Science.gov

Sample records for oahu island hawaii

  1. Oahu, Hawaii

    NASA Image and Video Library

    2001-07-21

    This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital. The image is located at 21.5 degrees north latitude and 158 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02672

  2. Geohydrology of the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Hunt, Charles D.

    1996-01-01

    The island of Oahu, Hawaii, is the eroded remnant of two coalesced shield volcanoes, the Waianae Volcano and the Koolau Volcano. Shield-building lavas emanated mainly from the rift zones of the volcanoes. Subaerial eruptions of the Waianae Volcano occurred between 3.9 and 2.5 million years ago, and eruptions of the Koolau Volcano occurred between 2.6 and 1.8 million years ago. The volcanoes have subsided more then 6,000 feet, and erosion has destroyed all but the western rim of the Koolau Volcano and the eastern part of the Waianae Volcano, represented by the Koolau and Waianae Ranges, respectively. Hydraulic properties of the volcanic-rock aquifers are determined by the distinctive textures and geometry of individual lava flows. Individual lava flows are characterized by intergranular, fracture, and conduit-type porosity and commonly are highly permeable. The stratified nature of the lava flows imparts a layered heterogeneity. The flows are anisotropic in three dimensions, with the largest permeability in the longitudinal direction of the lava flow, an intermediate permeability in the direction transverse to the flow, and the smallest permeability normal to bedding. Averaged over several lava-flow thicknesses, lateral hydraulic conductivity of dike-free lava flows is about 500 to 5,000 feet per day, with smaller and larger values not uncommon. Systematic areal variations in lava-flow thickness or other properties may impart trends in the heterogeneity. The aquifers of Oahu contain two flow regimes: shallow freshwater and deep saltwater. The freshwater floats on underlying saltwater in a condition of buoyant displacement, although the relation is not necessarily a simple hydrostatic balance everywhere. Natural driving mechanisms for freshwater and saltwater flow differ. Freshwater moves mainly by simple gravity flow; meteoric water flows from inland recharge areas at higher altitudes to discharge areas at lower altitudes near the coast. Remnant volcanic heat also

  3. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The... shall be enforced by the Commanding Officer, Naval Air Station, Barber's Point, Hawaii, 96862, and such...

  4. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Island of Oahu, Hawaii; restricted area. 334.1400 Section 334.1400 Navigation and Navigable Waters CORPS... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area... the Officer in Charge, Fleet Area Control and Surveillance Facility, Pearl Harbor, Hawaii 96860-7625...

  5. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The waters... Officer, Explosive Ordnance Disposal Training and Evaluation Unit One, Barbers Point, Hawaii 96862-5600. ...

  6. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at Kaena...

  7. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  8. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at Kaena...

  9. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The waters...

  10. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  11. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The waters...

  12. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  13. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at Kaena...

  14. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at Kaena...

  15. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at Kaena...

  16. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The waters...

  17. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The waters...

  18. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  19. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  20. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  1. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  2. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  3. 33 CFR 110.128d - Island of Oahu, Hawaii. (Datum: OHD)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Island of Oahu, Hawaii. (Datum: OHD) 110.128d Section 110.128d Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128d Island of Oahu, Hawaii. (Datum...

  4. Land Use on the Island of Oahu, Hawaii, 1998

    USGS Publications Warehouse

    Klasner, Frederick L.; Mikami, Clinton D.

    2003-01-01

    A hierarchical land-use classification system for Hawaii was developed, and land use on the island of Oahu was mapped. The land-use classification system emphasizes agriculture, developed (urban), and barren/mining uses. Areas with other land uses (conservation, forest reserve, natural areas, wetlands, water, and barren [sand, rock, or soil] regions, and unmanaged vegetation [native or exotic]) were defined as 'other.' Multiple sources of digital orthophotographs from 1998 and 1999 were used as source data. The 1998 island of Oahu land-use data are provided in digital format at http://water.usgs.gov/lookup/getspatial?oahu_lu98 for use in a Geographic Information System (GIS), at 1:24,000-scale with minimum mapping units of 2 hectares (4.9 acres) area and 30-meters (98.4 feet) feature width. In 1998, a total of 59,195 acres (15.4 percent) of the island of Oahu were classified as agricultural land use; 98,663 acres (25.7 percent) were classified as developed; 1,522 acres (0.4 percent) were classified as barren/mining; and 224,331 acres (58.5 percent) were classified as other. An accuracy assessment identified 98 percent accuracy for all land-use classes. In windward (moister) areas, dense vegetation and canopy cover along with rapid recolonization by vegetation potentially obscured land use from photo-interpretation. While in leeward (drier) areas, sparse vegetative cover and slower vegetation recolonization may have resulted in more frequent recognition of apparent land-use patterns.

  5. Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. The chief agricultural industries are the growing and processing of pineapples and sugarcane. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital.

    The image is located at 21.5 degrees north latitude and 158 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties

  6. Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. The chief agricultural industries are the growing and processing of pineapples and sugarcane. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital.

    The image is located at 21.5 degrees north latitude and 158 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties

  7. National Water-Quality Assessment Program: Island of Oahu, Hawaii

    USGS Publications Warehouse

    Anthony, Stephen S.

    1998-01-01

    During the past 25 years, our Nation has sought to improve its water quality; however, many water-quality issues remain unresolved. To address the need for consistent and scientifically sound information for managing the Nation's water resources, the U.S. Geological Survey began a full-scale National Water-Quality Assessment (NAWQA) Program in 1991. This program is unique compared with other national water-quality assessment studies in that it integrates the monitoring of the quality of surface and ground waters with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location of the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units. These study units represent the diverse geography, water resources, and land and water uses of the Nation. The island of Oahu, Hawaii, is one such study unit designed to supplement water-quality information collected in other study units across the Nation while addressing issues relevant to the island of Oahu.

  8. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point, basically...

  9. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point, basically...

  10. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point, basically...

  11. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point, basically...

  12. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal... shall notify the Captain of the Port, Honolulu, Hawaii, and the Commanding Officer, U.S. Naval Air...

  13. Geologic map and guide of the island of Oahu, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.

    1939-01-01

    This bulletin, although designated Bulletin 2, is actually the fourth of a series published by the Division of Hydrography of the Territory of Hawaii. All four of the bulletins thus far published relate to the geology and ground-water resources of the island of Oahu.1 Together they present the results obtained on this island in the program of ground-water investigation of the Territory that has been conducted in cooperation with the Geological Survey, of the United States Department of the Interior. Bulletin 5 which is in preparation will describe the progress made in developing the ground-water resources of Oahu since Bulletin 1 was issued. In Bulletin 2 is presented the detailed geologic map of Oahu that has resulted from this investigation. The base for this map is the new topographic map of Oahu prepared by the Topographic Branch of the Geological Survey. This bulletin also contains a guide to the geology along the main highways, which can be used advantageously in connection with the geologic map. For 18 years the writer has had the great privilege of working under the technical direction of Mr. 0. E. Meinzer, geologist in charge of the Division of Ground Water, U. S. Geological Survey. Nearly two decades ago Mr. Meinzer envisioned the great benefits that the people of Hawaii would derive from a thorough study of the groundwater resources of these islands. He also recognized that a full knowledge of these resources could be obtained only by a complete understanding of the geology of the islands and the processes which formed them. This bulletin is one of a series that has been made possible largely as a result of his broad vision. Credit is due Mr. W. 0 . Clark for the location of all the dikes shown on plate 2 in the headwaters of Kamananui Stream near the north end of the Koolau Range, and to Dr. C. K. Wentworth for about a dozen dikes north of Kaimuki. Messrs. 0. E. Meinzer, G. R. Mansfield, M. H. Carson, G. A. Macdonald, and S. H. Elbert kindly criticized

  14. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1380 Marine Corps Base Hawaii (MCBH), Kaneohe...

  15. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1380 Marine Corps Base Hawaii (MCBH), Kaneohe...

  16. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1380 Marine Corps Base Hawaii (MCBH), Kaneohe...

  17. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  18. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  19. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii...

  20. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii...

  1. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii...

  2. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  3. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii...

  4. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  5. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii...

  6. Decomposition patterns in terrestrial and intertidal habitats on Oahu Island and Coconut Island, Hawaii.

    PubMed

    Davis, J B; Goff, M L

    2000-07-01

    Decomposition studies were conducted at two sites on the Island of Oahu, Hawaii, to compare patterns of decomposition and arthropod invasion in intertidal and adjacent terrestrial habitats. The animal model used was the domestic pig. One site was on Coconut Island in Kaneohe Bay on the northeast side of Oahu, and the second was conducted in an anchialine pool located at Barber's Point Naval Air Station on the southwest shore of Oahu. At both sites, the terrestrial animal decomposed in a manner similar to what has been observed in previous studies in terrestrial habitats on the island of Oahu. Rate of biomass depletion was slower in both intertidal studies, and decomposition was primarily due to tide and wave activity and bacterial decomposition. No permanent colonization of carcasses by insects was seen for the intertidal carcass at Coconut Island. At the anchialine pool at Barber's Point Naval Air Station, Diptera larvae were responsible for biomass removal until the carcass was reduced below the water line and, from that point on, bacterial action was the means of decomposition. Marine and terrestrial scavengers were present at both sites although their impact on decomposition was negligible. Five stages of decomposition were recognized for the intertidal sites: fresh, buoyant/floating, deterioration/disintegration, buoyant remains, and scattered skeletal.

  7. Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-14

    AS7-07-1741 (14 Oct. 1968) --- Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft during its 51st revolution of Earth. Photographed from an altitude of 122 nautical miles, at ground elapsed time of 81 hours. Diamond Head and Pearl Harbor are clearly visible.

  8. Prevalence of Francisella noatunensis subsp. orientalis in cultured tilapia on the island of Oahu, Hawaii.

    PubMed

    Soto, Esteban; McGovern-Hopkins, Kathleen; Klinger-Bowen, Ruth; Fox, Bradley K; Brock, James; Antonio, Nathene; Waal, Zelda van der; Rushton, Stephen; Mill, Aileen; Tamaru, Clyde S

    2013-06-01

    Francisellosis is an emergent disease in cultured and wild aquatic animals. The causative agent, Francisella noatunensis subsp. orientalis (Fno), is a gram-negative bacterium recognized as one of the most virulent pathogens of warmwater fish. The main objective of this project was to investigate the prevalence of Fno in cultured tilapia (specifically, Mozambique Tilapia Oreochromis mossambicus, Koilapia [also known as Wami Tilapia] O. hornorum, Blue Tilapia O. aureus, and Nile Tilapia O. niloticus hybrids) on the island of Oahu, Hawaii, using conventional and real-time PCR assays followed by statistical modeling to compare the different diagnostic methods and identify potential risk factors. During 2010 and 2012, 827 fish were collected from different geographical locations throughout the island of Oahu. Upon collection of fish, the water temperature in the rearing system and the length of individual fish were measured. Extraction of DNA from different tissues collected aseptically during necropsy served as a template for molecular diagnosis. High correlation between both molecular methods was observed. Moreover, the bacterium was isolated from infected tilapia on selective media and confirmed to be Fno utilizing a species-specific Taqman-based real-time PCR assay. Although a direct comparison of the prevalence of Fno between the different geographical areas was not possible, the results indicate a high prevalence of Fno DNA in cultured tilapia throughout the farm sites located on Oahu. Of the different tilapia species and hybrids currently cultured in Hawaii, Mozambique Tilapia were more susceptible to infection than Koilapia. Water temperature in the rearing systems and fish size also had a strong effect on the predicted level of infection, with fish held at lower temperatures and smaller fish being more susceptible to piscine francisellosis.

  9. Water Quality on the Island of Oahu, Hawaii, 1999-2001

    USGS Publications Warehouse

    Anthony, Stephen S.; Hunt, Charles D.; Brasher, Anne M.D.; Miller, Lisa D.; Tomlinson, Michael S.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality on the island of Oahu, Hawaii. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions on Oahu summarized in this report are discussed in detail in other reports that can be accessed from (http://hi.water.usgs.gov/nawqa). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  10. Forest bird monitoring protocol for strategic habitat conservation and endangered species management on O'ahu Forest National Wildlife Refuge, Island of O'ahu, Hawai'i

    USGS Publications Warehouse

    Camp, Richard J.; Gorresen, P. Marcos; Banko, Paul C.

    2011-01-01

    This report describes the results of a pilot forest bird survey and a consequent forest bird monitoring protocol that was developed for the O'ahu Forest National Wildlife Refuge, O'ahu Island, Hawai'i. The pilot survey was conducted to inform aspects of the monitoring protocol and to provide a baseline with which to compare future surveys on the Refuge. The protocol was developed in an adaptive management framework to track bird distribution and abundance and to meet the strategic habitat conservation requirements of the Refuge. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS).

  11. A ground-water inventory of the Waialua basal-water body, Island of Oahu, Hawaii

    USGS Publications Warehouse

    Dale, Robert H.

    1978-01-01

    The Waialua basal-water body underlies an area of about 18 square miles on the north shore of the island of Oahu, Hawaii. The basal-water body is a body of fresh ground water that floats on saline ground water in a highly permeable and porous basaltic aquifer. Inflow to the basal-water body is from the deep infiltration of applied irrigation water and from leakage through a low permeability ground-water dam. Outflow from the basal-water body is from basal-water pumpage and leakage through low-permeability boundaries that separate the basal-water body from the ocean. The basal-water flux, computed as either the sum of the inflow terms or the sum of the outflow terms, is about the same value. The basal-water flux is 55 million gallons per day, (206,000 cubic meters per day), based on the sum of the outflow terms. The effective porosity was computed at 0.09 by a time-series analysis of the covariations in deep infiltration, pumpage, and basal-water head. The volume of basal water in storage is estimated to be 1.4 x 1011 gallons (5.4 x 108 cubic meters). Pumpage from the basal-water body can be increased. The most efficient development method is the skimming shaft. If shafts were used, an additional 15 million gallons per day could be pumped on a sustained basis.

  12. Geophysical Log Data from Basalt Aquifers Near Waipahu on the Island of Oahu and Pahoa on the Island of Hawaii, Hawaii

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, Alfred E.

    1995-01-01

    Two relatively new geophysical logging techniques, the digitally enhanced borehole acoustic televiewer and the heat-pulse flowmeter, were tested from 1987 to 1991 at two sites in Hawaii: Waipahu on the island of Oahu, and Pahoa on the island of Hawaii. Although these data were obtained in an effort to test and improve these two logging techniques, the measurements are of interest to hydrologists studying the aquifers in Hawaii. This report presents a review of the measurements conducted during this effort and summarizes the data obtained in a form designed to make that data available to hydrologists studying the movement of ground water in Hawaiian aquifers. Caliper logs obtained at the Waipahu site indicate the distribution of openings in interbed clinker zones between relatively dense and impermeable basalt flows. The flowmeter data indicate the pattern of flow induced along seven observation boreholes that provide conduits between interbed zones in the vicinity of the Mahoe Pumping Station at the Waipahu site. The televiewer image logs obtained in some of the Waipahu Mahoe boreholes do not show any significant vertical or steeply dipping fractures that might allow communication across the dense interior of basalt flows. Acoustic televiewer logs obtained at the Pahoa site show that a number of steeply dipping fractures and dikes cut across basalt flows. Although flow under ambient hydraulic-head conditions in the Waipahu Mahoe Observation boreholes is attributed to hydraulic gradients associated with pumping from a nearby pumping station, flow in the Waipio Deep Observation borehole on Oahu and flow in the Scientific Observation borehole on Hawaii are attributed to the effects of natural recharge and downward decreasing hydraulic heads associated with that recharge.

  13. Summary of available ground-water data for the island of Oahu, Hawaii

    USGS Publications Warehouse

    Miyamoto, S.E.; Miyaji, C.E.; Fukuda, L.L.

    1986-01-01

    This report presents, in tabular form, descriptive information and information on the availability of chloride concentration, water level, pumpage, log, pump test and flow data for all wells , shafts and tunnels on Oahu, Hawaii. Descriptive data for each groundwater source include: identification number, map number, depth, diameter, year completed, owner, usage and status. The report is based on data currently available in the files of the U.S. Geological Survey and is a compilation of observations made by Survey personnel, and information gathered by other agencies and the private sector. (USGS)

  14. NASA Flyover of Oahu, Hawaii

    NASA Image and Video Library

    2011-10-17

    Sometimes called The Gathering Place, Oahu is the third largest of the Hawaiian Islands. This image was captured by NASA Terra spacecraft. A flyover was created by draping ASTER image data acquired January 13, 2010.

  15. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  16. Preliminary geothermal evaluation of the Mokapu Peninsula on the Island of Oahu, Hawaii

    SciTech Connect

    Not Available

    1981-08-01

    Preliminary geological, geochemical, and geophysical field surveys have been conducted on Mokapu Peninsula on the island of Oahu in an effort to determine whether sufficient indications of geothermal potential exist within or adjacent to the peninsula to justify further, more detailed, exploratory efforts. An evaluation of existing geologic data as well as recently completed mapping on Mokapu indicate that the peninsula is located on the edge of or immediately adjacent to the inferred caldera of Koolau volcano. Geochemical surveys conducted within and around the Mokapu Peninsula included mercury and radon ground gas surveys as well as a limited evaluation of groundwater chemistry. Groundwater sampling on Mokapu Peninsula was severely restricted due to the absence of wells within the study area and thus water chemistry analyses were limited to the Nuupia fish ponds. Schlumberger resistivity soundings were completed in three locations on the peninsula: KVS1, in the northeast quadrant within the Ulupau crater, KVS2 in the northwest quadrant along the main jet runway, and KVS3 in the southeast along Mokapu Road. KVS1 encountered a relatively high resistivity to a depth of approximately 20 meters below sea level which was underlain by a basement resistivity of about 2 to 3 ohm meters. KVS2 and KVS3 detected similar resistivities of 2 to 3 ohm meters at much shallower depths (approximately equivalent to local sea level) below a thin, moderately resistive layer having an impedance ranging from 15 to 118 ohm meters.

  17. The multiresource forest inventory for Oahu, Hawaii.

    Treesearch

    Michael G. Buck; Jeanine M. Branam; Wllliam T. Stormont; Patrick G. Costales

    1988-01-01

    This report summarizes a 1986 multiresource forest inventory for Oahu, Hawaii. Tables and figures of forest area, timber volume, vegetation types, ownership, land classes, bird counts, and introduced plants are presented.

  18. Summary of the Oahu, Hawaii, Regional Aquifer-System Analysis

    USGS Publications Warehouse

    Nichols, William D.; Shade, Patricia J.; Hunt, Charles D.

    1996-01-01

    Oahu, the third largest of the Hawaiian islands, is formed by the eroded remnants of two elongated shield volcanoes with broad, low profiles. Weathering and erosion have modified the original domed surfaces of the volcanoes, leaving a landscape of deep valleys and steep interfluvial ridges in the interior highlands. The Koolau Range in eastern Oahu and the Waianae Range in western Oahu are the eroded remnants of the Koolau and Waianae Volcanoes. The origin, mode of emplacement, texture, and composition of the rocks of Oahu affect their ability to store and transmit water. The volcanic rocks are divided into four groups: (1) lava flows, (2) dikes, (3) pyroclastic deposits, and (4) saprolite and weathered basalt. Stratified sequences of thin-bedded lava flows form the most productive aquifers in Hawaii. Dikes are near-vertical sheets of massive intrusive rock that typically contain only fracture permeability. Pyroclastic deposits include ash, cinder, and spatter; they are essentially granular, with porosity and permeability similar to those of granular sediments. Weathering of basaltic rocks in the humid, subtropical climate of Oahu alters igneous minerals to clays and oxides, reducing the permeability of the parent rock. Saprolite is weathered material that has retained textural features of the parent rock. Estimates of hydraulic conductivity along the plane of dike-free lava flows tend to fall within about one order of magnitude, from about 500 to about 5,000 feet per day. Estimates of specific yield range from about 1 to 20 percent; most of the values lie within a narrow range of about 5 to 10 percent. The occurrence of ground water on Oahu is determined by the type and character of the rocks and by the presence of geohydrologic barriers. The primary modes of freshwater occurrence on Oahu are as a basal lens of fresh ground water floating on saltwater, as dike-impounded ground water, and as perched ground water. Saltwater occurs at depth throughout much of the

  19. Preliminary Geothermal Evaluation of the Mokapu Peninsula on the Island of Oahu, Hawaii.

    DTIC Science & Technology

    1982-06-01

    locations does occur, we believe, based on available evidence, that only the Koko Head rift is a reasonable postulation. Dating of the Honolulu Volcanic...Oahu (e.g., Diamond Head, Koko Head) and is considered to be derived from a nepheline basalt magma (Winchell, 1947). The flat area of the peninsula to...are mainly restricted to the Koko Head rift. Also, melilitites have now been determined to exist on the apron of the Koolau caldera well outside the

  20. Geology and ground-water resources of the island of Oahu, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Vaksvik, Knute N.

    1935-01-01

    Oahu, one of the islands of the Hawaiian group, lies in the Mid-Pacific 2,100 miles southwest of San Francisco. The principal city is Honolulu. The Koolau Range makes up the eastern part of the island, and the Waianae Range the western part. Both are extinct basaltic volcanoes deeply dissected by erosion. The Koolau Volcano was the later to become extinct. The Waianae Range is made up of three groups of lavas erupted in Tertiary and possibly in early Pleistocene time. The exposed part of the older lava is nearly 2,000 feet thick and consists largely of thin-bedded pahoehoe. It is separated in most places from the middle lavas by an angular unconformity and talus breccia and in a few places by an erosional unconformity. The middle basalts are about 2,000 feet thick and closely resemble the lower ones except that they contain more aa. The upper lavas reach a thickness of about 2,300 feet and are mostly massive aa flows. The last eruptions produced large cinder cones and some nephelite basalts. The Waianae Volcano, like other Hawaiian volcanoes, produced only small amounts of ash, and the lavas were largely extruded from fissures a few feet wide, now occupied by dikes. The center of activity was near Kolekole Pass, at the head of Lualualei Valley.The Koolau Volcano is made up of two groups of lavas extruded in Tertiary and early Pleistocene (?) time. The older group, the Kailua volcanic series, is greatly altered by hydrothermal action and was extruded from fissures near Lanikai. The flows of the younger group, the Koolau volcanic series, were extruded from fissures about a mile south of the Kailua rift and have an exposed thickness of about 3,000 feet. The Koolau Volcano produced even less ash than the Waianae Volcano, and its flows are thin-bedded pahoehoe and aa. The eruptive center of the Koolau Volcano lies between Kaneohe and Waimanalo. Great amounts of both the Waianae and Koolau Ranges were removed by fluvial and marine erosion during the Pleistocene. The

  1. Development of invertebrate community indexes of stream quality for the islands of Maui and Oahu, Hawaii

    USGS Publications Warehouse

    Wolff, Reuben H.

    2012-01-01

    rating. Additionally, quantitative macroinvertebrate samples collected from 31 randomly selected sites on Oʻahu in 2006-07 as part of the U.S. Environmental Protection Agency's Wadeable Stream Assessment (WSA) were used to refine and develop an ICI of stream quality for Oʻahu. The set of metrics that were included in the revised index were: total invertebrate abundance, Class Insecta relative abundance, the ratio of Trichoptera abundance to nonnative Diptera abundance, turbellarian relative abundance, amphipod relative abundance, nonnative mollusk abundance, and nonnative crayfish (Procambarus clarkii) and/or red cherry shrimp (Neocaridina denticulata sinensis) presence or absence. The Oʻahu ICI classified 10 of the 31 sites (32.3 percent) as "good" quality communities, 16 of the sites (51.6 percent) as "fair" quality communities, and 5 of the sites (16.1 percent) as "poor" quality communities. A reanalysis of 18 of the Oʻahu macroinvertebrate sites used to develop the P-HBIBI resulted in the reclassification of 3 samples. The beginning of a statewide ICI was developed on the basis of a combination of metrics from the Maui and Oʻahu ICIs. This combined ICI is intended to help identify broad problem areas so that the Hawaii State Department of Health (HIDOH) can prioritize their efforts on a statewide scale. Once these problem areas are identified, the island-wide ICIs can be used to more accurately assess the quality of individual stream reaches so that the HIDOH can prioritize their efforts on the most impaired streams. By using the combined ICI, 70 percent of the Maui sites and 10 percent of the Oʻahu WSA sites were designated as "good" quality sites; 25 percent of the Maui sites and 45 percent of the Oʻahu WSA sites were designated as "fair" quality sites; and 5 percent of the Maui sites and 45 percent of the Oʻahu WSA sites were designated as "poor" quality sites.

  2. The Denudation Of Oahu, Hawaii USA By Ground And Surface Waters: The Effects Of Climate, Soil Thickness, And Water Contact Times On Ocean Island Erosion

    NASA Astrophysics Data System (ADS)

    Nelson, S. T.; Tingey, D. G.

    2011-12-01

    Access, size, basalt as the dominant bedrock, and climate variation (rainfall varies by 10x) make Oahu, Hawaii, USA an ideal locality for investigating chemical weathering driven denudation rates. New and compiled surface and groundwater solute data permit calculation of mass balances for solutes from Oahu, revealing that groundwater solute fluxes dominate surface water by a factor of 3 to 12, neglecting if biogenic silica removal by streams. Weathering reactions consistent with the observed mineralogy of Oahu soils and the calculated mineralogy of shield-forming tholeiitic basalts permit denudation rates to be partitioned between dissolved and suspended loads where long term erosion via streams and soil formation rates are assumed to be in a steady state. Aerially averaged denudation rates, indexed to the leaching of SiO2, vary from 0.016 to 0.063 m/ka, with about 70% of denudation due to dissolved fluxes. Thus, groundwater appears to be the single most important source of mass flux to the ocean from ocean islands. Dry regions of Oahu have distinctly lower denudation rates, and areas with thick soil profiles have suppressed solute loads in streams because laterites and subjacent saprolites have already been largely depleted in mobile elements. However, systematic differences also exist due to different contact times between groundwater and aquifer materials. The short, shallow circulation of stream base flows permits less extensive reaction with basalt resulting in lower solute loads even in areas where thick soils are largely absent. In addition to larger total water fluxes, deep groundwaters exhibit elevated solute loads across Oahu. Indexing denudation in basaltic terranes to dissolved SiO2, a minor component in seawater, rather than other solutes leads to improved estimates of weathering rates in ocean islands. Other approaches require correction for the atmospheric depositions of sea salts based on Cl- abundances in waters that are assumed to derive solely

  3. NASA Surfs the Skies Above Oahu, Hawaii

    NASA Image and Video Library

    This flyover of the Hawaiian island of Oahu was made by draping Jan. 13, 2010, image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra ...

  4. Records of the drilled wells of the island of Oahu, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Vaksvik, Knute N.

    1938-01-01

    The description, location, log and meter tests of all the drilled wells on Oahu are given herein as of March 1 1938. Except for the discharges of plantation wells, which are published on pages 275 to 322 of Bulletin 1, head, chloride, and discharge records are listed only to the close of 1934, the date when this report was compiled. All head measurements and salt determinations made by the U.S. Geological Survey since 1934 will be found in the annual U.S. Geological Survey Water-Supply Papers entitled “Water levels and artesian pressure in observation wells in the United States.” Records of wells in the district of Honolulu are currently printed in the biennial reports of the Board of Water Supply, Honolulu. Most of the records of the plantation wells have been furnished by the owners.Plate 2 shows the location of the wells, whether they are sealed, and whether the log is known. The static level or head of a well is the height above mean sea level to which the water will rise when all flow from the well is shut off. In the nonartesian wells the static level is the level of the water table of the basal zone of saturation in the basalts of the Koolau and Waianae volcanic series. Many of the wells are subartesian; that is, the water stands in the well above the level at which it was first encountered but does not overflow.

  5. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer

    Sengupta, M.; Andreas, A.

    2010-03-16

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  6. Space Radar Image of Honolulu, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the city of Honolulu, Hawaii and adjacent areas on the island of Oahu. Honolulu lies on the south shore of the island, along the bottom of this image. Diamond Head, an extinct volcanic crater, is seen in the lower right. The bright white strip left of Diamond Head is the Waikiki Beach area. Further west are the downtown area and harbor. Runways of the airport can be seen in the lower left. The Koolau mountain range runs through the center of the image. The steep cliffs on the north side of the range are thought to be remnants of massive landslides that ripped apart the volcanic mountains that built the island thousands of years ago. On the north shore of the island are the Mokapu peninsula and Kaneohe Bay. Densely vegetated areas appear green in this radar image, while urban areas generally appear orange, red or white. Images such as this can be used by land use planners to monitor urban development and its effect on the tropical environment. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on October 6, 1994.The image is 20.6 kilometers by 31.0kilometers (12.8 miles by 19.2 miles) and is centered at 21.4degrees North latitude, 157.8 degrees West longitude. North is toward the upper left. The colors are assigned to different radarfrequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR,a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  7. Space Radar Image of Honolulu, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the city of Honolulu, Hawaii and adjacent areas on the island of Oahu. Honolulu lies on the south shore of the island, along the bottom of this image. Diamond Head, an extinct volcanic crater, is seen in the lower right. The bright white strip left of Diamond Head is the Waikiki Beach area. Further west are the downtown area and harbor. Runways of the airport can be seen in the lower left. The Koolau mountain range runs through the center of the image. The steep cliffs on the north side of the range are thought to be remnants of massive landslides that ripped apart the volcanic mountains that built the island thousands of years ago. On the north shore of the island are the Mokapu peninsula and Kaneohe Bay. Densely vegetated areas appear green in this radar image, while urban areas generally appear orange, red or white. Images such as this can be used by land use planners to monitor urban development and its effect on the tropical environment. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on October 6, 1994.The image is 20.6 kilometers by 31.0kilometers (12.8 miles by 19.2 miles) and is centered at 21.4degrees North latitude, 157.8 degrees West longitude. North is toward the upper left. The colors are assigned to different radarfrequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR,a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  8. A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko'olau mountain range on the island of O'ahu, Hawai'i(1).

    PubMed

    Sherwood, Alison R; Dittbern, Monica N; Johnston, Emily T; Conklin, Kimberly Y

    2016-12-18

    Airborne algae from sites on the windward (n = 3) and leeward (n = 3) sides of the Ko'olau Mountain range of O'ahu, Hawai'i, were sampled for a 16 d period during January and February 2015 using passive collection devices and were characterized using Illumina MiSeq sequencing of the universal plastid amplicon marker. Amplicons were assigned to 3,023 operational taxonomic units (OTUs), which included 1,189 cyanobacteria, 1,009 heterotrophic bacteria, and 304 Eukaryota (of which 284 were algae and land plants). Analyses demonstrated substantially more OTUs at windward than leeward O'ahu sites during the sampling period. Removal of nonalgal OTUs revealed a greater number of algal reads recovered from windward (839,853) than leeward sites (355,387), with the majority of these being cyanobacteria. The 1,234 total algal OTUs included cyanobacteria, diatoms, cryptophytes, brown algae, chlorophyte green algae, and charophyte green algae. A total of 208 algal OTUs were identified from leeward side samplers (including OTUs in common among samplers) and 1,995 algal OTUs were identified from windward samplers. Barcoding analyses of the most abundant algal OTUs indicated that very few were shared between the windward and leeward sides of the Ko'olau Mountains, highlighting the localized scale at which these airborne algae communities differ. Back trajectories of air masses arriving on O'ahu during the sampling period were calculated using the NOAA HY-SPLIT model and suggested that the sampling period was composed of three large-scale meteorological events, indicating a diversity of potential sources of airborne algae outside of the Hawaiian Islands.

  9. Associations among land-use, habitat characteristics, and invertebrate community structure in nine streams on the island of Oahu, Hawaii

    USGS Publications Warehouse

    Brasher, Anne M.D.; Wolff, Reuben H.; Luton, Corene D.

    2003-01-01

    The island of Oahu is one of 51 study units established as part of the U.S. Geological Surveys National Water-Quality Assessment (NAWQA) program to assess the status and trends of the Nations surface and ground-water resources, and to link status and trends with an understanding of the natural and human factors that affect water quality. As part of the NAWQA program, benthic invertebrate communities were surveyed at ten sites in nine streams representing the three main types of land use on Oahu: urban, agriculture, and forested. At each sampling site, habitat characteristics were determined at a range of spatial scales including drainage basin, segment, reach, transect, and point. Associations among land use, habitat characteristics, and benthic invertebrate community structure were examined. The rapid population growth and increasing urbanization on Oahu has resulted in substantial stream habitat alteration. Instream habitat characteristics at the urban and mixed (urban and agriculture) land-use sites were markedly different from those at the forested sites. Urban and mixed land-use sites, most of which were channelized, tended to have less riparian vegetation, higher water temperatures, smaller substrate, and higher levels of embeddedness and siltation than sites in forested watersheds. The majority of invertebrate taxa identified during this study were non-native. Invertebrate abundance was lower at urban and mixed land-use sites than at forested sites, while species richness (the number of different species) showed the opposite pattern. Multivariate analyses indicated that invertebrate species composition was similar at sites with similar land use. Aquatic insects of the orders Diptera and Trichoptera were the most common insects in all samples. The ratio of Diptera to Trichoptera abundance varied with urbanization. Forested sites were dominated by Trichoptera, and urban and mixed land-use sites were dominated by Diptera. Molluscs typically occurred in

  10. Occurrence of Organochlorine Pesticides in Stream Bed Sediment and Fish From Selected Streams on the Island of Oahu, Hawaii, 1998

    USGS Publications Warehouse

    Brasher, Anne M.; Anthony, Stephen S.

