red luminescence can be effectively excited by 395 nm and 465 nm in Gd2WO6 and Gd2W2O9 hosts, similar to the familiar Gd2(WO4)3:Eu. Especially Gd2W2O9:Eu has strong red emission and high quenching concentration, so it has potential applications for trichromatic white LED as red fluorescent materials. PMID:21446424

  11. Facile synthesis of mononuclear early transition-metal complexes of κ3cyclo-tetrametaphosphate ([P4O12]4-) and cyclo-trimetaphosphate ([P3O9]3-.

    PubMed

    Manna, Cesar M; Nassar, Mostafa Y; Tofan, Daniel; Chakarawet, Khetpakorn; Cummins, Christopher C

    2014-01-28

    We herein report the preparation of several mononuclear-metaphosphate complexes using simple techniques and mild conditions with yields ranging from 56% to 78%. Treatment of cyclo-tetrametaphosphate ([TBA]4[P4O12]·5H2O, TBA = tetra-n-butylammonium) with various metal sources including (CH3CN)3Mo(CO)3, (CH3CN)2Mo(CO)2(η(3)-C3H5)Cl, MoO2Cl2(OSMe2)2, and VOF3, leads to the clean and rapid formation of [TBA]4[(P4O12)Mo(CO)3]·2H2O, [TBA]3[(P4O12)Mo(CO)2(η(3)-C3H5)], [TBA]3[(P4O12)MoO2Cl] and [TBA]3[(P4O12)VOF2]·Et2O salts in isolated yields of 69, 56, 68, and 56% respectively. NMR spectroscopy, NMR simulations and single crystal X-ray studies reveal that the [P4O12](4-) anion behaves as a tridentate ligand wherein one of the metaphosphate groups is not directly bound to the metal. cyclo-Trimetaphosphate-metal complexes were prepared using a similar procedure i.e., treatment of [PPN]3[P3O9]·H2O (PPN = bis(triphenylphosphine)iminium) with the metal sources (CH3CN)2Mo(CO)2(η(3)-C3H5)Cl, MoO2Cl2(OSMe2)2, MoOCl3, VOF3, WOCl4, and WO2Cl2(CH3CN)2 to produce the corresponding salts, [PPN]2[(P3O9)Mo(CO)2(η(3)-C3H5)], [PPN]2[(P3O9)MoO2Cl], [PPN]2[(P3O9)MoOCl2], [PPN]2[(P3O9)VOF2]·2CH2Cl2, and [PPN]2[(P3O9)WO2Cl] in isolated yields of 78, 56, 75, 59, and 77% respectively. NMR spectroscopy, NMR simulations and single-crystal X-ray studies indicate that the trianionic ligand [P3O9](3-) in these complexes also has κ(3) connectivity. PMID:24285119

  12. Weighing the Smallest Stars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  13. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role. PMID:27096793

  14. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role.

  15. Efficacy of Several Serological Tests and Antigens for Diagnosis of Bovine Brucellosis in the Presence of False-Positive Serological Results Due to Yersinia enterocolitica O:9

    PubMed Central

    Muñoz, P. M.; Marín, C. M.; Monreal, D.; González, D.; Garin-Bastuji, B.; Díaz, R.; Mainar-Jaime, R. C.; Moriyón, I.; Blasco, J. M.

    2005-01-01

    Yersinia enterocolitica O:9 bears a smooth lipopolysaccharide (S-LPS) of Brucella sp. O-chain A + C/Y epitopic structure and is a cause of false-positive serological reactions (FPSR) in standard tests for cattle brucellosis. Brucella S-LPS, cross-reacting S-LPSs representing several O-chain epitope combinations, Brucella core lipid A epitopes (rough LPS), Brucella abortus S-LPS-derived polysaccharide, native hapten polysaccharide, rough LPS group 3 outer membrane protein complexes, recombinant BP26, and cytosolic proteins were tested in enzyme-linked immunosorbent assays (ELISA) and precipitation tests to detect cattle brucellosis (sensitivity) and to differentiate it from FPSR (specificity). No single serological test and antigen combination showed 100% sensitivity and specificity simultaneously. Immunoprecipitation tests with native hapten polysaccharide, counterimmunoelectrophoresis with cytosolic proteins, and a chaotropic ELISA with Brucella S-LPS were 100% specific but less sensitive than the Rose Bengal test, complement fixation, and indirect ELISA with Brucella S-LPSs and native hapten or S-LPS-derived polysaccharides. A competitive ELISA with Brucella S-LPS and M84 C/Y-specific monoclonal antibody was not 100% specific and was less sensitive than other tests. ELISA with Brucella suis bv. 2 S-LPS (deficient in C epitopes), Escherichia hermannii S-LPSs [lacking the contiguous α-(1-2)-linked perosamine residues characteristic of Y. enterocolitica S-LPS], BP26 recombinant protein, and Brucella cytosolic fractions did not provide adequate sensitivity/specificity ratios. Although no serological test and antigen combination fully resolved the diagnosis of bovine brucellosis in the presence of FPSR, some are simple and practical alternatives to the brucellin skin test currently recommended for differential diagnosis. PMID:15642999

  16. IUE observations of central stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1983-01-01

    IUE satellite data on sixty galactic planetary nebulae (PN) and three PNs in the Magellanic clouds are examined to establish a mass distribution among the central star types. An evolutionary lineage was determined for the observed central stars, based on UV magnitudes, demonstrating that central stars in optically thin nebulae have a narrow distribution around 0.58 solar mass, whereas stars in optically thick nebulae exhibited the highest masses of the sample, implying that highest mass stars in PN are the most difficult to detect. No definitive correlation was found between the mass of an object and its spectral type.

  17. Theoretical Modelling of Hot Stars

    NASA Astrophysics Data System (ADS)

    Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.

    1999-06-01

    Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.

  18. A Vanishing Star Revisited

    NASA Astrophysics Data System (ADS)

    1999-07-01

    VLT Observations of an Unusual Stellar System Reinhold Häfner of the Munich University Observatory (Germany) is a happy astronomer. In 1988, when he was working at a telescope at the ESO La Silla observatory, he came across a strange star that suddenly vanished off the computer screen. He had to wait for more than a decade to get the full explanation of this unusual event. On June 10-11, 1999, he observed the same star with the first VLT 8.2-m Unit Telescope (ANTU) and the FORS1 astronomical instrument at Paranal [1]. With the vast power of this new research facility, he was now able to determine the physical properties of a very strange stellar system in which two planet-size stars orbit each other. One is an exceedingly hot white dwarf star , weighing half as much as the Sun, but only twice as big as the Earth. The other is a much cooler and less massive red dwarf star , one-and-a-half times the size of planet Jupiter. Once every three hours, the hot star disappears behind the other, as seen from the Earth. For a few minutes, the brightness of the system drops by a factor of more than 250 and it "vanishes" from view in telescopes smaller than the VLT. A variable star named NN Serpentis ESO PR Photo 30a/99 ESO PR Photo 30a/99 [Preview - JPEG: 400 x 468 pix - 152k] [Normal - JPEG: 800 x 936 pix - 576k] [High-Res - JPEG: 2304 x 2695 pix - 4.4M] Caption to ESO PR Photo 30a/99 : The sky field around the 17-mag variable stellar system NN Serpentis , as seen in a 5 sec exposure through a V(isual) filter with VLT ANTU and FORS1. It was obtained just before the observation of an eclipse of this unsual object and served to centre the telescope on the corresponding sky position. The field shown here measures 4.5 x 4.5 armin 2 (1365 x 1365 pix 2 ; 0.20 arcsec/pix). The field is somewhat larger than that shown in Photo 30b/99 and has the same orientation to allow comparison: North is about 20° anticlockwise from the top and East is 90° clockwise from that direction. The

  19. Structurally modulated magnetic properties in the A(3)MnRu(2)O(9) phases (A = Ba, Ca): the role of metal-metal bonding in perovskite-related oxides.

    PubMed

    Gönen, Z S; Gopalakrishnan, J; Eichhorn, B W; Greene, R L

    2001-09-10

    Ca(3)MnRu(2)O(9) and Ba(3)MnRu(2)O(9) were synthesized from transition metal dioxides and alkaline earth metal carbonates at 1100-1300 degrees C. Ca(3)MnRu(2)O(9) adopts the prototypical GdFeO(3)-type perovskite structure with Mn and Ru statistically disordered over the single metal atom site. The susceptibility shows Curie-Weiss behavior above 240 K with mu(eff) = 3.14 micro(B)/metal atom, which is in excellent agreement with the expected spin-only moment of 3.20 micro(B). Below 150 K, the compound shows spin-glass-like short-range ferrimagnetic correlations. The high-temperature region of the electrical resistivity reveals a small activation energy of 17(1) meV whereas the low-temperature region is nonlinear and does not fit a variable range hopping model. Ba(3)MnRu(2)O(9) crystallizes in the 9-layer BaRuO(3)-type structure containing M(3)O(12) face-shared trioctahedral clusters in which Mn and Ru are statistically disordered. Ba(3)MnRu(2)O(9) shows nonlinear reciprocal susceptibility at all temperatures and is described by a variable-spin cluster model with an S = (1)/(2) ground state with thermally populated excited states. The low spin value of this system (S = (1)/(2)) is attributed to direct metal-metal bonding. Below 30 K, the compound shows short-range magnetic correlations and spin-glass-like behavior. The high-temperature region of the electrical resistivity indicates a small activation energy of 8.8(1) meV whereas the low-temperature region is nonlinear. The importance of metal-metal bonding and the relationships to other related compounds are discussed.

  20. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  1. Mass loss from S stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1988-01-01

    The mass-loss process in S stars is studied using 65 S stars from the listing of Wing and Yorka (1977). The role of pulsations in the mass-loss process is examined. It is detected that stars with larger mass-loss rates have a greater amplitude of pulsations. The dust-to-gas ratio for the S stars is estimated as 0.002 and the average mass-loss rate is about 6 x 10 to the -8th solar masses/yr. Some of the properties of the S stars, such as scale height, surface density, and lifetime, are measured. It is determined that scale height is 200 pc; the total duration of the S star phase is greater than or equal to 30,000 yr; and the stars inject 3 x 10 to the -6th solar masses/sq kpc yr into the interstellar medium.

  2. Gaining Insight into Star Formation: Resolved Star Formation Laws

    NASA Astrophysics Data System (ADS)

    Liebst, Kelley; Scowen, Paul A.

    2014-06-01

    Until recently astronomers have used star formation laws to measure the star formation rate and star formation efficiency of galaxies only on global scales because of the poor resolution of available data. What I am now capable of producing is a spatially resolved star formation law that can provide direct insight into the physical processes that govern star formation and assess the short-term nature of bursts of star formation and the longer-term nature of larger-scale events that can dictate the global distribution of stars and the ultimate fate of a galaxy as a whole. I am using exquisite narrowband optical data from a variety of sources, including the Hubble Space Telescope, and Kitt Peak National Observatory, etc., in conjunction with infrared data from the Spitzer Infrared Nearby Galaxy Survey and the Spitzer Local Volume Legacy survey, neutral gas data from The HI Nearby Galaxy Survey, and molecular gas data from the Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies, to provide star formation rates and star formation efficiencies on previously inaccessible small spatial scales across a suite of galaxies that represent a range of star formation environments and scales. My sample includes 18 spiral galaxies ranging from 2.1 to 15.1 Mpc in distance and offers a large range of morphological types (i.e. a large range of star formation environments). I am using these data to test different models of star formation modes under a variety of physical conditions and relate the variations I observe to the known local physical conditions and the associated star formation histories for each locale within each galaxy.This is the heart of the matter - that the nature and evolution of the local physical environment intimately influences how stars can form, how quickly and how massive those stars are allowed to form, and as a result how they shape the local conditions for subsequent star formation. It is this tracking of the stellar ecology that is vital for

  3. Dead Star Rumbles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time.

    These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps.

    Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30

  4. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  5. VizieR Online Data Catalog: Spectroscopy of standard stars (Joner+, 2015)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.; Hintz, E. G.

    2016-06-01

    Between 2005 and 2015, spectroscopic data were obtained using the 1.2-m McKellar Telescope of the Dominion Astrophysical Observatory (DAO). In total, data were secured on 153 nights using the telescope in robotic mode. Observations were made using the Coude spectrograph with the 3231 grating, which provided 40.9Å/mm. Using the Site4 CCD with 15μm pixels gives 0.614Å/pixel. With 4096 pixels along the dispersion axis, this provided a total coverage of approximately 2500Å. Aligning the grating to give a central wavelength of 5710Å allowed a spectral coverage from 4450 to 6970Å, which provided coverage of both Hα and Hβ. In total we examined 75 field stars (table2), 12 stars from the Coma star cluster (table3), 24 from the Hyades (table4), 17 from the Pleiades (table5), and 8 from NGC 752 (table6). These stars cover a spectral type range from O9 to K2. (5 data files).

  6. Flattest Star Ever Seen

    NASA Astrophysics Data System (ADS)

    2003-06-01

    VLT Interferometer Measurements of Achernar Challenge Stellar Theory Summary To a first approximation, planets and stars are round. Think of the Earth we live on. Think of the Sun, the nearest star, and how it looks in the sky. But if you think more about it, you realize that this is not completely true. Due to its daily rotation, the solid Earth is slightly flattened ("oblate") - its equatorial radius is some 21 km (0.3%) larger than the polar one. Stars are enormous gaseous spheres and some of them are known to rotate quite fast, much faster than the Earth. This would obviously cause such stars to become flattened. But how flat? Recent observations with the VLT Interferometer (VLTI) at the ESO Paranal Observatory have allowed a group of astronomers [1] to obtain by far the most detailed view of the general shape of a fast-spinning hot star, Achernar (Alpha Eridani) , the brightest in the southern constellation Eridanus (The River). They find that Achernar is much flatter than expected - its equatorial radius is more than 50% larger than the polar one! In other words, this star is shaped very much like the well-known spinning-top toy, so popular among young children. The high degree of flattening measured for Achernar - a first in observational astrophysics - now poses an unprecedented challenge for theoretical astrophysics . The effect cannot be reproduced by common models of stellar interiors unless certain phenomena are incorporated, e.g. meridional circulation on the surface ("north-south streams") and non-uniform rotation at different depths inside the star. As this example shows, interferometric techniques will ultimately provide very detailed information about the shapes, surface conditions and interior structure of stars . PR Photo 15a/03 : The VLT Interferometer configuration for the Achernar measurements PR Photo 15b/03 : Achernar's "profile" , as measured by the VLTI. PR Photo 15c/03 : Models of Achernar's spatial shape. VLTI observations of Achernar

  7. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  8. O-star kinematics

    SciTech Connect

    Karimova, D.K.; Pavlovskaya, E.D.

    1984-01-01

    Proper motions determined by the authors are utilized to study the kinematics of 79 O-type stars at distance r< or =2.5 kpc. The sample is divided into two groups, having space-velocity dispersions tau/sub I/roughly-equal10 km/sec, sigma/sub II/roughly-equal35 km/sec. Solutions for the velocity-field parameters for group I yield a galactic angular rotation speed ..omega../sub 0/ = 24.9 km sec/sup -1/ kpc/sup -1/ at the sun (for R/sub 0/ = 10.0 kpc) and an Oort constant A = 12.2 km sec/sup -1/ kpc/sup -1/. Most of the O stars exhibit a small z-velocity directed away from the galactic plane. The velocity-ellipsoid parameters and box-orbit elements are calculated.

  9. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  10. Hyperons in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2016-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  11. White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

    Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.

    The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at

    http://oposite.stsci.edu/pubinfo/pr/2002/10/ or

    http://www.jpl.nasa.gov/images/wfpc .

    The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.

    The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.

    Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the

  12. The Seismology of Stars

    NASA Astrophysics Data System (ADS)

    Turck-Chièze, Sylvaine

    2001-05-01

    Until recently, the great steps of stellar evolution have been studied only theoretically. This allowed to account for the observations of stellar surfaces. However many problems prove that the formalism is not complete: evolution of young stars, the problem of solar neutrinos, the burning of lithium, the origin of stellar winds, ultimate stages of stellar evolution... Often these open problems are linked to theoric limitations of the framework, which does not account for internal dynamics. Stellar seismology is a discipline which will contribute to change this situation while penetrating judiciously in the stellar interior. Thanks to the ground networks and SOHO satellite, the heliosismology has already revealed the internal dynamics of the Sun and has transformed this banal star into a true cosmic physics laboratory. The quality of the observations is also a formidable challenge for the theoricians who could validate their assumptions when the terrestrial laboratory remained impotent. I will show that confirming the complex physics included in the models is today an accomplished task, from the center of the Sun until its surface, with a precision of a few percent. But still more interesting, we begin to introduce the effects of rotation and of magnetic field, tackling today the dynamic processes which connect the stellar interior to the eruptive processes. This opens the gate to a three-dimensional representation of stars and to a better understanding of galactic enrichment or of the role of our star in our daily environment. However the Sun cannot, alone, account for the history of stellar angular momentum or of all stellar energetic phenomena. It is essential to extend this effort to a great number of samples, therefore I will show how this is possible and what we expect from asterosismology projects such as COROT or EDDINGTON.

  13. Detector limitations, STAR

    SciTech Connect

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  14. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  15. Runaway Stars in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  16. Shotgun sequencing of Yersinia enterocolitica strain W22703 (biotype 2, serotype O:9): genomic evidence for oscillation between invertebrates and mammals

    PubMed Central

    2011-01-01

    Background Yersinia enterocolitica strains responsible for mild gastroenteritis in humans are very diverse with respect to their metabolic and virulence properties. Strain W22703 (biotype 2, serotype O:9) was recently identified to possess nematocidal and insecticidal activity. To better understand the relationship between pathogenicity towards insects and humans, we compared the W22703 genome with that of the highly pathogenic strain 8081 (biotype1B; serotype O:8), the only Y. enterocolitica strain sequenced so far. Results We used whole-genome shotgun data to assemble, annotate and analyse the sequence of strain W22703. Numerous factors assumed to contribute to enteric survival and pathogenesis, among them osmoregulated periplasmic glucan, hydrogenases, cobalamin-dependent pathways, iron uptake systems and the Yersinia genome island 1 (YGI-1) involved in tight adherence were identified to be common to the 8081 and W22703 genomes. However, sets of ~550 genes revealed to be specific for each of them in comparison to the other strain. The plasticity zone (PZ) of 142 kb in the W22703 genome carries an ancient flagellar cluster Flg-2 of ~40 kb, but it lacks the pathogenicity island YAPIYe, the secretion system ysa and yts1, and other virulence determinants of the 8081 PZ. Its composition underlines the prominent variability of this genome region and demonstrates its contribution to the higher pathogenicity of biotype 1B strains with respect to W22703. A novel type three secretion system of mosaic structure was found in the genome of W22703 that is absent in the sequenced strains of the human pathogenic Yersinia species, but conserved in the genomes of the apathogenic species. We identified several regions of differences in W22703 that mainly code for transporters, regulators, metabolic pathways, and defence factors. Conclusion The W22703 sequence analysis revealed a genome composition distinct from other pathogenic Yersinia enterocolitica strains, thus contributing

  17. Structure and Dynamics of Candidate O Star Bubbles in N44

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Chu, You-Hua; Guerrero, Martín A.; Oey, M. S.; Gruendl, Robert A.; Smith, R. Chris

    2002-12-01

    Dynamical studies of superbubbles and Wolf-Rayet ring nebulae show discrepancies from the standard adiabatic model for windblown bubbles. We therefore study the physical properties and kinematics of three candidate bubbles blown by single O stars to evaluate whether these discrepancies are also found in these simpler objects. Our sample candidates are N44 F, N44 J, and N44 M, in the outskirts of the H II complex N44 in the Large Magellanic Cloud. We have obtained ground-based and Hubble Space Telescope emission-line images and high-dispersion echelle spectra for these objects. From the Hα luminosities and the [O III]/Hα ratios of these nebulae, we estimate the spectral types of the ionizing stars to be O7 V, O9.5 V, and O9.5 V for N44 F, N44 J, and N44 M, respectively. We find that the observed expansion velocity of 12 km s-1 for N44 F is consistent with the stellar wind luminosity expected from the central ionizing star, as predicted by the standard bubble model. The observed upper limits for the expansion velocities of N44 J and N44 M are also compatible with the expected values, within the uncertainties. We also report the discovery in N44 F of strongly defined dust columns, similar to those seen in the Eagle Nebula. The photoevaporation of these dense dust features may be kinematically important and may actually govern the evolution of the shell. The inclusion of photoevaporation processes may thus undermine the apparent agreement between the observed bubble dynamics and the simple adiabatic models.