    2000-01-01

    Organochlorine pesticides were heavily used from the mid-1940s to the mid-1980s. The persistence of organochlorine pesticides, their tendency to accumulate in soil, sediment, and biota, and their harmful effects on wildlife brought this class of compounds into disfavor and eventually resulted in restriction or cancellation of most of them in the United States (Nowell and others, 1999). Despite use restrictions, these compounds continue to be detected in sediment and fish tissue samples. This study was undertaken as part of the National Water-Quality Assessment (NAWQA) program of the U.S. Geological Survey (USGS). The NAWQA program assesses watersheds as integrated systems, focusing on chemical concentrations, physical conditions, and biological status in streams. One component of NAWQA is an occurrence survey of organic contaminants and trace elements in stream bed sediment and fish tissue. The goal of the Oahu stream bed sediment and fish tissue occurrence survey was to determine which organochlorine contaminants are present in streams around the island, and with which land uses they are associated. An understanding of relations between land use and organochlorine compounds will allow land management practices to be designed to reduce the loading of contaminants to streams and nearshore waters.

  11. Relations between Land Use and Organochlorine Pesticides, PCBs, and Semi-Volatile Organic Compounds in Streambed Sediment and Fish on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Brasher, A.M.D.; Wolff, R.H.

    2004-01-01

    Bed-sediment and/or fish samples were collected from 27 sites around the island of Oahu (representing urban, agricultural, mixed, and forested land use) to determine the occurrence and distribution of hydrophobic organic compounds including organochlorine pesticides, polychlorinated biphenyls (PCBs), and semi-volatile organic compounds (SVOCs). Of the 28 organochlorine compounds analyzed in the fish, 14 were detected during this study. Nineteen of the 31 organochlorine compounds and 40 of the 65 SVOCs were detected in the sediment. Urban sites had the highest number of detections and tended to have the highest concentrations of pesticides. Chlordane compounds were the most frequently detected constituents at urban sites, followed by dieldrin, polycyclic aromatic hydrocarbons (PAHs), and DDT compounds. PAHs were the most frequently detected constituents in watersheds with mixed (urban and agricultural) land use. The only pesticides detected at agricultural sites were DDT and its degradation products, DDD and DDE. No pesticides or PCBs were detected at the forested sites, but a few ubiquitous SVOCs were found in sediments at some forested sites. In general, concentrations of the most frequently detected pesticides were higher in fish than in sediment. Following a trend that has been observed elsewhere in the nation, concentrations of most organochlorine pesticides and PCBs are decreasing in Hawaii.

  12. Anthropogenic influence on the planktonic community in the basin of Mamala Bay (Oahu Island, Hawaii) based on field and satellite data

    NASA Astrophysics Data System (ADS)

    Vedernikov, V. I.; Bondur, V. G.; Vinogradov, M. E.; Landry, M. R.; Tsidilina, M. N.

    2007-04-01

    The anthropogenic impact on the biomass of coastal plankton communities caused by submerged disposal of urban sewage waters (dumping) was studied. The observations were carried out in August September of 2002 2004 in Mamala Bay (Oahu Island, Hawaii) using satellite and sea truth methods. An analysis of the variability of the integral indicators of the water column determined on the basis of shipborne measurements allowed us to divide them into two groups: the elements most sensitive to the pollution (heterotrophic bacteria (H-Bact), the phototrophic cyanobacteria Synechococcus spp. (SYN), and chlorophyll a (CHLa)) and the elements that manifested episodic positive dependence on the inflow of the polluted waters (heterotrophic unicellular eukaryotes, small unicellular algae, the phototrophic green bacteria Prochlorococcus spp., as well as the total biomass of microplankton). It was shown that the submerged wastewater disposal in the region of the diffuser of the dumping device led to an insignificant (1.2 1.4 times, on the average) local increase in the integral biomass of H-Bact, SYN, and in the content of CHLa. A similar but sharper (1.5 2.1, on the average) increase in these parameters was found in the water layers with maximal biomasses. The possible pathways of disposed waters (under the pycnocline, at its upper boundary, and in the entire mixed layer) were analyzed on the basis of studying the vertical displacement of the biomasses of H-Bact, SYN, and prochlorophytes. The possibility of using the optical anomalies distinguished from satellite data as markers of anthropogenic eutrophication caused by dumping was confirmed. Application of such markers depends on the water transparency and on the shapes of the curves of the vertical distribution of autotrophic organisms.

  13. Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover

    USGS Publications Warehouse

    Engott, John A.

    2015-01-01

    The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978-2007 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. These spatial data sets characterize the spatial distribution of hydrologic and physical conditions that the model uses to compute groundwater recharge and other water-budget components.The model-subarea data set (387,533 polygons) was subsequently intersected with the 0-ft elevation contour of the top of the basalt aquifer to produce the 395,955 polygons in this shapefile. This metadata file describes the process of merging these spatial data sets, The shapefile attribute information associated with each polygon present an estimate of mean annual rainfall, fog interception, irrigation, septic-system leachate, runoff, canopy evaporation, actual evapotranspiration, storm-drain capture, net precipitation, total evapotranspiration, recharge, and seepage from reservoirs and cesspools. This shapefile also includes select geographic and land-cover attributes of the polygons. Brief descriptions of the water-budget components and attributes are included in this metadata file. Refer to USGS SIR 2015-5010 (doi:10.3133/sir20155010) for further details of the methods and sources used to determine these components and attributes.

  14. Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover

    USGS Publications Warehouse

    Engott, John A.

    2015-01-01

    The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of drought conditions (1998-2002 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. These spatial data sets characterize the spatial distribution of hydrologic and physical conditions that the model uses to compute groundwater recharge and other water-budget components.The model-subarea data set (387,533 polygons) was subsequently intersected with the 0-ft elevation contour of the top of the basalt aquifer to produce the 395,955 polygons in this shapefile. This metadata file describes the process of merging these spatial data sets, The shapefile attribute information associated with each polygon present an estimate of mean annual rainfall, fog interception, irrigation, septic-system leachate, runoff, canopy evaporation, actual evapotranspiration, storm-drain capture, net precipitation, total evapotranspiration, recharge, and seepage from reservoirs and cesspools. This shapefile also includes select geographic and land-cover attributes of the polygons. Brief descriptions of the water-budget components and attributes are included in this metadata file. Refer to USGS SIR 2015-5010 (doi:10.3133/sir20155010) for further details of the methods and sources used to determine these components and attributes.

  15. Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu

    Treesearch

    Hiep Van Nguyen; Yie-Leng Chen; Francis Fujioka

    2010-01-01

    The high-resolution (1.5 km) nonhydrostatic fifth-generation Pennsylvania StateUniversity–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and an advanced land surface model (LSM) are used to study the island-induced airflow and weather for the island of Oahu, Hawaii, under summer trade wind conditions. Despite Oahu’s relatively small...

  16. Hydrology and Water and Sediment Quality at James Campbell National Wildlife Refuge near Kahuku, Island of Oahu, Hawaii

    USGS Publications Warehouse

    Hunt, Charles D.; De Carlo, Eric H.

    2000-01-01

    The James Campbell National Wildlife Refuge occupies two lowland marsh and pond complexes on the northern coastal plain of Oahu: the mostly natural ponds and wetlands of the Punamano Unit and the constructed ponds of the Kii Unit. The U.S. Fish and Wildlife Service manages the Refuge primarily to protect and enhance habitat for four endangered species of Hawaiian waterbirds. Kii Unit is fed by artesian wells and rainfall, whereas Punamano Unit is fed naturally by rainfall, runoff, and ground-water seepage. Streams drain from the uplands into lowland ditches that pass through Kii Unit on their way to the ocean. A high-capacity pump transfers water from the inner ditch terminus at Kii to the ocean outlet channel. Stormwaters also exit the inner ditch system over flood-relief swales near the outlet pump and through a culvert with a one-way valve. A hydrologic investigation was done from November 1996 through February 1998 to identify and quantify principal inflows and outflows of water to and from the Refuge, identify hydraulic factors affecting flooding, document ground-water/surface-water interactions, determine the adequacy of the current freshwater supply, and determine water and sediment quality. These goals were accomplished by installing and operating a network of stream-gaging stations, meteorology stations, and shallow ground-water piezometers, by computing water budgets for the two Refuge units, and by sampling and analyzing water and pond-bottom sediments for major ions, trace metals, and organic compounds. Streamflow during the study was dominated by winter stormflows, followed by a gradual recession of flow into summer 1997, as water that had been stored in alluvial fans drained to lowland ditches. Outflow at the ditch terminus in 1997 was 125 million gallons greater than measured inflow to the coastal plain, mainly reflecting gains from ground water along the ditches between outlying gages and the ditch terminus. Of the measured 1997 outflow, 98 percent

  17. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    ERIC Educational Resources Information Center

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  18. Quaternary subsidence of the Oahu Coastal Plain, Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Toomey, M.; Sandstrom, R. M.; Huppert, K.; Taylor, F. W.; Cronin, T. M.

    2016-12-01

    Inter-plate hotspots continue to test our understanding of how the Earth's lithosphere deforms in response to an applied load, in part, because many current models are based on short or discontinuous observational datasets. Here we reconstruct a record of relative sea level rise spanning nearly two million years using the strontium isotope stratigraphy (SIS) of shallow water carbonates (e.g. corals, mollusks) recovered from a >300 m long drill core through the coastal plain of Oahu. We then compare it to model-predicted subsidence histories for our site that incorporate displacements at Ewa Beach, Oahu, due to the flexural isostatic response of the lithosphere to loading of each volcano along the Hawaiian Ridge as well as its migration over the Hawaiian Swell. Preliminary results indicate Oahu experienced relatively rapid rates of subsidence ( 0.45 mm/yr) during the mid-Pleistocene—vertical displacements our model largely attributes to loading of West Molokai. An abrupt slowing of subsidence over the past million years may be driven by the relative eastward progression of volcanism, including construction of large shields on Maui and Hawaii. Shallowly buried, late Pleistocene aged corals, however, may suggest: (1) a more limited flexural response to this loading for southeastern Oahu than has been inferred from raised marine isotope stage (MIS) 11/13 dated, shallow-water, deposits found elsewhere on the island and/or (2) substantial dissolution of coastal plain carbonates between MIS 31 and 11.

  19. Perspective view, Landsat overlay Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area with limited space and water resources. This perspective view, combining a Landsat image with SRTM topography, shows how the topography controls the urban growth pattern, causes cloud formation, and directs the rainfall runoff pattern. Features of interest in this scene include downtown Honolulu (right), Honolulu Harbor (right), Pearl Harbor (center), and offshore reef patterns (foreground). The Koolau mountain range runs through the center of the image. On the north shore of the island are the Mokapu Peninsula and Kaneohe Bay (upper right). Clouds commonly hang above ridges and peaks of the Hawaiian Islands, and in this rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level. High resolution topographic and image data allow ecologists and planners to assess the effects of urban development on the sensitive ecosystems in tropical regions.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat 7 satellite image over an SRTM elevation model. Topography is exaggerated about six times vertically. The Landsat 7 image was acquired on February 12, 2000, and was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS)Data Center, Sioux Falls, South Dakota.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The

  20. Water resources of Windward Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Hirashima, George Tokusuke; Lubke, E.R.

    1969-01-01

    Windward Oahu lies in a large cavity--an erosional remnant of the Koolau volcanic dome at its greatest stage of growth. Outcrops include volcanic rocks associated with caldera collapse and the main fissure zone which is marked by a dike complex that extends along the main axis of the dome. The fissure zone intersects and underlies the Koolau Range north of Waiahole Valley. South of Waiahole Valley, the crest of the Koolau Range is in the marginal dike zone, an area of scattered dikes. The crest of the range forms the western boundary of windward Oahu. Dikes, mostly vertical and parallel or subparallel to the fissure zone, control movement and discharge of ground water because they are less permeable than the rocks they intrude. Dikes impound or partly impound ground water by preventing or retarding its movement toward discharge points. The top of this water, called high-level water in Hawaii, is at an altitude of about 1,000 feet in the north end of windward Oahu and 400 feet near the south end in Waimanalo Valley. It underlies most of the area and extends near or to the surface in poorly permeable rocks in low-lying areas. Permeability is high in less weathered mountain areas and is highest farthest away from the dike complex. Ground-water storage fluctuates to some degree owing to limited changes in the level of the ground-water reservoir--maximum storage is about 60,000 million gallons. The fluctuations control the rate at which ground water discharges. Even at its lowest recorded level, the reservoir contains a major part of the storage capacity because most of the area is perennially saturated to or near the surface. Tunnels have reduced storage by about 26,000 million gallons--only a fraction of the total storage--by breaching dike controls. Much of the reduction in storage can be restored if the .breached dike controls are replaced by flow-regulating bulkheads. Perennial streams intersect high-level water and collectively form its principal discharge. The

  1. View of Oahu, Hawaii from STS-67 Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an unusually full view of the island of Oahu in the Hawaiian chain of islands. Oahu's volcanic origins are hinted at by the volcanic crater at Diamond Head, clearly visible on the southern shore. The city of Honolulu stretches from Diamond Head to the inlet of Pearl Harbor. Honolulu's large international airport can be seen off the shore. The dense forestation of the highlands is visible below the cloud cover, and waves can be seen breaking along the northern shore where famous surfing beaches, such as Pipeline, are found.

  2. Regional Sediment Budgets for the Haleiwa Region, Oahu, Hawaii

    DTIC Science & Technology

    2014-06-01

    Hawaii by Jessica H. Podoski PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) reviews the development of conceptual...morphology and coastal processes have on sediment pathways and transport volumes. In the Southeast Oahu Region, Mokapu Point to Makapuu Point RSB...and Development Center, Coastal and Hydraulics Laboratory,3909 Halls Ferry Road,Vicksburg,MS,39180-6199 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  3. 33 CFR 165.T14-204 - Safety Zone; fixed mooring balls, south of Barbers Pt Harbor Channel, Oahu, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., south of Barbers Pt Harbor Channel, Oahu, Hawaii. 165.T14-204 Section 165.T14-204 Navigation and... Pt Harbor Channel, Oahu, Hawaii. (a) Location. The following area is a safety zone: All waters... position is approximately 2,500 yards south of Barbers Point Harbor channel buoy #2, Oahu, Hawaii. This...

  4. Water resources of southeastern Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Mink, John F.

    1982-01-01

    Southeastern Oahu comprises the eastern end of the Koolau Range and is divided into two roughly equal parts by the crest of the range. The northside of the crest is commonly called the windward side and the southside, the leeward. Precipitous cliffs aproned by a gently sloping landscape are the main topographic features on the windward side. The leeward side is a gentle lava-flow slope incised by steep narrow valleys. The main Koolau fissure zone, including the caldera, lies on the windward side. The leeward side includes minor rift zones that are perpendicular to and intersect the main fissure zone. Dikes in the main fissure zone strike from nearly east-west in the eastern end to about N. 55? W. in the western part. Dikes in the minor rift zones strike from north-south to slightly northeasterly. Water use is about 18 Mgal/d (million gallons per day) of which only 4 Mgal/d is obtained locally from ground-water sources. About a third of the 14 Mgal/d deficit is imported from sources northwest of the study area on the windward side and the remainder from sources in the Honolulu and Pearl Harbor areas on the leeward side. The 4 Mgal/d being developed represents only about 3 percent of the area's rainfall compared to a development-rainfall ratio of 20 percent for the rest of the island. Streams are short and flashy. Perennial streamflow to the sea occurs only in Maunawili Valley and in the Waimanalo area. Mean annual discharge is estimated at 20 Mgal/d in the windward side and at 15 Mgal/d on the leeward side. Low flow, expressed as the flow that is equaled or exceeded 90 percent of the time, is 5 Mgal/d windward of the crest and zero leeward of it. Most fresh ground water occurs in lava flows of the Koolau Volcanics. It is impounded by dikes in the rift zones and floats on saline ground water as lenses outside the rift zones. Small but important bodies of freshwater are perched in volcanic rocks of the Honolulu Group in Maunawili Valley. Fresh ground water occurs in

  5. Hydrology of the Leeward Aquifers of Southeast Oahu, Hawaii

    USGS Publications Warehouse

    Eyre, Paul R.; Ewart, Charles J.; Shade, Patricia J.

    1986-01-01

    The leeward southeast Oahu ground-water area includes the Waialae and Wailupe-Hawaii Kai aquifers. The Waialae aquifer is separated from the ground water of Kaimuki to the west by Palolo valley fill and the Kaau rift zone, and from the Wailupe-Hawaii Kai aquifer to the east by a line of northeast-trending volcanic dikes. The distinct ground-water head changes across these boundaries indicate that the aquifers are separate, with little or no leakage between them. A water budget of leeward southeast Oahu determined the quantity and spatial distribution of ground-water recharge. These estimates of recharge, 6 million gallons per day over the Waialae area and 9.1 million gallons per day over the Wailupe-Hawaii Kai area, were used as input to a finite-element two-dimensional ground-water flow model. Ground-water heads were simulated in the modeled aquifer for several pumping scenarios. Projected pumpage from the recently drilled wells int he area is predicted to draw the water table down about one foot from its present mean position. The existing ground-water development of 1.4 million gallons per day is small compared to the quantity of ground water that flows through the area and discharges to the sea. Because the Waialae and Wailupe-Hawaii Kai aquifers are isolated from adjacent ground-water bodies, they can be fully developed without affecting ground-water resources outside the area.

  6. Data report: geology of reef-front carbonate sediment deposits around Oahu, Hawaii

    USGS Publications Warehouse

    Hampton, Monty A.; Blay, Charles T.; Murray, Christopher; Torresan, Laura Z.; Frazee, Cathy S.; Richmond, Bruce M.; Fletcher, Charles H.

    2003-01-01

    This Open-File Report presents data and derivative products from an investigation of carbonate sediment deposits on the reef front in four areas around the island of Oahu, Hawaii - in Kailua Bay off Oahu's windward (east) side, off the leeward (west) coast from Makua to Kahe Point, off the north coast from Waimea to Camp Erdman, and off the south coast around Waikiki (Figure 1). The primary purpose of the investigation was to assess the resource potential of the deposits, particularly as a source of sand for beach nourishment. This work builds on previous studies by researchers from the University of Hawaii (Moberly et al., 1975; Coulbourn et al., 1988; Barry, 1995). The field program included collection of high-resolution acoustic-reflection profiles and vibracore sediment samples in Kailua Bay and off the leeward and north coasts. In a related project, in collaboration with the Hawaii State Department of Land and Natural Resources and the University of Hawaii, sidescan images and vibracores were collected in the Halekulani channel and on the adjacent Makua Terrace off Waikiki along the south coast.

  7. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 5 2010-10-01 2010-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  8. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 8 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  9. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 8 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  10. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 7 2011-10-01 2005-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  11. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 8 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  12. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  13. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 6 2011-10-01 2011-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  14. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 7 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  15. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 7 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  16. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 7 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  17. Termite Species Distribution and Flight Periods on Oahu, Hawaii

    PubMed Central

    Tong, Reina L.; Grace, J. Kenneth; Mason, Makena; Krushelnycky, Paul D.; Spafford, Helen; Aihara-Sasaki, Maria

    2017-01-01

    Termites are economically-important structural pests, costing residents of Hawaii over $100 million annually. On Oahu, the last published termite swarming survey occurred from 1969 to 1971, and the last termite hand-collection survey occurred from 1998 to 2000. To contribute data on termite occurrences on Oahu, a light-trap survey took place from February 2011 to September 2012, and a hand-collection survey occurred from September to November 2012. Formosan subterranean termite, Coptotermes formosanus Shiraki, swarming was compared over the duration of the study, finding peak swarming in May 2011. C. formosanus alate activity density was regressed with environmental factors, finding a negative correlation with average wind speed and a positive correlation with average rainfall. Coptotermes gestroi (Wasmann) alates were observed in April, June, and July 2011 and in June 2012. Four species of termites were found in the hand-collection survey of 44 sites: Incisitermes immigrans (Snyder) (n = 8/44), C. formosanus (n = 2/44), Cryptotermes cynocephalus Light (n = 1/44), and Neotermes sp. (n = 1/44). This study contributes to distribution data for termite species on Oahu and records alate activity for two important termite pests. PMID:28587241

  18. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  19. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    SciTech Connect

    Evans, K.; Woodside, D.; Bruegmann, M.

    1994-08-01

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

  20. Hawaii's Sugar Islands.

    ERIC Educational Resources Information Center

    Hawaiian Sugar Planters' Association, Aiea, HI.

    A warm and sunny subtropical climate helps make Hawaii an important sugar producer. History records that sugarcane was already present when Captain James Cook discovered the islands in 1778, and that the first successful sugarcane plantation was started in 1835 by Ladd and Company at Koloa. The first recorded export of Hawaiian sugar was in 1837,…

  1. Hawaii's Sugar Islands.

    ERIC Educational Resources Information Center

    Hawaiian Sugar Planters' Association, Aiea, HI.

    A warm and sunny subtropical climate helps make Hawaii an important sugar producer. History records that sugarcane was already present when Captain James Cook discovered the islands in 1778, and that the first successful sugarcane plantation was started in 1835 by Ladd and Company at Koloa. The first recorded export of Hawaiian sugar was in 1837,…

  2. 33 CFR 165.1413 - Regulated navigation area; Southern Oahu Tsunami Evacuation; Honolulu, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Southern Oahu Tsunami Evacuation; Honolulu, Hawaii. 165.1413 Section 165.1413 Navigation and Navigable... Fourteenth Coast Guard District § 165.1413 Regulated navigation area; Southern Oahu Tsunami Evacuation... staging area is intended for use by all commercial vessels intended to remain in the RNA during a tsunami...

  3. Hawaii Island Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  4. Recharge Data for Hawaii Island

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.

  5. Environmental Setting and the Effects of Natural and Human-Related Factors on Water Quality and Aquatic Biota, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Brasher, Anne M.D.

    2003-01-01

    The island of Oahu is the third largest island of the State of Hawaii, and is formed by the eroded remnants of the Waianae and Koolau shield volcanoes. The landscape of Oahu ranges from a broad coastal plain to steep interior mountains. Rainfall is greatest in the mountainous interior parts of the island, and lowest near the southwestern coastal areas. The structure and form of the two volcanoes in conjunction with processes that have modified the original surfaces of the volcanoes control the hydrologic setting. The rift zones of the volcanoes contain dikes that tend to impede the flow of ground water, leading to high ground-water levels in the dike-impounded ground-water system. In the windward (northeastern) part of the island, dike-impounded ground-water levels may reach the land surface in stream valleys, resulting in ground-water discharge to streams. Where dikes are not present, the volcanic rocks are highly permeable, and a lens of freshwater overlies a brackish-water transition zone separating the freshwater from saltwater. Ground water discharges to coastal springs and streams where the water table in the freshwater-lens system intersects the land surface. The Waianae and Koolau Ranges have been deeply dissected by numerous streams. Streams originate in the mountainous interior areas and terminate at the coast. Some streams flow perennially throughout their entire course, others flow perennially over parts of their course, and the remaining streams flow during only parts of the year throughout their entire course. Hawaiian streams have relatively few native species compared to continental streams. Widespread diverse orders of insects are absent from the native biota, and there are only five native fish, two native shrimp, and a few native snails. The native fish and crustaceans of Hawaii's freshwater systems are all amphidromous (adult lives are spent in streams, and larval periods as marine or estuarine zooplankton). During the 20th century, land

  6. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.

    PubMed

    Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C

    1997-01-01

    Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone.

  7. Environmental features and macrofauna of Kahana Estuary, Oahu, Hawaii

    USGS Publications Warehouse

    Maciolek, J.A.; Timbol, A.S.

    1981-01-01

    Lack of ecological information on Hawaiian estuaries prompted an intensive 2-year study of a small (5.7 ha) stream-mouth estuary on windward Oahu. Water quality and macrofauna were sampled weekly at seven stations. The water mass was strongly stratified vertically except during freshets. Average values for water column temperature and bottom salinity were 23.2°C and 12‰ at the head to 28.3°C and 28‰ at the mouth. Dissolved oxygen saturation in the water column varied from about 50% at night to 140% in the afternoon. Usually, bottom waters were 3–6°C warmer than surface waters and sometimes showed severe oxygen depletion.Macrofauna, collected primarily by seining, consisted mainly of decapod crustaceans (four species of crabs, seven species of shrimps) and fishes (24 species). Other typical estuarine taxons (mollusks, barnacles, polychaetes) were scarce or absent. Diversity increased seaward from 14 species near the estuary head to 29 species near the mouth. Three species of crustaceans and six of fishes were captured at all stations. Most abundant were the native prawn, Macrobrachium grandimanus, and mullet, Mugil cephalus. Perennially resident adults occurred among crustaceans and gobioid fishes; most other fishes were present as juveniles and sporadic adults. Comparisons with other data suggest that more than 50 species of native fishes may occur in Hawaiian estuaries, and that estuarine macrofaunal diversity on oceanic islands is much lower than on continents at similar latitudes.

  8. Ecological Assessment of Wadeable Streams on O`ahu, Hawai'i, 2006-2007: A Pilot Study

    USGS Publications Warehouse

    Wolff, Reuben H.; Koch, Linda A.

    2009-01-01

    In 2006-07, the U.S. Geological Survey (USGS) Pacific Islands Water Science Center (PIWSC), in cooperation with the Hawai'i Department of Health (HDOH), conducted a pilot study as a participant in the U.S. Environmental Protection Agency's (USEPA) Wadeable Streams Assessment (WSA) program. Forty randomly selected sites on perennial streams on O'ahu, Hawai'i, were surveyed for habitat characteristics, water chemistry, and benthic macroinvertebrate assemblages. Of the original sampling frame of approximately 505.2 miles of perennial stream, roughly 96.7 +or- 30.7 miles were found to be nonperennial or estuarine and another 200.5 +or- 64.7 miles were judged to be inaccessible. The scope of this report presents an assessment of the remaining 208 +or- 57.6 miles of accessible, wadeable, perennial stream length on O'ahu. Benthic macroinvertebrate assemblages were used to determine the ecological condition at each site. Components of the benthic macroinvertebrate assemblages were assessed using the multimetric Preliminary-Hawaiian Benthic Index of Biotic Integrity (P-HBIBI) developed by Wolff (2005). Based on the P-HBIBI scores, an estimated 5.8 +or- 5.8 percent of the island's total stream length is in most disturbed condition, 56 +or- 13.5 percent is in intermediately disturbed condition, and 38.2 +or- 13.2 percent is in least disturbed condition. Windward O'ahu had the highest percentage of stream length in least disturbed biological condition at 56.7 +or- 20.8 percent. Using the relative abundance of insects, one of the core metrics that make up the P-HBIBI, 43.4 +or- 14.2 percent of the islandwide stream length was classified in the most disturbed condition - 52 +or- 31.2 percent of the Honolulu region stream length and 51.4 +or- 23.3 percent of the windward O'ahu stream length. An analysis of total nitrogen (N) estimated approximately 41.1 +or- 13.7 percent of the stream length on O'ahu was in most disturbed condition. Regionally, the Honolulu region had the largest

  9. First report of exotic ticks (Amblyomma rotundatum) parasitizing invasive cane toads (Rhinella marina) on the Island of Hawai'i.

    PubMed

    Kelehear, Crystal; Hudson, Cameron M; Mertins, James W; Shine, Richard

    2017-02-01

    Our surveys of 1401 invasive cane toads (Rhinella marina) from the Hawaiian islands of Hawai'i, O'ahu, and Maui revealed the presence of an exotic tick, Amblyomma rotundatum. Immature and adult female ticks infested three wild adult toads at a single site in the vicinity of a zoo south of Hilo, Island of Hawai'i, Hawai'i, USA. We found no tick-infested toads on O'ahu or Maui. This tick infests cane toads in their native Neotropical range, but it was excluded from Hawai'i when the original founder toads were introduced over 80 years ago. The circumstances of our discovery suggest that A. rotundatum was independently and belatedly introduced to Hawai'i with imported zoo animals, and Hawai'i now joins Florida as the second U.S. state where this tick is established. Published by Elsevier GmbH.

  10. The Big Island of Hawaii

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Boasting snow-covered mountain peaks and tropical forest, the Island of Hawaii, the largest of the Hawaiian Islands, is stunning at any altitude. This false-color composite (processed to simulate true color) image of Hawaii was constructed from data gathered between 1999 and 2001 by the Enhanced Thematic Mapper plus (ETM+) instrument, flying aboard the Landsat 7 satellite. The Landsat data were processed by the National Oceanographic and Atmospheric Administration (NOAA) to develop a landcover map. This map will be used as a baseline to chart changes in land use on the islands. Types of change include the construction of resorts along the coastal areas, and the conversion of sugar plantations to other crop types. Hawaii was created by a 'hotspot' beneath the ocean floor. Hotspots form in areas where superheated magma in the Earth's mantle breaks through the Earth's crust. Over the course of millions of years, the Pacific Tectonic Plate has slowly moved over this hotspot to form the entire Hawaiian Island archipelago. The black areas on the island (in this scene) that resemble a pair of sun-baked palm fronds are hardened lava flows formed by the active Mauna Loa Volcano. Just to the north of Mauna Loa is the dormant grayish Mauna Kea Volcano, which hasn't erupted in an estimated 3,500 years. A thin greyish plume of smoke is visible near the island's southeastern shore, rising from Kilauea-the most active volcano on Earth. Heavy rainfall and fertile volcanic soil have given rise to Hawaii's lush tropical forests, which appear as solid dark green areas in the image. The light green, patchy areas near the coasts are likely sugar cane plantations, pineapple farms, and human settlements. Courtesy of the NOAA Coastal Services Center Hawaii Land Cover Analysis project

  11. Pb Isotopic Evolution of Koolau Volcano (Oahu, Hawaii)

    NASA Astrophysics Data System (ADS)

    Fekiacova, Z.; Abouchami, W.

    2003-12-01

    High precision Pb isotopes in Hawaiian shield lavas have revealed the existence of source heterogeneities between volcanoes, as well as within a single volcano during its temporal evolution, e.g. Mauna Kea [1, 2]. The Koolau Scientific Drilling Project (KSDP) was initiated in order to evaluate the long-term evolution of Koolau volcano (Oahu), whose subaerial Makapuu stage lavas define the isotopically enriched endmember of Hawaiian shield lavas. We report Pb triple spike data on KSDP main shield-stage lavas (depth range: 304-632 mbsl) and post-erosional Honolulu volcanics. KSDP lavas show a small range of Pb isotopic compositions (206Pb/204Pb=18.02-18.15; 207Pb/204Pb=15.44-15.46; 208Pb/204Pb=37.82-37.87). Pb isotope ratios increase with depth until ˜450 m and then decrease again to a depth of 616 m. Superimposed on this "bell" trend, 206Pb/204Pb ratios oscillate at depth intervals of ˜10m. The Honolulu volcanics display, at a given 206Pb/204Pb ratio, similar 207Pb/204Pb but lower 208Pb/204Pb ratios than KSDP lavas. In 208Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas define two distinct linear arrays which converge at the radiogenic end. However, in 207Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas form a single array, with Honolulu lying at the radiogenic end of the array. While KSDP lavas have more radiogenic Pb isotopic compositions than Makapuu stage lavas [1], they show close resemblance to Nuuanu 1 and Nuuanu 2 landslide blocks [3]. The distinct Pb isotopic features of subaerial, main-shield and post-erosional lavas reflect compositional source changes during the growth of Koolau volcano. The mixing lines defined by KSDP and Honolulu lavas in 208Pb-206Pb space require the presence of three distinct Pb isotopic components. While the enriched "Koolau" component is predominantly sampled during the subaerial stage, its contribution during the main shield building stage has been waxing and waning. The radiogenic Pb endmember common to Honolulu and KSDP

  12. First field collection of the Rough Sweetpotato Weevil, Blosyrus asellus(Olivier)(Coleoptera: Curculionidae) on Hawaii Island, with notes on detection methods

    USDA-ARS?s Scientific Manuscript database

    Rough sweetpotato weevil, Blosyrus asellus(Olivier)(Coleoptera: Curculionidae), was first detected in the state of Hawaii at a commercial Okinawan sweetpotato farm in Waipio, Oahu, on 14 November 2008. Reported here is, the first detection of this pest in sweetpotato fields on the island of Hawaii (...

  13. Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii.

    PubMed

    Shuai, Xiufu; Bailey-Brock, Julie H; Lin, David T

    2014-07-01

    This study examines the effect of sewage discharge on benthic polychaete assemblages in the context of their functional trophic categories. We present data spanning 20 years of monitoring benthic invertebrate assemblages and sediment properties at all 4 primary- and secondary-treatment wastewater outfalls servicing Honolulu and the island of Oahu, Hawaii, USA. Samples collected within mandated zones of initial dilution (ZIDs) near outfall discharge sites were compared to samples collected at reference stations at varying distances away. Our findings indicate that sediment properties were not affected by the outfall discharge rate or distance from each ZID. The number of polychaete species in 4 functional trophic categories (carnivore, detritivore, omnivore, and suspension feeder) did not change with the outfall solid loading rate or with distance from each ZID, thus suggesting relatively little organic enrichment. We find no evidence of heavy organic enrichment beyond the designated ZIDs at these 4 wastewater outfalls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Population dynamics of land bird populations on Oahu, Hawaii: fifty years of introductions and competition

    Treesearch

    C. John Ralph

    1991-01-01

    Data from the annual Christmas Bird Count between 1939 and 1989, around Honolulu, on the island of Oahu during late December, were analyzed to discover the annual rates of change and possible competitive interactions of introduced and native land bird species. Both total number of species and total number of individuals increased over the period. The proportion of...

  15. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2002 to June 30, 2003

    DTIC Science & Technology

    2003-01-01

    curve of daily flows for station 16226200, North Halawa Stream at Xeriscape Garden Oahu, Hawaii...Storm drain C, Xeriscape garden, and Quarantine stations for July 1 to September 30, 2002, Oahu, Hawaii...discharge at Xeriscape garden station (16226200) for October 1 to December 31, 2002; detail of the 2-day period from October 14, 2002 to October 15, 2002

  16. Strontium Isotopic Variations in the Koolau Volcanic Series, Oahu, Hawaii: Results from KSDP Drill Core

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Depaolo, D. J.