  18. Triggered star formation in the environment of young massive stars

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Naab, T.; Heitsch, F.; Burkert, A.

    Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this work we investigate the effect of ionising radiation of massive stars on the ambient interstellar medium (ISM): In particular we want to examine whether the UV-radiation of O-type stars can lead to the observed pillar-like structures and can trigger star formation. We developed a new implementation, based on a parallel Smooth Particle Hydrodynamics code (VINE), that allows an efficient treatment of the effect of ionising radiation from massive stars on their turbulent gaseous environment. Here we present first results at very high resolution. We show that ionising radiation can trigger the collapse of an otherwise stable molecular cloud. The arising structures resemble observed structures (e.g. the pillars of creation in the Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of gravitation we find small regions that can be identified as formation places of individual stars. We conclude that ionising radiation from massive stars alone can trigger substantial star formation in molecular clouds.

  19. RUNAWAY STARS, HYPERVELOCITY STARS, AND RADIAL VELOCITY SURVEYS

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. E-mail: skenyon@cfa.harvard.ed E-mail: mgeller@cfa.harvard.ed

    2009-12-01

    Runaway stars ejected from the Galactic disk populate the halo of the Milky Way. To predict the spatial and kinematic properties of runaways, we inject stars into a Galactic potential, compute their trajectories through the Galaxy, and derive simulated catalogs for comparison with observations. Runaways have a flattened spatial distribution, with higher velocity stars at Galactic latitudes less than 30{sup 0}. Due to their shorter stellar lifetimes, massive runaway stars are more concentrated toward the disk than low mass runaways. Bound (unbound) runaways that reach the halo probably originate from distances of 6-12 kpc (10-15 kpc) from the Galactic center, close to the estimated origin of the unbound runaway star HD 271791. Because runaways are brighter and have smaller velocities than hypervelocity stars (HVSs), radial velocity surveys are unlikely to confuse runaway stars with HVSs. We estimate that at most one runaway star contaminates the current sample. We place an upper limit of 2% on the fraction of A-type main-sequence stars ejected as runaways.

  20. Hot stars with disks

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika D.

    The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1±1.2 [Special characters omitt ed.] for the bright supergiant and 30.0±2.1 [Special characters omitted.] for the massive companion that is hidden by an accretion torus. I also present a cartoon model of the complex mass flows in the system. Using optical spectroscopy and X-ray flux data, I investigated the mass transfer processes in four massive X-ray binaries (a massive B star with mass flowing onto a compact, neutron star companion). The B-supergiant system LS I +65 010 transfers mass via stellar winds. I find the X-ray flux modulates with the orbital period. In the other three X-ray binary systems (LS I +61 303, HDE 245770, and X Per), an outflowing circumstellar disk is responsible for the mass transfer, and in all three systems, the disk appears to be truncated by gravitational interactions with the compact companion. The disk in the microquasar system LS I +61 303 is limited in radius by the periastron separation and an increase in both Ha equivalent width and X-ray flux following periastron may be due to a density wave in the disk induced by tidal forces. Observations of HDE 245770 document what appears to be the regeneration of a circumstellar disk. The disk of X Per appears to have grown to near record proportions and the X-ray flux has dramatically increased. Tidal interaction may generate a spiral density wave in the disk and cause an increase in Ha equivalent width and mass transfer to the compact companion. During the course of the analysis of the X

  1. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  2. Chinese Constellations and Star Maps

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Star observations can be traced back to as early as the twenty-third century BC in ancient China. By the fifth century BC, the Chinese had named the 28 asterisms that formed the basic reference points for the Chinese equatorial coordinate system. By the first century BC, the Chinese had developed a unique system of constellations that reflected Chinese cosmological ideas with the central theme of the correlation between Heaven and Man. Star charts have been discovered on tomb ceilings dating back to Han times. But most of them are illustrative in their presentation of stars. The Dunhuang star maps from the ninth century, the star maps in the Xin yixiang fa yao of the eleventh century, and the Suzhou Astronomical Planisphere of the thirteenth century are examples of precise star maps from ancient China.

  3. The Birth of Stars and Planets

    NASA Astrophysics Data System (ADS)

    Bally, John; Reipurth, Bo

    2006-08-01

    Part I. Stars and Clusters: 1. Our Cosmic Backyard; 2. Looking up at the night sky; 3. The dark clouds of the Milky Way; 4. Infant stars; 5. Companions in birth: binary stars; 6. Outflows from young stars; 7. Towards adulthood; 8. The social life of stars: stellar groups; 9. Chaos in the nest: The brief lives of massive stars. Part II. Planetary Systems: 10. Solar systems in the making; 11. Messengers from the past; 12. Hazards to planet formation; 13. Planets around other stars; Part III. The Cosmic Context: 14. Cosmic cycles; 15. Star formation in galaxies; 16. The first stars and galaxies; 17. Astrobiology, origins, and SETI.

  4. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  5. Quantitative spectroscopy of hot stars

    NASA Technical Reports Server (NTRS)

    Kudritzki, R. P.; Hummer, D. G.

    1990-01-01

    A review on the quantitative spectroscopy (QS) of hot stars is presented, with particular attention given to the study of photospheres, optically thin winds, unified model atmospheres, and stars with optically thick winds. It is concluded that the results presented here demonstrate the reliability of Qs as a unique source of accurate values of the global parameters (effective temperature, surface gravity, and elemental abundances) of hot stars.

  6. Mass Determinations of Star Clusters

    NASA Astrophysics Data System (ADS)

    Meylan, Georges

    Mass determinations are difficult to obtain and still frequently characterised by deceptively large uncertainties. We review below the various mass estimators used for star clusters of all ages and luminosities. We highlight a few recent results related to (i) very massive old star clusters, (ii) the differences and similarities between star clusters and cores of dwarf elliptical galaxies, and (iii) the possible strong biases on mass determination induced by tidal effects.

  7. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  8. Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Globular clusters have long been known to be among the richest stellar groupings within our Galaxy, but for many years they were believed to be largely devoid of the most minimal stellar group: binary stars (see BINARY STARS: OVERVIEW). For many years, the only evidence that any binaries existed in these clusters came from the presence of BLUE STRAGGLERS—stars that appear to be significantly you...

  9. Space Science in Action: Stars [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording shows students the many ways scientists look at the stars and how they can use what they see to answer questions such as What are stars made of?, How far away are they?, and How old are the stars? Students learn about the life span of stars and the various stages they pass through from protostar to main sequence star to…

  10. Fragmentation in massive star formation.

    PubMed

    Beuther, Henrik; Schilke, Peter

    2004-02-20

    Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.

  11. The Uhuru star aspect sensor.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    Description of the star sensor used in the spin-stabilized Uhuru satellite for the purpose of detecting and locating stellar X-ray sources. The star sensor had the capability of detecting fourth-magnitude stars to within 1 arc minute of azimuth and 2 arc minutes of elevation. This was achieved with the aid of a slightly modified 76-mm, f/0.87 Super Farron lens, an 'n' shaped reticle located in the focal plane, and an RCA CF70114F photomultiplier serving as the detection element. The star sensor is composed of three major components - a high-voltage power supply, the photomultiplier, and an amplifier.

  12. Apple Valley Double Star Workshop

    NASA Astrophysics Data System (ADS)

    Brewer, Mark

    2015-05-01

    The High Desert Astronomical Society hosts an annual double star workshop, where participants measure the position angles and separations of double stars. Following the New Generation Science Standards (NGSS), adopted by the California State Board of Education, participants are assigned to teams where they learn the process of telescope set-up and operation, the gathering of data, and the reduction of the data. Team results are compared to the latest epoch listed in the Washington Double Star Catalog (WDS) and papers are written for publication in the Journal of Double Star Observations (JDSO). Each team presents a PowerPoint presentation to their peers about actual hands-on astronomical research.

  13. Observations of active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Africano, J. L.; Klimke, A.; Stencel, R. E.; Noah, P. V.; Bopp, B. W.

    1983-01-01

    It is pointed out that spectroscopic signatures of stellar chromospheric activity are readily observable. The present study is concerned with new photometric and spectroscopic observations of active-chromosphere RS CVn, BY Dra, and FK Com stars. Attention is given to the first results of a synoptic monitoring program of many active chromosphere stars. During the time from 1980 to 1982, photometric and spectroscopic observations of 10 known or suspected active-chromosphere objects were made. The results regarding the individual stars are discussed. Seven stars observed with the International Ultraviolet Explorer (IUE) are all spectroscopic binaries.

  14. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  15. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  16. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  17. Optical filtering for star trackers

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The optimization of optical filtering was investigated for tracking faint stars, down to the fifth magnitude. The effective wavelength and bandwidth for tracking pre-selected guide stars are discussed along with the results of an all-electronic tracker with a star tracking photomultiplier, which was tested with a simulated second magnitude star. Tables which give the sum of zodiacal light and galactic background light over the entire sky for intervals of five degrees in declination, and twenty minutes in right ascension are included.

  18. Growth Behavior of c-Axis-Oriented Epitaxial SrBi2Ta2O9 Films on SrTiO3 Substrates with Atomic Scale Step Structure

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Suzuki, Muneyasu; Yoshimoto, Mamoru; Funakubo, Hiroshi

    2006-02-01

    c-Axis-oriented ultra thin SrBi2Ta2O9 films were epitaxially grown on atomically flat (100)SrTiO3 substrates by pulse-gas-introduced metalorganic chemical vapor deposition, and their growth behavior was observed by atomic force microscopy (AFM). Growth-time-resolved AFM images clearly showed that a completely filled SrBi2Ta2O9 layer was laid under an incompletely grown half-unit-cell two-dimensional (2D)-island layer, indicating the Frank-van der Merwe (layer-by-layer) growth mode. This is the first step-by-step direct observation of layer-by-layer growth of c-axis-oriented bismuth layer-structured dielectric (BLD) films and is considered to be the origin of the thickness-independent smooth surface of c-axis-oriented BLD films.

  19. Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Rejkuba, M.; Zoccali, M.; Carrera, R.

    2010-12-01

    Context. Globular clusters show star-to-star abundance variations for light elements that are not yet well understood. The preferred explanation involves a self-enrichment scenario, within which two subsequent generations of stars co-exist in globular clusters. Observations of chemical abundances in the main sequence and sub-giant branch stars allow us to investigate the signature of this chemically processed material without the complicating effects caused by stellar evolution and internal mixing. Aims: Our main goal is to investigate the carbon-nitrogen anti-correlation with low-resolution spectroscopy of 20-50 stars fainter than the first dredge-up in seven Galactic globular clusters (NGC 288, NGC 1851, NGC 5927, NGC 6352, NGC 6388, and Pal 12) with different properties. We complemented our observations with 47 Tuc archival data, with four additional clusters from the literature (M 15, M 22, M 55, NGC 362), and with additional literature data on NGC 288. Methods: In this first paper, we measured the strengh of the CN and CH band indices, which correlate with the N and C abundances, and we investigated the anti-correlation and bimodality of these indices. We compared rCN, the ratio of stars belonging to the CN-strong and weak groups, with 15 different cluster parameters. Results: We clearly see bimodal anti-correlation of the CH and CN band stregths in the metal-rich clusters (Pal 12, 47 Tuc, NGC 6352, NGC 5927). Only M 15 among the metal-poor clusters shows a clearly bimodal anti-correlation. We found weak correlations (sligthly above 1σ) of rCN with the cluster orbital parameters, present-day total mass, cluster concentration, and age. Conclusions: Our findings support the self-enrichment scenario, and suggest that the occurrence of more than two major generations of stars in a GGC should be rare. Small additional generations (<10-20% of the total) would be difficult to detect with our samples. The first generation, which corresponds to the CN-weak stars

  20. The Double Star mission

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Escoubet, C. P.; Pu, Z.; Laakso, H.; Shi, J. K.; Shen, C.; Hapgood, M.

    2005-11-01

    The Double Star Programme (DSP) was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC) in Beijing and the European Payload Operations Service (EPOS) at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC) and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  1. Stars with Extended Atmospheres

    NASA Astrophysics Data System (ADS)

    Sterken, C.

    2002-12-01

    This Workshop consisted of a full-day meeting of the Working Group "Sterren met Uitgebreide Atmosferen" (SUA, Working Group Stars with Extended Atmospheres), a discussion group founded in 1979 by Kees de Jager, Karel van der Hucht and Pik Sin The. This loose association of astronomers and astronomy students working in the Dutch-speaking part of the Low Countries (The Netherlands and Flanders) organised at regular intervals one-day meetings at the Universities of Utrecht, Leiden, Amsterdam and Brussels. These meetings consisted of the presentation of scientific results by junior as well as senior members of the group, and by discussions between the participants. As such, the SUA meetings became a forum for the exchange of ideas, and for asking questions and advice in an informal atmosphere. Kees de Jager has been chairman of the WG SUA from the beginning in 1979 till today, as the leading source of inspiration. At the occasion of Prof. Kees de Jager's 80th birthday, we decided to collect the presented talks in written form as a Festschrift in honour of this well-respected and much beloved scientist, teacher and friend. The first three papers deal with the personality of Kees de Jager, more specifically with his role as a supervisor and mentor of young researchers and as a catalyst in the research work of his colleagues. And also about his remarkable role in the establishment of astronomy education and research at the University of Brussels. The next presentation is a very detailed review of solar research, a field in which Cees was prominently active for many years. Then follow several papers dealing with stars about which Kees is a true expert: massive stars and extended atmospheres.

  2. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}ȯ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  3. Star Atlases and Software

    NASA Astrophysics Data System (ADS)

    Brazell, Owen; Argyle, R. W.

    In the 7 years or so that have passed since the first edition of this book was published perhaps one of the areas that has changed the most has been in the area of charts and software. The realm of the paper chart has pretty much been taken over by software in all its guises. It would perhaps not have been possible to have foreseen 10 years ago that one could look up double stars and their information on your phone as you can do on many of today's smart phones. The popularity of tablets and netbooks also means that much more information is now available in the field that it was before.

  4. Chemistry between the stars.

    PubMed

    Irvine, W M

    1987-01-01

    Life--as we know it--is a chemical process, based on water and carbon compounds. Complex organic molecules are made primarily from the biogenic elements--carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur--that formed deep within massive ancient stars. How did these elements travel from their stellar birthplaces across time and space to make up the life-form that is reading these words? In this article, we'll take a look at the chemical processes that set the stage for the origin of life.

  5. OGLE and pulsating stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.

    2016-05-01

    OGLE-IV is currently one of the largest sky variability surveys worldwide, focused on the densest stellar regions of the sky. The survey covers over 3000 square degrees and monitors regularly over a billion sources. The main targets include the inner Galactic bulge and the Magellanic System. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk. The current status, prospects, and the latest results of the OGLE-IV survey focused on pulsating stars, in particular RR Lyrae variables, are presented.

  6. Young star found.

    NASA Astrophysics Data System (ADS)

    Pedersen, H.

    1993-12-01

    Recent observations from ESO have been used to locate the first pulsar outside the Milky Way. The object, named PSR 0540-693 was created by a supernova which exploded in the Large Magellanic Cloud, some 760 years ago. It is a neutron star, spinning 50.4 times per second. To find the precise position a novel instrument, called TRIFFID/MAMA, was developed. Subsequent data analysis has revealed, that an object close to the center of the nebula is blinking at the expected frequency.

  7. Cationic disorder and Mn3+/Mn4+ charge ordering in the B‧ and B″ sites of Ca3Mn2NbO9 perovskite: a comparison with Ca3Mn2WO9

    NASA Astrophysics Data System (ADS)

    López, C. A.; Saleta, M. E.; Pedregosa, J. C.; Sánchez, R. D.; Alonso, J. A.; Fernández-Díaz, M. T.

    2014-02-01

    We describe the preparation, crystal structure determination, magnetic and transport properties of two novel Mn-containing perovskites, with a different electronic configuration for Mn atoms located in B site. Ca3Mn3+2WO9 and Ca3Mn3+/4+2NbO9 were synthesized by standard ceramic procedures; the crystallographic structure was studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). Both phases exhibit a monoclinic symmetry (S.G.: P21/n); Ca3Mn2WO9 presents a long-range ordering over the B sites, whereas Ca3Mn2NbO9 is strongly disordered. By “in-situ” NPD, the temperature evolution of the structure study presents an interesting evolution in the octahedral size () for Ca3Mn2NbO9, driven by a charge ordering effect between Mn3+ and Mn4+ atoms, related to the anomaly observed in the transport measurements at T≈160 K. Both materials present a magnetic order below TC=30 K and 40 K for W and Nb materials, respectively. The magneto-transport measurements display non-negligible magnetoresistance properties in the paramagnetic regime.

  8. Intense violet-blue-emitting Ba(2)AlB(4)O(9)Cl:Eu(2+) phosphors for applications in fluorescent lamps and ultraviolet-light-emitting diodes.

    PubMed

    Kuo, Te-Wen; Huang, Chien-Hao; Chen, Teng-Ming

    2010-08-01

    We synthesized a violet-blue phosphor Ba(2)AlB(4)O(9)Cl:Eu(2+) with a solid-state reaction. The excitation and emission spectra of this phosphor showed that all were broadband due to 4f(7)-4f(6)d(1) transitions of Eu(2+). The phosphors with different Eu(2+) concentrations presented violet-blue luminescence for ultraviolet [(UV) 250-390nm] excitation. The optimum concentration of Eu(2+) in Ba(2)AlB(4)O(9)Cl:Eu(2+) is determined to be 6mol.%. The luminous efficiency was found to be 8.1lm/W for the violet-blue fluorescent lamp and 3.2lm/W for the violet-blue phosphor-converted light-emitting diode, respectively. Ba(2)AlB(4)O(9)Cl:Eu(2+) would be a promising phosphor for converting the UV radiation to violet-blue emission for a novel high light-conversion efficiency phototherapy illuminator.

  9. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    PubMed

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-01

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates. PMID:27513178

  10. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  11. Star-forming galaxy models: Blending star formation into TREESPH

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  12. Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species of the bustamite group from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Rastsvetaeva, R. K.; Van, K. V.; Belakovskiy, D. I.; Pekov, I. V.; Gurzhiy, V. V.; Schüller, W.; Ternes, B.