    2005-12-01

    Surface samples of the Koolau tholeiite series, from the eastern side of the island of Oahu, Hawaii, have long been noted for their unusually high 87Sr/86Sr ratios (up to 0.7042) and other extreme geochemical parameters, as compared to both earlier and later Oahu lavas, values from other Hawaiian islands, and lavas from the Waianae volcano on west Oahu. It has been assumed that the geochemistry of the surface samples of Koolau applied to most of the volcano and that the extreme features were a relatively long-lived characteristic of the Hawaiian mantle plume at the time that the Koolau lavas were being erupted about 3 million years ago. The Koolau Scientific Drilling Project, which returned nearly continuous core from depths of 350 to 670 meters below sea level, provided an opportunity to probe deeper into the Koolau edifice (Haskins and Garcia, CMP, 147, 2004). We present new Sr isotope data on thirty whole rock samples from KSDP, which complement other isotopic data that have been reported recently (Salters and Blichert-Toft, submitted). The KSDP samples have variable, but generally significant, amounts of post-eruption weathering and hence the samples were strongly acid-leached before TIMS isotopic analysis in order to remove any seawater-derived strontium. The 87Sr/86Sr values in the core samples vary from values near 0.7040 at the top of the core to 0.7035 near the bottom. There is a general trend of increasing 87Sr/86Sr upsection as well as oscillations with peak-to-peak amplitude of 0.0003. The Sr isotope ratios correlate reasonably well with Nd and Hf isotope ratios. The data show that the Koolau surface samples are not representative of the volcano as a whole, and that the extreme geochemistry of the surface samples may represent only a minor component of the Hawaiian plume. The normal trend of Sr isotope ratios in the waning stages of shield building is from high values to low (as in Mauna Kea, Kohala, East Molokai and Haleakala). A trend toward higher

  17. Shelf stratigraphy and the influence of antecedent substrate on Holocene reef development, south Oahu, Hawaii

    USGS Publications Warehouse

    Grossman, E.E.; Barnhardt, W.A.; Hart, P.; Richmond, B.M.; Field, M.E.

    2006-01-01

    Paired analyses of drill cores and high-resolution seismic reflection data show that development of Holocene framework reefs on the Oahu (Hawaii) shelf is limited to settings of low wave energy and to the period 8000 to 3000 yr BP. A prominent bounding surface that is mapped across much of the Oahu shelf is an erosion surface cut into Marine Isotope Stages 5 and 7 limestones that show extensive loss of primary porosity, aragonite, and MgCO3 owing to meteoric and vadose-zone diagenesis. This acoustic reflector is found exposed at the surface where wave energy is high or in the shallow subsurface below Holocene reef and sand sheet deposits where energy is low. Ship-towed video along 30 km of the shelf reveals a steady decrease in limestone accumulation from offshore of Honolulu southeast to Koko Head where the seafloor is characterized by volcanic pavement and/or thin sand deposits. This may reflect the build-up of late Pleistocene volcanics associated with the Hanauma Bay eruption (30,000-7000 yr BP) that now comprise the substrate in depths shallow enough to limit reef accretion. The absence of significant Holocene reef build-up on the south Oahu shelf is consistent with observations from north-facing coasts that lack Holocene reefs, indicating that Holocene reef formation in Hawaii is complex and patchy.

  18. Carbonate sediment deposits on the reef front around Oahu, Hawaii

    USGS Publications Warehouse

    Hampton, M.A.; Blay, C.T.; Murray, C.J.

    2004-01-01

    Large sediment deposits on the reff front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 4 ?? 108 m3 in water depths less than 100 m, being thickest off the mouth of channels carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman, and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content: samples from Kailua Bay suffered high amounts of attrition, but others were comparable to tested beach samples. The common gray color of the offshore sediment, aesthetically undesirable for sand on popular tourist beaches, was diminished in the laboratory by soaking in heated hydrogen peroxide. ?? Taylor and Francis Inc.

  19. Carbonate Sediment Deposits on the Reef Front Around Oahu, Hawaii

    SciTech Connect

    Hampton, M A.; Blay, Charles T.; Murray, Christopher J.

    2004-06-01

    Large sediment deposits on the reef front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 400 million cubic meters in water depths less than 100 m, being thickest off the mouth of channels carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content; samples from Kailua Bay suffered high amounts of attrition but others were comparable to tested beach samples.

  20. Different approaches to model the nearshore circulation in the south shore of O'ahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Marcos Azevedo Correia de Souza, Joao; Powell, Brian

    2017-01-01

    The dynamical interaction between currents, bathymetry, waves, and estuarine outflow has significant impacts on the surf zone. We investigate the impacts of two strategies to include the effect of surface gravity waves on an ocean circulation model of the south shore of O'ahu, Hawaii. This area provides an ideal laboratory for the development of nearshore circulation modeling systems for reef-protected coastlines. We use two numerical models for circulation and waves: Regional Ocean Modeling System (ROMS) and Simulating Waves Nearshore (SWAN) model, respectively. The circulation model is nested within larger-scale models that capture the tidal, regional, and wind-forced circulation of the Hawaiian archipelago. Two strategies are explored for circulation modeling: forcing by the output of the wave model and online, two-way coupling of the circulation and wave models. In addition, the circulation model alone provides the reference for the circulation without the effect of the waves. These strategies are applied to two experiments: (1) typical trade-wind conditions that are frequent during summer months, and (2) the arrival of a large winter swell that wraps around the island. The results show the importance of considering the effect of the waves on the circulation and, particularly, the circulation-wave coupled processes. Both approaches show a similar nearshore circulation pattern, with the presence of an offshore current in the middle beaches of Waikiki. Although the pattern of the offshore circulation remains the same, the coupled waves and circulation produce larger significant wave heights ( ≈ 10 %) and the formation of strong alongshore and cross-shore currents ( ≈ 1 m s-1).

  1. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  2. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  3. Oahu: perspective from space

    USGS Publications Warehouse

    Johnson, Gary E.

    1982-01-01

    Satellite remote sensing provides us with a unique perspective from space. This perspective is synoptic in nature and provides regional views of most of the land areas of the earth. The orbital characteristics of the Landsat system are such that repetitive imagery of the same area may be obtained. Because of the permanent nature of the imagery, it may be retrieved for comparative analysis at any time. Comparisons of this image of Oahu with maps of the island (for example, the Oahu, Hawaii, 1:250,000-scale topographic map) will enable the reader to readily identify the place names discussed in this article and permit a more detailed interpretation of the image.

  4. New uranium-series ages of the Waimanalo Limestone, Oahu, Hawaii: implications for sea level during the last interglacial period

    USGS Publications Warehouse

    Muhs, D.R.; Szabo, B. J.

    1994-01-01

    The Waimanalo Formation (limestone) of Oahu has been correlated with the last interglacial period based on U-series dating of corals by T.-L. Ku and colleagues. The limestone consists of growth-position corals and overlying coral conglomerate. An apparent bimodal distribution of ages for the growth-position corals (mean age = 133 ka) and the overlying coral conglomerate (mean age = 119 ka) has been interpreted to represent two distinct high stands of sea that occurred within the last interglacial period. Both growth-position corals and overlying, conglomerate coral occur in an outcrop east of Kaena Point and consist mainly of Pocillopora and Porites. U-seriesages of growth-position corals that show closed-system conditions are 120 ± 3 ka and 127 ± 4 ka; overlying conglomerate corals have U-seriesages that range from 120 ± 3 ka to 138 ± 4 ka. At Kahe Point, conglomerate corals have ages of 120 ± 3 ka and 134 ± 4 ka. These data show that the growth position corals are not systematically older than the conglomerate corals; thus, there is no evidence for two distinct high stands of sea. Waimanalo deposits at Kahe Point and Mokapu Point (new U-seriesages of 134 ± 4 ka and 127 ± 3 ka) have beach deposits as high as 12.5 m and, at Mokapu Point, growth-position corals as high as 8.5 m. A last-interglacial sea-level stand of +8.5 to +12.5 m conflicts with estimates of +6 m from a number of tectonically stable coastlines and islands in the western Atlantic Ocean. We infer, therefore, that Oahu may be undergoing uplift at a low rate. This uplift may be due to compensatory lithospheric flexure, because the island of Hawaii has been subsiding throughout much of the Quaternary from volcanic loading. Because of this possible uplift, Oahu and islands like it elsewhere in the Pacific cannot be used as reference points for sealevel during the last interglacial period.

  5. Flood-Frequency Estimates for Streams on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i, State of Hawai`i

    USGS Publications Warehouse

    Oki, Delwyn S.; Rosa, Sarah N.; Yeung, Chiu W.

    2010-01-01

    This study provides an updated analysis of the magnitude and frequency of peak stream discharges in Hawai`i. Annual peak-discharge data collected by the U.S. Geological Survey during and before water year 2008 (ending September 30, 2008) at stream-gaging stations were analyzed. The existing generalized-skew value for the State of Hawai`i was retained, although three methods were used to evaluate whether an update was needed. Regional regression equations were developed for peak discharges with 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated streams (those for which peak discharges are not affected to a large extent by upstream reservoirs, dams, diversions, or other structures) in areas with less than 20 percent combined medium- and high-intensity development on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i. The generalized-least-squares (GLS) regression equations relate peak stream discharge to quantified basin characteristics (for example, drainage-basin area and mean annual rainfall) that were determined using geographic information system (GIS) methods. Each of the islands of Kaua`i,O`ahu, Moloka`i, Maui, and Hawai`i was divided into two regions, generally corresponding to a wet region and a dry region. Unique peak-discharge regression equations were developed for each region. The regression equations developed for this study have standard errors of prediction ranging from 16 to 620 percent. Standard errors of prediction are greatest for regression equations developed for leeward Moloka`i and southern Hawai`i. In general, estimated 100-year peak discharges from this study are lower than those from previous studies, which may reflect the longer periods of record used in this study. Each regression equation is valid within the range of values of the explanatory variables used to develop the equation. The regression equations were developed using peak-discharge data from streams that are mainly unregulated, and they should not be used to

  6. Preliminary assessment report for Waiawa Gulch, Installation 15080, Pearl City, Oahu, Hawaii. Installation Restoration Program

    SciTech Connect

    Not Available

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Hawaii Army National Guard (HIARNG) property near Pearl City, Oahu, Hawaii. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Waiawa Gulch property, phase I of the Department of Defense Installation Restoration Program (IRP).

  7. Submarine Rejuvenated-Stage Lavas Offshore Molokai, Oahu, Kauai, and Niihau, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Cousens, B. L.; Davis, A. S.; Dixon, J. E.; Hon, K.; Moore, J. G.; Reynolds, J. R.

    2003-12-01

    Rejuvenated-stage lavas from the Hawaiian Islands form many distinctive landmarks, such as Diamond Head. They have been relatively well studied due to their primitive, strongly alkaline compositions (alkalic basalt, basanite, nephelinite, melilitite, phonolite). More recently, compositionally similar lavas have been mapped and sampled on the deep seafloor around the islands. Rejuvenated-stage cones also occur on the submarine flanks of the islands. A Pisces V submersible dive collected samples from the only submarine cone on the north slope of East Molokai. The alkalic basalt to basanite composition lava is similar to the subaerial Kalaupapa basalt (Clague and Moore, 2003). MBARI Tiburon ROV dives recovered nephelinite from a lone steep cone on the northeast slope of Oahu, alkalic basalt from two shallow steep cones just west of the Koko Rift, and alkalic basalt from the submarine flank of Diamond Head on Oahu's south flank. These lavas are generally similar to subaerial Honolulu Volcanics, although the isotopic data extend to higher Sr isotopic values. Other MBARI Tiburon ROV dives recovered alkalic basalt and basanite from 8 separate steep cones on the south flank of Kauai. Once again, these lavas are chemically similar to those from the subaerial Koloa Volcanics. Samples from one of these cones contained common xenoliths of upper mantle lherzolite and harzburgite. Seven MBARI Tiburon ROV dives on the northwest flank of Niihau sampled 6 flat-topped cones and 5 pointed cones. The lavas from the flat-topped cones are alkalic basalt similar to rejuvenated Kiekie Basalt on Niihau Island whereas the lavas from the pointed cones are basanite, hawaiite, and tephrophonolite that are chemically distinct from the Kiekie Basalt, but similar to rejuvenated-stage lavas on Kauai and Oahu. Volcaniclastic deposits were observed and sampled at many of the sites offshore Niihau, Kauai, and Oahu, as well as the North Arch. Breadcrust and spindle bombs and spatter were found

  8. Honolulu, Hawaii Radar Image, Wrapped Color as Height

    NASA Image and Video Library

    2000-02-18

    This topographic radar image acquired by NASA Shuttle Radar Topography Mission SRTM in Feb. 2000 shows the city of Honolulu, Hawaii and adjacent areas on the island of Oahu. Honolulu lies on the south shore of the island.

  9. Trends in sheltering and welfare at the Hawaiian Humane Society, Oahu, Hawaii.

    PubMed

    McDowell, Brianna; Burns, Pamela; Lepczyk, Christopher A

    2011-01-01

    One of the major goals of an animal welfare organization is to reduce the number of homeless, nonhuman animals in a community. In Hawaii, the Hawaiian Humane Society has provided numerous animal welfare services to work toward this goal, such as offering sterilizations and microchipping at reduced rates and facilitating animal adoptions and education. In addition, the Leash Law and the Cat Identification Program have increased animal welfare through increasing the responsibilities of companion animal caregivers (owners). The goal of this research was to assess if temporal changes in animal sheltering have occurred in Hawaii. The study assessed this by analyzing historical data on dogs (Canis familiaris) and cats (Felis catus) admitted, returned to owner, sterilized, euthanized, and adopted from the Humane Societies of Oahu, Hawaii, from 1993 to 2008. The study also analyzed dog and cat admittance and Honolulu population growth from 1975 to 2008. Sterilizations and pets returned to owners have increased significantly, whereas admittance and euthanasia rates have decreased significantly. Thus, although these data cannot conclusively state that there are fewer homeless animals in Hawaii, the results provide positive indicators of reducing homeless pets, especially when coupled with an increase in both the human population of Honolulu County and dog ownership.

  10. Rainfall, Plant Communities and Methane Fluxes in the Ka`au Crater Wetland, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Grand, M.; Gaidos, E.

    2003-12-01

    Tropical wetlands constitute a major source of methane, an atmospheric greenhouse gas. Net methane emission in freshwater settings is the result of organic matter decomposition under anaerobic conditions modulated by aerobic methane oxidation and is thus also an indicator of wetland ecosystem processes. This study is monitoring the methane flux from the Ka`au crater wetland on the island of Oahu (Hawaii) and correlating it with environmental parameters such as precipitation and sunlight. We are obtaining precipitation, Photosynthetic Active Radiation (PAR), and water table level data with data loggers and are correlating these data with static chamber methane flux measurements and measurements of soil methane production potential. Additionally, our research is studying the effects of changes in vegetation type, i.e., of the invasive strawberry guava tree (Psidium Cattleianum) on the wetland methane emissions. Changes in soil chemistry and in the transport of gases by roots that accompany such vegetation change are a potential driver of methane flux modifications that have not been previously examined. Strawberry guava forms dense mats of surface roots that may change soil gas exchange and prolific fruiting may raise the soil organic content. We collected soil samples along a 30 meter transect that extends through two vegetation patterns; the strawberry guava canopy and the sedge meadow (Cladium Leptostachyum). Samples were incubated for 24 hours to estimate their methane generation potential. Our preliminary results show that methane generation potential is greater under the strawberry guava canopy. However, 2 of the 15 samples collected in the sedge meadow section of the transect did not match this pattern. Soil organic carbon content is slightly higher in the strawberry guava than in the sedge. We recorded a 90% decrease in methane generation potential in sedge meadow soils during a dry period relative to a wet period 2 months earlier. We propose that this change

  11. Market for Hawaii hardwood lumber in new single-family houses on Oahu, Hawaii

    Treesearch

    John D. Zinnikas; R. Sidney Boone

    1967-01-01

    The total potential market for flooring, siding, and cabinet and millwork in new single-family houses on Oahu was between 10½ and 11 million board feet of lumber in 1963. The total possible market for lumber in new single-family house construction from 1965 to 1970 is estimated at 18 to 23 million square feet of floor-ing, 28 to 36 million square feet of...

  12. National assessment of shoreline change: A GIS compilation of vector shorelines and associated shoreline change data for the sandy shorelines of Kauai, Oahu, and Maui, Hawaii

    USGS Publications Warehouse

    Romine, Bradley M.; Fletcher, Charles H.; Genz, Ayesha S.; Barbee, Matthew M.; Dyer, Matthew; Anderson, Tiffany R.; Lim, S. Chyn; Vitousek, Sean; Bochicchio, Christopher; Richmond, Bruce M.

    2012-01-01

    Sandy ocean beaches are a popular recreational destination, and often are surrounded by communities that consist of valuable real estate. Development is increasing despite the fact that coastal infrastructure may be repeatedly subjected to flooding and erosion. As a result, the demand for accurate information regarding past and present shoreline changes is increasing. Working with researchers from the University of Hawaii, investigators with the U.S. Geological Survey's National Assessment of Shoreline Change Project have compiled a comprehensive database of digital vector shorelines and shoreline-change rates for the islands of Kauai, Oahu, and Maui, Hawaii. No widely accepted standard for analyzing shoreline change currently exists. Current measurement and rate-calculation methods vary from study to study, precluding the combination of study results into statewide or regional assessments. The impetus behind the National Assessment was to develop a standardized method for measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the measurements in an internally consistent manner. A detailed report on shoreline change for Kauai, Maui, and Oahu that contains a discussion of the data presented here is available and cited in the Geospatial Data section of this report.

  13. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    USGS Publications Warehouse

    Oki, D.S.; Souza, W.R.; Bolke, E.L.; Bauer, G.R.

    1998-01-01

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Ground-water flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units.

  14. Chemical constituents of rainfall at different locations on Oahu, Hawaii. Technical report

    SciTech Connect

    Dugan, G.L.; Ekern, P.C.

    1984-05-01

    Rainfall sampling, which began in 1981 before the 1982 to 1983 El Nino and continued into 1984 on Oahu in Hawaii, represented sites with widely different rainfall amounts. Samples stored under refrigeration prior to analysis were analyzed for pH and for the major cations, chloride and sulfate, and the nitrogen series. For the stored samples, the rainiest site was acidic with median pH 4.9, and rainfall weighted pH 4.77. Electrical conductivity of the rainfall was equivalent to cation concentrations of 1 to 10 milliequivalents per liter. Chloride, a major cation, decreased with distance from the ocean sources. Sulfate values in the rainwater increased during southerly flow when Kilauea volcano was erupting. The pH values of 4.2 to about 5.0 support the contention that the acidity in naturally occurring rainfall in remote areas has a pH slightly below 5.0.

  15. Assessment of Two Types of Interior Nudging for High-Resolution Simulations during Oahu, Hawaii's 40-Days and 40-Nights Extreme Precipitation Event

    NASA Astrophysics Data System (ADS)

    Holloway, C. T.; Chu, P. S.

    2015-12-01

    Dynamical Downscaling for climate length simulations is a process where large-scale atmospheric fields are input to a regional climate model (RCM) to explicitly simulate regional and local- scale climate features that are not captured by the large-scale model. One such example of features not being captured occurs over the Central North Pacific's Hawaiian Island chain, where most large-scale models poorly resolve the small islands and their complex topographies, which have a significant influence on the regions winds, temperature, and precipitation. For the dynamical downscaling procedure to realistically resolve the small Hawaiian Islands we must use three nested, where the innermost domain centered over Oahu, Hawaii has a grid resolution of 1.1 km. Also during the dynamical downscaling process RCMs interior solution tends to drift away from the large-scale driving fields resulting in significant RCM temperature and precipitation biases especially during extreme events. Two possible solutions developed to allow the RCM to retain the large-scale features, yet still generate the small scale variabilities are analysis and spectral nudging. Here, we examine the performance of both analysis and spectral nudging in the downscaling of NCEPII reanalysis data during the extreme 2-month wet period known as the 40-days and 40-nights of rain over the Hawaiian Islands using the Advanced Research Weather and Forecasting (WRF-ARW) model. The simulations are compared against land based observations acquired from the National Climate Data Center (NCDC) to show the differences for 2-m temperature and precipitation between the nudging techniques and observations from Oahu, Hawaii.

  16. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    USGS Publications Warehouse

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  17. Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84

    USGS Publications Warehouse

    Yamane, Cheryl M.; Lum, Marty G.

    1985-01-01

    Storm water runoff and rainfall data were collected at two urban sites in Mililani Town, Oahu, Hawaii between September 1980 and August 1984. The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health 's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the U.S. EPA 's recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides heptachlor , lindane, and melathion. Runoff correlated well with rainfall in both basins. Antecedent rainfall conditions and rainfall intensity had little effect on the quality of runoff. No statistically significant relationships were found between quantity of runoff and concentration of water quality constituents. A ' first flush ' effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant (alpha = 0.05) differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. (Author 's abstract)

  18. Numerical Analysis of Ground-Water Flow and Salinity in the Ewa Area, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward I.; Bauer, Glenn R.

    1996-01-01

    The coastal plain in the Ewa area of southwestern Oahu, Hawaii, is part of a larger, nearly continuous sedimentary coastal plain along Oahu's southern coast. The coastal sediments are collectively known as caprock because they impede the free discharge of ground water from the underlying volcanic aquifers. The caprock is a layered sedimentary system consisting of interbedded marine and terrestrial sediments of both high and low permeability. Before sugarcane cultivation ended in late 1994, shallow ground water from the upper limestone unit, which is about 60 to 200 feet thick, was used primarily for irrigation of sugarcane. A cross-sectional ground-water flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in the Ewa area. Controls considered were: (1) overall caprock hydraulic conductivity, (2) stratigraphic variations of hydraulic conductivity in the caprock, and (3) recharge. In addition, the effects of a marina excavation were evaluated. Within the caprock, variations in hydraulic conductivity, caused by caprock stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of ground-water flow and the distribution of water levels and salinity. Model results also show that a reduction of recharge will result in increased salinity throughout the caprock with the greatest change in the upper limestone layer. In addition, the model indicates that excavation of an ocean marina will lower water levels in the upper limestone layer. Results of cross-sectional modeling confirm the general ground-water flow pattern that would be expected in the layered sedimentary system in the Ewa caprock. Ground-water flow is: (1) predominantly upward in the low-permeability sedimentary units, and (2) predominantly horizontal in the high-permeability sedimentary units.

  19. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward L.; Bauer, Glenn R.

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Résumé Le système aquifère littoral du sud d'Oahu (Hawaii, États-Unis) est constitué par des aquifères de terrains volcaniques très perméables, recouverts par des roches volcaniques altérées, et interstratifiés avec des sédiments marins et continentaux de perméabilité aussi bien forte que faible. Les roches volcaniques altérées et les sédiments sont globalement considérés comme une couverture, parce qu'ils s'opposent à l'écoulement de l'eau souterraine provenant des aquifères volcaniques sous-jacents. Les contrôles hydrogéologiques sur le système aquifère régional du sud-ouest d'Oahu ont étéévaluées au moyen d'un modèle d'écoulement et de transport sur une section transversale. Ces contrôles prennent en compte la conductivit

  20. Hawaii

    Atmospheric Science Data Center

    2014-05-15

    article title:  Big Island, Hawaii     View Larger Image ... Imaging SpectroRadiometer (MISR) images of the Big Island of Hawaii, April - June 2000. The images have been rotated so that north is at the ...

  1. Trace elements in streambed sediments of small subtropical streams on O'ahu, Hawai'i: Results from the USGS NAWQA program

    USGS Publications Warehouse

    De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.

    2005-01-01

    Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings

  2. Using sediment 'fingerprints' to assess sediment-budget errors, north Halawa Valley, Oahu, Hawaii, 1991-92

    USGS Publications Warehouse

    Hill, B.R.; DeCarlo, E.H.; Fuller, C.C.; Wong, M.F.

    1998-01-01

    Reliable estimates of sediment-budget errors are important for interpreting sediment-budget results. Sediment-budget errors are commonly considered equal to sediment-budget imbalances, which may underestimate actual sediment-budget errors if they include compensating positive and negative errors. We modified the sediment 'fingerprinting' approach to qualitatively evaluate compensating errors in an annual (1991) fine (<63 ??m) sediment budget for the North Halawa Valley, a mountainous, forested drainage basin on the island of Oahu, Hawaii, during construction of a major highway. We measured concentrations of aeolian quartz and 137Cs in sediment sources and fluvial sediments, and combined concentrations of these aerosols with the sediment budget to construct aerosol budgets. Aerosol concentrations were independent of the sediment budget, hence aerosol budgets were less likely than sediment budgets to include compensating errors. Differences between sediment-budget and aerosol-budget imbalances therefore provide a measure of compensating errors in the sediment budget. The sediment-budget imbalance equalled 25% of the fluvial fine-sediment load. Aerosol-budget imbalances were equal to 19% of the fluvial 137Cs load and 34% of the fluval quartz load. The reasonably close agreement between sediment- and aerosol-budget imbalances indicates that compensating errors in the sediment budget were not large and that the sediment-budget imbalance as a reliable measure of sediment-budget error. We attribute at least one-third of the 1991 fluvial fine-sediment load to highway construction. Continued monitoring indicated that highway construction produced 90% of the fluvial fine-sediment load during 1992. Erosion of channel margins and attrition of coarse particles provided most of the fine sediment produced by natural processes. Hillslope processes contributed relatively minor amounts of sediment.

  3. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  4. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  5. Island of Hawaii, State of Hawaii seen from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A vertical view of the Island of Hawaii, State of Hawaii (19.5N, 155.5W), as photographed from the Skylab space station in Earth orbit by a Skylab 4 crewman. This photograph, taken on January 8, 1974, is very useful in studies of volcanic areas. Prominent volcanic features such as the summit caldera on Mauna Loa, the extinct volcano Mauna Kea, the Kilauea caldera, and the pit crater at Halo Mau Mau within the caldera are easily identified. Kilauea was undergoing frequent eruption during the mission. Detailed features such as the extent and delineation of historic lava flows on Mauna Loa can be determined and are important parameters in volcanic studies.

  6. Island of Hawaii, State of Hawaii seen from Skylab

    NASA Image and Video Library

    1974-01-08

    SL4-139-3997 (8 Jan. 1974) --- A vertical view of the Island of Hawaii, State of Hawaii, as photographed from the Skylab space station in Earth orbit by a Skylab 4 crewman. The camera used was a hand-held Hasselblad camera, with SO-368 medium-speed Ektachrome film. This photograph, taken on Jan. 8, 1974, is very useful in studies of volcanic areas. Prominent volcanic features such as the summit caldera on Mauna Loa, the extinct volcano Mauna Kea, the Kilauea caldera, and the pit crater at Halo mau mau within the caldera are easily identified. (Kilauea was undergoing frequent eruption during the mission). Detailed features such as the extent and delineation of historic lava flows on Mauna Loa can be determined and are important parameters in volcanic studies. Photo credit: NASA

  7. Statistical Summary of Hydrologic and Water-Quality Data from the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-99

    USGS Publications Warehouse

    Wong, Michael F.; Young, Stacie T.M.

    2001-01-01

    This report provides statistical summaries of rainfall, streamflow, suspended-sediment, and water-quality data collected in the Halawa, Haiku, and Kaneohe drainage basins before, during, and after construction of the H-3 Highway on the island of Oahu, Hawaii. Methods of data collection also are described. Data collected during water years 1983 through 1999 at eight streamflow and six stream water-quality gaging stations, and two water-quality stations located in Waimaluhia Reservoir are included. Physiographic data for all basins contributing to the 14 stream stations as well as brief land-use descriptions of the Halawa, Haiku, and Kaneohe drainage basins are provided.

  8. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  9. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  10. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  11. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  12. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  13. Gravity data for the Island of Hawai`i, Hawaii

    USGS Publications Warehouse

    Kauahikaua, James P.

    2017-01-01

    This data set includes gravity measurements for the Island of Hawai`i collected as the source data for "Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models" (Kauahikaua, Hildenbrand, and Webring, 2000). Data for 3,611 observations are stored as a single table and disseminated in .CSV format. Each observation record includes values for field station ID, latitude and longitude (in both Old Hawaiian and WGS84 projections), elevation, and Observed Gravity value. See associated publication for reduction and interpretation of these data.

  14. Monitoring and projecting snow on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Hamilton, Kevin; Wang, Yuqing

    2017-05-01

    The highest mountain peaks on Hawaii Island are snow covered for part of almost every year. This snow has aesthetic and recreational value as well as cultural significance for residents and visitors. Thus far there have been almost no systematic observations of snowfall, snow cover, or snow depth in Hawaii. Here we use satellite observations to construct a daily index of Hawaii Island snow cover starting from 2000. The seasonal mean of our index displays large interannual variations that are correlated with the seasonal mean freezing level and frequency of trade wind inversions as determined from nearby balloon soundings. Our snow cover index provides a diagnostic for monitoring climate variability and trends within the extensive area of the globe dominated by the North Pacific trade wind meteorological regime. We have also conducted simulations of the Hawaii climate with a regional atmospheric model. Retrospective simulations for 1990-2015 were run with boundary conditions prescribed from gridded observational analyses. Simulations for the end of 21st century employed boundary conditions based on global climate model projections that included standard scenarios for anticipated anthropogenic climate forcing. The future projections indicate that snowfall will nearly disappear by the end of the current century.

  15. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts

    NASA Technical Reports Server (NTRS)

    Stille, P.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Pb, Sr, Nd and Hf isotopic compositions of Oahu volcanics indicate that the three principal volcanic series on Oahu Koolau, Honolulu and Waianae - were derived from isotopically distinct sources. Honolulu and Waianae basalts plot on the Nd-Pb-Sr 'mantle plane' whereas Koolau data plot distinctly below the plane.

  16. Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: implications for Hawaiian volcanism

    USGS Publications Warehouse

    Roden, M.F.; Frey, F.A.; Clague, D.A.

    1984-01-01

    Lavas of the post-erosional, alkalic Honolulu Volcanics have significantly lower 87Sr 86Sr and higher 143Nd 144Nd than the older and underlying Koolau tholeiites which form the Koolau shield of eastern Oahu, Hawaii. Despite significant compositional variation within lavas forming the Honolulu Volcanics, these lavas are isotopically (Sr, Nd, Pb) very similar which contrasts with the isotopic heterogeneity of the Koolau tholeiites. Among Hawaiian tholeiitic suites, the Koolau lavas are geochemically distinct because of their lower iron contents and Sr and Nd isotopic ratios which range to bulk earth values. These geochemical data preclude simple models such as derivation of the Honolulu Volcanics and Koolau tholeiites from a common source by different degrees of melting or by mixing of two geochemically distinct sources. There may be no genetic relationship between the origin and evolution of these two lava suites; however, the trend shown by Koolau Range lavas of increasing 143Nd 144Nd and decreasing 87Sr 86Sr with decreasing eruption age and increasing alkalinity also occurs at Haleakala, East Molokai and Kauai volcanoes. A complex mixing model proposed for Haleakala lavas can account for the variations in Sr and Nd isotopic ratios and incompatible element abundances found in lavas from the Koolau Range. This model may reflect mixing and melting processes occurring during ascent of relatively enriched mantle through relatively depleted MORB-related lithosphere. Although two isotopically distinct components may be sufficient to explain Sr and Nd isotopic variations at individual Hawaiian volcanoes, more than two isotopically distinct materials are required to explain variations of Sr, Nd and Pb isotopic ratios in all Hawaiian lavas. ?? 1984.

  17. Characterization of Marine Temperate Phage-Host Systems Isolated from Mamala Bay, Oahu, Hawaii

    PubMed Central

    Jiang, Sunny C.; Kellogg, Christina A.; Paul, John H.

    1998-01-01

    To understand the ecological and genetic role of viruses in the marine environment, it is critical to know the infectivity of viruses and the types of interactions that occur between marine viruses and their hosts. We isolated four marine phages from turbid plaques by using four indigenous bacterial hosts obtained from concentrated water samples from Mamala Bay, Oahu, Hawaii. Two of the rod-shaped bacterial hosts were identified as Sphingomonas paucimobilis and Flavobacterium sp. All of the phage isolates were tailed phages and contained double-stranded DNA. Two of the phage isolates had morphologies typical of the family Siphoviridae, while the other two belonged to the families Myoviridae and Podoviridae. The head diameters of these viruses ranged from 47 to 70.7 nm, and the tail lengths ranged from 12 to 146 nm. The burst sizes ranged from 7.8 to 240 phage/bacterial cell, and the genome sizes, as determined by restriction digestion, ranged from 36 to 112 kb. The members of the Siphoviridae, T-φHSIC, and T-φD0, and the member of the Myoviridae, T-φD1B, were found to form lysogenic associations with their bacterial hosts, which were isolated from the same water samples. Hybridization of phage T-φHSIC probe with lysogenic host genomic DNA was observed in dot blot hybridization experiments, indicating that prophage T-φHSIC was integrated within the host genome. These phage-host systems are available for use in studies of marine lysogeny and transduction. PMID:9464390

  18. Kaumalapau Harbor, Hawaii, Breakwater Repair

    DTIC Science & Technology

    2012-05-01

    state includes a global wave model, Hawaii wave model, and separate nearshore domains for Kauai , Oahu, Maui, and the Big Island (The Maui domain...ER D C/ CH L TR -1 2 -7 Monitoring Completed Navigation Projects Program Kaumalapau Harbor, Hawaii , Breakwater Repair C oa st al a n d...Monitoring Completed Navigation Projects Program ERDC/CHL TR-12-7 May 2012 Kaumalapau Harbor, Hawaii , Breakwater Repair Jessica H. Podoski and

  19. Kaua'i 'O'o; O'ahu 'O'o; Hawai'i 'O'o; Bishop's 'O'o; Kioea

    USGS Publications Warehouse

    Sykes, P.W.; Kepler, A.K.; Kepler, C.B.; Scott, J.M.