    2015-12-01

    A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (-), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2 V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group Pbar 1; the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (01bar 2, 1bar 20), 2.885 (100) (221, 2bar 11, 1bar 21), 2.691 (21) (222, 2bar 10), 2.397 (21) (02bar 2, 21bar 1, 203, 031), 1.774 (37) (412, 3bar 21). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.

  13. Stars For Citizens With Urban Star Parks and Lighting Specialists

    NASA Astrophysics Data System (ADS)

    Grigore, Valentin

    2015-08-01

    General contextOne hundred years ago, almost nobody imagine a life without stars every night even in the urban areas. Now, to see a starry sky is a special event for urban citizens.It is possible to see the stars even inside cities? Yes, but for that we need star parks and lighting specialists as partners.Educational aspectThe citizens must be able to identify the planets, constellations and other celestial objects in their urban residence. This is part of a basic education. The number of the people living in the urban area who never see the main constellations or important stars increase every year. We must do something for our urban community.What is an urban star park?An urban public park where we can see the main constellations can be considered an urban star park. There can be organized a lot of activities as practical lessons of astronomy, star parties, etc.Classification of the urban star parksA proposal for classification of the urban star parks taking in consideration the quality of the sky and the number of the city inhabitants:Two categories:- city star parks for cities with < 100.000 inhabitants- metropolis star parks for cities with > 100.000 inhabitantsFive levels of quality:- 1* level = can see stars of at least 1 magnitude with the naked eyes- 2* level = at least 2 mag- 3* level = at least 3 mag- 4* level= at least 4 mag- 5* level = at least 5 magThe urban star urban park structure and lighting systemA possible structure of a urban star park and sky-friend lighting including non-electric illumination are descripted.The International Commission on IlluminationA description of this structure which has as members national commissions from all over the world.Dark-sky activists - lighting specialistsNational Commissions on Illumination organize courses of lighting specialist. Dark-sky activists can become lighting specialists. The author shows his experience in this aspect as a recent lighting specialist and his cooperation with the Romanian National

  14. Star Formation Across Galactic Environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    2013-01-01

    I present here parallel investigations of star formation in AGN-free and quasar host galaxies. These environments are both insightful; quasars are among the most violent objects known, reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to dwarf star-forming galaxies. The AGN-free galaxies are drawn from the KPNO International Spectroscopic Survey, an Hα-selected, volume-limited survey was designed to avoid continuum luminosity bias. This work studies the KISS galaxies in mid- and far-IR using Spitzer IRAC and MIPS photometry. These IR bands are interesting because the UV light from young stars is reprocessed into thermal emission in the far-IR (24μm MIPS) by dust and into vibrational transition features in the mid-IR (8.0μm IRAC) by polycyclic aromatic hydrocarbons (PAHs). This work examines the efficiencies of PAH and dust emission as tracers of star-formation. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has no systematic dependance on galactic mass. My study of quasar host galaxies utilizes images of eight PG quasars from the WFPC2 and NICMOS instruments aboard HST. I use narrow-band images centered on the Hβ, [OII]λ3727, [OIII]λ5007, and Paα emission lines to construct extinction and star formation maps. Additionally, I use line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission. I find star formation, albeit at rates are lower than expected, suggesting that quasar host galaxies are dynamically more advanced than suspected. Seven of the galaxies have higher mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses from earlier works that AGN activity quenches star formation in host galaxies by disrupting gas reservoirs.

  15. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  16. Wolf-Rayet stars from Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza

    2015-01-01

    Many studies focused on very massive stars (VMS) within the framework of Pop. III stars, because this is where they were thought to be abundant. In this work, we focus on the evolution of VMS in the local universe following the discovery of VMS in the R136 cluster in the Large Magellanic Cloud (LMC). We computed grids of VMS evolutionary tracks in the range 120-500 M ⊙ with solar, LMC and Small Magellanic Cloud metallicities. All models end their lives as Wolf-Rayet (WR) stars of the WC (or WO) type. We discuss the evolution and fate of VMS around solar metallicity with particular focus on the WR phase. For example, we show that a distinctive feature that may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of Ne and Mg at the surface of WC stars.

  17. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  18. A Star on the Run

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star

  19. Stars and Planets

    NASA Astrophysics Data System (ADS)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  20. The Stars of Heaven

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    2004-05-01

    Do a little armchair space travel, rub elbows with alien life forms, and stretch your mind to the furthest corners of our uncharted universe. With this astonishing guidebook, you don't have to be an astronomer to explore the mysteries of stars and their profound meaning for human existence. Clifford A. Pickover tackles a range of topics from stellar evolution to the fundamental reasons why the universe permits life to flourish. He alternates sections that explain the mysteries of the cosmos with sections that dramatize mind-expanding concepts through a fictional dialog between futuristic humans and their alien peers (who embark on a journey beyond the reader's wildest imagination). This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers. Told in Pickover's inimitable blend of fascinating state-of-the-art science and whimsical science fiction, and packed with numerous diagrams and illustrations, The Stars of Heaven unfolds a world of paradox and mystery, one that will intrigue anyone who has ever pondered the night sky with wonder.

  1. Multistate boson stars

    SciTech Connect

    Bernal, A.; Barranco, J.; Alic, D.; Palenzuela, C.

    2010-02-15

    Motivated by the increasing interest in models which consider scalar fields as viable dark matter candidates, we have constructed a generalization of relativistic boson stars (BS) composed of two coexisting states of the scalar field, the ground state and the first excited state. We have studied the dynamical evolution of these multistate boson stars (MSBS) under radial perturbations, using numerical techniques. We show that stable MSBS can be constructed, when the number of particles in the first excited state, N{sup (2)}, is smaller than the number of particles in the ground state, N{sup (1)}. On the other hand, when N{sup (2)}>N{sup (1)}, the configurations are initially unstable. However, they evolve and settle down into stable configurations. In the stabilization process, the initially ground state is excited and ends in a first excited state, whereas the initially first excited state ends in a ground state. During this process, both states emit scalar field radiation, decreasing their number of particles. This behavior shows that even though BS in the first excited state are intrinsically unstable under finite perturbations, the configuration resulting from the combination of this state with the ground state produces stable objects. Finally we show in a qualitative way, that stable MSBS could be realistic models of dark matter galactic halos, as they produce rotation curves that are flatter at large radii than the rotation curves produced by BS with only one state.

  2. Starspots on flare stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    Sizes of starspots on flare stars can be derived from the author's convection-cell hypothesis. The sizes are in fair agreement with those observed on YY Gem, CC Eri, and BY Dra by Bopp and Evans (1973). The hypothesis predicts that periodic brightness variations due to starspots are restricted to stars brighter than a critical absolute visual magnitude. A convective model of a starspot on YY Gem has been computed, assuming that the missing flux is in the form of Alfven waves. It is found that the surface field must exceed 10,000 G, and is probably less than about 30,000 G. With a surface field of 20,000 G, the effective temperature of the spot is in the range from 1590 to 1890 K, depending on the field gradient. These figures are to be compared with an effective temperature of 2000 K estimated from observations by Bopp and Evans. Efficient dynamo action is shown to be a possible mechanism for generating such large surface fields. There is a possibility that tidal effects may influence starspot formation.

  3. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  4. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  5. Star formation in Galactic flows

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2016-06-01

    We investigate the triggering of star formation in clouds that form in Galactic scale flows as the interstellar medium passes through spiral shocks. We use the Lagrangian nature of smoothed particle hydrodynamics simulations to trace how the star-forming gas is gathered into self-gravitating cores that collapse to form stars. Large-scale flows that arise due to Galactic dynamics create shocks of the order of 30 km s-1 that compress the gas and form dense clouds (n > several × 102 cm-3) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of n > 103 cm-3 which occur on size scales of ≈1 pc for low-mass star-forming regions (M < 100 M⊙), and up to sizes approaching 10 pc for higher mass regions (M > 103 M⊙). Star formation in the 250 pc region lasts throughout the 5 Myr time-scale of the simulation with a star formation rate of ≈10-1 M⊙ yr-1 kpc-2. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 per cent at our sink accretion radius to values of <10-3 at low densities.

  6. Mathematics Teaching with the Stars

    ERIC Educational Resources Information Center

    McKinney, Sueanne E.; Bol, Linda; Berube, Clair

    2010-01-01

    The mathematics instructional approaches of effective elementary teachers in urban high- poverty schools were investigated. Approximately 99 urban elementary teachers were administered the Star Teacher Selection Interview; a total of 31 were identified as star teachers. These teachers were then administered the Instructional Practices…

  7. STARS: A Year in Review

    ERIC Educational Resources Information Center

    Association for the Advancement of Sustainability in Higher Education, 2011

    2011-01-01

    The Sustainability Tracking, Assessment & Rating System[TM] (STARS) is a program of AASHE, the Association for the Advancement of Sustainability in Higher Education. AASHE is a member-driven organization with a mission to empower higher education to lead the sustainability transformation. STARS was developed by AASHE with input and insight from…

  8. Stars Get Dizzy After Lunch

    NASA Astrophysics Data System (ADS)

    Zhang, Michael; Penev, Kaloyan

    2014-06-01

    Exoplanet searches have discovered a large number of "hot Jupiters"—high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q *. This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 106, 3.9 × 10-6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  9. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1993-01-01

    This report describes research activities related to the Infrared Astronomical Satellite (IRAS) sky survey. About 745 luminous stars were examined for the presence of interstellar dust heated by a nearby star. The 'cirrus' discovered by IRAS is thermal radiation from interstellar dust at moderate and high galactic latitudes. The IRAS locates the dust which must (at some level) scatter ultraviolet starlight, although it was expected that thermal emission would be found around virtually every star, most stars shown no detectable emission. And the emission found is not uniform. It is not that the star is embedded in 'an interstellar medium', but rather what is found are discrete clouds that are heated by starlight. An exception is the dearth of clouds near the very hottest stars, implying that the very hottest stars play an active role with respect to destroying or substantially modifying the dust clouds over time. The other possibility is simply that the hottest stars are located in regions lacking in dust, which is counter-intuitive. A bibliography of related journal articles is attached.

  10. Stars in the Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula, that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region.

  11. Stars get dizzy after lunch

    SciTech Connect

    Zhang, Michael; Penev, Kaloyan

    2014-06-01

    Exoplanet searches have discovered a large number of {sup h}ot Jupiters{sup —}high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q {sub *}. This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q {sub *} = 10{sup 6}, 3.9 × 10{sup –6} of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  12. Star formation in the multiverse

    SciTech Connect

    Bousso, Raphael; Leichenauer, Stefan

    2009-03-15

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  13. Astronomy: A truly embryonic star

    NASA Astrophysics Data System (ADS)

    Clarke, David A.

    2012-12-01

    The discovery of what may be the best example yet of a forming star caught in the moments just before birth provides a missing link in our understanding of how giant gas clouds collapse to form fully fledged stars. See Letter p.83

  14. Comparable Habitable Zones of Stars

    NASA Video Gallery

    The habitable zone is the distance from a star where one can have liquid water on the surface of a planet. If a planet is too close to its parent star, it will be too hot and water would have evapo...

  15. Binary Stars in SBS Survey

    NASA Astrophysics Data System (ADS)

    Erastova, L. K.

    2016-06-01

    Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.

  16. NSCool: Neutron star cooling code

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  17. Neutron Stars are Follicly Challenged

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolas; Yagi, Kent; Stein, Leo; Pappas, George; Apostolatos, Theocharis; Kyutoku, Koutarou

    2015-04-01

    Black holes satisfy certain no-hair relations through which all multipole moments of the spacetime can be specified in terms of just a few quantities, like their mass and spin angular momentum. I will describe how neutron stars and quark stars also satisfy similar no-hair relations that are approximately independent of their equation of state. I will show how these results hold for both slowly- and rapidly-rotating stars in full General Relativity, provided the stars are uniformly rotating and uncharged. I will then explain why such relations may be relevant to observations of the pulse profile of hot spots on rotating neutron stars with NICER, as well as how they could be used to test General Relativity with binary pulsar and gravitational wave observations. I acknowledge support from the NSF CAREER Award PHY-1250636.

  18. A Swarm of Ancient Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This stellar swarm is M80 (NGC 6093), one of the densest of the 147 known globular star clusters in the Milky Way galaxy. Located about 28,000 light-years from Earth, M80 contains hundreds of thousands of stars, all held together by their mutual gravitational attraction. Globular clusters are particularly useful for studying stellar evolution, since all of the stars in the cluster have the same age (about 15 billion years), but cover a range of stellar masses. Every star visible in this image is either more highly evolved than, or in a few rare cases more massive than, our own Sun. Especially obvious are the bright red giants, which are stars similar to the Sun in mass that are nearing the ends of their lives.

  19. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  20. The Visual Double Star Catalogs

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.

    2015-08-01

    In visual double star work, production of the first comprehensive attempt to list all discovered pairs in his accessible sky was prepared by S.W. Burnham in 1906. A double star catalog for the southern hemisphere was prepared by R.T.A. Innes et al. in 1927 and the northern hemisphere catalog was updated by R.G. Aitken and E. Doolittle in 1932. Eventually, this led to Lick Observatory maintaining what became known as the Index Catalogue, an all-sky visual double star database.In 1964, under the aegis of Commission 26, the Lick double star database was transferred to the U.S. Naval Observatory where it was redesignated the Washington Double Star Catalog where it and it's ancillary catalogs, have been maintained for over half a century. The current statistics of the catalog and it's supplements are presented as are the enhancements currently under consideration.

  1. Asteroseismology of Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Kayhan, Cenk; Çelik Orhan, Zeynep; Yildiz, Mutlu

    2016-07-01

    Exoplanet studies are one of the most interesting and attractive topics in astrophysics. Besides of ground-based observations, Kepler and CoRoT space missions improved our knowledge by providing unprecedented data of exoplanets and host stars. Precise determination of basic properties of planets depends on how we accurately determine fundamental properties of host stars. Asteroseismology is a powerful tool to study stellar structure and evolution and provides us radius, mass and age of the host stars. In this study, we construct stellar interior models of these stars with the MESA evolution code and compare model frequencies with the oscillation frequencies derived from Kepler data. Then, we obtain fundamental parameters of the host stars. Finally, fundamental parameters of exoplanets are reevaluated.

  2. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  3. Improved autonomous star identification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  4. StarGuides Plus

    NASA Astrophysics Data System (ADS)

    Heck, A.

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields. This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas. The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on. Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, energetics, environment, geodesy, geophysics, information handling, management, mathematics, meteorology, optics, physics, remote sensing, and so on, are also covered where appropriate. After some thirty years in continuous compilation, verification and updating, StarGuides Plus currently gathers together some 6,000 entries from 100 countries. The information is presented in a clear, uncluttered manner for direct and easy use. For each entry, all practical data are listed: city, postal and electronic-mail addresses, telephone and fax numbers, URLs for WWW access, foundation years, numbers of members and/or numbers of staff, main activities, publications titles (with frequencies, ISS-Numbers and circulations), names and geographical coordinates of observing sites, names of planetariums, awards (prizes and/or distinctions) granted, etc. The entries are listed alphabetically in each country. An exhaustive index gives a breakdown not only by different designations and

  5. Infrared Stars: The interaction between stars and interstellar clouds produces "infrared stars" of two different kinds.

    PubMed

    Johnson, H L

    1967-08-11

    Our searches for very cool stars have revealed three kinds of objects: very cool Mira stars, perhaps cooler than any of this type previously known; extremely dense interstellar clouds, more dense than any known heretofore; and, probably, cool circumstellar clouds that may be planetary systems in an early stage of formation.

  6. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  7. VizieR Online Data Catalog: Spectral classification of O Vz stars from GOSSS (Arias+, 2016)

    NASA Astrophysics Data System (ADS)

    Arias, J. I.; Walborn, N. R.; Diaz, S. S.; Barba, R. H.; Apellaniz, J. M.; Sabin-Sanjulian, C.; Gamen, R. C.; Morrell, N. I.; Sota, A.; Marco, A.; Negueruela, I.; Leao, J. R. S.; Herrero, A.; Alfaro, E. J.

    2016-10-01

    All of the observations used in this work come from the Galactic O Star Spectroscopic Survey (GOSSS). Details on the data and analysis procedures are fully discussed in the three papers from the project (Sota et al. 2011, 2014, Cat. III/274; Maiz Apellaniz et al. 2016ApJS..224....4M). GOSSS is a long-term systematic survey of all of the Galactic stars ever classified as O. This project provides moderate resolution (R~2500) spectroscopy in the blue-violet region (approximately 3900-5000Å) with a high signal-to-noise ratio, typically S/N~200-300. The spectral types are available through the latest version of the Galactic O Star Catalog (GOSC; Maiz Apellaniz et al. 2004, Cat. V/116). In this paper, we include 226 O stars from both hemispheres pertaining to the three published GOSSS installments. The categories and numbers that characterize our sample objects are the following: (1) objects that are single lined in the GOSSS spectra and for which no evidence of binarity is known (132 stars listed in Table1); (2) objects that are single lined in the GOSSS spectra but are known to be spectroscopic binaries (SBs) from high-resolution data (45 binaries, Table2); (3) objects that are double lined in the GOSSS spectra (explicit SB2) for which the line separation is sufficiently large to allow measurements of the CDs and EWs of the individual components by the use of deblending methods (23 binaries providing 32 components with spectral types earlier than O9); and (4) explicit SB2 whose spectral components are not sufficiently separated to be measured individually (15 binaries). Binaries belonging to groups (3) and (4) are listed in Table3. (3 data files).

  8. Transient components in the Lyman lines of hot stars Evidence for the ejection of shells or puffs on very short timescales

    NASA Technical Reports Server (NTRS)

    Gry, C.; Lamers, H. J. G. L. M.; Vidal-Madjar, A.

    1984-01-01

    The existence of H I transient components in the stellar wind of Epsilon Per toward eight early type stars observed by the Copernicus satellite is systematically investigated. It is shown that such transient components are indeed present in the spectra of five of these stars and have characteristics very similar to the one found in the case of Epsilon Per. It is shown that such components can be interpreted in terms of coherent 'puffs' or shells of matter ejected by the stars. They would be caused by an increase of the stellar mass loss rate by a factor of 1.5 to 3 during one hour or less, and would be accelerated more slowly than the quiet wind. It is suggested that such events must be due to instabilities in these stars which are all slightly evolved stars ranging in spectral types between O9 and B1. The instabilities are probably similar to those in Beta Cephei stars, i.e., nonradial pulsations.

  9. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  10. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the Sun's energy and use the energy for inexpensive space propulsion research. Pictured is an engineering model (Pathfinder III) of SSE and its thermal vacuum test to simulate in-orbit conditions at the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflection of the engineering model under extreme condition, such as the coldness of deep space and the hotness of the Sun, as well as vacuum.

  11. "Catch a Star !"

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a

  12. Hot Stars With Cool Companions

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Kraus, Adam; Dodson-Robinson, Sarah

    2015-01-01

    Young intermediate-mass stars have become high-priority targets for direct-imaging planet searches following the recent discoveries of planets orbiting e.g. HR 8799 and Beta Pictoris Close stellar companions to these stars can affect the formation and orbital evolution of any planets, and so a census of the multiplicity properties of nearby intermediate mass stars is needed. Additionally, the multiplicity can help constrain the important binary star formation physics. We report initial results from a spectroscopic survey of 400 nearby A- and B-type stars. We search for companions by cross-correlating high resolution and high signal-to-noise ratio echelle spectra of the targets stars against model spectra for F- to M-type stars. We have so far found 18 new candidate companions, and have detected the spectral lines of the secondary in 4 known spectroscopic binary systems. We present the distribution of mass-ratios for close companions, and find that it differs from the distribution for wide (a ≳ 100 AU) intermediate-mass binaries, which may indicate a different formation mechanism for the two populations.