    2000-01-01

    The Hawai'i 'O'o was the first Hawaiian honeyeater discovered by westerners, described from a specimen obtained in 1779 during Captain James Cook's third voyage; the other 4 species were not known to the scientific community until the mid- to late 1800's. The O'ahu and Hawai'i 'o'o and the Kioea are now definitely extinct, and the Kaua'i and Bishop's 'o'o are probably extinct.

  20. Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA

    USGS Publications Warehouse

    Gingerich, S.B.; Voss, C.I.

    2005-01-01

    Three-dimensional modeling of groundwater flow and solute transport in the Pearl Harbor aquifer, southern Oahu, Hawaii, shows that the readjustment of the freshwater-saltwater transition zone takes a long time following changes in pumping, irrigation, or recharge in the aquifer system. It takes about 50-years for the transition zone to move 90% of the distance to its new steady position. Further, the Ghyben-Herzberg estimate of the freshwater/saltwater interface depth occurred between the 10 and 50% simulated seawater concentration contours in a complex manner during 100-years of the pumping history of the aquifer. Thus, it is not a good predictor of the depth of potable water. Pre-development recharge was used to simulate the 1880 freshwater-lens configuration. Historical pumpage and recharge distributions were used and the resulting freshwater-lens size and position were simulated through 1980. Simulations show that the transition zone moved upward and landward during the period simulated. Previous groundwater flow models for Oahu have been limited to areal models that simulate a sharp interface between freshwater and saltwater or solute-transport models that simulate a vertical aquifer section. The present model is based on the US Geological Survey's three-dimensional solute transport (3D SUTRA) computer code. Using several new tools for pre- and post-processing of model input and results have allowed easy model construction and unprecedented visualization of the freshwater lens and underlying transition zone in Hawaii's most developed aquifer. ?? Springer-Verlag 2005.

  1. MISR Views the Big Island of Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    MISR images of the Big Island of Hawaii. The images have been rotated so that north is at the left.

    Upper left: April 2, 2000 (Terra orbit 1551) Upper right: May 4, 2000 (Terra orbit 2017) Lower left: June 5, 2000 (Terra orbit 2483) Lower right: June 21, 2000 (Terra orbit 2716)

    The first three images are color views acquired by the vertical (nadir) camera. The last image is a stereo anaglyph generated from the aftward cameras viewing at 60.0 and 70.5 degree look angles. It requires red/blue glasses with the red filter over the left eye.

    The color images show the greater prevalence of vegetation on the eastern side of the island due to moisture brought in by the prevailing Pacific trade winds. The western (lee) side of the island is drier. In the center of the island, and poking through the clouds in the stereo image are the Mauna Kea and Mauna Loa volcanoes, each peaking at about 4.2 km above sea level. The southern face of a line of cumulus clouds off the north coast of Hawaii is also visible in the stereo image.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Tunnels and dikes of the Koolau Range, Oahu, Hawaii, and their effect on storage depletion and movement of ground water

    USGS Publications Warehouse

    Hirashima, George Tokusuke

    1971-01-01

    Ground water impounded by dikes in the Koolau Range is a major source of water for the island of Oahu, Hawaii, and many tunnels have been bored into the range to develop it. All water-development tunnels, except Waihee tunnel, have depleted storage in the rocks they penetrate and are now discharging at rates that are but fractions of the rates possible at full storage. Rocks above the floor of the water-development part of Waihee tunnel have never been completely dewatered, and storage can be manipulated by regulating outflow. Thus, storage for this tunnel can be increased during periods of low demand and discharged at high rates during periods of high demand. A measure of the rate of drainage or depletion of storage is the recession constant b in the recession-curve equation Qt=Q0e-b t. The higher the value of b, the faster water can be drawn from storage or returned to storage through artificial recharge. Mathematical analysis of the flow-recession curve of Waihee tunnel shows that (1) its recession constant is 0.00401, (2) net storage (exclusive of recharge) is 2,200 million gallons (6,800 acre-feet), and (8) initial discharge from full storage would be about 19 million gallons per day. Analysis of flow-recession curves for Waiahole ditch tunnel (main bore) and Haiku tunnel shows that these tunnels have drainage characteristics that are similar to those of Waihee tunnel. The composite recession constant computed for the four tunnels north of Waiahole is about one-third as large as that computed for the Waiahole ditch tunnel (main bore) and the tunnels to the south. The difference is due to an abrupt change in spacing of dikes north of Waiahole. At and south of Waiahole Stream, dikes are spaced tens or hundreds of feet apart; north of Waiahole, they are spaced inches or a few feet apart. Storage could be restored by bulkheading at the controlling dike or dikes after an analysis is made of the flow-recession curve for each tunnel. Such analyses will show which

  3. Source of salts in the Waianae part of the Pearl Harbor aquifer near Barbers Point water tunnel, Oahu, Hawaii

    USGS Publications Warehouse

    Eyre, P.R.

    1987-01-01

    The salinity of the water supply of Barbers Point Naval Air Station has increased markedly since 1983. The Naval Air Station obtains its water, about 3 million gal/day, from Barbers Point shaft, a water shaft that taps the Waianae part of the Pearl Harbor aquifer underlying the dry, southeastern flank of the Waianae mountains on the island on Oahu, Hawaii. From 1983 to 1985 the chloride concentration of the water, increased from 220 to 250 mg/L and has remained near that level through 1986. The EPA has established 250 mg/L as the maximum recommended chloride concentration in drinking water because above that level many people can taste the salt. The high chloride concentration in shallow groundwater at all wells in the area indicates that most of the salts in the freshwater lens are contributed by rainfall, sea spray, and irrigation return water. At Barbers Point shaft, pumping may draw a small amount of saltwater from the transition zone and increase the chloride concentration in the pumped water by about 20 mg/L. Salinity of the lens decreases progressively inland in response to recharge from relatively fresher water and in response to an increasing lens thickness with increasing distance from the shoreline. The increase, in 1983, in the chloride concentration of water at the shaft was most probably the result of saltier recharge water reaching the water table, and not the result of increased mixing of underlying saltwater with the freshwater. The chloride concentration of the recharge water has probably increased because, in 1980, the drip method of irrigation began to replace the furrow method on sugarcane fields near the shaft. A mixing-cell model was used to estimate the effect of drip irrigation on the chloride concentration of the groundwater in the vicinity of Barbers Point shaft. The model predicted an increase in chloride concentration of about 50 mg/L. The observed increase was about 30 mg/L and the chloride concentration is presently stable at 245 to

  4. 33 CFR 110.128c - Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Island of Kauai, Hawaii. 110.128c Section 110.128c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128c Island of Kauai, Hawaii. (a) Nawiliwili Bay....

  5. 33 CFR 110.128c - Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Island of Kauai, Hawaii. 110.128c Section 110.128c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128c Island of Kauai, Hawaii. (a) Nawiliwili Bay....

  6. 33 CFR 110.128c - Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Island of Kauai, Hawaii. 110.128c Section 110.128c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128c Island of Kauai, Hawaii. (a) Nawiliwili Bay....

  7. 33 CFR 110.128c - Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Island of Kauai, Hawaii. 110.128c Section 110.128c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128c Island of Kauai, Hawaii. (a) Nawiliwili Bay....

  8. 33 CFR 110.128c - Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Island of Kauai, Hawaii. 110.128c Section 110.128c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.128c Island of Kauai, Hawaii. (a) Nawiliwili Bay....

  9. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  10. Variations in the Alkalinity of Seawater in Coastal Waters of Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; De Carlo, E. H.; Drupp, P. S.; Terlouw, G.; Guidry, M.; Mackenzie, F. T.; Thompson, R.

    2014-12-01

    Total alkalinity (AT) is an important component of the marine inorganic carbon system that, together with one of the other measurable parameters (i.e., pH, dissolved inorganic carbon-CT , pCO2) allows us to calculate the entire CO2-carbonic acid system. By measuring AT continuously at several coastal locations on coral reefs of Oahu, we can calculate a current rate of change in surface water conditions with respect to biogeochemical processes as well as the globally important issue of ocean acidification (OA). Previous work by Drupp et al (2011, 2013) has shown that parameters of the CO2-carbonic acid system display seasonal fluctuations as well as respond to short term rainfall events. This work expands the period of study through July 2014. The three sampling locations are vastly different in geographic and geochemical conditions. Kaneohe Bay is a protected embayment, with large freshwater inputs and long water residence time compared to the nearshore exposed waters at Kilo Nalu and Ala Wai. Variation in coral reef environments affect AT, thus making it crucial to sample multiple environments over an extended period of time to reveal changes in biogeochemistry. A typical sample from Kaneohe Bay (CRIMP-2) can be expected to have a AT value between 2134 umol/kg and 2279 umol/kg, Kilo Nalu: between 2263 umol/kg and 2350 umol/kg, Ala Wai: between 2263 umol/kg and 2335 umol/kg. In general, total alkalinity values from CRIMP-2 are lower than at Kilo Nalu or Ala Wai due to differences in coral reef environments. Our long-term record allows us to compare the behavior of Hawaiian reef waters to those of other tropical marine ecosystems. Furthermore, monitoring of AT over extended multiple years and multiple locations is essential to develop the time-series data necessary for continued evaluation of the impact of OA on coral reefs of the Hawaiian Islands.

  11. Pollen record from Ka'au Crater, Oahu, Hawaii: Evidence for a dry glacial maximum

    SciTech Connect

    Hotchkiss, S.C.; Juvik, J.O. Univ. of Hawaii, Hilo )

    1993-06-01

    Fossil pollen from a 3.5 m-long core from Ka'au Crater, Hawaii (elev. 460 m), yields a ca. 23,000-year record of regional vegetation history. Results indicate a full-glacial period drier and possibly cooler than present, a warmer and wetter early Holocene, and a somewhat drier late Holocene; this sequence agrees with earlier work by Selling (1948) on other islands. The oldest zone is donated by pollen of Chenopodium oahuense, Acacia koa, and Dodonaea viscosa; post-glacial pollen assemblages feature high percentages of Myrsine and Coprosma, followed by increases in Lycopodium cernuum Ilex anomala. Freycinetia arborea and Pritchardia. After about 8000 years ago, Chenopodium, Acacia, and Dodonaea increase, suggesting a return to drier conditions. Abundant pollen of Chenopodium oahuense, a plant of dry regions, during the last glacial maximum implies that neither the trade winds nor cyclonic storms were delivering as much moisture to the regional vegetation as they presently do. This suggests that the ocean surface temperature during the last glacial maximum may have been cooler than present, a finding contradictory to the reconstructions of the CLIMAP (1981) group, which show temperatures near Hawaii equal to or even warmer than present.

  12. A Comparison of Health Education and Physical Activity Practice in Four Regions of the Hawaiian Island of Oahu

    ERIC Educational Resources Information Center

    Chun, Donna; Eburne, Norman; Donnelly, Joseph

    2005-01-01

    The purpose of this study was to compare four distinct Hawaiian districts on the island of Oahu regarding their efforts in presenting quality health education and physical activity. The ethnic groups represented in this study included Hawaiian, Pacific Islander, Asian and Caucasian. Questionnaires based on the Action for Healthy Kids Healthy…

  13. Investigation of Waikele well no 2401-01, Oahu, Hawaii; pumping test, well logs and water quality

    USGS Publications Warehouse

    Eyre, P.R.

    1983-01-01

    Field tests indicate that an abandoned well (No. 2401-01) near the confluence of Waikele and Kipapa Streams, Oahu, Hawaii, can be reactivated to produce potable water at a rate of 400-500 gallons per minute. Previous tests in 1946 and 1954 indicated that the well tapped the brackish transition zone which inderlies the Ghyben-Herzberg lens of the Pearl Harbor aquifer. Results of this study, based on geologic and geophysical logs of the wall, as well as on pumping test and water-quality data, indicate that the slightly brackish water produced by the well results from brackish irrigation return water. It does not appear that pumping from this well will cause seawater upconing or intrusion. (USGS)

  14. What factors have influenced implementation of the Developmental Approaches in Science, Health and Technology program at two elementary schools on O'ahu, Hawai'i?

    NASA Astrophysics Data System (ADS)

    Carson, Lani L.

    This dissertation is a report of two hypothesis-generating qualitative case studies that investigated the factors that affected the successful school-wide implementation of the Developmental Approaches in Science, Health and Technology program, a spiraling, integrated, hands-on program for grades Kindergarten to 6 at two public elementary schools on the island of Oahu, in the state of Hawaii. Four key people were interviewed, 47 classrooms were observed three times each, and 41 of 48 teacher surveys were completed. An author-generated flow-of-influences conceptual framework based on other research findings about variables influencing the implementation of a curricular innovation delineates curricular, organizational, and external variables along with possible teacher-perceived outcomes. The results include 42 tables and 44 figures showing the many factors' positive and negative impacts on the schools' reform efforts. Eighteen hypotheses were generated. Well-planned implementations, strong administrative support and leadership, sustained follow-up support, and frequent collegial planning and sharing times seemed to have the greatest positive influences upon teacher confidence regarding program knowledge and sustained program use. More tenured teachers were using the program at levels equal to or greater than newer teachers until around twenty years of teaching experience, when there was a marked decline in program use.

  15. Spatially disaggregated disease transmission risk: land cover, land use and risk of dengue transmission on the island of Oahu.

    PubMed

    Vanwambeke, Sophie O; Bennett, Shannon N; Kapan, Durrell D

    2011-02-01

    Vector-borne diseases persist in transmission systems that usually comprise heterogeneously distributed vectors and hosts leading to a highly heterogeneous case distribution. In this study, we build on principles of classical mathematical epidemiology to investigate spatial heterogeneity of disease risk for vector-borne diseases. Land cover delineates habitat suitability for vectors, and land use determines the spatial distribution of humans. We focus on the risk of exposure for dengue transmission on the Hawaiian island of Oahu, where the vector Aedes albopictus is well established and areas of dense human population exist. In Hawai'i, dengue virus is generally absent, but occasionally flares up when introduced. It is therefore relevant to investigate risk, but difficult to do based on disease incidence data. Based on publicly available data (land cover, land use, census data, surveillance mosquito trapping), we map the spatial distribution of vectors and human hosts and finally overlay them to produce a vector-to-host ratio map. The resulting high-resolution maps indicate a high spatial variability in vector-to-host ratio suggesting that risk of exposure is spatially heterogeneous and varies according to land cover and land use.

  16. Geohydrology and Possible Transport Routes of Polychlorinated Biphenyls in Haiku Valley, Oahu, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Hill, Barry R.; Shade, Patricia J.; Tribble, Gordon W.

    1993-01-01

    A combination of geologic mapping, seepage runs, water-budget computation, analysis of stream-gaging records, study of stream sediment, and measurement of polychlorinated biphenyls (PCBs) was used to investigate the geohydrology and possible routes of PCB transport from areas of possible contamination in the U.S. Coast Guard's Omega Station in Haiku Valley, Oahu, Hawaii. The PCBs were a contaminant in fuel that was sprayed on vegetation and ignited during defoliation efforts at the Omega Station. Haiku Valley is a stream valley eroded into a thick section of dike-intruded, highly permeable lava flows. The valley is partly filled with alluvium, pyroclastics and massive lava flows. A shallow aquifer system is formed by a permeable unit of pyroclastics which is bounded below by less permeable alluvium, massive lava flows, and weathered basalt. A deeper aquifer system is present in the dike-intruded lava flows. Much of the area of suspected PCB-contaminated fuel application in Haiku Valley is situated on the geologic unit that forms the shallow aquifer. A water budget calculated for the drainage area of a stream-gaging station (16275000) at the downgradient boundary of the Omega Station indicates that the shallow and deep aquifers receive recharge of 5.1 cubic feet per second from the 0.98 square-mile drainage area; approximately 10 percent of the drainage area is suspected to have been contaminated by PCBs. Approximately 4 cubic feet per second of water is withdrawn from the aquifers by a well and a water tunnel in the valley, but the geology of the area indicates that some of the water withdrawn by the tunnel also comes from recharge beyond the surface-water divides of Haiku Valley. Base flow to the stream is about 1.2 cubic feet per second. A water-balance calculation between recharge, well and tunnel withdrawals, and stream base flow, indicates that 1.0 cubic feet per second or more of the water recharging the drainage area may travel through the subsurface and

  17. Standing crop and sediment production of reef-dwelling foraminifera on O'ahu, Hawai'i

    USGS Publications Warehouse

    Harney, J.N.; Hallock, P.; Fletcher, C. H.; Richmond, B.M.

    1999-01-01

    Most of O'ahu's nearshore and beach sands are highly calcareous and of biogenic origin. The pale-colored constituent grains are the eroded remains of carbonate shells and skeletons produced by marine organisms living atop the island's fringing reefs and in the shallow waters near shore. Previous studies have shown that the tests of symbiont-bearing benthic foraminifera compose a substantial portion (up to one-fourth) of these organically produced sands. We sampled a variety of reef flat and slope habitats to obtain standing-crop data and production estimates for several sand-producing genera of reef-dwelling foraminifera. We found that modern communities of these shelled protists occur in dense numbers islandwide, reaching densities up to 105 individuals per square meter of suitable substrate in the more productive habitats. Further research on the contribution of foraminifera to beach, nearshore, and offshore sands is planned for O'ahu and neighboring islands to describe their roles in the sediment budget more completely.

  18. University of Hawaii Community Colleges Strategic Plan, 2002-2010.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Community Coll. System.

    This strategic plan for the University of Hawaii Community Colleges (UHCC) addresses the following issues: (1) Philosophy; (2) Mission; (3) State-Wide Reach; (4) Board of Regents Statement on UHCC Mission; and (5) Organization. UHCC consists of seven campuses, four on Oahu, and one each on the islands of Maui, Kauai, and Hawaii. Each campus offers…

  19. The islands are different: human perceptions of game species in Hawaii.

    PubMed

    Lohr, Cheryl A; Lepczyk, Christopher A; Johnson, Edwin D

    2014-10-01

    Hawaii's game animals are all non-native species, which provokes human-wildlife conflict among stakeholders. The management of human-wildlife conflict in Hawaii is further complicated by the discrete nature of island communities. Our goal was to understand the desires and perceived values or impacts of game held by residents of Hawaii regarding six game species [pigs (Sus scrofa), goats (Capra hircus), mouflon (Ovis musimon), axis deer (Axis axis), turkeys (Melagris gallopavo), and doves (Geopelia striata)]. We measured the desired abundance of game on the six main Hawaiian Islands using the potential for conflict index and identified explanatory variables for those desires via recursive partitioning. In 2011 we surveyed 5,407 residents (2,360 random residents and 3,047 pre-identified stakeholders). Overall 54.5 and 27.6 % of the emailed and mailed surveys were returned (n = 1,510). A non-respondent survey revealed that respondents and non-respondents had similar interest in wildlife, and a similar education level. The desired abundance of game differed significantly among stakeholders, species, and islands. The desired abundance scores were higher for axis deer, mouflon, and turkeys compared to pigs, goats or doves. Enjoyment at seeing game and the cultural value of game were widespread explanatory variables for desired abundance. Models for Lanai emphasized the economic value of game, whereas models for Maui identified the potential for game to contaminate soil and water. Models for Oahu and Kauai revealed concern for human health and safety. Given our findings we recommend managers design separate management plans for each island taking into consideration the values of residents.

  20. The Islands Are Different: Human Perceptions of Game Species in Hawaii

    NASA Astrophysics Data System (ADS)

    Lohr, Cheryl A.; Lepczyk, Christopher A.; Johnson, Edwin D.

    2014-10-01

    Hawaii's game animals are all non-native species, which provokes human-wildlife conflict among stakeholders. The management of human-wildlife conflict in Hawaii is further complicated by the discrete nature of island communities. Our goal was to understand the desires and perceived values or impacts of game held by residents of Hawaii regarding six game species [pigs ( Sus scrofa), goats ( Capra hircus), mouflon ( Ovis musimon), axis deer ( Axis axis), turkeys ( Melagris gallopavo), and doves ( Geopelia striata)]. We measured the desired abundance of game on the six main Hawaiian Islands using the potential for conflict index and identified explanatory variables for those desires via recursive partitioning. In 2011 we surveyed 5,407 residents (2,360 random residents and 3,047 pre-identified stakeholders). Overall 54.5 and 27.6 % of the emailed and mailed surveys were returned ( n = 1,510). A non-respondent survey revealed that respondents and non-respondents had similar interest in wildlife, and a similar education level. The desired abundance of game differed significantly among stakeholders, species, and islands. The desired abundance scores were higher for axis deer, mouflon, and turkeys compared to pigs, goats or doves. Enjoyment at seeing game and the cultural value of game were widespread explanatory variables for desired abundance. Models for Lanai emphasized the economic value of game, whereas models for Maui identified the potential for game to contaminate soil and water. Models for Oahu and Kauai revealed concern for human health and safety. Given our findings we recommend managers design separate management plans for each island taking into consideration the values of residents.

  1. New plant records from Hawai'i Island

    USGS Publications Warehouse

    Pratt, Linda W.; Bio, Keali'i F.

    2012-01-01

    The following plant records from the island of Hawai'i include 2 new state records, 6 new island records, 3 new records of naturalized species previously known to be present on the island, and 1 range extension of an orchid recently reported as naturalized. All cited voucher specimens are deposited at BISH.

  2. Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai

    NASA Astrophysics Data System (ADS)

    Kennedy, Andrew B.; Westerink, Joannes J.; Smith, Jane M.; Hope, Mark E.; Hartman, Michael; Taflanidis, Alexandros A.; Tanaka, Seizo; Westerink, Hans; Cheung, Kwok Fai; Smith, Tom; Hamann, Madeleine; Minamide, Masashi; Ota, Aina; Dawson, Clint

    2012-08-01

    The lack of a continental shelf in steep volcanic islands leads to significant changes in tropical cyclone inundation potential, with wave setup and runup increasing in importance and wind driven surge decreasing when compared to more gently-sloped mainland regions. This is illustrated through high resolution modeling of waves, surge, and runup on the Hawaiian Islands of Oahu and Kauai. A series of hurricane waves and water levels were computed using the SWAN + ADCIRC models for a suite of 643 synthetic storm scenarios, while local wave runup was evaluated along a series of 1D transects using the phase-resolving model Bouss1D. Waves are found to be an extremely important component of the inundation, both from breaking wave forced increases in storm surge and also from wave runup over the relatively steep topography. This is clear in comparisons with debris lines left by Hurricane Iniki on the Island of Kauai, where runup penetration is much greater than still water inundation in most instances. The difference between steeply-sloping and gently-sloping topographies was demonstrated by recomputing Iniki with the same landfall location as Hurricane Katrina in Louisiana. Surge was greatly increased for the mild-slope Iniki-in-Louisiana case, while pure wind surge for Iniki-in-Kauai was very small. For the entire suite of storms, maxima on Kauai show predicted inundation largely confined to a narrow coastal strip, with few locations showing more than a few hundred meters of flooding from the shoreline. As expected, maximum flooded areas for the 643 storms were somewhat greater than the Iniki inundation. Oahu has significantly more low-lying land compared to Kauai, and consequently hypothetical tropical cyclone landfalls show much more widespread inundation. Under direct impact scenarios, there is the potential for much of Honolulu and most of Waikiki to be inundated, with both still water surge and wave runup contributing. Other regions of Oahu show inundation confined

  3. Paleomagnetism and magma flow direction in dikes of the Wai'anae volcano, O'ahu, Hawaii determined from magnetic fabric studies

    NASA Astrophysics Data System (ADS)

    Gourdon, F.; Herrero-Bervera, E.; Valet, J. P.

    2003-04-01

    The Waianae Volcano is the older of two shield volcanoes that make up the island of Oahu. Previous age determinations suggest that the subaerial portion of the edifice erupted between approximately 3.7 and 2.7 Ma. The eroded Waianae Volcano had a well-developed caldera centered near the back of its two most prominent valleys, the Lualualei and Waianae and two major rift zones: a prominent north-west rift zone, well defined by a complex of subparallel dikes trending approximately N52W, and a more diffuse south rift zone, trending between S20W to due south. A minor rift zone trends to the northeast. The volcano is characterized by more dikes in the caldera than in the rift zones. In order to investigate the volcanic evolution, the plumbing and the triggering mechanisms of the catastrophic mass wasting occurred in the volcano we have undertaken a paleomagnetic and anisotropy of magnetic susceptibility (AMS) study of a set of dikes from the Waianae Volcano, Oahu, Hawaii. We drilled all the dikes from chilled margin to chilled margin and recovered a minimum of 8 and up to 23 samples per intrusive. The width of the dikes ranges between 0.5 to 1.5 m. In terms of the paleomagnetic results at least 8 samples per intrusive were stepwise demagnetized by a.f. from 5 to 100mT. Companion specimens from the same core were demagnetized at 15 temperature steps. In both cases demagnetization diagrams obtained with each technique showed a stable Characteristic direction of remanence (ChRM) determined with no ambiguity. The ChRM was calcultated using principal component analysis for the demagnetization diagrams with a well defined component trending to the origin. No bias or systematic departure from the origin was accepted and in all cases the ChRM relies on a minimum of seven successive directions isolated during stepwise demagnetization. In addition, low field susceptibility vs temperature (k-T) and SIRM experiments were performed on at least one sample per intrusive and as a

  4. Fostering Earth Science Inquiry From Within a Native Hawaiian Cultural Framework In O`ahu (Hawai`i) Through A Multidisciplinary Place-Based High School Summer Enrichment Program

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R.; Legaspi, E.

    2010-12-01

    During the summer of 2010, twenty-five public high school students from underrepresented communities and ethnicities (Hawaiian, part-Hawaiian, Sāmoan, Filipino, Pacific Islander) in O`ahu (Hawai`i) participated in the Mālama Ke Ahupua`a (protecting our watershed) program. This rigorous three-week hands-on, place-based multidisciplinary program provided students with the opportunity of visiting the Mānoa Valley watershed (O`ahu, Hawaii) for learning and experiencing the Earth Science System dynamics that comprises it, while simultaneously exploring the significance of the ahupua`a (watershed) as related to native Hawaiian history and culture. While earning Hawaii DOE-approved academic credit, students utilized GPS/GIS technology, quantitative water quality testing equipment, and environmental monitoring tools for performing a watershed survey and water quality study of Mānoa Stream (Mānoa Valley) from its inception in the mountains, its advance through Honolulu’s urbanized areas, and its convergence with the Pacific Ocean. Through this hands-on field-based study, students documented changes in the watershed’s environment as reflected in declining water quality induced by anthropogenic pollution sources and urbanization. Students also visited relevant native Hawaiian cultural sites in Mānoa, and explored their direct links with the historical sustainable usage of the watershed’s natural resources, both from a cultural and science-based perspective. Finally, traditional wa`a (native Hawaiian outrigger canoes) were used as both cultural resources for discussing ancient Polynesian exploration, as well as scientific research platforms for conducting near-shore reef surveys & assessments. This program served to promote not only Earth Science literacy and STEM skills, but also contributed to further environmental stewardship while fostering native Hawaiian & Polynesian cultural identities.

  5. Preliminary survey of wood-associated fungi in southeast O'ahu of Hawai'i using DNA-based identification

    Treesearch

    S. M. Ashiglar; F. Brooks; Phil G. Cannon; Ned Klopfenstein

    2015-01-01

    Hawai'i is a biological hotspot with a variety of climates and habitats. While fungal species diversity has been more extensively studied in Hawai'i than other Pacific Islands (e.g. see Gilbertson et al. 2002), there remain many species unreported in the literature. This project attempted to capture a small portion of Hawai'i's fungal...

  6. Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xie, Shang-Ping; Hafner, Jan

    2008-08-01

    Standing well above the trade wind inversion, Hawaii Island (maximum elevation ˜4.2 km) splits the northeast trade winds and induces a westerly reverse flow in the wake. Satellite observations and regional model simulations are used to investigate circulation effects on lee cloud formation during summer. Over the island, the cloud distribution is consistent with orographic-induced vertical motions. Over the lee ocean, our analysis reveals a cloud band that extends southwestward over a few tens of kilometers from the southwest coast of the island. This southwest lee cloud band is most pronounced in the afternoon, anchored by strong convergence and maintained by in situ cloud production in the upward motion. Such an offshore cloud band is not found off the northwest coast, an asymmetry possibly due to the Coriolis effect on the orographic flow. Off the Kona coast, the dynamically induced westerly reverse flow keeps the wake cool and nearly free of clouds during the day. Along the Kona coast, clouds are blown offshore from the island by the easterly trades in the afternoon in a layer above the reverse flow. Deprived of in situ production, these afternoon Kona coast clouds dissipate rapidly offshore. At night, the offshore land/valley breezes converge onto the onshore reverse flow, and a cloud deck forms on and off the Kona coast, bringing nighttime rain as observed at land stations. To illustrate the circulation effect, lee cloud formation is compared between tall Hawaii and short Kauai/Oahu Islands, which feature the flow-around and flow-over regimes, respectively. Effects of trade wind strength on the leeside cloudiness are also studied.

  7. ASTER Images the Island of Hawaii

    NASA Image and Video Library

    2000-04-26

    These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum. Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing. Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences. http://photojournal.jpl.nasa.gov/catalog/PIA02604

  8. Volcanic hazards on the Island of Hawaii

    USGS Publications Warehouse

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  9. Assessment of landslide hazards in Kaluanui and Maakua gulches, Oahu, Hawaii, following the 9 May 1999 Sacred Falls landslide

    USGS Publications Warehouse

    Jibson, R.W.; Baum, R.L.

    1999-01-01

    One of the injured hikers later died of injuries received in the landslide. Governor Ben Cayetano of Hawaii ordered that the park be closed due to concern about continuing landslide hazard near the falls. Subsequently, Bill Meyer, District Chief for the U.S. Geological Survey (USGS) Water Resources Division in Honolulu contacted Tim Johns, Chair of the Board of Land and Natural Resources of the Hawaii Department of Land and Natural Resources (DLNR) and offered assistance in assessing slope stability in the park. Mr. Johns accepted the offer, and two landslide specialists from the USGS Geologic Hazards Team in Golden Colorado were sent to the site. On Friday, 14 May 1999, we visited the Sacred Falls landslide site with Glenn Bauer, Ed Sakoda, and Gary Moniz of DLNR. The ground investigation involved inspecting the impact area, estimating the volume of the deposit, and gathering data to help reconstruct the event. On Monday, 17 May 1999, we conducted an aerial reconnaissance of Kaluanui Gulch (Sacred Falls State Park) and Maakua Gulch in a commercial helicopter provided by DLNR. We inspected the source and path of movement of the Sacred Falls landslide of 9 May and reconnoitered the full length of both valleys to get an overview of ongoing landslide hazards there. This report gives our observations and conclusions about the Sacred Falls landslide, broadly assesses the ongoing hazard in the Kaluanui and Maakua Gulches, and suggests methods for more detailed assessment of landslide hazards here and along other trails in state parks on Oahu. Observations and conclusions in this report are based on a very brief investigation and thus are preliminary in nature.

  10. Multi-decadal Records of Ocean Acidification and Toxic Heavy Metal Pollution in Coral Cores from Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Tolliver, R.; Field, D. B.; Young, C.; Stafford, G.; Day, R. D.

    2016-12-01

    Monitoring of the physiological/ecological response of marine calcifying organisms to the combination of lower pH and toxic metal pollutants (e.g. Cu and Sn from boat anti-fouling paints) into the oceans requires detailed knowledge of the rates and spatial distribution of ocean acidification (OA) and trace metal composition over time. Yet, measurement of metal concentrations and carbonate system parameters in the modern ocean from seawater bottle data is patchy (e.g. CDIAC/WOCE Carbon Data; http://cdiac.ornl.gov) and there remain few long-term surface water pH monitoring stations; the two longest continuous records of ocean pH extend back less than 30 years (Bermuda - BATS, 31°40'N, 64°10'W; Hawaii - HOTs, 22°45'N, 158°00'W). Much attention has therefore been focused on trace metal and ocean carbonate system proxy development to allow reconstruction of seawater metal content and pH in the past. Of particular promise is the boron isotope (δ11B) pH-proxy measured in marine calcifying organisms such as coral that can be cored enabling multi-decadal, annual-resolution, records of trace element incorporation and seawater pH to be generated. Here we present continuous Cu/Ca and Sn/Ca records in addition to δ11B data from three coral cores of Porites lutea. collected from waters proximal to Oahu, Hawaii. The diagenetic integrity of samples is verified using X-ray diffraction to assess the degree of calcite replacement. These cores reach a maximum depth of 80 cm and represent approximately 80 years of coral growth and seawater chemistry.

  11. Fluvial fluxes of water, suspended particulate matter, and nutrients and potential impacts on tropical coastal water Biogeochemistry: Oahu, Hawai'i

    USGS Publications Warehouse

    Hoover, D.J.; MacKenzie, F.T.

    2009-01-01

    Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai'i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8-77% (median 30%) of discharge, 57-99% (median 93%) of SPM fluxes, 11-79% (median 36%) of dissolved nutrient fluxes and 52-99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ???16 (the 'Redfield ratio' for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22-82%; median 69% of total phosphorus, range 49-93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks-years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.

  12. Uncertainty in recharge estimation: impact on groundwater vulnerability assessments for the Pearl Harbor Basin, O'ahu, Hawai'i, U.S.A.

    NASA Astrophysics Data System (ADS)

    Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.

    1996-06-01

    In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the

  13. MISR Views the Big Island of Hawaii

    NASA Image and Video Library

    2000-08-02

    This stereo image from NASA Terra satellite show the Mauna Kea and Mauna Loa volcanoes in Hawaii; a southern face of a line of cumulus clouds off the north coast of Hawaii is also visible. 3D glasses are necessary to view this image.