  13. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  14. Exoplanets bouncing between binary stars

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas; Veras, Dimitri

    2012-05-01

    Exoplanetary systems are found not only among single stars, but also among binaries of widely varying parameters. Binaries with separations of 100-1000 au are prevalent in the solar neighbourhood; at these separations, planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet-planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three-body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then, this planet may be able to transition from the space around one star to the other, and chaotically 'bounce' back and forth. In this paper, we directly simulate scattering planetary systems that are around one member of a circular binary, and quantify the frequency of bouncing in scattered planets. We find that a great majority (70-85 per cent) of ejected planets will pass at least once through the space of it's host's binary companion, and depending on the binary parameters about 35-75 per cent will begin bouncing. The time spent bouncing is roughly lognormally distributed with a peak at about 104 yr, with only a small percentage bouncing for more than 1 Myr. This process may perturb and possibly incite instability among existing planets around the companion star. In rare cases, the presence of multiple planets orbiting both stars may cause post-bouncing capture or planetary swapping.

  15. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-01

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects. PMID:17749313

  16. Star formation in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Dong, Shawfeng

    In this thesis, we examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation, as well as the evolution of residual gas within tidally-limited dwarf galaxies and globular clusters. Previous work has indicated that the background UV flux can easily ionize the gas within typical dwarf galaxies, delaying or even preventing cooling and star formation within them. Many dwarf galaxies within the Local Group are, however, observed to contain multiple generations of stars, the oldest of which formed in the early epochs of cosmic evolution, when the background UV flux was intense. In order to address this paradox, we consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme which also computes the effects of radiative transfer and photoionization. We include in the scheme a physically-motivated star formation recipe and consider the effects of feedback. This scheme allows us to follow the history of the gas and of star formation within dwarf galaxies, as influenced by both external and internal UV radiation. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. In potentials with total mass less than a few 106 M⊙ , and velocity dispersion less than a few km s-1 , residual gas is efficiently photoionized by cosmic background UV radiation. For intermediate mass systems, such as the dSphs around the Galaxy, star formation can proceed within early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with similar dark matter potentials, because they depend on many

  17. Differential Seismic Modeling of Stars

    NASA Astrophysics Data System (ADS)

    Ozel, N.; Mosser, B.; Dupret, M.-A.; Bruntt, H.; Barban, C.; Deheuvels, S.; García, R. A.; Michel, E.; Samadi, R.; Baudin, F.; Régulo, C.; Auvergne, M.; Baglin, A.; Catala, C.; Morel, P.; Pichon, B.

    2013-12-01

    CoRoT (Convection Rotation and planetary Transits) observations provide the opportunity to study a large sample of stars ranging from the Main Sequence (MS) to the Red Giant Branch. With the large increase in the number of stars showing solar-like oscillations, we intend to extract as much information as possible from a low signal-to-noise ratio (SNR) oscillation spectrum, benefiting from comparison with a reference star having similar seismic and fundamental parameters. We propose a differential method to determine stellar properties of solar-like oscillations which we call “differential seismology of stellar twins”.

  18. Neutron star moments of inertia

    NASA Technical Reports Server (NTRS)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  19. The Sun: Our Nearest Star

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We have in our celestial backyard, a prime example of a variable star. The Sun, long thought to be "perfect" and unvarying, began to reveal its cycles in the early 1600s as Galileo Galilei and Christoph Scheiner used a telescope to study sunspots. For the past four hundred years, scientists have accumulated data, showing a magnetic cycle that repeats, on average, every eleven (or twenty-two) years. In addition, modern satellites have shown that the energy output at radio and x-ray wavelengths also varies with this cycle. This talk will showcase the Sun as a star and discuss how solar studies may be used to understand other stars.

  20. Spectroscopy of γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.; Kilmartin, P. M.

    2014-02-01

    The musician programme at the University of Canterbury has been successfully identifying pulsation modes in many γ Doradus stars using hundreds of ground-based spectroscopic observations. This paper describes some of the successful mode identifications and emerging patterns of the programme. The hybrid γ Doradus/δ Scuti star HD 49434 remains an enigma, despite the analysis of more than 1700 multi-site high-resolution spectra. A new result for this star is apparently distinct line-profile variations for the γ Doradus and δ Scuti frequencies.

  1. "Catch a Star !"

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a

  2. A Heavy Flavor Tracker for STAR

    SciTech Connect

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  3. A Heavy Flavor Tracker for STAR

    SciTech Connect

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  4. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  5. Study of formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors.

    PubMed

    Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R

    2016-04-01

    This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. PMID:26748019

  6. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  7. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  8. Starspots on Young pms Stars

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.

    2014-06-01

    Long-term, multiband photometric observations of 8 young PMS stars are used to construct models for their starspots. It is shown that the average density of starspots is up to 40 % of the total surface of a star (V824 Ara), while the difference in temperatures between a quiet photosphere and a spot ranges from 870 K (AB Dor) to 1700-1800 K (PZ Tel, V1321 Ori, V395 Cep). The spots lie at low (2-8°, V343 Nor) and medium (25-61°) latitudes, while the largest latitude of starspots is 16-80°. A cyclical activity that shows up as changes in the total area and average latitude of the starspots is observed in the stars PZ Tel, TY Col, V824 Ara, and AB Dor. A latitudinal drift of the starspots and differential rotation of the star are observed which are analogous to those of the sun.

  9. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  10. Peering into a Star Factory

    NASA Astrophysics Data System (ADS)

    2000-09-01

    Beautiful images of astronomical objects often contain a lot of scientifically interesting information - PR Photo 24a/00 , shown above, is a fine example of this old maxime. It provides a deep and unsually wide look into a giant star forming region in the Milky Way. It is known as Messier 17 (M 17) , or the Omega, Swan, Horseshoe, or Lobster Nebula , because of its characteristic shape when photographed in visible light. It is located at a distance of approx. 5000 light-years (1.6 kpc), and is seen in the southern constellation of Sagittarius (The Archer), near the main plane of the Milky Way. This impressive image was obtained by astronomers Leonardo Testi (Arcetri Astrophysical Observatory, Florence, Italy; p.t. Visiting Scientist at ESO-Chile) and Leonardo Vanzi (ESO-Chile) with the SOFI multi-mode instrument at the ESO 3.6-m New Technology Telescope (NTT) at the La Silla observatory. The observations were made in the course of a research project that is aimed at the detection and study of the formation of massive stars, by means of near-infrared direct and spectral exposures with this instrument. The new data offer a unique combination of a wide field-of-view, high sensitivity and excellent image quality. The goal of these particular observations was to identify massive stars that are in the act of formation in this area and to record their infrared spectra for a detailed physical study of these rather rare objects. The formation of massive stars It is now well established that the formation of stars in our galaxy, the Milky Way system, predominantly takes place in Giant Molecular Clouds . However, while low-mass stars are common and relatively easy to find in such clouds, it is much more difficult to find massive stars while they are in the very early stage of their evolution. This is because massive stars are comparatively rare and pass through the different evolutionary phases much faster than low-mass and solar-like stars. They are usually found within

  11. Torsional oscillations of strange stars

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo

    2014-11-01

    Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  12. Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.

  13. Chandra Captures Neutron Star Action

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  14. Exploring Worlds Around Other Stars

    NASA Astrophysics Data System (ADS)

    Swain, M.

    2012-06-01

    A technique that is revolutionizing our understanding of exoplanet atmospheres is observations of transiting exoplanets. These are planetary systems that are oriented so that the planet appears to pass in front of the parent star.

  15. Sleuthing the Isolated Compact Stars

    NASA Astrophysics Data System (ADS)

    Drake, J. J.

    2004-08-01

    In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.

  16. Quantum crystals in neutron stars

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    Using the many-body techniques appropriate for quantum crystals it is shown that the deep interior of a neutron star is most likely an orderly arrangement of neutrons, protons and hyperons forming a solid. It is shown that a liquid or gas arrangement would produce higher energy. If so, a neutron star can be viewed as two solids (crust and core) permeated by a layer of ordinary or (perhaps) superfluid liquid. Astronomical evidence is in favor of such a structure: the sudden jumps in the periods of the Crab and Vela pulsars that differ by a factor of about 100 can be easily explained by the star-quake model. If the Crab is less massive than Vela (i.e., if it is not dense enough to have a solid core), the star-quakes take place in the crust whereas for Vela they occur in the core.

  17. The Nearest Stars (Presidential Address)

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2013-10-01

    A history of star position measurements, leading to proper motions and parallax measurements is given, with special reference to the southern hemisphere, Alpha Cen and Proxima Cen. The Hipparcos and Gaia satellites are also mentioned.

  18. Children's Literature on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Struck, James

    Children's literature is simple discussion of complicated issues. Neutron stars are discussed in several children's books. Using libraries in Chicago, I will review children's books on neutron stars and compare the literature to literature from scientific discussions of neutron stars on sites like the Chandra site, Hubble Space Telescope site and NASA site. The result will be a discussion of problems and issues involved in discussion of neutron stars. Do children's books leave material out? Do children's books discuss recent observations? Do children's books discuss anything discredited or wrong? How many children's books are in resources like World Cat, the Library of Congress catalog, and the Chicago Public Library catalog? Could children's books be useful to present some of your findings or observations or projects? Children's books are useful for both children and scientist as they present simplified discussion of topics, although sometimes issues are simplified too much.

  19. STAR Vertex Detector Upgrade Development

    SciTech Connect

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  20. Stability of Quark Star Models

    NASA Astrophysics Data System (ADS)

    Azam, M.; Mardan, S. A.; Rehman, M. A.