  14. Growth History of Kaena Volcano, the Isolated, Dominantly Submarine, Precursor Volcano to Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Eason, D. E.

    2014-12-01

    The construction of O'ahu began with the recently recognized, ~3.5-4.9 Ma Ka'ena Volcano, as an isolated edifice in the Kaua'i Channel. Ka'ena remained submarine until, near the end of its lifetime as magma supply waned and the volcano transitioned to a late-shield stage of activity, it emerged to reach a maximum elevation of ~1000 m above sea level. We estimate that Ka'ena was emergent only for the last 15-25% of its lifespan, and that subaerial lavas make up < 5% of the total volume (20-27 x 103 km3). O'ahu's other volcanoes, Wai'anae (~3.9-2.85 Ma) and Ko'olau (~3.0-1.9 Ma), were built at least partly on the flanks of earlier edifices and both were active subaerial volcanoes for at least 1 Ma. The constructional history of Ka'ena contrasts with that of Wai'anae, Ko'olau, and many other Hawaiian volcanoes, which likely emerge within a few hundred kyr after inception, and with subaerial lavas comprising up to 35 volume % of the volcano. These relations suggest that volcano growth history and morphology are critically dependent on whether volcanic initiation and growth occur in the deep ocean floor (isolated), or on the flanks of pre-existing edifices. Two other volcanoes that likely formed in isolation are West Moloka'i and Kohala, both of which have long submarine rift zones, and neither attained great heights above sea level despite having substantial volume. The partitioning of volcanism between submarine and subaerial volcanism depends on the distance between volcanic centers, whether new volcanoes initiate on the flanks of earlier ones, and the time over which neighboring volcanoes are concurrently active. Ka'ena might represent an end-member in this spectrum, having initiated far from its next oldest neighbor and completed much of its evolution in isolation.

  15. Analysis of Hawaii Secondary School Discipline Variables.

    ERIC Educational Resources Information Center

    Kalus, Janet Marie Wolcott

    It was the intent of this study to examine student discipline problems in twenty-one high schools on the island of Oahu in Hawaii. Literature was reviewed concerning the youth revolution as it affects students in Hawaiian public schools and concerning discipline problems unique to Hawaiian public schools. Data were collected through a…

  16. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  17. Evaluation and Optimization of CMIP5 Data using an Artificial Neural Network for Dynamical Downscaling of rainfall on Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Chu, Pao-Shin; Holloway, Chris

    2015-04-01

    Understanding long-term changes of rainfall is important for water resources planning and development. General Circulation Models (GCMs) such as those used in CMIP5 have undergone significant improvements since the early development of Numerical Weather Prediction. CMIP5's RCP8.5 experiment was comprised of over 20 different GCM configurations using various parameterization schemes and initial conditions to project the future climate in response to anthropogenic warming. However due to coarse spatial resolution and simple parameterization schemes of GCMs, current rainfall estimates and future rainfall projections are often unrealistic, especially for small islands with complex terrains such as the Hawaiian Islands. Recent advancements in mesoscale meteorology have helped develop limited area Regional Climate Models (RCMs) such as WRF-ARW that have the ability to estimate and project high-resolution rainfall at smaller scales, in our case down to 1.1km. RCMs often use GCM output for their initial lateral boundary conditions and prescribed land surface conditions. In the original WRF system, there is a land surface model but small Hawaiian Islands such as Oahu is not well represented in the land surface datasets of the official WRF model release. Therefore, we made effort to improve land surface characteristics (e.g., albedo, green vegetation fraction) suitable for 1.1 km domain over Oahu. Since high-resolution RCM output is forced by the lateral boundary conditions, we see significant variations in estimated and future projected rainfall depending on which GCM was chosen to force the RCM. To combat this issue we implement an Artificial Neural Network using a simple Sequential Learning Algorithm (SLA) to evaluate the GCM's ability to simulate the current climate, allowing us to choose the optimum lateral boundary conditions that drive the RCM. In our study we use CMIP5's monthly means output from several different models that included both the Historical and RCP8

  18. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  19. Coastal CO2 climatology of Oahu, Hawaii: Six years of high resolution time-series data

    NASA Astrophysics Data System (ADS)

    Terlouw, G. J.; Drupp, P. S.; De Carlo, E. H.; Tomlinson, M.

    2014-12-01

    Six years of high resolution pCO2, water quality, and meteorological data were used to calculate air-sea CO2 fluxes on yearly, seasonal and monthly timescales, and relate the temporal and spatial variation in CO2 fluxes to meteorological events and land derived inputs. Three MAPCO2 buoys are deployed in coastal waters of Oahu as part of the NOAA/PMEL Carbon Program, that autonomously collects CO2 and water quality data at 3-hour intervals. The buoys are located on a backreef in Kaneohe Bay and two fringing reef sites on Oahu's south shore, the latter two in open ocean like conditions but with one also influenced by fluvial inputs. Data for this study were collected from June 2008 to July 2014. Mean pCO2 values at the Ala Wai, Kilo Nalu and CRIMP2 buoys were 396, 381 and 447μatm, respectively, with mean daily ranges of 51, 32 and 190 μatm, respectively. The daily range in pCO2 is largest at CRIMP2, reflecting a combination of higher primary production and respiration, vigorous calcification and longer water residence time within the barrier reef environment. Net annualized air-sea CO2 fluxes of the entire study period were 0.083, -0.014 and 1.167 mol C m-2 year-1 for Ala Wai, Kilo Nalu and CRIMP2, respectively. Positive values indicate a CO2 flux from the water to the atmosphere (source behavior), and negative values from the atmosphere to the water (sink behavior). This presentation will also discuss the effects physical and biogeochemical processes on the magnitude and variability of air-sea CO2 fluxes. We observe a negative correlation between CO2 flux and rainfall over monthly, seasonal, and annual timescales. This correlation however, can partly be explained by temperature, because increased rainfall is more common during the colder winter months. Nevertheless, rainfall affects CO2 fluxes, both by rain-induced nutrient and organic matter runoff, as well as the physical effect of raindrops on air-sea gas exchange and the dilution of the air-sea boundary layer

  20. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  1. ASTER Images the Island of Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.

    Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.

    Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth

  2. A Late-Quaternary Pollen Record from Ka'au Crater, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Hotchkiss, Sara; Juvik, James O.

    1999-07-01

    A pollen record from Ka'au Crater, O'ahu, Hawai'i contains evidence for changes in vegetation and climate since about 28,000 14C yr B.P. Zone 1 (ca. 28,100-ca. 22,800 14C yr B.P.) has pollen of dry to mesic forest species, including Pipturus-type, Dodonaea viscosa, Acacia koa, Chenopodium oahuense, Claoxylon sandwicense, Myrsine, and Metrosideros-type. In zone 2 (ca. 22,800-ca. 16,200 14C yr B.P.) Myrsine and Coprosma increase, with herbs, fern allies, and Grammitidaceae suggesting open canopies. Zone 3 (ca. 16,200-ca. 9700 14C yr B.P.) has pollen of wet forest species, including Freycinetia arborea, abundant Pritchardia, and Metrosideros-type. Zone 4 (ca. 9700-ca. 7000 14C yr B.P.) is similar, with less Pritchardia and more Metrosideros-type. Climate reconstruction was based on modern climatic ranges of flowering plants and an index derived from abundance of pollen in surface samples. Both methods agree on a qualitative reconstruction, although the ages are poorly constrained: 28,000-25,000 14C yr B.P. cool and dry; 25,000-23,000 14C yr B.P. dry and warmer; 23,000-20,000 14C yr B.P. moderately dry with declining temperature; 20,000-16,000 14C yr B.P. moderately dry and cool; 16,000-9000 14C yr B.P. warm and wet; 9000-7000 14C yr B.P. warm and possibly drier. Lower precipitation at Ka'au Crater during the late glacial period and last glacial maximum is consistent with the interpretation that the North Pacific subtropical anticyclone was south of its present position. The pollen-derived temperature index yields an estimate of 3°-5°C temperature depression during the last glacial maximum.

  3. Quantifying Shoreline Change on Oahu, Hawaii using Aerial Orthophotogrammetry in a Regime of Rising Sea-level

    NASA Astrophysics Data System (ADS)

    Over, J. S. R.; Fletcher, C. H., II; Barbee, M.; Anderson, T. R.

    2016-12-01

    Shoreline change data has become a significant coastal management tool in the effort to protect beaches for recreation, tourism, and environmental conservation. The Hawaii Shoreline Study uses historical aerial photographs (1928-2006) to delineate long-term trends of coastal accretion and erosion. Data are provided to public and government partners to assist with coastal zone management. In a preliminary effort to update the database for Oahu, aerial images taken in 2015 along the coasts at Makalii, Waikiki, and Sunset Beach, were orthorectified and mosaicked at 0.5 m resolution in PCI Geomatica Orthoengine. Changes in the position of the shoreline were mapped across 478 shore-perpendicular transects (spaced 20 m alongshore) using the low water mark as a shoreline proxy. Analysis of shoreline movement reveals localized variation in rates of change controlled by, but not limited to, differences in wave regimes, armoring, sea level rise, and fluctuations in sediment availability. Updated rates have a mean of -0.073 ± 0.07 m/yr, an indication that they are roughly stable. However, distinct patterns emerge locally. Erosion dominated the period between 2006 and 2015, where 53% of transects lost beach width, 37% showed accretion, and 10% did not change. Sunset Beach and Makalii saw (resp.) 12% and 24% increases in new construction on beachfront parcels in areas with known erosion regimes. These results warrant continued assessment of shoreline change to (1) monitor vulnerability to erosion; likely a result of long-term sea level rise, and (2) improve understanding of localized processes driving erosion and accretion.

  4. Effectiveness of a coral-derived surfacing material for reducing sediment production on unpaved roads, Schoffield barracks, Oahu, Hawaii.

    PubMed

    Ziegler, Alan D; Sutherland, Ross A

    2006-01-01

    This study evaluated the effectiveness of two application rates of a coral-derived surfacing material for both traffic and nontraffic road conditions using simulated rainfall (110-120 mm h(-1) for 30-90 min) on 0.75-m (wide) x 5.0-m (long) plots of similar slope (roughly 0.1 m m(-1)). The coral is a locally available material that has been applied to unpaved roads surfaces on Schoffield Barracks, Oahu, Hawaii (USA), where this experiment was conducted. The simulations show that compared with a bare control plot, the coral-based surface application rates of 80 and 160 kg m(-2) (equivalent to only 10- and 20-mm thicknesses) reduced road sediment production by 75% and 95%, respectively, for nontraffic conditions. However, after two passes of the research vehicle during wet conditions, sediment production rates for the two coral treatments were not significantly different from those on the bare road plots. The overall effectiveness of the coral-derived surfacing material is unsatisfactory, primarily because the on-road surface thickness associated with the application rates tested was too small. These rates were selected to bracket those applied to training roads in the study area. Furthermore, the composition of the coral-based material does not facilitate the development of a sealed, erosion-resistant surface. When applied at the low rates tested, the coral material breaks down under normal traffic conditions, thereby losing its ability to counter shearing forces exerted by overland flow on long hillslopes where erosion measures are most needed. These simulations, combined with observations on roads in the study area, indicate that this material is not an appropriate road surfacing material for the site-at least for the low application rates examined. These results are preliminary; extended testing of higher applications rates at the hillslope scale under natural climate and traffic conditions is needed to better judge the effectiveness of this material over time.

  5. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  6. Oahu: Perspective from Space.

    ERIC Educational Resources Information Center

    Johnson, Gary E.

    1982-01-01

    Presents a photograph of the Hawaiian island, Oahu, as taken by the Landsat 2 satellite on February 14, 1978. A description of Landsat 2 remote sensing procedures and discussion of the topographical details shown in the photograph are included. (AM)

  7. Oahu: Perspective from Space.

    ERIC Educational Resources Information Center

    Johnson, Gary E.

    1982-01-01

    Presents a photograph of the Hawaiian island, Oahu, as taken by the Landsat 2 satellite on February 14, 1978. A description of Landsat 2 remote sensing procedures and discussion of the topographical details shown in the photograph are included. (AM)

  8. Stereo Pair, Honolulu, Oahu

    NASA Image and Video Library

    2000-03-10

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by NASA Shuttle Radar Topography Mission SRTM, shows how topography controls the urban pattern.

  9. 24 CFR 203.29 - Eligible mortgages in Alaska, Guam, Hawaii, or the Virgin Islands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Hawaii, or the Virgin Islands. 203.29 Section 203.29 Housing and Urban Development Regulations Relating... Requirements and Underwriting Procedures Eligible Mortgages § 203.29 Eligible mortgages in Alaska, Guam, Hawaii..., Guam, Hawaii or the Virgin Islands, the Commissioner may increase the maximum mortgage amount permitted...

  10. 24 CFR 203.29 - Eligible mortgages in Alaska, Guam, Hawaii, or the Virgin Islands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Hawaii, or the Virgin Islands. 203.29 Section 203.29 Housing and Urban Development Regulations Relating... Requirements and Underwriting Procedures Eligible Mortgages § 203.29 Eligible mortgages in Alaska, Guam, Hawaii..., Guam, Hawaii or the Virgin Islands, the Commissioner may increase the maximum mortgage amount permitted...

  11. 24 CFR 203.29 - Eligible mortgages in Alaska, Guam, Hawaii, or the Virgin Islands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Hawaii, or the Virgin Islands. 203.29 Section 203.29 Housing and Urban Development Regulations Relating... Requirements and Underwriting Procedures Eligible Mortgages § 203.29 Eligible mortgages in Alaska, Guam, Hawaii..., Guam, Hawaii or the Virgin Islands, the Commissioner may increase the maximum mortgage amount permitted...

  12. 24 CFR 203.29 - Eligible mortgages in Alaska, Guam, Hawaii, or the Virgin Islands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Hawaii, or the Virgin Islands. 203.29 Section 203.29 Housing and Urban Development Regulations Relating... Requirements and Underwriting Procedures Eligible Mortgages § 203.29 Eligible mortgages in Alaska, Guam, Hawaii..., Guam, Hawaii or the Virgin Islands, the Commissioner may increase the maximum mortgage amount permitted...

  13. 24 CFR 203.29 - Eligible mortgages in Alaska, Guam, Hawaii, or the Virgin Islands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Hawaii, or the Virgin Islands. 203.29 Section 203.29 Housing and Urban Development Regulations Relating... Requirements and Underwriting Procedures Eligible Mortgages § 203.29 Eligible mortgages in Alaska, Guam, Hawaii..., Guam, Hawaii or the Virgin Islands, the Commissioner may increase the maximum mortgage amount permitted...

  14. Vegetation and fire in lowland dry forest at Wa'ahila Ridge on O'ahu, Hawai'i.

    PubMed

    Lu, Pei-Luen; DeLay, John K

    2016-01-01

    Long-term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. However, island fire ecology is poorly understood. No previous studies are available that analyze vegetative changes in burned and unburned dry forest remnants on Wa'ahila Ridge, Hawai'i. This study investigates vegetation succession from 2008 to 2015, following a fire in 2007 which caused significant differences in species richness, plant density, and the frequency of woody, herb, grass, and lichens between burned and unburned sites. These findings infer that introduced plants have better competitive ability to occupy open canopy lands than native plants after fire. This study also illustrates the essential management need to prevent alien plant invasion, and to restore the native vegetation in lowland areas of the Hawaiian Islands by removing invasive species out-planting native plants after fire.

  15. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  16. Relatively Recent Volcanism on Oahu, Hawaii: New U-series and Paleomagnetic Age Constraints on the Hanauma Bay Eruption

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Jurado-Chichay, Z.; Urrutia-Fucugauchi, J.

    2002-12-01

    The Koko Rift Zone (KRZ), eastern Oahu, is generally regarded as among the youngest volcanic features on the island. Previous workers have suggested that the 9 or 10 vents of this rift erupted near-simultaneously. However, K-Ar data in the literature (32-39 ka vs 320 ka) provide only general guidance on the youthfulness of these eruptions. We present new age constraints on KRZ volcanism using deposits of the phreatomagmatic eruption that produced Hanauma Bay (a popular snorkeling spot) and spatially associated lava flows. Numerous continuous basaltic ash units within the walls of Hanauma crater contain lithic fragments of well-preserved coral reef, beach rock, and marine mollusks, indicating that the eruption occurred in a near shore environment. 238U-234U-230Th dating of coral clasts in the deposit demonstrates that the eruption breached reef of MIS stage 7 age (200 +/- 30 ka), thereby ruling out the K-Ar age of 320 ka. U-series nuclides in "normal" MIS 7 coral lithics are indistinguishable from those in the island encircling Waianae Reef of the same age. However, U-series components in some originally aragonitic coral clasts were offset during the eruption when the rims recrystallized to calcite. 87Sr/86Sr, 234U/238U and Sr and U concentration indicate chemical mixing with host basaltic ash during this event, from which potential ages of the eruption can be constructed using isochron methods. More modeling of the data remains to be done but our preliminary estimate places the eruption at less than 100 ka. This result is consistent with new data on paleointensity and paleomagnetic secular variation within the lava flows exposed in or around the crater. This U-series dating approach should prove useful for eruptions in other locales where carbonate bioclast lithics are present in the deposits.

  17. A new species of Cyanea (Campanulaceae, Lobelioideae), from the Ko'olau Mountains of O'ahu, Hawaiian Islands.

    PubMed

    Sporck-Koehler, Margaret J; Koehler, Tobias B; Marquez, Sebastian N; Waite, Mashuri; Williams, Adam M

    2015-01-01

    Cyaneakonahuanuiensis Sporck-Koehler, M. Waite, A.M. Williams, sp. nov., a recently documented, narrowly endemic species from the Hawaiian Island of O'ahu, is described and illustrated with photographs from the field. The closest likely relatives to the species, current conservation needs, and management future are discussed. It is currently known from 20 mature plants from two subpopulations and is restricted to a drainage below the Kōnāhua-nui summit (K1), the highest summit of the Ko'olau Mountains, located on Windward O'ahu. It differs from all other Cyanea species by its combination of densely pubescent leaves, petioles, and flowers; sparsely pubescent to glabrous stems, long calyx lobes, and staminal column being adnate to the corolla.

  18. Spatially disaggregated disease transmission risk: land cover, land use and risk of dengue transmission on the island of Oahu

    PubMed Central

    Vanwambeke, Sophie O.; Bennett, Shannon N.; Kapan, Durrell D.

    2010-01-01

    Summary Vector-borne diseases persist in transmission systems that usually comprise heterogeneously distributed vectors and hosts leading to a highly heterogeneous case distribution. In this study, we build on principles of classical mathematical epidemiology to investigate spatial heterogeneity of disease risk for vector-borne diseases. Land cover delineates habitat suitability for vectors, and land use determines the spatial distribution of humans. We focus on the risk of exposure for dengue transmission on the Hawaiian island of Oahu, where the vector Aedes albopictus is well established and areas of dense human population exist. In Hawai'i, dengue virus is generally absent, but occasionally flares up when introduced. It is therefore relevant to investigate risk, but difficult to do based on disease incidence data. Based on publicly available data (land cover, land use, census data, surveillance mosquito trapping), we map the spatial distribution of vectors and human hosts, and finally overlay them to produce a vector-to-host ratio map. The resulting high-resolution maps indicate a high spatial variability in vector-to-host ratio suggesting that risk of exposure is spatially heterogeneous and varies according to land cover and land use. Introduction The distribution of vector-borne diseases tends to be highly spatially heterogeneous, varying according to the often-heterogeneous spatial distribution of transmission systems components: vectors, pathogens, and hosts. Vectors and hosts depend on spatially diverse environmental conditions, including land cover. Different land uses modify contact of susceptible humans with infectious vectors (Vanwambeke et al., 2007a), and modify human cases distribution (Vanwambeke et al., 2006, Linard et al., 2007, Norris, 2004). Heterogeneity in the risk of disease transmission results from spatial heterogeneity in both land cover and land use. Understanding sources of spatial heterogeneity can contribute to disease prevention and

  19. 78 FR 27124 - Pacific Ocean Off the Kekaha Range Facility at Barking Sands, Island of Kauai, Hawaii; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Barking Sands, Island of Kauai, Hawaii; Danger Zone AGENCY: U.S. Army Corps of Engineers, DoD. ACTION... Facility, Barking Sands, Island of Kauai, Hawaii. The proposed amendment is necessary for the Hawaii Army... waters of the Pacific Ocean off the Kekaha Range Facility at Barking Sands, Island of Kauai, Hawaii. The...

  20. Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84

    SciTech Connect

    Yamane, C.M.; Lum, M.G.

    1985-01-01

    The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the US EPAs recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides. No statistically significant relationships were found between quantity of runoff and concentration of water quality constituents. A first flush effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. 28 refs., 10 figs., 7 tabs.

  1. Hoea Ea: Land Education and Food Sovereignty in Hawaii

    ERIC Educational Resources Information Center

    Meyer, Manulani Aluli

    2014-01-01

    This short piece offers two literal and figurative snapshots of what land education looks like in action in Hawaii. The first snapshot depicts a contemporary example of Indigenous Hawaiian taro cultivation in the Limahuli valley on the island of Kauai. The second snapshot illustrates the food sovereignty movement in Waianae, Oahu located at the…

  2. Hoea Ea: Land Education and Food Sovereignty in Hawaii

    ERIC Educational Resources Information Center

    Meyer, Manulani Aluli

    2014-01-01

    This short piece offers two literal and figurative snapshots of what land education looks like in action in Hawaii. The first snapshot depicts a contemporary example of Indigenous Hawaiian taro cultivation in the Limahuli valley on the island of Kauai. The second snapshot illustrates the food sovereignty movement in Waianae, Oahu located at the…

  3. Plantings on the forest reserves of Hawaii, 1910-1960

    Treesearch

    Roger G. Skolmen

    1980-01-01

    This is a listing of the recorded plantings made by the Hawaii division of forestry between the years 1910 and 1960 on government and privately-owned lands within the forest reserves and on certain islands offshore of Oahu. The listing provides: scientific and common names of each plant, type of plant, nomenclature reference, suitability of the plant for Hawaii’s...

  4. 40-MW(e) OTEC (Ocean Thermal Energy Conversion) plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. Technical memo

    SciTech Connect

    Harrison, J.T.

    1987-02-01

    Construction and operation of an Ocean Thermal Energy Conversion (OTEC) facility will affect marine, terrestrial, and atmospheric environments. The nature and degree of OTEC environmental impacts have been subjects of numerous studies and reports. The proposed 40-MWe OTEC plant at Kahe Point, Oahu, Hawaii has been the focus of much of the work. The first section provides a summary of pertinent design features of the proposed plant, including standard operating parameters. Next, salient elements of the biological oceanography in the region of the proposed development are summarized. The following sections discuss expected impacts of construction and operation of the plant, and finally, significant aspects of modeling studies conducted in support of the Kahe OTEC plant development are presented.

  5. Volcanic and seismic hazards on the Island of Hawaii

    USGS Publications Warehouse

    ,

    1990-01-01

    The eruptions of volcanoes often have direct, dramatic effects on the lives of people and on their property. People who live on or near active volcanoes can benefit greatly from clear, scientific information about the volcanic and seismic hazards of the area. This booklet provides such information for the residents of Hawaii so they may effectively deal with the special geologic hazards of the island. Identifying and evaluating possible geologic hazards is one of the principal roles of the U.S. Geological Survey (USGS) and its Hawaiian Volcano Observatory. When USGS scientists recognize a potential hazard, such as an impending eruption, they notify the appropriate government officials, who in turn are responsible for advising the public to evacuate certain areas or to take other actions to insure their safety. This booklet was prepared in cooperation with the Hawaii County Civil Defense Agency.

  6. Emerging energy technologies in an island environment: Hawaii. [Review

    SciTech Connect

    Shupe, J.W.; Weingart, J.M.

    1980-01-01

    Island communities have energy-supply problems that differ appreciably from those of major land masses. There is usually an absence of local fossil fuel reserves, such as oil, natural gas and coal, as well as a limited infrastructure for delivering energy. This lack of flexibility requires island communities to satisfy their energy demands with indigenous resources, plus whatever energy supply is imported by sea. In recent years, the energy needs of many island communities have been met almost entirely by seaborne petroleum. As imported oil has become increasingly more expensive and less secure, greater effort has been directed by some island communities toward the development of their local energy resources. A case study illustrates the progress made to date in one island area - Hawaii - in minimizing its near-total dependence on seaborne petroleum. However, there should be some spin-off of this experience to regional energy planning, not only to other island communities, but also to regions within developing countries that share many of these characteristics. 34 references, 6 figures, 6 tables.

  7. Effects of Surface-Water Diversion and Ground-Water Withdrawal on Streamflow and Habitat, Punaluu Stream, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Wolff, Reuben H.; Perreault, Jeff A.

    2006-01-01

    The surface- and ground-water resources of the Punaluu area of northeast Oahu, Hawaii, have been and continue to be important for cultural, domestic, agricultural, recreational, and aesthetic purposes. Punaluu Stream flows perennially because rain falls frequently in the area and ground water discharges to the stream. Flow in Punaluu Stream is reduced by the direct diversion of water for off-stream uses and possibly from the withdrawal of ground water near the stream. Punaluu Ditch diverts water from Punaluu Stream near an altitude of 210 feet. During the recent period 1995-2004, discharge in Punaluu Stream that was equaled or exceeded 50 percent of the time (median or Q50 discharge) and discharge that was equaled or exceeded 95 percent of the time (Q95 discharge) measured immediately upstream from the Punaluu Ditch diversion intake, respectively, were 18 and 13 cubic feet per second, whereas the Q50 and Q95 discharges measured immediately downstream from the diversion intake, respectively, were 7.0 and 1.3 cubic feet per second. Thus, near an altitude of 210 feet, diversion of surface water by the Punaluu Ditch caused the Q50 discharge in Punaluu Stream to be reduced to 39 percent of the natural Q50 discharge, and the Q95 discharge was reduced to 10 percent of the natural value. The relative effects of the Punaluu Ditch diversion on flow in Punaluu Stream decreased in a downstream direction, mainly because of the compensating effects of tributary inflows and ditch return flows. At an altitude of 10 feet, the Q50 discharge in Punaluu Stream was 82 percent of the natural Q50 discharge, and the Q95 discharge was 69 percent of the natural value. Changes in streamflow affect the quantity and quality of physical habitat used by native stream fauna. The Physical Habitat Simulation System (PHABSIM) approach was used to evaluate the effects of different diversion scenarios on physical habitat for selected native species in Punaluu Stream. Habitat-suitability criteria

  8. 15 CFR Appendix A to Subpart Q of... - Hawaiian Islands Humpback Whale, National Marine Sanctuary Boundary Description and Coordinates...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supplied by State of Hawaii through the Office of Planning GIS Office, the NOAA and State of Hawaii agreed...,000 scale NOAA nautical charts-19327—West Coast of Hawaii (9th ED, 4/29/89), 19347—Channels between... (8th ED, 7/01/1989), 19357—Island of Oahu (20th ED, 9/21/1996), and 19381—Island of Kauai (8th ED, 7/17...

  9. 15 CFR Appendix A to Subpart Q of... - Hawaiian Islands Humpback Whale, National Marine Sanctuary Boundary Description and Coordinates...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supplied by State of Hawaii through the Office of Planning GIS Office, the NOAA and State of Hawaii agreed...,000 scale NOAA nautical charts-19327—West Coast of Hawaii (9th ED, 4/29/89), 19347—Channels between... (8th ED, 7/01/1989), 19357—Island of Oahu (20th ED, 9/21/1996), and 19381—Island of Kauai (8th ED, 7/17...

  10. 15 CFR Appendix A to Subpart Q of... - Hawaiian Islands Humpback Whale, National Marine Sanctuary Boundary Description and Coordinates...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supplied by State of Hawaii through the Office of Planning GIS Office, the NOAA and State of Hawaii agreed...,000 scale NOAA nautical charts-19327—West Coast of Hawaii (9th ED, 4/29/89), 19347—Channels between... (8th ED, 7/01/1989), 19357—Island of Oahu (20th ED, 9/21/1996), and 19381—Island of Kauai (8th ED, 7/17...

  11. 15 CFR Appendix A to Subpart Q of... - Hawaiian Islands Humpback Whale, National Marine Sanctuary Boundary Description and Coordinates...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supplied by State of Hawaii through the Office of Planning GIS Office, the NOAA and State of Hawaii agreed...,000 scale NOAA nautical charts-19327—West Coast of Hawaii (9th ED, 4/29/89), 19347—Channels between... (8th ED, 7/01/1989), 19357—Island of Oahu (20th ED, 9/21/1996), and 19381—Island of Kauai (8th ED, 7/17...

  12. Regional Localization with the Hawaii Island Infrasound Network

    NASA Astrophysics Data System (ADS)

    Perttu, A. B.; Garces, M. A.; Thelen, W. A.

    2013-12-01

    The Big Island of Hawaii is home to an extensive network of infrasound arrays, with additional arrays in Maui and Kauai. Four of the six Hawaii arrays are focused on Kilauea volcano. This project examines several methods for estimating source location, onset time, duration, and source energetics from regional infrasonic signals, with an emphasis on improving signal characterization. Diverse persistent natural and anthropogenic regional sources provide a data set for addressing localization with the Hawaii network. Explosions at the Pohakuloa Training Area, rock falls within the Halema'uma'u vent, and a repetitive unknown signal off the coast of Maui supply transient signals with known and unknown locations. In addition, Halema'uma'u and Pu'u O'o vents both produce infrasonic tremor with known locations. Well-constrained signal discrimination and characterization is essential for good location results. This paper presents progress in signal processing, feature extraction, and event association with standardized, self-similar, logarithmic time-frequency multiresolution algorithms. The Infrasonic Energy, Nth Octave (INFERNO) energy estimation suite of Garces (2013) is used in conjunction with the PMCC4 array processing algorithm to extract standardized signal features and parameters for improved regional association, localization, and source characterization.

  13. Policy Dialog on the Right of Everyone in Hawaii to Communicate: An Informal Report by and for the Dialog Participants. Communication in Hawaii Series Report Number 2.

    ERIC Educational Resources Information Center

    Harms, L. S., Ed.; And Others

    In this informal report, all but a few of the pages were written after the dialog sessions of March and April 1976, held on four of the Hawaiian Islands--Kauai, Oahu, Maui, and Hawaii. All of the selections were written by participants in the dialogs. The task of the dialog sessions was to build an understanding of the specific implications of an…

  14. Digital database of the geologic map of the island of Hawai'i [Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Wolfe, Edward W.; Morris, Jean

    2006-01-01

    This online publication (DS 144) provides the digital database for the printed map by Edward W. Wolfe and Jean Morris (I-2524-A; 1996). This digital database contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2524-A (available only in paper form; see http://pubs.er.usgs.gov/pubs/i/i2524A). The database contains the distribution and relationships of volcanic and surficial-sedimentary deposits on the island of Hawai‘i. This dataset represents the geologic history for the five volcanoes that comprise the Island of Hawai'i. The volcanoes are Kohala, Mauna Kea, Hualalai, Mauna Loa and Kīlauea.This database of the geologic map contributes to understanding the geologic history of the Island of Hawai‘i and provides the basis for understanding long-term volcanic processes in an intra-plate ocean island volcanic system. In addition the database also serves as a basis for producing volcanic hazards assessment for the island of Hawai‘i. Furthermore it serves as a base layer to be used for interdisciplinary research.This online publication consists of a digital database of the geologic map, an explanatory pamphlet, description of map units, correlation of map units diagram, and images for plotting. Geologic mapping was compiled at a scale of 1:100,000 for the entire mapping area. The geologic mapping was compiled as a digital geologic database in ArcInfo GIS format.

  15. Exploring the hypothesis of ethnic practice as social capital: violence among Asian/Pacific Islander youth in Hawaii.

    PubMed

    Spencer, James H; Irwin, Katherine; Umemoto, Karen N; Garcia-Santiago, Orlando; Nishimura, Stephanie T; Hishinuma, Earl S; Choi-Misailidis, Soojean

    2009-11-01

    Studies of youth violence have usually examined social capital using qualitative methods, but remain limited by small sample sizes. In addition, few studies examine violence among Asian/Pacific Islander (API) youth, even though they are one of the fastest-growing youth populations in the USA. To contribute to a better understanding of culture and ethnicity in youth violence among Asian Americans and Pacific Islanders by quantifying ethnic forms of social capital. We use an n = 326 sample of three API groups from Oahu, Hawaii. Defining social capital as ethnic practice, we test Filipino, Hawaiian and Samoan forms of youth social capital on intimate and non-intimate violence. Bivariate findings associate lower violence with language ability among Filipinos, coming-of-age practices among Hawaiians, and community leader engagement among Samoans. Multivariate tests showed language to be the strongest correlation. Bivariate tests also suggested potentially risky forms of social capital. results lead us to hypothesize that social capital that deliberately places individuals within their respective ethnic communities are risk-reducing, as are those that promote formal ethnic community structures. Those that formalize ethnic practice and social capital into commercial activities may be associated with higher risk of violence. Given the relatively small sample size and the exploratory approach for the present investigation, further research is needed to determine whether the findings can be replicated and to extend the findings of the present preliminary study.

  16. Wayfinding in Pacific Linguascapes: Negotiating Tokelau Linguistic Identities in Hawai'i

    ERIC Educational Resources Information Center

    Glenn, Akiemi

    2012-01-01

    This dissertation examines the linguistic practices of Tokelau people resettled on Hawai'i's island of O'ahu as they engage in the work of maintaining their heritage language. The focus of the research is on the community of practice that has developed around the language and culture school Te Lumanaki o Tokelau i Amelika ("The Future of…

  17. A new species of the plant bug genus Rubrocuneocoris Schuh (Heteroptera: Miridae: Phylinae) from Hawaii

    USDA-ARS?s Scientific Manuscript database

    The new non-native species Rubrocuneocoris calvertae, n. sp. (Heteroptera: Miridae: Phylinae), found on the flowers of the invasive parasol leaf tree, Macaranga tanarius (L.) Müll. Arg., is described from Oahu and Hawaii counties in the Hawaiian Islands. Because the nearest relatives of this new sp...

  18. Wayfinding in Pacific Linguascapes: Negotiating Tokelau Linguistic Identities in Hawai'i

    ERIC Educational Resources Information Center

    Glenn, Akiemi

    2012-01-01

    This dissertation examines the linguistic practices of Tokelau people resettled on Hawai'i's island of O'ahu as they engage in the work of maintaining their heritage language. The focus of the research is on the community of practice that has developed around the language and culture school Te Lumanaki o Tokelau i Amelika ("The Future of…

  19. Coastal circulation and sediment dynamics in Maunalua Bay, Oahu, Hawaii, measurements of waves, currents, temperature, salinity, and turbidity; November 2008-February 2009

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.

    2010-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Maunalua Bay, southern Oahu, Hawaii, during the 2008-2009 winter to better understand coastal circulation, water-column properties, and sediment dynamics during a range of conditions (trade winds, kona storms, relaxation of trade winds, and south swells). A series of bottom-mounted instrument packages were deployed in water depths of 20 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water-column properties within the bay. These measurements support the ongoing process studies being done as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal of these studies is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Project Objectives The objective of this study was to understand the temporal variations in currents, waves, tides, temperature, salinity and turbidity within a coral-lined embayment that receives periodic discharges of freshwater and sediment from multiple terrestrial sources in the Maunalua Bay. Instrument packages were deployed for a three-month period during the 2008-2009 winter and a series of vertical profiles were collected in November 2008, and again in February 2009, to characterize water-column properties within the bay. Measurements of flow and water-column properties in Maunalua Bay provided insight into the potential fate of terrestrial sediment, nutrient, or contaminant delivered to the marine environment and coral larval transport within the embayment. Such data are useful for providing baseline information for future watershed decisions and for establishing guidelines for

  20. Volcano growth and evolution of the island of Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    1992-01-01

    The seven volcanoes comprising the island of Hawaii and its submarine base are, in order of growth, Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi. The first four have completed their shield-building stage, and the timing of this event can be determined from the depth of the slope break associated with the end of shield building, calibrated using the ages and depths of a series of dated submerged coral reefs off northwest Hawaii. On each volcano, the transition from eruption of tholeiitic to alkalic lava occurs near the end of shield building. The rate of southeastern progression of the end of shield building in the interval from Haleakala to Hualalai is about 13 cm/yr. Based on this rate and an average spacing of volcanoes on each loci line of 40-60km, the volcanoes required about 600 thousand years to grow from the ocean floor to the time of the end of shield building. They arrive at the ocean surface about midway through this period. -from Authors

  1. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  2. 14 CFR 399.34 - Intra-Hawaii and Intra-Puerto Rico/Virgin Islands fare flexibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Intra-Hawaii and Intra-Puerto Rico/Virgin... Relating to Rates and Tariffs § 399.34 Intra-Hawaii and Intra-Puerto Rico/Virgin Islands fare flexibility. For scheduled service within Hawaii, and within and between Puerto Rico and the Virgin Islands...

  3. 14 CFR 399.34 - Intra-Hawaii and Intra-Puerto Rico/Virgin Islands fare flexibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Intra-Hawaii and Intra-Puerto Rico/Virgin... Relating to Rates and Tariffs § 399.34 Intra-Hawaii and Intra-Puerto Rico/Virgin Islands fare flexibility. For scheduled service within Hawaii, and within and between Puerto Rico and the Virgin Islands...

  4. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  5. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  6. 33 CFR 334.1390 - Pacific Ocean off the Pacific Missile Range Facility at Barking Sands, Island of Kauai, Hawaii...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Missile Range Facility at Barking Sands, Island of Kauai, Hawaii; danger zone. 334.1390 Section 334.1390... Barking Sands, Island of Kauai, Hawaii; danger zone. (a) The danger zone. All navigable waters within an... Facility, Hawaii and such agencies or persons as he or she may designate. ...

  7. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  8. 78 FR 25243 - Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... and Plants; Listing 15 Species on Hawaii Island as Endangered and Designating Critical Habitat for 3... of these 15 species on the Hawaiian island of Hawaii, and to designate critical habitat for 2 plant... information meeting in Kailua-Kona, Hawaii, on Wednesday, May 15, 2013, from 3 p.m. to 5 p.m. (see ADDRESSES...

  9. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  10. Analysis of High-Penetration Levels of Photovoltaics into the Distribution Grid on Oahu, Hawaii: Detailed Analysis of HECO Feeder WF1

    SciTech Connect

    Stewart, E.; MacPherson, J.; Vasilic, S.; Nakafuji, D.; Aukai, T.

    2013-05-01

    Renewable generation is growing at a rapid rate due to the incentives available and the aggressive renewable portfolio standard targets implemented by state governments. Distributed generation in particular is seeing the fastest growth among renewable energy projects, and is directly related to the incentives. Hawaii has the highest electricity costs in the country due to the high percentage of oil burning steam generation, and therefore has some of the highest penetration of distributed PV in the nation. The High Penetration PV project on Oahu aims to understand the effects of high penetration PV on the distribution level, to identify penetration levels creating disturbances on the circuit, and to offer mitigating solutions based on model results. Power flow models are validated using data collected from solar resources and load monitors deployed throughout the circuit. Existing interconnection methods and standards are evaluated in these emerging high penetration scenarios. A key finding is a shift in the level of detail to be considered and moving away from steady-state peak time analysis towards dynamic and time varying simulations. Each level of normal interconnection study is evaluated and enhanced to a new level of detail, allowing full understanding of each issue.

  11. The Importance of Sampling Strategies on AMS Determination of Dykes II. Further Examples from the Kapaa Quarry, Koolau Volcano, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Mendoza-Borunda, R.; Herrero-Bervera, E.; Canon-Tapia, E.

    2012-12-01

    Recent work has suggested the convenience of dyke sampling along several profiles parallel and perpendicular to its walls to increase the probability of determining a geologically significant magma flow direction using anisotropy of magnetic susceptibility (AMS) measurements. For this work, we have resampled in great detail some dykes from the Kapaa Quarry, Koolau Volcano in Oahu Hawaii, comparing the results of a more detailed sampling scheme with those obtained previously with a traditional sampling scheme. In addition to the AMS results we will show magnetic properties, including magnetic grain sizes, Curie points and AMS measured at two different frequencies on a new MFK1-FA Spinner Kappabridge. Our results thus far provide further empirical evidence supporting the occurrence of a definite cyclic fabric acquisition during the emplacement of at least some of the dykes. This cyclic behavior can be captured using the new sampling scheme, but might be easily overlooked if the simple, more traditional sampling scheme is used. Consequently, previous claims concerning the advantages of adopting a more complex sampling scheme are justified since this approach can serve to reduce the uncertainty in the interpretation of AMS results.

  12. An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O`ahu, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hurley, Kaleonani K. C.; Timmers, Molly A.; Godwin, L. Scott; Copus, Joshua M.; Skillings, Derek J.; Toonen, Robert J.

    2016-03-01

    Shallow coral reefs are extensively studied but, although scleractinian corals have been recorded to 165 m, little is known about other mesophotic coral reef ecosystem (MCE) inhabitants. Brachyuran crabs fill many ecological and trophic niches on reefs, making them ideal candidates for evaluating species composition among depths to ask whether MCEs host the same communities as shallower reef communities that have been well studied. Here we deployed autonomous reef monitoring structures for 2 yr on the south shore of O`ahu along a depth gradient (12, 30, 60, and 90 m) to sample and assess brachyuran crab communities. A total of 663 brachyuran crabs representing 69 morphospecies (16 families) were found. Community composition was not significantly different within depths, but was highly stratified by depth. Each depth was distinct, but the 30 and 60 m depths were least dissimilar from one another. We show that deeper reefs host significantly different brachyuran communities, and at much lower total abundance, than shallow reefs in Hawai`i, with 4-27 unique morphospecies per depth and only 3 of 69 morphospecies (~4 %) occurring across the entire depth range sampled.

  13. The effects of pumpage, irrigation return, and regional ground-water flow on the water quality at Waiawa water tunnel, Oahu, Hawaii

    USGS Publications Warehouse

    Eyre, P.R.

    1983-01-01

    Waiawa shaft is a 1,700-foot long water tunnel which draws water from the top of the Pearl Harbor Ghyben-Herzberg ground-water lens, Oahu, Hawaii. The application of brackish irrigation water to sugarcane fields overlying Waiawa shaft, combined with relatively low pumping rates at the shaft from 1978 to 1980, caused the chloride concentration of water produced by Waiawa shaft to rise to 290 milligrams per liter. Time-series analyses, pumping tests and analyses of water samples show that a zone of degraded water lies at the top of the lens. This zone is mixed in significantly different proportions with the underlying fresher water depending on the pumping rate at Waiawa shaft. The chloride concentration of water in the Waiawa shaft can generally be kept below 250 milligrams per liter for the next few years, if pumping rates of about 15 million gallons per day are maintained. The use of managed pumping to control the chloride problem over the long term is uncertain owing to the possible increase in chloride concentration of the irrigation water. Based on ground-water flow rates and analogy to nearby wells, the chloride concentration of Waiawa shaft 's water will decrease to less than 100 milligrams per liter in 2 to 3 years if the use of brackish irrigation water is discontinued. (USGS)

  14. Recharge Data for the Islands of Kauai, Lanai and Molokai, Hawaii

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for the islands of Kauai, Lanai and Molokai in shapefile format. These data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. (for Kauai, Lanai, Molokai). Shade, P.J., 1995, Water Budget for the Island of Kauai, Hawaii, USGS Water-Resources Investigations Report 95-4128, 25 p. (for Kauai). Izuka, S.K. and D.S. Oki, 2002 Numerical simulation of ground-water withdrawals in the Southern Lihue Basin, Kauai, Hawaii, U.S. Geologic Survey Water-Resources Investigations Report 01-4200, 52 pgs. (for Kauai). Hardy, W.R., 1996, A Numerical Groundwater Model for the Island of Lanai, Hawaii - CWRM Report No., CWRM-1, Commission on Water Resources Management, Department of Natural Resources, State of Hawaii, Honolulu, HI. (for Lanai). Oki, D.S., 1997, Geohydrology and numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii, USGS Water-Resources Investigations Report 97-4176, 62 p. (for Molokai).

  15. Appendix 1: Regional summaries - Hawaii and U.S Affiliated Pacific Islands

    Treesearch

    Christian Giardina

    2012-01-01

    Hawaii and the U.S.-affiliated Pacific islands, including Guam, American Samoa, Commonwealth of Northern Mariana Islands, Federated States of Micronesia, Republic of Palau, and the Marshall Islands (fig. A1-3), contain a high diversity of flora, fauna, ecosystems, geographies, and cultures, with climates ranging from lowland tropical to alpine desert. Forest ecosystems...

  16. Hawai'i Island Health Workforce Assessment 2008.

    PubMed

    Withy, Kelley; Andaya, January; Vitousek, Sharon; Sakamoto, David

    2009-12-01

    Anecdotal reports of a doctor shortage on the Big Island have been circulating for years, but a detailed assessment of the health care workforce had not previously been accomplished. The Hawai'i Island Health Workforce Assessment used licensure data, focus groups, telephone follow up to provider offices, national estimates of average provider supply and analysis of insurance claims data to assess the extent of the existing medical and mental health workforce, approximate how many additional providers might be effectively utilized, develop a population-based estimate of future demand and identify causes and potential solutions for the challenges faced. As of February 2008, the researchers were able to locate 310 practicing physicians, 36 nurse practitioners, 6 physician assistants, 51 psychologists, 57 social workers and 42 other mental health providers. Based on national averages, claims analysis and focus groups, the Island could use approximately 45 additional medical professionals to care for the 85% of the population that is medically insured; a larger number to care for the entire population. Ascertaining a complete roster of mental health professionals was not possible using this methodology. The researchers compared the current supply of physicians with the national average of physicians to population and the number of visits to different specialists for the year 2006 and found specific regional shortages of providers. The focus groups concentrated on solutions to the workforce crisis that include the formation of a well-organized, broad collaboration to coordinate recruitment efforts, expand and strengthen retention and renewal activities, and reinvigorate the health profession pipeline and training opportunities. The researchers recommend collaboration between the community, government, business, health center care providers, hospitals and centers to develop a plan before the tenuous state of healthcare on the Big Island worsens. In addition, continued

  17. 78 FR 9327 - Hawaii Crustacean Fisheries; 2013 Northwestern Hawaiian Islands Lobster Harvest Guideline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XC453 Hawaii Crustacean Fisheries; 2013 Northwestern Hawaiian Islands Lobster Harvest Guideline AGENCY: National Marine Fisheries...

  18. 76 FR 77214 - Hawaii Crustacean Fisheries; 2012 Northwestern Hawaiian Islands Lobster Harvest Guideline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA838 Hawaii Crustacean Fisheries; 2012 Northwestern Hawaiian Islands Lobster Harvest Guideline AGENCY: National Marine Fisheries Service...

  19. 76 FR 4551 - Hawaii Crustacean Fisheries; 2011 Northwestern Hawaiian Islands Lobster Harvest Guideline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XA159 Hawaii Crustacean Fisheries; 2011 Northwestern Hawaiian Islands Lobster Harvest Guideline AGENCY: National Marine Fisheries...

  20. EPA News Advisory: ASIG Sand Island Hawaii Fuel Spill Response Update 2/12/15

    EPA Pesticide Factsheets

    (02/12/15) HONOLULU - The U.S. Environmental Protection Agency and the Hawaii State Department of Health (DOH) continue response operations to recover spilled jet fuel at the Airport Service Group International (ASIG) facility on Sand Island Access

  1. EPA News Advisory: ASIG Sand Island Hawaii Fuel Spill Response Update 2/9/15

    EPA Pesticide Factsheets

    (02/09/15) HONOLULU - The U.S. Environmental Protection Agency and the Hawaii State Department of Health (DOH) continue response operations to recover spilled jet fuel at the Airport Service Group International (ASIG) facility on Sand Island Access

  2. EPA News Advisory: ASIG Sand Island Hawaii Fuel Spill Response Update 2/6/15

    EPA Pesticide Factsheets

    (02/06/15) HONOLULU - The U.S. Environmental Protection Agency and the Hawaii State Department of Health (DOH) continue response operations to recover spilled jet fuel at the Airport Service Group International (ASIG) facility on Sand Island Access

  3. EPA News Advisory: ASIG Sand Island Hawaii Fuel Spill Response Update 2/2/15

    EPA Pesticide Factsheets

    (02/02/15) HONOLULU - The U.S. Environmental Protection Agency and the Hawaii State Department of Health (DOH) continue response operations to recover spilled jet fuel at the Airport Service Group International (ASIG) facility on Sand Island

  4. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    PubMed Central

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  5. U.S. EPA Awards $117,129 to the Hawaii Department of Health to Retrofit Trucks

    EPA Pesticide Factsheets

    (10/22/15) SAN FRANCISCO - The U.S. Environmental Protection Agency has awarded $117,129 to the Hawaii Department of Health to retrofit four short-haul trucks with diesel particulate filters on the Island of Oahu. This project will reduce human heal

  6. Ground Water Atlas of the United States: Segment 13, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, James A.; Whitehead, R.L.; Oki, Delwyn S.; Gingerich, Stephen B.; Olcott, Perry G.

    1997-01-01

    and 1 79 degrees west longitude and about 19 to 28 degrees north latitude. The main inhabited islands are at the southeastern end of the group (fig. 31 ); not all the small islands, reefs, and shoals included in the State are shown. The Hawaiian islands are geologically youngest in the southeast and oldest in the northwest. This report discusses only the eight largest islands near the southeastern end of the group; these eight main islands account for practically all of the 6,426-square-mile land area of the State. The eight islands and their approximate size, in square miles, from southeast to northwest are Hawaii, 4 ,021; Maui, 728; Kahoolawe, 45; Lanai, 141; Molokai, 259; Oahu, 603; Kauai, 553; and Niihau, 71. The total resident population in 1995 was 1, 179,198, of which about 75 percent were on the island of Oahu. Honolulu, which is on Oahu, is the largest and most developed city and had a population of 369,485 in 1995. In addition to the resident population, a visitor population of about 150,000 has typically been present at any given time during the 1990's. Many of these visitors stay in Honolulu. The State Land Use Commission is responsible for classifying the lands of the State into one of four categories called districts: conservation, agricultural, urban, or rural (fig. 32). In 1995, conservation, agricultural, urban, and rural districts accounted for about 48, 47, 5, and 0.2 percent of the land area in the State, respectively. Conservation districts include areas necessary for protecting the State's watersheds and water resources and are typically located in high-altitude, high-rainfall areas. Much of the urban development in Hawaii is in the lowland coastal areas of each island. Agricultural irrigation can place large demands on the water resources; prior to the 1990's, one of the largest uses of water was for sugarcane irrigation. The five largest islands (Hawaii, Maui, Molokai, Oahu, and Kauai) have extensive areas of mountainous land where urbanization

  7. Estimated Water Use in 1990, Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    The estimated total quantity of freshwater withdrawn on the island of Kauai, Hawaii, in 1990 was 370.84 million gallons per day of which 46.29 million gallons per day (12 percent) was from ground-water sources, and 324.55 million gallons per day (88 percent) was from surface-water sources. An additional estimated 40.94 million gallons per day of saline water was withdrawn for thermoelectric power generation. Agricultural irrigation was the principal use, accounting for 66 percent of the total freshwater withdrawals. Irrigation accounted for about 40 percent of the fresh ground-water withdrawals, followed by public supply, thermoelectric power generation, self-supplied domestic, self-supplied commercial, and self-supplied industrial withdrawals. Agricultural irrigation accounted for 69 percent of the total fresh surface-water withdrawals, followed by hydroelectric power generation, self-supplied industrial, public-supply and self-supplied livestock withdrawals. A comparison of water-use data for 1980 and 1990 shows total freshwater uses decreased during 1990 by slightly more than 100 million gallons per day because of decreased withdrawals for sugarcane irrigation and processing. During this time, increased domestic, commercial, and thermoelectric power usage reflects increases in the resident population and in tourism on the island.

  8. Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian Islands: Implications for an introduction pathway into California

    USDA-ARS?s Scientific Manuscript database

    Population genetic diversity of the oriental fruit fly, Bactrocera dorsalis, on the Hawaiian islands of Oahu, Maui, Kauai, and Hawaii (the Big Island) was estimated using DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. A total of 932 flies representing 36 sampled sites across...

  9. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  10. Infrasonic Monitoring Network on the Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, Weston; Garces, Milton; Cooper, Jennifer; Badger, Nickles; Perttu, Anna; Williams, Brian

    2013-04-01

    The USGS Hawaiian Volcano Observatory (HVO) with the participation of the University of Hawaii Infrasound Lab (ISLA) installed three new permanent infrasound arrays on the south half of the Island of Hawaii. Together with three existing permanent arrays maintained by ISLA, the current infrasound network around Kīlauea and Mauna Loa volcanoes is one of the most advanced of any volcano in the world. Open-vent volcanoes such as Kīlauea are particularly good infrasound emitters as lava spattering and unsteady gas release is common. The network was designed with two main goals in mind: 1) to monitor and study the infrasound sources associated with the ongoing Pu`u `Ō`ō and Halema'u'mau eruption, and 2) to detect in near real-time new eruptions at Mauna Loa or Kīlauea volcanoes. Each HVO array consists of 4 sensors, which form an equilateral triangle ~100 m on a side surrounding a central sensor. Three other permanent arrays maintained by ISLA (I59US, MENE, KHLU) have been operational since 2000, 2006, and 2009, respectively, and consist of a combination of Chaparral 25 and 50 sensors. Each infrasound instrument within the HVO arrays is built around an low- cost AllSensor MEMS sensor, which has higher noise characteristics than a Chaparral 25, but similar frequency response. ISLA also operates stations on Maui and Kauai that provide --statewide coverage. Since the full network has been established, we have recorded several infrasound signals including infrasonic tremor from Halema`uma`u, collapses from the craters of Halema`uma`u and Pu`u `Ō`ō, and other natural and anthropogenic infrasound from diverse sources on- island, offshore, and aloft. Future developments will include real-time detection, location, and identification of infrasonic signals for eruption notification. We hope to increase public awareness of volcanic infrasound by posting real-time locations on an interactive display, similar to how seismicity is currently reported. MENE data is presently

  11. Natural and Diverted Low-Flow Duration Discharges for Streams Affected by the Waiahole Ditch System, Windward O`ahu, Hawai`i

    USGS Publications Warehouse

    Yeung, Chiu W.; Fontaine, Richard A.

    2007-01-01

    For nearly a century, the Waiahole Ditch System has diverted an average of approximately 27 million gallons per day of water from the wet, northeastern part of windward O`ahu, Hawai`i, to the dry, central part of the island to meet irrigation needs. The system intercepts large amounts of dike-impounded ground water at high altitudes (above approximately 700 to 800 ft) that previously discharged to Waiahole (and its tributaries Waianu and Uwao), Waikane, and Kahana Streams through seeps and springs. Diversion of this ground water has significantly diminished low flows in these streams. Estimates of natural and diverted flows are needed by water managers for (1) setting permanent instream flow standards to protect, enhance, and reestablish beneficial instream uses of water in the diverted streams and (2) allocating the diverted water for instream and offstream uses. Data collected before construction of the Waiahole Ditch System reflect natural (undiverted) flow conditions. Natural low-flow duration discharges for percentiles ranging from 50 to 99 percent were estimated for four sites at altitudes of 75 to 320 feet in Waiahole Stream (and its tributaries Waianu and Uwao Streams), for six sites at altitudes of 10 to 220 feet in Waikane Stream, and for three sites at altitudes of 30 to 80 feet in Kahana Stream. Among the available low-flow estimates along each affected stream, the highest natural Q50 (median) flows on Waiahole (altitude 250 ft), Waianu (altitude 75 ft), Waikane (altitude 75 ft), and Kahana Streams (altitude 30 ft) are 13, 7.0, 5.5, and 22 million gallons per day, respectively. Q50 (median) is just one of five duration percentiles presented in this report to quantify low-flow discharges. All flow-duration estimates were adjusted to a common period of 1960-2004 (called the base period). Natural flow-duration estimates compared favorably with limited pre-ditch streamflow data available for Waiahole and Kahana Streams. Data collected since construction of

  12. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  13. Paleomagnetism and Magma Flow Direction in Dikes of the Wai'anae Volcano, O'ahu, Hawai'i Determined From Magnetic Fabric Studies

    NASA Astrophysics Data System (ADS)

    Gourdon, F.; Herrero-Bervera, E.; Valet, J. P.

    2002-12-01

    In order to investigate the volcanic evolution the plumbing and the triggering mechanisms of the catastrophic mass wasting that had occurred in the Wai'anae Volcano, O'ahu, Hawai'i we have undertaken a paleomagnetic and anisotropy of magnetic susceptibility (AMS) study of a set of dikes from the volcano. We have drilled a set of dikes and have recovered a minimum of 8 and up to 23 samples per intrusive. The width of the dikes ranges between 0.5 to 1.5 m. In terms of the paleomagnetic results, at least 8 samples per intrusive were stepwise demagnetized by a.f. from 5 to 100 mT. Companion specimens from the same core were demagnetized at 15 temperature steps. In both cases, demagnetization diagrams obtained with each technique showed a stable characteristic direction of remanence (ChRM) with no ambiguity. The ChRM was calculated using principal component analysis for the demagnetization diagrams with a well-defined component trending to the origin. No bias or systematic departure from the origin was accepted, and in all cases the ChRM relied on a minimum of seven successive directions isolated during stepwise demagnetization. In addition, low-field susceptibility vs temperature (k-T) and SIRM experiments were performed on at least one sample per intrusive. As a result of such tests, we were able to identify magnetite (at 575oC) and a low-temperature mineral phase at about 250-300o C, which probably reflects the presence of titanomagnetite with low Ti content as indicated by its large susceptibility. The determined directions of the intrusives resulted in normal and reversed polarities, indicating that such dikes were emplaced at different periods of time covering a gap of 350 kyrs. AMS was determined for all the studied dikes, and statistically significant AMS clusters were found in all of them. For all the lineated dikes, the mean maximum AMS (Kmax) coincides with the macroscopic lineations to within 10 to 20o. The AMS ellipsoid shape in about half of the samples is

  14. Streamflow and Suspended-Sediment Loads Before and During Highway Construction, North Halawa, Haiku, and Kamooalii Drainage Basins, Oahu, Hawaii, 1983-91

    USGS Publications Warehouse

    Hill, Barry R.

    1996-01-01

    Concern over potential effects from construction of the H-3 highway on Oahu, Hawaii, prompted a long-term study of streamflow and suspended-sediment transport at a network of five stream-gaging stations along the highway route. This report presents results for 1983-91, which included pre-construction and construction periods at all stream-gaging stations. Annual rainfall, streamflow, and suspended-sediment loads were generally higher during construction than before construction. Data collected before and during construction were compared using analysis of covariance to determine whether streamflow and suspended-sediment loads changed significantly during construction after accounting for effects of increased rainfall. Streamflow at stream-gaging stations was compared with streamflow at an index stream-gaging station unaffected by construction. Streamflow data were divided into low- and high-flow classes, and the two flow classes were analyzed separately. Low flows increased 117 percent during construction at one station. This increase probably was related to the removal of vegetation for highway construction. Low flows decreased 28 percent at another station, probably as a result of increased ground-water withdrawals and highway construction activities. No significant changes in low flows were detected at the other stations, and no significant changes in high flows were detected at any stations. Suspended-sediment loads increased significantly during construction at three stations. Highway construction contributed between 56 and 76 percent of the suspended-sediment loads measured at these stations during construction. Loads did not change significantly at a station downstream of a reservoir, and loads decreased at a station downstream of a drainage basin that was heavily used for agriculture before construction. Suspended-sediment concentrations were used to assess compliance with applicable State water-quality standards. State water-quality standards for suspended

  15. Environmental Resources of Selected Areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii (DRAFT)

    SciTech Connect

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17,1994 (Fed Regis. 5925638), withdrawing its notice of intent (Fed. Regis. 575433) of February 14,1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii (hereinafter referred to as Hawaii). Groundwater quality inside and outside the lower east rift zone (LERZ) of Kilauea is compared with that of meteoric water, seawater, and geothermal fluid. The degree of mixing between meteoric water, sea water, and geothermal water in and adjacent to the LERZ also is discussed. Finally, groundwater pathways and use in the Puna District are discussed. Most of the information contained herein is compiled from recent U.S. Geological Survey publications and open-file reports.

  16. Foliar mono- and sesquiterpene contents in relation to leaf economic spectrum in native and alien species in Oahu (Hawai'i).

    PubMed

    Sardans, Jordi; Llusià, Joan; Niinemets, Ulo; Owen, Sue; Peñuelas, Josep

    2010-02-01

    Capacity for terpene production may confer advantage in protection against abiotic stresses such as heat and drought, and also against herbivore and pathogen attack. Plant invasive success has been intense in the Hawaiian islands, but little is known about terpene content in native and alien plant species on these islands. We conducted a screening of leaf terpene concentrations in 35 native and 38 alien dominant plant species on Oahu island. Ten (29%) of the 35 native species and 15 (39%) of the 38 alien species contained terpenes in the leaves. This is the first report of terpene content for the ten native species, and for 10 of the 15 alien species. A total of 156 different terpenes (54 monoterpenes and 102 sesquiterpenes) were detected. Terpene content had no phylogenetic significance among the studied species. Alien species contained significantly more terpenes in leaves (average+/-SE=1965+/-367 microg g(-1)) than native species (830+/-227 microg g(-1)). Alien species showed significantly higher photosynthetic capacity, N content, and lower Leaf Mass Area (LMA) than native species, and showed higher total terpene leaf content per N and P leaf content. Alien species, thus, did not follow the expected pattern of "excess carbon" in comparison with native species. Instead, patterns were consistent with the "nutrient driven synthesis" hypothesis. Comparing alien and native species, the results also support the modified Evolution of Increased Competitive Ability (EICA) hypothesis that suggests that alien success may be favored by a defense system based on an increase in concentrations of less costly defenses (terpenes) against generalist herbivores.

  17. Hawaiian Island Archipelago

    NASA Image and Video Library

    1988-10-03

    STS026-43-082 (29 Sept. - 3 Oct. 1988) --- This 70mm northerly oriented frame over the Pacific Ocean features the Hawaiian Islands chain. The islands perturb the prevailing northeasterly winds producing extensive cloud wakes in the lee of the islands. Photo experts feel that atmospheric haze in the Hawaii wake is probably a result of the continuing eruptions of Kilauea volcano on the southeast coast. From the lower right corner in a diagonal directed upward to the north are the islands of Nihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, and Hawaii. This photo was shown during the post-flight press conference on October 11, 1988 by the STS-26 astronauts, who at one time during the flight wore Hawaiian attire to pay tribute to the working staff of the Hawaii tracking station.

  18. SKYLAB III - EARTH VIEWS (HAWAII)

    NASA Image and Video Library

    1973-10-05

    S73-34857 (July-September 1973) --- A composite of two photographs of the Island of Oahu, County of Honolulu, State of Hawaii, taken by one of the Skylab 3 crewmen from the Skylab space station in Earth orbit. The two pictures (SL3-128-3009 and SL3-128-3010) were taken with a hand-held 35mm Nikon camera, a 55/300mm lens and so-368 medium-speed Ektacrome film. Pearl Harbor is clearly visible. The city of Honolulu is located next to the triangle-shaped seaplane runway. Photo credit: NASA

  19. Rates of subsidence and relative sea level rise in the Hawaii Islands

    NASA Astrophysics Data System (ADS)

    Parker, Albert

    2016-12-01

    The major cause of the Hawaiian Islands coastal erosion is shown to be not global warming, but the sinking of the volcanic islands. The geologic "circle-of-life" beyond the Hawaiian hot spot is the true explanation of the beach erosion. The sea levels are slow rising and not accelerating worldwide as well as in the United States. In the specific of the Hawaii Islands, they have been decelerating over the last 3 decades because of the phasing of the multi-decadal oscillations for this area of the Pacific. There is therefore no evidence coastal erosion will double in the Hawaii by 2050 because of global warming.

  20. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  1. Alcohol and substance use prevention programs for youth in Hawaii and Pacific Islands: A literature review.

    PubMed

    Durand, Zoe; Cook, Angelie; Konishi, Minami; Nigg, Claudio

    2016-01-01

    This article provides a literature review of recent programs to prevent alcohol and substance use in Hawaii and Pacific Islander youths. Five programs for alcohol and substance use prevention among Hawaii and Pacific Islander youths were found in peer-reviewed literature. Of these, two focused on Native Hawaiians and/or other Pacific Islanders and three focused on overall youths in Hawaii. The main themes of these programs were increasing cultural pride, character development through personal efficacy and integrity, connecting youth to family and community, and being school- or community-centered. Two studies showed a decrease in substance use, one showed a change in knowledge, and two did not published outcomes. This review highlights a lack of evidence-based culturally appropriate options for preventing substance use by Native Hawaiian and Pacific Islander youth. Dialogue about best practices is needed and should be supported through publication of program evaluations.

  2. Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications for the oceanic mantle below Hawaii.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.

    1982-01-01

    These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.

  3. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periods of darkness, flashing red warning beacons will be displayed on the shore at Ulupau Crater. (4... will be indicated by the absence of any warning flags, pennants, or beacons displayed ashore. (5) The...

  4. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periods of darkness, flashing red warning beacons will be displayed on the shore at Ulupau Crater. (4... will be indicated by the absence of any warning flags, pennants, or beacons displayed ashore. (5) The...

  5. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  6. Effects of the H-3 Highway Stormwater Runoff on the Water Quality of Halawa Stream, Oahu, Hawaii, November 1998 to August 2004

    USGS Publications Warehouse

    Wolff, Reuben H.; Wong, Michael F.

    2008-01-01

    Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were

  7. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a...

  8. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a...

  9. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a...

  10. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a...

  11. 40 CFR 409.60 - Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane sugar...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Hamakua Coast of the Island of Hawaii raw cane sugar processing subcategory. 409.60 Section 409.60... PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.60 Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane...

  12. 40 CFR 409.60 - Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane sugar...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Hamakua Coast of the Island of Hawaii raw cane sugar processing subcategory. 409.60 Section 409.60... PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.60 Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane...

  13. 40 CFR 409.60 - Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane sugar...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Hamakua Coast of the Island of Hawaii raw cane sugar processing subcategory. 409.60 Section 409.60... PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.60 Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane...

  14. 40 CFR 409.60 - Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane sugar...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Hamakua Coast of the Island of Hawaii raw cane sugar processing subcategory. 409.60 Section 409.60... PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.60 Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane...

  15. 40 CFR 409.60 - Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane sugar...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Hamakua Coast of the Island of Hawaii raw cane sugar processing subcategory. 409.60 Section 409.60... PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.60 Applicability; description of the Hilo-Hamakua Coast of the Island of Hawaii raw cane...

  16. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  17. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  18. From Madeira to the Sandwich Islands: The Story of a Portuguese Family in Hawaii.

    ERIC Educational Resources Information Center

    Gouveia, Anna Martins; Araujo, Margaret F.

    In this picture story, a woman describes her family's migration from the Portuguese island of Madeira to Hawaii and the process of acculturation that she and her family went througn while retaining aspects of their cultural background. Many photographs are included. (EB)

  19. Status of biological control of the shrub gorse (Ulex europaeus) on the Island of Hawaii

    Treesearch

    G. P. Markin; P. Conant

    2013-01-01

    On the island of Hawaii, gorse (Ulex europaeus L.) is limited to an isolated core infestation of approximately 2000 hectares with scattered plants and small patches in the surrounding 10,000 hectares. Between 1985 and 2000, seven biological control agents were introduced, five of which successfully established. By 2000, their combined impact had reduced the yearly...