    2016-05-01

    In this paper, we investigate the stability of quark stars with four different types of inner matter configurations; isotropic, charged isotropic, anisotropic and charged anisotropic by using the concept of cracking. For this purpose, we have applied local density perturbations technique to the hydrostatic equilibrium equation as well as on physical parameters involved in the model. We conclude that quark stars become potentially unstable when inner matter configuration is changed and electromagnetic field is applied.

  1. The STAR Time Projection Chamber

    SciTech Connect

    Retiere, F.; STAR Collaboration

    2002-01-11

    The STAR Time Projection Chamber was successfully operated during the first RHIC run in 2000. Most of the STAR contributions reported in these proceedings are based on the analysis of data from the TPC. In this article, we show that the performance achieved by the TPC, in terms of track reconstruction, position resolution, and particle identification are well suited for measuring precise and reliable physics observables.

  2. Properties of ultracompact neutron stars

    NASA Technical Reports Server (NTRS)

    Nemiroff, Robert J.; Becker, Peter A.; Wood, Kent S.

    1993-01-01

    Some of the effects extreme gravity would have on the propagation of particles inside and around constant density ultracompact stars are examined. The possible observational characteristics due to the gravitational lensing of surface hot spots are examined. The change that would be seen in the Eddington luminosity near such an object is computed. It is shown that such stars would exhibit a 'neutrino' sphere inside the surface and a 'neutrino cloud' partially exterior to the surface.

  3. Neutron stars and strange matter

    SciTech Connect

    Cooperstein, J.

    1986-01-01

    The likelihood is investigated that quark matter with strangeness of order unity resides in neutron stars. In the strong coupling regime near rho/sub 0/ this is found to be unlikely. Considering higher densities where perturbative expansions are used, we find a lower bound to be at 7rho/sub 0/ for the transition density. This is higher than the inferred density of observed neutron stars, and thus the transition to quark matter is precluded. 15 refs., 3 figs.

  4. Evolutionary status of Be stars

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Cidale, L.

    2004-12-01

    Fundamental parameters of nearly 50 field Be stars have been determined. Correcting these parameters from gravity darkening effects induced the fast rotation, we deduced the evolutionary phase of the studied stars. We show that the evolutionary phase at which appear the Be phenomenon is mass dependent: the smaller the stellar mass the elder the phase in the main sequence at which the Be phenomenon seem to appear.

  5. GRBs from the First Stars

    SciTech Connect

    Iocco, Fabio; /Naples U. /KIPAC, Menlo Park

    2007-04-16

    We present an estimate of the Gamma Ray Bursts which should be expected from metal-free, elusive first generation of stars known as PopulationIII (PopIII). We derive the GRB rate from these stars from the Stellar Formation Rate obtained in several Reionization scenarios available in the literature. In all of the analyzed models we find that GRBs from PopIII are subdominant with respect to the ''standard'' (PopII) ones up to z {approx} 10.

  6. How Far Are the Stars?

    ERIC Educational Resources Information Center

    Murphy, Edward; Bell, Randy L.

    2005-01-01

    On any night, the stars seen in the sky can be as close to Earth as a few light-years or as distant as a few thousand light-years. Distances this large are hard to comprehend. The stars are so far away that the fastest spacecraft would take tens of thousands of years to reach even the nearest one. Yet, astronomers have been able to accurately…

  7. Keepers of the double stars

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-03-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Early catalogues by the Herschels, Struves, and others began with their own discoveries. In 1906 court reporter and amateur astronomer Sherburne Wesley Burnham published a massive double star catalogue containing data from many observers on more than 13,000 systems. Lick Observatory astronomer Robert Grant Aitken produced a much larger catalogue in 1932 and coordinated with Robert Innes of Johannesburg, who catalogued the southern systems. Aitken maintained and expanded Burnham's records of observations on handwritten file cards, and eventually turned them over to the Lick Observatory, where astrometrist Hamilton Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and together they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford had the new 120-inch reflector, the world's second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the United States Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley, and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,200,000 measures of more than 125

  8. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  9. U Antliae --- A Dying Carbon Star

    NASA Astrophysics Data System (ADS)

    Bidelman, W. P.; Cowley, C. R.; Luttermoser, D. G.

    2009-09-01

    U Antliae is one of the brightest carbon stars in the southern sky. It is classified as an N0 carbon star and an Lb irregular variable. This star has a very unique spectrum and is thought to be in a transition stage from an asymptotic giant branch star to a planetary nebula. This paper discusses possible atomic and molecular line identifications for features seen in high-dispersion spectra of this star at wavelengths from 4975 Å through 8780 Å.

  10. Spectroscopy of unusual emission-line stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1988-01-01

    New spectroscopic observations are reported for ten stars that have been identified in the literature as having H-alpha emission with suspected F, G, or K spectral types. Three of the stars are shown to be BE stars, two are confirmed as early-type supergiants, three show composite (F or K + B) spectra, one is a 'post-T Tauri' star, and one is an ordinary F star without emission.

  11. KEPLER RAPIDLY ROTATING GIANT STARS

    SciTech Connect

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  12. Gravity darkening in rotating stars

    NASA Astrophysics Data System (ADS)

    Espinosa Lara, F.; Rieutord, M.

    2011-09-01

    Context. Interpretation of interferometric observations of rapidly rotating stars requires a good model of their surface effective temperature. Until now, laws of the form T_eff∝ g_eff^β have been used, but they are only valid for slowly rotating stars. Aims: We propose a simple model that can describe the latitudinal variations in the flux of rotating stars at any rotation rate. Methods: This model assumes that the energy flux is a divergence-free vector that is antiparallel to the effective gravity. Results: When mass distribution can be described by a Roche model, the latitudinal variations in the effective temperature only depend on a single parameter, namely the ratio of the equatorial velocity to the Keplerian velocity. We validate this model by comparing its predictions to those of the most realistic two-dimensional models of rotating stars issued from the ESTER code. The agreement is very good, as it is with the observations of two rapidly rotating stars, α Aql and α Leo. Conclusions: We suggest that as long as a gray atmosphere can be accepted, the inversion of data on flux distribution coming from interferometric observations of rotating stars uses such a model, which has just one free parameter.

  13. FAINT UBVRI STANDARD STAR FIELDS

    SciTech Connect

    Clem, James L.; Landolt, Arlo U. E-mail: landolt@phys.lsu.edu

    2013-10-01

    High-quality CCD-based UBVRI photometry is presented for ∼45, 000 stars distributed among 60 different fields centered on the celestial equator and at δ ≈ –50°. This photometry has been calibrated to the standard Johnson UBV and Kron-Cousins RI systems via observations of the UBVRI standard stars presented in the works of Landolt. The majority of the stars in our photometric catalog fall in the magnitude range 12 ∼< V ∼< 22 and in the color range –0.3 ∼< (B – V) ∼< 1.8. Each star averages 67 measures in each UBVRI filter from data taken on 250 different photometric nights over a period of ∼6.5 yr from two different telescopes. Our final photometric database effectively extends the UBVRI standard star network defined by Landolt to much fainter magnitudes and increases the number density of stars within pre-existing standard fields. Hence, these new, fainter standards serve as suitable calibrators for investigators who employ either small or large-aperture telescopes for their observational projects.

  14. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  15. Emission Line Stars in Andromeda

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2014-10-01

    Elucidating the physics that drives production of emission lines in a wide variety of stellar sources is hampered by the relatively small, heterogeneous available samples. We propose to construct a large, deep, homogeneous sample of more than 10,000 emission line stars in M31, by adding H-alpha imaging to existing data from the Panchromatic Hubble Andromeda Treasury (PHAT), in regions targeted to contain large numbers of massive young stellar clusters. This program will deliver the statistics needed to determine the prevalence of Be disk systems as a function of age and the rate of dramatic disk-loss/disk-renewal episodes. The survey will also provide a key opportunity to identify Symbiotic stars from a well characterized dataset, and diagnose why the current rate of observed symbiotic stars is several orders of magnitude less than that predicted by theory. Our program will also serve as a critical, deep legacy product for the broader community interested in other emission line stars such as Wolf-Rayet stars, PNe, and luminous M(e) stars.

  16. Space Shuttle Star Tracker Challenges

    NASA Technical Reports Server (NTRS)

    Herrera, Linda M.

    2010-01-01

    The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

  17. Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Girardi, Léo

    2016-09-01

    Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the literature.

  18. The sun, our star

    NASA Astrophysics Data System (ADS)

    Noyes, R. W.

    Observational data, analytical models, and instrumentation used to study the sun and its evolution are detailed, and attention is given to techniques for converting solar energy to useful power on earth. The star ignited when the mutual gravitational attractions of dust and vapor in a primordial cloud in the Galaxy caused an in-rush of accelerating particles which eventually became dense enough to ignite. The heat grew until inward rushing matter was balanced by outward moving radiative forces. The planets formed from similar debris, and solar radiation is suggested to have triggered the chemical reactions giving rise to life on earth. Visual, spectroscopic, coronagraphic, and UV observations of the sun from the ground and from spacecraft, particularly Skylab, are described, together with features of the solar surface, magnetic field, sunspots, and coronal loops. Models for the processes that occur in the solar interior are explored, as are the causes of solar flares. Attention is given to solar cells, heliostat arrays, wind turbines, and water turbines as means to convert, either directly or indirectly, the earth-bound solar energy to electrical and thermal power. Finally, the life cycle of the sun, about 9 billion yr in duration, is summarized, noting the current status of midlife.

  19. STAR heavy flavor tracker

    NASA Astrophysics Data System (ADS)

    Qiu, Hao

    2014-11-01

    Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.

  20. The Quarkyonic Star

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Kojo, Toru

    2016-02-01

    We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid-gas (or liquid-vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC-BCS (Bose Einstein Condensation-Bardeen Cooper Schrieffer) scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea, we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass-radius relation of the neutron star and constraints on parameters in the proposed scheme.