  20. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii

    USGS Publications Warehouse

    R. Flint Hughes,; Jean-Yves Meyer, jean-yves.meyer@recherche.gov.pf; Loope, Lloyd L.

    2013-01-01

    Isolated tropical islands are notoriously vulnerable to plant invasions. Serious management for protection of native biodiversity in Hawaii began in the 1970s, arguably at Hawaii Volcanoes National Park. Concerted alien plant management began there in the 1980s and has in a sense become a model for protected areas throughout Hawaii and Pacific Island countries and territories. We review the relative successes of their strategies and touch upon how their experience has been applied elsewhere. Protected areas in Hawaii are fortunate in having relatively good resources for addressing plant invasions, but many invasions remain intractable, and invasions from outside the boundaries continue from a highly globalised society with a penchant for horticultural novelty. There are likely few efforts in most Pacific Islands to combat alien plant invasions in protected areas, but such areas may often have fewer plant invasions as a result of their relative remoteness and/or socio-economic development status. The greatest current needs for protected areas in this region may be for establishment of yet more protected areas, for better resources to combat invasions in Pacific Island countries and territories, for more effective control methods including biological control programme to contain intractable species, and for meaningful efforts to address prevention and early detection of potential new invaders.

  1. Attraction of pest moths (Lepidoptera: Noctuidae, Crambidae) to floral lures on the island of Hawaii

    USDA-ARS?s Scientific Manuscript database

    Traps baited with floral chemicals on the island of Hawaii captured several pest moth species. Chrysodeixis eriosoma (Doubleday)(green garden looper), Autographa biloba (Doubleday)(bi-lobed looper), and Mythimna unipuncta (Haworth)(true armyworm), all Noctuidae, as well as Hymenia recurvalis (L.)(be...

  2. Underground residence times and chemical quality of basal groundwater in Pearl Harbor and Honolulu aquifers, O'ahu, Hawaii. Technical report, 1 September-31 December 1979

    SciTech Connect

    Hufen, T.H.; Eyre, P.; McConachie, W.

    1980-02-01

    The deterioration in chemical quality of basal water with underlying saline water is of utmost concern on Oahu, where the Pearl Harbor and Honolulu groundwater systems constitute a primary source of fresh water. This study uses isotope and chemical analyses to investigate the storage and flow of the system of six areas in southern Oahu. Potential orgins of waters were determined by using mixing models and chemical compositions of water samples from sources located within a few miles of each other. Striking differences were found among the six areas.

  3. Assessing the Impact of Climate Change on Extreme Streamflow and Reservoir Operation for Nuuanu Watershed, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.

    2016-12-01

    Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in

  4. Inflation and Collapse of the Wai'anae Volcano (Oahu,Hawaii, USA):Insights from Magnetic Fabric Studies of Dikes

    NASA Astrophysics Data System (ADS)

    Lau, J. K. S.; Herrero-Bervera, E.; Moreira, M. A. D. A.

    2016-12-01

    The Waianae Volcano is the older of two shield volcanoes that make up the island of Oahu. Previous age determinations suggest that the subaerial portion of the edifice erupted between approximately 3.7 and 2.7 Ma. The eroded Waianae Volcano had a well-developed caldera centered near the back of its two most prominent valleys and two major rift zones: a prominent north-west rift zone, well-defined by a complex of sub-parallel dikes trending approximately N52W, and a more diffuse south rift zone trending between S20W to due South. In order to investigate the volcanic evolution, the plumbing and the triggering mechanisms of the catastrophic mass wasting that had occurred in the volcano, we have undertaken an AMS study of 7 dikes from the volcano. The width of the dikes ranged between 0.5 to 4 m. Low-field susceptibility versus temperature (k-T) and SIRM experiments were able to identify magnetite at 575 0C and at about 250-300 0C, corresponding to titanomagnetite.. Magnetic fabric studies of the dikes along a NW-SE section across the present southwestern part of the Waianae volcano have been conducted. The flow direction was studied using the imbrication angle between the dike walls and the magnetic foliation. The flow direction has been obtained in the 7 studied dikes. For the majority of the cases, the maximum axis, K1, appears to be perpendicular to the flow direction, and in some cases, with a permutation with respect to the intermediate axis, K2, or even with respect to the minimum axis, K3. In addition, in one of the sites studied, the minimum axis, K3, is very close to the flow direction. In all cases, the magma flowed along a direction with a moderate plunge. For six of the dikes, the interpreted flow was from the internal part of the volcano towards the volcano border, and corresponds probably to the inflation phase of the volcano. In two cases (dikes located on the northwestern side of the volcano), the flow is slightly downwards, possibly related to the

  5. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  6. Geologic map of the northeast flank of Mauna Loa volcano, Island of Hawai'i, Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Lockwood, John P.

    2017-05-01

    SummaryMauna Loa, the largest volcano on Earth, has erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity.The majority of the eruptions of Mauna Loa began in the summit area (>12,000-ft elevation; Lockwood and Lipman, 1987); yet the Northeast Rift Zone (NERZ) was the source of eight flank eruptions since 1843 (table 1). This zone extends from the 13,680-ft-high summit towards Hilo (population ~60,000), the second largest city in the State of Hawaii. Although most of the source vents are farther than 30 km away, the 1880 flow from one of the vents extends into Hilo, nearly reaching Hilo Bay. The city is built entirely on flows erupted from the NERZ, most older than that erupted in 1843.Once underway, Mauna Loa's eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities in their path. For example, lava flows erupted from the Southwest Rift Zone (SWRZ) in 1950 advanced at an average rate of 9.3 km per hour, and all three lobes reached the ocean within approximately 24 hours (Finch and Macdonald, 1953). The flows near the eruptive vents must have traveled even faster.In terms of eruption frequency, pre-eruption warning, and rapid flow emplacement, Mauna Loa poses an enormous volcanic-hazard threat to the Island of Hawai‘i. By documenting past activity and by alerting the public and local government officials of our findings, we can anticipate the volcanic hazards and substantially mitigate the risks associated with an eruption of this massive edifice.From the geologic record, we can deduce several generalized facts about the geologic history of the NERZ. The middle to the uppermost section of the rift zone were more active in the past 4,000 years than the lower part, perhaps due to buttressing of the lower east rift zone by Mauna Kea and Kīlauea volcanoes. The historical flows

  7. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  8. Volcanic air pollution over the Island of Hawai'i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai'i Island school children.

    PubMed

    Tam, Elizabeth; Miike, Rei; Labrenz, Susan; Sutton, A Jeff; Elias, Tamar; Davis, James; Chen, Yi-Leng; Tantisira, Kelan; Dockery, Douglas; Avol, Edward

    2016-01-01

    Kilauea Volcano on the Island of Hawai'i has erupted continuously since 1983, releasing approximately 300-12000metrictons per day of sulfur dioxide (SO2). SO2 interacts with water vapor to produce an acidic haze known locally as "vog". The combination of wind speed and direction, inversion layer height, and local terrain lead to heterogeneous and variable distribution of vog over the island, allowing study of respiratory effects associated with chronic vog exposure. We characterized the distribution and composition of vog over the Island of Hawai'i, and tested the hypotheses that chronic vog exposure (SO2 and acid) is associated with increased asthma prevalence, respiratory symptoms, and reduced pulmonary function in Hawai'i Island schoolchildren. We compiled data of volcanic emissions, wind speed, and wind direction over Hawai'i Island since 1992. Community-based researchers then measured 2- to 4-week integrated concentrations of SO2 and fine particulate mass and acidity in 4 exposure zones, from 2002 to 2005, when volcanic SO2 emissions averaged 1600metrictons per day. Concurrently, community researchers recruited schoolchildren in the 4th and 5th grades of 25 schools in the 4 vog exposure zones, to assess determinants of lung health, respiratory symptoms, and asthma prevalence. Environmental data suggested 4 different vog exposure zones with SO2, PM2.5, and particulate acid concentrations (mean±s.d.) as follows: 1) Low (0.3±0.2ppb, 2.5±1.2μg/m(3), 0.6±1.1nmolH+/m(3)), 2) Intermittent (1.6±1.8ppb, 2.8±1.5μg/m(3), 4.0±6.6nmolH+/m(3)), 3) Frequent (10.1±5.2ppb, 4.8±1.9μg/m(3), 4.3±6.7nmolH+/m(3)), and 4) Acid (1.2±0.4ppb, 7.2±2.3μg/m(3), 25.3±17.9nmolH+/m(3)). Participants (1957) in the 4 zones differed in race, prematurity, maternal smoking during pregnancy, environmental tobacco smoke exposure, presence of mold in the home, and physician-diagnosed asthma. Multivariable analysis showed an association between Acid vog exposure and cough and

  9. Length of Stay and Deaths in Diabetes-Related Preventable Hospitalizations Among Asian American, Pacific Islander, and White Older Adults on Medicare, Hawai'i, December 2006-December 2010.

    PubMed

    Guo, Mary W; Ahn, Hyeong Jun; Juarez, Deborah T; Miyamura, Jill; Sentell, Tetine L

    2015-08-06

    The objective of this study was to compare in-hospital deaths and length of stays for diabetes-related preventable hospitalizations (D-RPHs) in Hawai'i for Asian American, Pacific Islander, and white Medicare recipients aged 65 years or older. We considered all hospitalizations of older (>65 years) Japanese, Chinese, Native Hawaiians, Filipinos, and whites living in Hawai'i with Medicare as the primary insurer from December 2006 through December 2010 (n = 127,079). We used International Classification of Diseases - 9th Revision (ICD-9) codes to identify D-RPHs as defined by the Agency for Healthcare Research and Quality. Length of stays and deaths during hospitalization were compared for Asian American and Pacific Islander versus whites in multivariable regression models, adjusting for age, sex, location of residence (Oahu, y/n), and comorbidity. Among the group studied, 1,700 hospitalizations of 1,424 patients were D-RPHs. Native Hawaiians were significantly more likely to die during a D-RPH (odds ratio [OR], 3.92; 95% confidence interval [CI], 1.42-10.87) than whites. Filipinos had a significantly shorter length of stay (relative risk [RR], 0.77; 95% CI, 0.62-0.95) for D-RPH than whites. Among Native Hawaiians with a D-RPH, 59% were in the youngest age group (65-75 y) whereas only 6.3% were in the oldest (≥85 y). By contrast, 23.2% of Japanese were in the youngest age group, and 32.2% were in the oldest. This statewide study found significant differences in the clinical characteristics and outcomes of D-RPHs for Asian American and Pacific Islanders in Hawai'i. Native Hawaiians were more likely to die during a D-RPH and were hospitalized at a younger age for a D-RPH than other studied racial/ethnic groups. Focused interventions targeting Native Hawaiians are needed to avoid these outcomes.

  10. Abundance and survival rates of the Hawai'i Island associated spinner dolphin (Stenella longirostris) stock.

    PubMed

    Tyne, Julian A; Pollock, Kenneth H; Johnston, David W; Bejder, Lars

    2014-01-01

    Reliable population estimates are critical to implement effective management strategies. The Hawai'i Island spinner dolphin (Stenella longirostris) is a genetically distinct stock that displays a rigid daily behavioural pattern, foraging offshore at night and resting in sheltered bays during the day. Consequently, they are exposed to frequent human interactions and disturbance. We estimated population parameters of this spinner dolphin stock using a systematic sampling design and capture-recapture models. From September 2010 to August 2011, boat-based photo-identification surveys were undertaken monthly over 132 days (>1,150 hours of effort; >100,000 dorsal fin images) in the four main resting bays along the Kona Coast, Hawai'i Island. All images were graded according to photographic quality and distinctiveness. Over 32,000 images were included in the analyses, from which 607 distinctive individuals were catalogued and 214 were highly distinctive. Two independent estimates of the proportion of highly distinctive individuals in the population were not significantly different (p = 0.68). Individual heterogeneity and time variation in capture probabilities were strongly indicated for these data; therefore capture-recapture models allowing for these variations were used. The estimated annual apparent survival rate (product of true survival and permanent emigration) was 0.97 SE ± 0.05. Open and closed capture-recapture models for the highly distinctive individuals photographed at least once each month produced similar abundance estimates. An estimate of 221 ± 4.3 SE highly distinctive spinner dolphins, resulted in a total abundance of 631 ± 60.1 SE, (95% CI 524-761) spinner dolphins in the Hawai'i Island stock, which is lower than previous estimates. When this abundance estimate is considered alongside the rigid daily behavioural pattern, genetic distinctiveness, and the ease of human access to spinner dolphins in their preferred resting habitats, this Hawai'i Island

  11. Immune status of free-ranging green turtles with fibropapillomatosis from Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.; Balazs, G.H.; Cray, C.; Chang, S.P.

    2001-01-01

    Cell-mediated and humoral immune status of free-ranging green turtles (Chelonia mydas) in Hawaii (USA) with and without fibropapillornatosis (FP) were assessed. Tumored and non-tumored turtles from Kaneohe Bay (KB) on the island of Oahu and from FP-free areas on the west (Kona/Kohala) coast of the island of Hawaii were sampled from April 1998 through February 1999. Turtles on Oahu were grouped (0-3) for severity of tumors with 0 for absence of tumors, 1 for light, 2 for moderate, and 3 for most severe. Turtles were weighed, straight carapace length measured and the regression slope of weight to straight carapace length compared between groups (KB0, KB1, KB2, KB3, Kona). Blood was assayed for differential white blood cell count, hematocrit, in vitro peripheral blood mononuclear cell (PBMC) proliferation in the presence of concanavalin A (ConA) and phytohaemagglutinin (PHA), and protein electrophoresis. On Oahu, heterophil/lymphocyte ratio increased while eosinophil/monocyte ratio decreased with increasing tumors score. Peripheral blood mononuclear cell proliferation indices for ConA and PHA were significantly lower for turtles with tumor scores 2 and 3. Tumor score 3 turtles (KB3) had significantly lower hematocrit, total protein, alpha 1, alpha 2, and gamma globulins than the other four groups. No significant differences in immune status were seen between non-tumored (or KB1) turtles from Oahu and Hawaii. There was no significant difference between groups in regression slopes of body condition to carapace length. We conclude that turtles with severe FP are imunosuppressed. Furthermore, the lack of significant difference in immune status between non-tumored (and KB1) turtles from Oahu and Kona/Kohala indicates that immunosuppression may not be a prerequisite for development of FP.

  12. Immune status of free-ranging green turtles with fibropapillomatosis from Hawaii

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, Robert; Balazs, George H.; Cray, Carolyn; Chang, Sandra P.

    2001-01-01

    Cell-mediated and humoral immune status of free-ranging green turtles (Chelonia mydas) in Hawaii (USA) with and without fibropapillornatosis (FP) were assessed. Tumored and non-tumored turtles from Kaneohe Bay (KB) on the island of Oahu and from FP-free areas on the west (Kona/Kohala) coast of the island of Hawaii were sampled from April 1998 through February 1999. Turtles on Oahu were grouped (0-3) for severity of tumors with 0 for absence of tumors, 1 for light, 2 for moderate, and 3 for most severe. Turtles were weighed, straight carapace length measured and the regression slope of weight to straight carapace length compared between groups (KB0, KB1, KB2, KB3, Kona). Blood was assayed for differential white blood cell count, hematocrit, in vitro peripheral blood mononuclear cell (PBMC) proliferation in the presence of concanavalin A (ConA) and phytohaemagglutinin (PHA), and protein electrophoresis. On Oahu, heterophil/lymphocyte ratio increased while eosinophil/monocyte ratio decreased with increasing tumors score. Peripheral blood mononuclear cell proliferation indices for ConA and PHA were significantly lower for turtles with tumor scores 2 and 3. Tumor score 3 turtles (KB3) had significantly lower hematocrit, total protein, alpha 1, alpha 2, and gamma globulins than the other four groups. No significant differences in immune status were seen between non-tumored (or KB1) turtles from Oahu and Hawaii. There was no significant difference between groups in regression slopes of body condition to carapace length. We conclude that turtles with severe FP are imunosuppressed. Furthermore, the lack of significant difference in immune status between non-tumored (and KB1) turtles from Oahu and Kona/Kohala indicates that immunosuppression may not be a prerequisite for development of FP.

  13. Monitoring of geological activity on astronomical sites of the Canary Islands, Hawaii, and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, Antonio; Garcia-Lorenzo, Begoña; Rodriguez-Losada, Jose A.; Hernández-Gutiérrez, Luis E.; de la Nuez, Julio; Romero-Ruiz, Maria C.

    2009-09-01

    Future large and extremely large ground-based telescopes will demand stable geological settings.Remote sensing could be an unvaluable tool to analyse the impact of geological activity at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile; the candidate site of Cerro Ventarrones, Chile). In this sense, the extent of lava flows, eruptive clouds or ground deformation associated to seismic and/or volcanic activity could be analysed and characterised through remote sensing.

  14. Introduction and establishment of Aedes (Finlaya) Japonicus japonicus (Theobald) on the island of Hawaii: implications for arbovirus transmission.

    PubMed

    Larish, Linda Burnham; Savage, Harry M

    2005-09-01

    On November 24, 2003, 1 female adult specimen of Aedes (Finlaya) japonicus japonicus (Theobald) was collected in a New Jersey (NJ) light trap on the island of Hawaii. From June through October, 2004, female and male adults were collected by NJ light traps and gravid traps placed at multiple sites on the island of Hawaii. Larvae were collected in artificial containers and reared to adults for identification. Aedes (Fin.) j. japonicus is the 8th mosquito species to be introduced and established in the State of Hawaii. Currently, this species is known only from the island of Hawaii. Aedes (Fin.) j. japonicus is a competent laboratory vector for a number of arboviruses. Increased quarantine inspections, inspection and treatment of imported used tires and plants, disinsection of airline cargo holds, enhanced vector surveillance, and the development of sanitary corridors around airports and port facilities are necessary to reduce the introduction of vectors and pathogens.

  15. Impacts of Wildfire on Hawaii Island's Pre-Contact Landscape

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Bishaw, K.; McGeehin, J. P.; Perkins, K. S.; Austin, B.; Kirch, P.

    2015-12-01

    The arid western slopes of Hawaii's Mauna Kea volcano record pre-historic landscape changes that accompanied occupation by Native Hawaiians. Stratigraphy in the Keamuku area shows that a long (c. 38-42 ka) period of airfall and eolian deposition and pedogenesis was terminated by at least 8 layers of charcoal-rich sediment, interbedded with sand and shells of land snails that were transported by running water. Streams across Keamuku then cut several meters down through these deposits to bedrock of the Hamakua Volcanics. Radiocarbon ages indicate that charcoal-rich layers were deposited from the 13th-14th Century A.D. (e.g., 1207 +/- 48; 1287 +/- 128 A.D.) through the 17th - 18th century (e.g., 1648 +/- 157; 1651 +/- 160 A.D.; mean probability +/- 2 sigma. Stream incision commenced sometime thereafter. We measured saturated hydraulic conductivities (Ksat) with a mean of 56 mm/hour in nearby soils with tree and shrub cover. This value exceeds common hourly rainfall intensities, so runoff from these landscapes is unlikely without disturbance. Work at a wildfire boundary in Molokai, Hawaii, shows that just after fire disturbance, saturated hydraulic conductivities of similar Hawaiian soils are one half to one fifth of unburned equivalents. One interpretation is that during the 13th-19th centuries and later, humans burned shrub- or tree-covered landscapes reducing soil infiltration capacities. Over the course of several hundred years of burning, one or more large storms with sustained hourly rainfall intensities exceeding the infiltration capacity of the altered land surface occurred soon enough after fires to generate runoff in a place that had not previously experienced it. This runoff carved the existing gully network across over 100 km2 of Keamuku area, as wildfires pushed the shrub-/tree-line upslope. This interpretation joins a growing body of thought that pre-historic human's use of fire fundamentally altered landscapes.

  16. Magnetic Anisotropy and Paleomagnetic Study of Dikes Emplaced in the Wai'anae Volcano, Oahu, Hawaii: a Re-evaluation of the AMS Data

    NASA Astrophysics Data System (ADS)

    Henry, B.; Herrero-Bervera, E.

    2004-12-01

    The Wai'anae Volcano is the older of two shield volcanoes that make up the island of O'ahu. Previous age determinations suggest that the subaerial portion of the edifice erupted between approximately 3.7 and 2.7 Ma. The eroded Wai'anae Volcano had a well-developed caldera centered near the back of its two most prominent valleys, and two major rift zones: a prominent north-west rift zone, well defined by a complex of sub-parallel dikes trending approximately N52W, and a more diffuse south rift zone, trending between S20W to due south. In order to investigate the volcanic evolution, the plumbing and the triggering mechanisms of the catastrophic mass wasting occurred in the volcano we have undertaken a paleomagnetic and AMS study of 7 dikes from the volcano. We drilled the dikes paying special attention to the chilled margins were we recovered a minimum of 8 and up to 23 samples per margin. The width of the dikes ranges between 0.5 to 4 m. In terms of the paleomagnetic results at least 20 samples per intrusive were stepwise demagnetized by a.f. from 5 to 100mT. Companion specimens from the same core were demagnetized at 15 temperature steps. In both cases demagnetization diagrams obtained with each technique showed a stable Characteristic direction of remanence (ChRM) determined with no ambiguity. The ChRM was calculated using principal component analysis for the demagnetization diagrams with a well-defined component trending to the origin. In addition, low field susceptibility vs temperature (k-T) and SIRM experiments were able to identify magnetite (575oC) and a low temperature mineral phase at about 250-300o C which probably reflects the presence of titanomagnetite. The determined directions of the intrusives resulted in normal and reversed polarities indicating that such dikes were emplaced at different periods of time covering a gap of 350 kyrs. Magnetic fabric studies of the dikes along a NW-SE section across the present southwestern part of the Waianae volcano

  17. Diabetes mellitus and its vascular complications in Japanese migrants on the Island of Hawaii.

    PubMed

    Kawate, R; Yamakido, M; Nishimoto, Y; Bennett, P H; Hamman, R F; Knowler, W C

    1979-01-01

    Japanese migrants and their offspring on the island of Hawaii and Japanese living in Hiroshima were examined for diabetes mellitus and its vascular complications. the same methods and investigators were used in both locations. Death certificates of Japanese and Caucasians dying on the island during the past 26 yr were analyzed. Diabetes, defined as a venous serum glucose concentration of at least 200 mg/dl 2 h after a 50-g oral glucose load, was significantly more common in the Hawaiian Japanese than in the Hiroshima Japanese subjects. This suggests that diabetes is more prevalent in Japanese in Hawaii than in Japan, although lack of knowledge about the total population of Japanese migrants in Hawaii makes this generalization uncertain. The proportion of deaths attributed to diabetes was much higher in Japanese migrants and their offspring in Hawaii than in Japan. During the 1950s, the proportional death rate from diabetes was about half as large in Japanese Hawaiians as in Caucasian Hawaiians, but it increased to become 1.6 times the Caucasian rate during the 1970s. A nutritional study revealed that the total caloric intake was similar in Japanese in Hawaii and Hiroshima, although the estimated level of physical activity was less in the Hawaiian subjects. Consumption of animal fat and simple carbohydrates (sucrose and fructose) were at least twice as high in Hawaiian as in Hiroshima Japanese. Conversely, Hiroshima Japanese consumed about twice the amount of complex carbohydrate as the Hawaiian Japanese. These observations support the hypothesis that a high fat, high simple carbohydrate, low complex carbohydrate diet and/or reduced levels of physical activity increase risk of diabetes. The proportion of deaths attributed to ischemic heart disease was higher in both diabetic and nondiabetic Japanese Hawaiians than in diabetic subjects in Japan. The rates were similar for Japanese and Caucasians in Hawaii. There was no evidence of an environmental influence on the

  18. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight...

  19. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn...

  20. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight...

  1. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight...

  2. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn...

  3. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn...

  4. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn...

  5. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight...

  6. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn...

  7. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight...

  8. Schlumberger survey of Maui Island, State of Hawaii

    SciTech Connect

    Mattice, M.D.; Lienert, B.R.

    1980-09-01

    The results of 21 Schlumberger resistivity soundings made on the island of Maui are presented. The apparent resistivity data was used to estimate electrical resistivities of basalt saturated with seawater for different parts of the island. The values obtained average around 20 ohm-meters, except in one area, Ukumehame canyon, on the south rift zone of West Maui. In this area, which is the site of a warm (33/sup 0/C) water well, the resistivity interpreted for the seawater saturated basalt layer is close to 4 ohm-meters. Using typical Hawaiian basalt porosity values of 15 to 25% the temperature of the seaweed is estimated to be 95 +- 23/sup 0/C at a depth of 273 to 608 feet.

  9. Wind turbine on line in Hawaii

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    The largest wind machine in the United States started generating electricity in late July in Hawaii. The Mod-5B wind-powered turbine, located on the northern tip of the island of Oahu, is rated at 3.2 megawatts and is expected to generate enough clean electricity to supply the needs of 1300 homes. The machine was developed at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio, and paid for by the Department of Energy.The turbine is based on new technology that allows its 320-ft (˜100-m) rotor to operate at variable speeds to suit changing wind conditions. It is the result of 15 years of federally sponsored research at NASA-Lewis. Conventional turbines operate at a fixed speed. After 6 months of tests, Mod-5B will be taken over and operated by the Hawaiian Electric Company, under a sales agreement with NASA. The turbine was located at the northend of Oahu primarily because of the high incidence of steady trade winds in that part of the Hawaiian chain. Renewable energy sources like the turbine are also desirable in Hawaii because of the high cost of electricity on the islands, which is principally the result of the need to import all diesel fuel and a prohibition on nuclear power plants in the state.

  10. Geographical maldistribution of native Hawaiian and other Pacific Islander physicians in Hawai'i.

    PubMed

    Ambrose, Adrian Jacques H; Arakawa, Rachel Y; Greidanus, Benjamin D; Macdonald, Pippa R; Racsa, C Philip; Shibuya, Kyle T; Tavares, Tanya P M; Yamada, Seiji

    2012-04-01

    Native Hawaiians and other Pacific Islanders (NHOPI) have high prevalence of overweight status, obesity, and hypertension, as well as high rates of asthma and cancer mortality. Some barriers to health care delivery for this population are a physician shortage in Hawai'i and a geographical maldistribution of actively practicing physicians. This study examines the distribution of NHOPI physicians compared to the NHOPI population in Hawai'i through Geographical Information System choropleth mapping. The maps and results were gathered and constructed from Census Tract data from the US Department of Commerce, the Census Bureau, the Physician Workforce Assessment, and the 'Ahahui o nā Kauka reports. With the exception of East Honolulu, all areas of Hawai'i show drastic disparities in the ratio of NHOPI physicians to NHOPI populations as compared to the ratio of total physicians to the total population. Given the NHOPI physician shortage and their geographical maldistribution, this study underscores the importance of increasing the number of NHOPI medical school applicants, graduates, residents, and physicians in permanent active practices in rural areas and the neighbor islands. Current institutional and academic programs, such as the John A. Burns School of Medicine, Imi Ho'ola, and the Native Hawaiian Center of Excellence, are contributing to resolving some of the health disparities and should consider expanding their efforts.

  11. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  12. Forest Bird Distribution, Density and Trends in the Ka'u Region of Hawai'i Island

    USGS Publications Warehouse

    Gorresen, P. Marcos; Camp, Richard J.; Pratt, Thane K.

    2007-01-01

    An accurate and current measure of population status and trend is necessary for conservation and management efforts. Scott and Kepler (1985) provided a comprehensive review of the status of native Hawaiian birds based on the extensive Hawaii Forest Bird Survey (HFBS) of the main islands (Scott et al. 1986). At that time, they documented declining populations and decreasing ranges for most species, and the extinction of several species over the previous 50 years. Many native bird species continue to decline throughout Hawai`i (Camp et al. In review, Gorresen et al. In prep.). The focus of this study is the mid-to-high elevation rainforest on the southeast windward slopes of Mauna Loa Volcano (Figure 1). Known as Ka`u, the region encompasses forest lands protected by Kamehameha Schools, The Nature Conservancy, Hawai`i Volcanoes National Park (HVNP), and the State of Hawai'i's Ka`u Forest Reserve, Kapapala Forest Reserve and Kapapala Cooperative Game Management Area,. Together these lands support one of three main concentrations of native forest birds on the Hawai`i Island (the other two being centered on the Hakalau Forest National Wildlife Refuge and Kulani-Keauhou area in the north and central windward part of the island, respectively.) Because this region harbors important populations of native and endangered forest birds in some of the best remaining forest habitat on the island, it has been a focus of forest bird surveys since the 1970s. The Ka`u region was first quantitatively surveyed in 1976 by the Hawaii Forest Bird Survey (Scott et al. 1986). Surveys were conducted by State of Hawai`i Division of Forestry and Wildlife in 1993 and 2002 and by the U.S. National Park Service and the U.S. Geological Survey in 2004 and 2005. In this report, we present analyses of the density, distribution and trends of native and introduced forest bird within the Ka`u region of Hawai`i Island. The analyses cover only those species with sufficient detections to model detection

  13. Recent plant eradications on the islands of Maui County, Hawai'i

    USGS Publications Warehouse

    Penniman, Teya M.; Buchanan, Lori; Loope, Lloyd L.; Veitch, C.R.; Clout, Mike N.; Towns, D. R.

    2011-01-01

    The state of Hawai'i (USA) has few regulations to limit plant introductions. A network of interagency islandbased invasive species committees has evolved over the past decade to address this vulnerability, with the aim of stopping invasions before they threaten natural areas. On Maui, Moloka‘i, and Lāna‘i, which comprise three of the four islands of Maui County, single-island eradications have been achieved for 12 plant species and eradication is likely imminent for an additional eight species. The islands vary in size, population, and land ownership. We explore the relative importance of those variables in achieving successful eradications along with target species selection, detection strategies, and public support

  14. Two Decades of Degassing at Kilauea Volcano, Hawai`i: Perspectives on Island Impacts

    NASA Astrophysics Data System (ADS)

    Elias, T.; Sutton, A. J.

    2003-12-01

    The ongoing eruption of Kilauea provides an opportunity to examine how volcanic emissions impact the natural and human environment of the island of Hawai`i. Kilauea has released ˜ 13 megatons of SO2 gas into the troposphere since the current eruption began in 1983, more than any single anthropogenic source in the U.S. During prevailing trade wind conditions, measurements of SO2 gas, aerosol mass, and aerosol acidity downwind of Kilauea document the conversion of SO2 to acid aerosol as the plume propagates to the leeward side of the island. Lidar measurements suggest a gas-to-particle conversion rate (t1/2) of 6 hours. When trade winds are disrupted, ambient SO2 and particle measurements in Hawai`i Volcanoes National Park have shown episodes of particle concentrations of ˜ 100 μ g/m3 and SO2 concentrations in excess of 4000 ppb. Federal health standards and WHO guidelines for SO2 have been exceeded repeatedly at this near-source location. Documented effects from volcanic emissions on the island of Hawai`i include the rapid corrosion of metal objects, degradation of domestic water quality, agricultural crop damage, and adverse impacts on human respiratory and pulmonary function. Other impacts may include decreases in local rainfall and increased mortality of asthmatics. For the period 1986 to 1993, after the eruption became continuous, deaths from asthma on the island of Hawai`i increased by a factor of ten. Three current health studies seek to investigate the relationship between exposure to volcanic pollution and health effects. In addition to measuring gas and particle exposures, these studies examine lung development in children around the island, disease prevalence in adults residing in communities downwind of volcanic degassing sources, and acute effects in asthmatic children and healthy children and adults. In the absence of conclusive evidence linking exposure and health effects, the USGS, in collaboration with the National Park Service, has developed a

  15. Spatio-temporal variation and seasonality of Odontocetes' foraging activity in the leeward side of the island of Hawaii

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo; Au, Whitlow W. L.

    2017-03-01

    The Kona coast of the island of Hawaii hosts many species of odontocetes. These marine mammals are top predators and their foraging activity plays an important role in the ecosystem dynamics. Three passive acoustics recorders were used to study the temporal and spatial occurrence of the foraging activity of odontocetes (excluding beaked and sperm whales) at three locations along the Kona coast of Hawaii between 2012 and 2013. Echolocation clicks were detected using the M3R1

  16. Biomass energy opportunities on former sugarcane plantations in Hawaii

    SciTech Connect

    Phillips, V.D.; Tvedten, A.E.; Lu, W.

    1995-11-01

    Electricity produced from burning sugarcane bagasse has provided as much as 10 percent of Hawaii`s electricity supply in the past. As sugarcane production has ceased on the islands of Oahu and Hawaii and diminished on Maui and Kauai, the role of biomass energy will be reduced unless economically viable alternatives can be identified. An empirical biomass yield and cost system model linked to a geographical information system has been developed at the University of Hawaii. This short-rotation forestry decision support system was used to estimate dedicated biomass feedstock supplies and delivered costs of tropical hardwoods for ethanol, methanol, and electricity production. Output from the system model was incorporated in a linear programming optimization model to identify the mix of tree plantation practices, wood processing technologies, and end-products that results in the highest economic return on investment under given market situations. An application of these decision-support tools is presented for hypothetical integrated forest product systems established at two former sugarcane plantations in Hawaii. Results indicate that the optimal profit opportunity exists for the production of medium density fibreboard and plywood, with annual net return estimates of approximately $3.5 million at the Hamakua plantation on the island of Hawaii and $2.2 million at the Waialua plantation on Oahu. Sensitivity analyses of the effects of different milling capacities, end-product market prices, increased plantation areas, and forced saw milling were performed. Potential economic credits for carbon sequestration and wastewater effluent management were estimated. While biofuels are not identified as an economical viable component, energy co-products may help reduce market risk via product diversification in such forestry ventures.

  17. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  18. Distribution and prevalence of knemidokoptic mange in Hawai`i `Amakihi on the island of Hawaii.

    USGS Publications Warehouse

    Gaudioso, Jacqueline; LaPointe, Dennis; Atkinson, Carter T.; Apelgren, Chloe

    2014-01-01

    Knemidokoptic mange was first observed on two Hawai‘i ‘Amakihi (Hemignathus virens) mist netted in Manuka Natural Area Reserve (NAR) on the Island of Hawai‘i in June 2007. Microscopic examination of skin scrapings from lesions of the infested individuals revealed the scaley-leg mite, Knemidokoptes jamaicensis. Continued surveillance at Manuka NAR (2007-2009) documented a 24% (15/63) prevalence of mange among Hawai‘i ‘Amakihi distributed from coastal habitat to 1,500 m above sea level (asl). From 2012-2014, we conducted an island-wide survey of wild passerine birds from several leeward sites (Manuka NAR, Kahuku Unit of Hawai‘i Volcanoes National Park (HAVO), Pu‘u Wa‘awa‘a Forest Bird Sanctuary, and Kipahoehoe NAR) and windward sites (Hakalau Forest National Wildlife Refuge, ‘Ᾱinahou Ranch of HAVO, Malama Ki Forest Reserve, and Keauohana Forest Reserve) to determine the current distribution and host range of knemidokoptic mange. We also determined the prevalence of malaria in Hawai‘i ‘Amakihi populations where mange was present and treated a subset of infested Hawai‘i ‘Amakihi mange with a single, topical dose of moxidectin. We mist netted and examined a total of 1,734 passerines, including 738 Hawai‘i ‘Amakihi. Mange was present in Hawai‘i ‘Amakihi at Manuka NAR (595 and 305 m asl), Kahuku Ranch Unit of HAVO (Glover site: 1,201 m asl and Kipuka Akala site: 1,532 m asl), Malama Ki Forest Reserve and Keauohana Forest Reserve (293 m asl). No other passerine birds (n = 995) were infected. Mange prevalence ranged from a high of 69% (40/58) in Keauohana Forest Reserve to a low of 2% (1/65) in the Kahuku Ranch Unit of HAVO (Kipuka Akala). At Manuka NAR prevalence had decreased from 26% in 2010 to 10% (7/81) in 2012–2014. We found no significant relationship between the prevalence of mange and the prevalence of avian malaria in mesic habitats at Manuka NAR (P = 0.59 (FET, n = 81)), but there was a significant association between the

  19. Climate stabilization wedges in action: a systems approach to energy sustainability for Hawaii Island.

    PubMed

    Johnson, Jeremiah; Chertow, Marian

    2009-04-01

    Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.

  20. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.

    2016-12-01

    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all

  1. Toward a comprehensive information system to assist invasive species management in Hawaii and Pacific Islands

    USGS Publications Warehouse

    Fornwall, M.; Loope, L.

    2004-01-01

    The need for coordinated regional and global electronic databases to assist prevention, early detection, rapid response, and control of biological invasions is well accepted. The Pacific Basin Information Node (PBIN), a node of the National Biological Information Infrastructure, has been increasingly engaged in the invasive species enterprise since its establishment in 2001. Since this time, PBIN has sought to support frontline efforts at combating invasions, through working with stakeholders in conservation, agriculture, forestry, health, and commerce to support joint information needs. Although initial emphasis has been on Hawaii, cooperative work with other Pacific islands and countries of the Pacific Rim is already underway and planned.

  2. State Perspectives on Health Care Reform: Oregon, Hawaii, Tennessee, and Rhode Island

    PubMed Central

    Thome, Jean I.; Bianchi, Barbara; Bonnyman, Gordon; Greene, Clark; Leddy, Tricia

    1995-01-01

    The general consensus among States which have had their section 1115 demonstration projects approved is that there is no one best way to implement State health care reform. The Health Care Financing Administration (HCFA), however, wished to discern how States were accomplishing the task of implementing the demonstrations, and solicited responses from State representatives whose section 1115 demonstration waivers had been approved. The resulting article gives an overview of this implementation process from four State perspectives. Written by representatives from Oregon, Hawaii, Tennessee, and Rhode Island, the ideas presented here are indicative of the complex undertaking of State health care reform. PMID:10142573

  3. Water Budget for the Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).

  4. Hawaii and Beyond: Volcanic Islands as Model Systems for Biogeochemical and Human Ecodynamic Research

    NASA Astrophysics Data System (ADS)

    Chadwick, O.

    2012-12-01

    The Hawaiian Islands provide an excellent natural lab for understanding geochemical and ecosystem processes. The most important features are: a) increasing volcano age with distance from the hotspot, b) asymmetric rainfall distribution imposed by the northeasterly trade winds and orographic processes, creating wet windward and dry leeward landscapes, c) an impoverished vegetation assemblage allowing the same species to grow in strongly varying climate and soil conditions, d) the ability to hold topography relatively constant over long time scales by sampling on volcanic shield remnants that are preserved even on the oldest high island, Kauai, and e) a long-term topographic evolution that carves the gently sloping shield surfaces into steep-sided, amphitheater headed, relatively flat floored valleys. Although deeply incised valleys are well represented in Kauai, the later stages of volcanic island evolution are not well expressed in the exposed Hawaiian Islands. Therefore, I also consider examples from the Society and Gambier Islands in French Polynesia to demonstrate the biogeochemical and human ecodynamic impacts of valley expansion and subsidence leading to drowning of all but the highest elevation interfluves. In Hawaii, I and many colleagues have characterized the details of biogeochemical processes such as: a) variations in oxygen isotopes in soil water and soil minerals, b) changing nutrient sources using Sr, Ca, and Mg isotopes, c) mineral - carbon sorption and its implications for carbon storage in soils and for mineral ripening, and d) the development of leaching and redox driven pedogenic thresholds. Here, I address how these biogeochemical features influence human land-use decisions in prehistoric Hawaii and elsewhere in the Pacific. Polynesian radiation into the eastern Pacific occurred rapidly after 1300 y bp. Although they carried with them a kitchen garden each new island presented a different environmental challenge. They were sensitive to

  5. Assessing community vulnerabilities to natural hazards on the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Nishioka, Chris; Delparte, Donna

    2010-05-01

    The island of Hawaii is susceptible to numerous natural hazards such as tsunamis, flooding, lava flow, earthquakes, hurricanes, landslides, wildfires and storm surge. The impact of a natural disaster on the island's communities has the potential to endanger peoples' lives and threaten critical infrastructure, homes, businesses and economic drivers such as tourism. A Geographic Information System (GIS) has the ability to assess community vulnerabilities by examining the spatial relationships between hazard zones, socioeconomic infrastructure and demographic data. By drawing together existing datasets, GIS was used to examine a number of community vulnerabilities. Key areas of interest were government services, utilities, property assets, industry and transportation. GIS was also used to investigate population dynamics in hazard zones. Identification of community vulnerabilities from GIS analysis can support mitigation measures and assist planning and response measures to natural hazards.

  6. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  7. Greenhouse gas flux under warm-season perennial C4 grasses across different soil and climate gradients on the Islands of Hawaii

    NASA Astrophysics Data System (ADS)

    Pawlowski, M. N.; Crow, S. E.; Sumiyoshi, Y.; Wells, J.; Kikkawa, H. R.

    2011-12-01

    Agricultural soils can serve as either a sink or a source for atmospheric carbon (C) and other greenhouse gases (GHG). This is particularly true for tropical soils where influences from climate and soil gradients are wide ranging. Current estimates of GHG flux from soil are often under or overestimated due to high variability in sample sites and inconsistencies in land use and vegetation type, making extrapolation to new study systems difficult. This work aimed to identify patterns of trace fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) across two soil types and three species of warm season perennial C4 grasses: Pennisetum purpureum (Napier grass), Panicum maximum (Guinea grass) and Saccharum officinarum (sugar cane) on the islands of Oahu and Maui in Hawaii. Multiple static vented chambers were installed into replicate plots for each species; flux measurements were made during the growth, fertilization and harvest cycles at set time intervals for one hour and analyzed by gas chromatography. Initial results from Oahu indicate no significant differences in CO2 flux between the P. maximum and P. purpureum species after fertilization or at full growth. We observed an average flux of 143 mg m-2 h-1 and 155 mg m-2 h-1 for P. maximum and P. purpureum respectively at full growth for CO2 and 1.7 μg m-2 h-1and 0.3 μg m-2 h-1 for N2O. Additionally, N2O rates sampled after a typical fertilizer application were significantly greater than at full growth (p=0.0005) with flux rates of 25.2 μg m2h-1 and 30.3 μg m2h-1 for P. maximum and P. purpureum respectively. With a global warming potential of 310 for N2O, even short-term spikes following fertilizer application can cause long lasting effects of GHG emission from agricultural soils. CH4 flux was negligible for all species on the Oahu plots during these sample periods. Globally, water limitation is a major factor influencing the potential productivity of agricultural crops and the sustainability of

  8. Maternal risk factors and perinatal outcomes among pacific islander groups in Hawaii: a retrospective cohort study using statewide hospital data.

    PubMed

    Chang, Ann Lee; Hurwitz, Eric; Miyamura, Jill; Kaneshiro, Bliss; Sentell, Tetine

    2015-10-05

    Studies suggest Pacific Islander women have disparate rates of preterm birth, primary cesarean delivery, preeclampsia, gestational diabetes, and low birthweight infants. However, data is limited. In order to improve the health of Pacific Islanders, it is essential to better understand differences in obstetric outcomes in this diverse population This study compared perinatal outcomes between Pacific Islander (9,646) and White (n = 5,510) women who delivered a singleton liveborn in any Hawaii hospital from January 2010 to December 2011 using the Hawaii Health Information Corporation (HHIC) database. Pacific Islanders were disaggregated into the following groups: Native Hawaiian, Samoan, Micronesian, and Other Pacific Islanders. Perinatal outcomes (e.g. hypertensive diseases, birthweight, mode of delivery) were compared using multivariable logistic models controlling for relevant sociodemographic and health risk factors (e.g. age and payer type). Significant differences in perinatal outcomes between Pacific Islander and White women and newborns were noted. All Pacific Islander groups had an increased risk of hypertension. Outcome differences were also seen between Pacific Islanders groups. Native Hawaiians had the highest risk of low birthweight infants, Samoans had the highest risk of macrosomic infants and Micronesians had the highest risk of cesarean delivery. Important differences in perinatal outcomes among Pacific Islanders exist. It is important to examine Pacific Islander populations separately in future research, public health interventions, and policy.

  9. Body image and self-esteem among Asian, Pacific Islander, and White college students in Hawaii and Australia.

    PubMed

    Latner, Janet D; Knight, Tess; Illingworth, Kaye

    2011-01-01

    Body image and its relationship to self-esteem was examined among Asian, Pacific Islander, and White women and men from Hawaii and Australia (n = 172). Although Pacific Islander and White participants had higher body mass indices than Asians, Pacific Islanders were more satisfied than Asians with their health and more satisfied than Asians and Whites with their appearance. Thus, higher body weight and greater body satisfaction may co-occur among Pacific Islanders, whereas lower weight and lower body satisfaction may co-occur among Asians. The findings suggest different levels of risk for body image dissatisfaction, and its associated psychological consequences, across ethnic groups.

  10. Rat Control for the Protection of Endangered Birds, Plants, and Tree Snails on the Island of Oahu, Hawaii

    DTIC Science & Technology

    2010-02-01

    peanut butter or FeraFeed® paste (non-toxic possum pre-feed, Connovation Ltd., Auckland, New Zealand) and half a macadamia nut. Traps were...very steep terrain precludes snail surveys and ideal placement of bait stations and rat traps for snail protection. Ground shell plots have been

  11. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  12. The Mixed Plate: A Field Experience on the Cultural and Environmental Diversity of the Big Island of Hawai'i

    ERIC Educational Resources Information Center

    Strait, John B.; Fujimoto-Strait, Ava R.

    2017-01-01

    The intent of this paper was to outline a field endeavor that encourages increased insight into important geographic themes pertaining to the Big Island of Hawai'i. Student participants in this field course come away with an enhanced comprehension and appreciation of the benefits associated with learning to incorporate geographical perspectives as…

  13. The Mixed Plate: A Field Experience on the Cultural and Environmental Diversity of the Big Island of Hawai'i

    ERIC Educational Resources Information Center

    Strait, John B.; Fujimoto-Strait, Ava R.

    2017-01-01

    The intent of this paper was to outline a field endeavor that encourages increased insight into important geographic themes pertaining to the Big Island of Hawai'i. Student participants in this field course come away with an enhanced comprehension and appreciation of the benefits associated with learning to incorporate geographical perspectives as…

  14. A Distal Record of Large Hawaiian Submarine Landslides: the Lithology of Sediments Obtained From the Deep-sea Floor Adjacent to the Hawaiian Islands, KR01-K12 Cruise.

    NASA Astrophysics Data System (ADS)

    Kanamatsu, T.; Naka, J.; Kubo, Y.; Champion, D.; Coombs, M.; Moore, J. G.; Sugiyama, K.; Muraki, H.; Ishimori, M.

    2001-12-01

    To understand the timing and emplacement processes of giant Hawaiian submarine landslide, a series of piston coring was performed in the adjacent area of Hawaii islands by R/V KAIREI, JAMSTEC in the summer of 2001. Long-distance volcaniclastic sediment transport generated by Hawaiian submarine landslides has been suggested by several previous studies (e.g. Garcia and Hull, 1994). Stratigraphical, sedimentological, and geochemical studies on the cores obtained by systematic sampling will make to understand for origins and ages of volcaniclastics emplacement to the ocean-floor. Nine cores were collected from the north of Oahu, the southwest and south of Hawaii Island, the south of Oahu. The major lithology is brown pelagic clay with abundant volcanic sand layers. Off Hawaiian Arch of the north of Oahu, pelagic clay with distinct 195cm-thick volcanic sand layer was recovered. The thick sand should be related to Nuuanu landslide, which debris avalanches were derived from Oahu Island. In the north of Haleakala rift, the alternation of brown colored clay and volcanic sand layer were obtained. Haleakala rift and Kohala slump are possible origins for these frequent occurrences of volcanic sand. In the south of Hawaii Island, we recovered alternations of volcanic sand and pelagic clay. The previous study suggested that volcaniclastic material in this area were derived from the Kilauea and older volcanoes of Hawaii Island. The obtained cores will provide stratigraphic information for volcanic history of Hawaii Island. The lower sequence below the alternation consists of radiolarian ooze, suggest the age of Eocene by on-board inspection. Two piston cores were obtained in the front of Waianae Landslide. The lithology of cores shows that the much volcaniclastics are interbeded in the upper sequence, and the massive clay in the lower.

  15. Bio-optical profile data report: Joint Global Ocean Flux Study, Hawaii Ocean Time-Series, HOT-3, R/V Moana Wave, 6-10 January 1989

    NASA Technical Reports Server (NTRS)

    Collins, Donald J.; Rhea, W. Joseph; Tran, An Van

    1990-01-01

    Time-series measurements of the incident surface downwelling irradiance and vertical profiles of the Bio-optical properties of the ocean have been measured during the third cruise of the Hawaii Ocean Time-Series to the ALOHA site, 22 degrees 56.4 minutes N, 157 degrees 54.6 minutes W, north of the island of Oahu, Hawaii, during the period January 6 to 10, 1989. A summary of these data is presented to permit investigators an overview of the data collected. The data are available in digital form for scientific investigators.

  16. Numerical Simulation of Regional Changes in Ground-Water Levels and in the Freshwater-Saltwater Interface Induced by Increased Pumpage at Barbers Point Shaft, Oahu, Hawaii

    USGS Publications Warehouse

    Souza, William R.; Meyer, William

    1995-01-01

    The effect on the regional ground-water system of southern Oahu from increased pumpage at Barbers Point shaft was estimated by a numerical ground-water model developed for the Oahu Regional Aquifer Systems Analysis (RASA) study. The RASA model was updated by revising pumping and ground-water recharge data. Pumpage data used in the new simulations were based on the allocated pumping rates for 1995 as set by the State Commission on Water Resource Management. On the basis of numerical simulation, Barbers Point shaft can sustain a withdrawal rate of 4.34 million gallons per day without adversely affecting wells in the Waianae aquifer. From results of numerical simulations, it is estimated that, as a result of increasing pumpage in Barbers Point shaft by 2 million gallons per day above the 1995-allocated rate of 2.337 million gallons per day, regional declines in ground-water levels will be about 0.4 to 0.7 feet throughout the Waianae aquifer and about 0.8 ft at the shaft. The corresponding rise of the freshwater-saltwater interface, as a result of declines in ground-water levels, is estimated to be about 20 to 30 feet. Numerical simulation also indicates that changes in ground-water levels greater than about 0.1 feet do not extend across either the Waianae-Koolau unconformity or the south Schofield barrier. The model-estimated position of the freshwater-saltwater interface, as a result of additional pumpage, ranges from 500 to 860 feet below sea level in the southern and northern parts of the aquifer, respectively, and about 540 feet below sea level at the shaft. On the basis of an estimate of the thickness of the transition-zone, the freshwater lens would remain about 240 feet thick below the shaft. In addition, the estimated declines in ground-water levels throughout the aquifer are small compared with the thickness of the freshwater lens and these declines would not be expected to affect the yields of other wells in terms of quantity. Chloride concentrations in the

  17. A multi-tracer approach for determining the sources and spatial variability of groundwater-delivered nutrients to coastal waters: Maunalua Bay, Oahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Richardson, C. M.; Dulaiova, H.; Whittier, R. B.

    2015-12-01

    Nutrient pollution of coastal waters commonly arises from terrestrial non-point sources of N and P such as on-site disposal systems (OSDS) and fertilizer leachate. Elevated nutrient loading of submarine groundwater discharge (SGD) has been documented in the western edge of Maunalua Bay, Oahu, an area with high OSDS density. We examined coastal groundwater and nearshore marine water quality in two adjacent aquifers (Waialae West and Waialae East) within the study region with differing land-use and hydrogeological characteristics to better understand 1) the spatial variability of SGD nutrient and water fluxes and 2) the reasons for this spatial variability. Nutrient concentrations and NO3- stable isotope ratios were measured in coastal and terrestrial groundwater as well as nearshore marine water and integrated with SGD flux, land-use, and recharge data to examine potential nutrient sources in each aquifer. Regionally-elevated NO3- concentrations (169 µM) and δ15N-NO3- values (10.9 ‰) were apparent in SGD in the Waialae West Aquifer where OSDS density is highest. Coastal sites sampled in the neighboring Waialae East Aquifer exhibited significantly lower values for these parameters, with δ15N-NO3- values ranging from 5.7 - 5.9‰ and NO3- concentrations from 43 - 69 µM. The isotopic composition of NO3- in SGD originating from the Waialae West Aquifer was primarily influenced by mixing of a wastewater source, with wastewater effluent accounting for nearly 4.4% of total recharge and 79 - 97% of total N and P loads within the aquifer. These findings illustrate the utility of synthesizing nutrient concentrations and stable isotope parameters together with SGD flux determination, and aquifer-scale land-use and recharge data in determining the contribution of terrestrial sources to coastal nutrient loading via SGD.

  18. Nitrogen source tracking with delta(15)N content of coastal wetland plants in Hawaii.

    PubMed

    Bruland, Gregory L; MacKenzie, Richard A

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared delta(15)N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of delta(15)N with land use, human population density, and surface water quality parameters (i.e., nitrate, ammonium, and total dissolved N). The highest delta(15)N values were observed in plants from wetlands on the islands of Oahu (8.7-14.6 per thousand) and Maui (8.9-9.2 per thousand), whereas plants from wetlands on the islands of Kauai, Hawaii, and Molokai had delta(15)N values usually <4 per thousand. The enrichment in delta(15)N values in plant tissues from wetlands on Oahu and Maui was most likely a result of the more developed and densely populated watersheds on these two islands. Urban development within a 1000-m radius and population density were positively correlated to average delta(15)N vegetation values from each wetland site (r = 0.56 and 0.51, respectively; p < 0.001). This suggested that site mean delta(15)N values from mixed stands of wetland plants have potential as indices of N sources in coastal lowland wetlands in Hawaii and that certain sites on Oahu and Maui have experienced significant anthropogenic N loading. This information can be used to monitor future changes in N inputs to coastal wetlands throughout Hawaii and the Pacific.

  19. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    USGS Publications Warehouse

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  20. Energy for water and water for energy on Maui Island, Hawaii

    NASA Astrophysics Data System (ADS)

    Grubert, Emily A.; Webber, Michael E.

    2015-06-01

    Energy and water systems are interconnected. This work first characterizes 2010 primary energy demand for direct water services and local freshwater demand for energy on Maui Island, Hawaii, then investigates scenarios for future changes in these demands. The goal of this manuscript is to dissect the relationship and trends of energy-water connections to inform policymaking decisions related to water and energy planning. Analysis proceeds by inventorying water and energy flows and adjusting to a 2010 base year, then applying intensity factors for energy or water used at a given stage for a given sector to determine absolute energy and water demands for the isolated system of Maui Island. These bottom-up, intensity-based values are validated against published data where available. Maui consumes about 0.05% of its freshwater for energy (versus >6% for the US on average) and about 32% of its electricity (19% of its on-island primary energy) for direct water services (versus 8% of primary energy for the US on average). These values could change with policy choices like increased instream flows, higher wastewater treatment standards, electricity fuel mix changes, desalination, or increased biofuels production. This letter contributes a granular assessment of both energy for water and water for energy in a single isolated system, highlighting opportunities to address energy-water interdependencies in a context that could be relevant in other communities facing similar choices.

  1. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    NASA Astrophysics Data System (ADS)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-05-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  2. Local and gay: addressing the health needs of Asian and Pacific Islander American (A/PIA) lesbians and gay men in Hawaii.

    PubMed

    Kanuha, V K

    1999-09-01

    Asian and Pacific Islander American lesbians and gay men, who are "local" born and raised in Hawaii face conflicting personal and social expectations due to factors including prejudicial attitudes about homosexuality, A/PIA racial/ethnic traditions, and the unique cultural milieu of Hawaii. Based on anecdotal and research reports of this Hawaii population, health and social needs are discussed with implications for professional health practice.

  3. Geothermal Resources Assessment in Hawaii

    SciTech Connect

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  4. The 7.2 magnitude earthquake, November 1975, Island of Hawaii

    USGS Publications Warehouse

    1976-01-01

    It was centered about 5 km beneath the Kalapana area on the southeastern coast of Hawaii, the largest island of the Hawaiian chain (Fig. 1) and was preceded by numerous foreshocks. The event was accompanied, or followed shortly, by a tsunami, large-scale ground movemtns, hundreds of aftershocks, an eruption in the summit caldera of Kilauea Volcano. The earthquake and the tsunami it generated produced about 4.1 million dollars in property damage, and the tsumani caused two deaths. Although we have some preliminary findings about the cause and effects of the earthquake, detailed scientific investigations will take many more months to complete. This article is condensed from a recent preliminary report (Tillings an others 1976)

  5. Bathymetry of the west-central slope of the island of Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    This map shows the topography of a small part of the subaerial western part of the Island of Hawaii as well as modern multibeam bathymetry of the west submarine flank, which covers a total area of about 8,500 km2 ( see index map). The map area includes part of the submerged flanks of the active Mauna Loa and Hualalai Volcanoes, which last erupted in 1984 and 1801 respectively. The steep and irregular submarine slope is shaped by several giant submarine landslides. They were first identified during surveys from the U.S. Geological Survey research vessel S.P. Lee in 1976 and 1978 (Normark and others, 1979) and later mapped in more detail during a swath-sonar survey (GLORIA) of the United States Hawaiian Exclusive Economic Zone in 1986 to 1991 (Lipman and others, 1988; Moore and others, 1989) as part of a cooperative venture of the U.S. Geological Survey and the British Institute of Oceanographic Sciences.

  6. Geology and ground-water resources of the island of Molokai, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Macdonald, Gordon A.

    1947-01-01

    The island of Molokai is the fifth largest of the Hawaiian Islands, with an area of 250 square miles. It lies 25 miles southeast of Oahu, and 8.5 miles northwest of Maui. It consists of two principal parts, each a major volcanic mountain. East Molokai rises to 4,970 feet altitude. It is built largely of basaltic lavas, with a thin cap of andesites and a little trachyte. The volcanic rocks of East Molokai are named the East Molokai volcanic series, the basaltic part being separated as the lower member of the series, and the andesites and trachytes as the upper member. Large cinder cones and bulbous domes are associated with the lavas of the upper member. Thin beds of ash are present locally in both members. The lavas of the lower member are cut by innumerable dikes lying in two major rift zones trending eastward and northwestward. A large caldera, more than 4 miles long, and a smaller pit 0.8 mile across existed near the summit of the volcano. The rocks formed in and under the caldera are separated on plate 1 as the caldera complex. Stream erosion has cut large amphitheater-headed valleys into the northern coast of East Molokai, exposing the dikes and the caldera complex.West Molokai is lower than East Molokai, rising to 1,380 feet altitude. It was built by basaltic lavas erupted along rift zones trending southwestward and northwestward. Many of the flows were unusually fluid. The volcanic rocks of West Molokai Volcano are named the West Molokai volcanic series. Along its eastern side, the mountain is broken by a series of faults along which its eastern edge has been dropped downward. West Molokai Volcano became extinct earlier than East Molokai Volcano, and its flank is partly buried beneath lavas of East Molokai.Both volcanic mountains were built upward from the sea floor probably during Tertiary time. Following the close of volcanic activity stream erosion cut large canyons on East Molokai, but accomplished much less on drier West Molokai. Marine erosion attacked

  7. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    USGS Publications Warehouse

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    Oahu and the Columbia Plateau had some of the highest percentages of soil fumigant detections in groundwater in the United States. Soil fumigants are volatile organic compounds (VOCs) used as pesticides, which are applied to soils to reduce populations of plant parasitic nematodes (harmful rootworms), weeds, fungal pathogens, and other soil-borne microorganisms. They are used in Oahu and the Columbia Plateau on crops such as pineapple and potatoes. All three areas (Columbia Plateau, Snake River Plain, and Oahu) had fumigant concentrations exceeding human-health benchmarks for drinking water.

  8. Earthquakes and related catastrophic events, Island of Hawaii, November 29, 1975; a preliminary report

    USGS Publications Warehouse

    Tilling, Robert I.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Moore, J.G.; Swanson, D.A.

    1976-01-01

    The largest earthquake in over a century--magnitude 7.2 on the Richter Scale--struck Hawaii the morning of November 29, 1975, at 0448. It was centered about 5 km beneath the Kalapana area on the southeastern coast of the island at 19? 20.1 ' N., long 155? 01.4 ' W.). The earthquake was preceded by numerous foreshocks, the largest of which was a 5.7-magnitude jolt at 0336 the same morning, and was accompanied, or closely followed, by a tsunami seismic sea wave), massive ground movements, hundreds of aftershocks, and a volcanic eruption. The tsunami reached a height of 12.2-14.6 m above sea level on the southeastern coast about 25 km west of the earthquake center, elsewhere generally 8 m or less. The south flank of Kilauea Volcano, which forms the southeastern part of the island, was deformed by dislocations along old and new faults along a 25-km long zone. Downward and seaward fault displacements resulted in widespread subsidence, locally as much as 3.5 m, leaving coconut palms standing in the sea and nearly submerging a small, near-shore island. A brief, small-volume volcanic eruption, triggered by the earthquake and associated ground movements occurred at Kilauea's summit about three-quarters of an hour later. The earthquake, together with the tsunami it generated, locally caused severe property damage in the southeastern part of the island; the tsunami also caused two deaths. Damage from the earthquake and related catastrophic events is estimated by the Hawaii Civil Defense Agency at about $4.1 million. The 1975 Kalapana earthquake and accompanying events represent the latest events in a recurring pattern of behavior for Kilauea. A large earthquake of about the same magnitude, tsunami, subsidence, and eruption occurred at Kilauea in 1868, and a less powerful earthquake and similar related processes are believed to have occurred in 1823. Indeed, the geologic evidence suggests that such events have been repeated many times in Kilauea's past and will continue. The

  9. 76 FR 52966 - Kawailoa Wind Energy Generation Facility, Oahu, HI; Draft Habitat Conservation Plan and Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Lingle announced in October 2008 a comprehensive alternative energy agreement between the State of Hawaii... energy. The State seeks to move Hawaii toward having 70 percent of its energy use coming from alternative... Fish and Wildlife Service Kawailoa Wind Energy Generation Facility, Oahu, HI; Draft Habitat...

  10. Hydroelectric power in Hawaii: a reconnaissance survey

    SciTech Connect

    1981-02-01

    The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 megawatts of potential generating capacity. Combined with the 18 megawatts of existing hydropower capacity, hydropower resources potentially could generate about 307 million kilowatt-hours of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands - Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%; on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. Existing and future (potential) hydropower capacities are summarized, and annual outputs for each island are estimated. Future hydropower facilities are subdivided into two categories, which show how much of the potential capacity is being actively considered for development, and how much is only tentatively proposed at the time.

  11. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2000 to June 30, 2001

    USGS Publications Warehouse

    Presley, Todd K.

    2001-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.

  12. Ground-water yield and potential for irrigated agriculture in the area of the Naval Magazine and Radio Transmitting Facility, Lualualei, Oahu, Hawaii

    USGS Publications Warehouse

    Shade, P.J.; Takasaki, K.J.

    1986-01-01

    An estimated additional 2 million gallons per day (mgd) of fresh and slightly brackish water can be developed in Lualualei Valley , Hawaii, for the agricultural outleasing project. Several of these wells could be located in the volcanic aquifer which presently produces water of excellent quality. A secondary line of wells designed to develop water from the Coralline aquifer would capture the flow not captured by the wells in the volcanic aquifer. The chloride concentration of the water pumped from these wells is expected to range between 500 and 1,500 mg/L. The amount of acreage devoted to crops would depend primarily on the water quality and quantity requirements of the type of crops cultivated and on the type of irrigation system employed. The remaining acreage could be allocated for pasture to graze beef cattle. (Author 's abstract)

  13. Native Hawaiian Profile: State Of Hawaii 1975.

    ERIC Educational Resources Information Center

    Alu Like, Inc., Honolulu, HI.

    This work summarizes statistics from previous reports on native Hawaiians done for the four counties in Hawaii. The data provided were extracted from the Office of Economic Opportunity's 1975 Census Update Surveys of Oahu, Hawaii, and Maui and from the 1974 Kauai Socio-Economic Profile done by the Center for Non-Metropolitan Studies of the…

  14. Age of -360-m reef terrace, Hawaii, and the rate of late Pleistocene subsidence of the island

    SciTech Connect

    Szabo, B.J.; Moore, J.G.

    1986-11-01

    Observations from a manned submersible vehicle indicate that the -360-m reef terrace northwest of the island of Hawaii is a drowned coral reef. The preferred uranium-series age of coralline algae collected from the reef face is 120 +/- 5 ka. This age agrees with the notion that the reef was drowned during the sea-level rise following the major lowstand of the sea that occurred at 145 ka (oxygen isotope stage 6). This drowning pattern is similar to the previously determined radiocarbon age of 13 ka for drowning of the -150-m reef off west Hawaii, which drowned during the sea-level rise following the last major lowstand of the sea at 18 ka (oxygen isotope stage 2). Estimated average subsidence of the reef site off northwest Hawaii is 2.7 mm/yr since final drowning of the -360-m reef.

  15. Fine-scale population genetic structure of a wildlife disease vector: The southern house mosquito on the island of Hawaii

    USGS Publications Warehouse

    Keyghobadi, N.; LaPointe, D.; Fleischer, R.C.; Fonseca, D.M.

    2006-01-01

    The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector. ?? 2006 The Authors.

  16. Pearl Harbor and South Coast of OAHU Hurricane Haven Study.

    DTIC Science & Technology

    1984-09-01

    hurricane posing a serious threat to the islands, but it does, however, cause naivete’ with respect to the potential for hurricane damage . 4.1...a hurricane, the last occurrence, Hurricane Iwa in November 1982, is the best documented and the one that caused the most extensive damage to Oahu...generated by Hurricane Iwa caused ex- tensive damage on Oahu, including inundation of the central sections of the coast southwest of the Waianae Range as well

  17. Effects of Gear Restriction on the Abundance of Juvenile Fishes along Sandy Beaches in Hawai'i.

    PubMed

    Donovan, Mary K; Friedlander, Alan M; Usseglio, Paolo; Goodell, Whitney; Iglesias, Ily; Schemmel, Eva M; Stamoulis, Kostantinos A; Filous, Alexander; Giddens, Jonatha; Kamikawa, Keith; Koike, Haruko; McCoy, Kaylyn; Wall, Christopher B

    2016-01-01

    In 2007, due to growing concerns of declines in nearshore fisheries in Hawai'i, a ban on gillnets was implemented in designated areas around the island of O'ahu in the main Hawaiian Islands. Utilizing a 17 year time-series of juvenile fish abundance beginning prior to the implementation of the gillnet ban, we examined the effects of the ban on the abundance of juveniles of soft-bottom associated fish species. Using a Before-After-Control-Impact (BACI) sampling design, we compared the abundance of targeted fishery species in a bay where gillnet fishing was banned (Kailua, O'ahu), and an adjacent bay where fishing is still permitted (Waimānalo, O'ahu). Our results show that when multiple juvenile fish species were combined, abundance declined over time in both locations, but the pattern varied for each of the four species groups examined. Bonefishes were the only species group with a significant BACI effect, with higher abundance in Kailua in the period after the gillnet ban. This study addressed a need for scientific assessment of a fisheries regulation that is rarely possible due to lack of quality data before enactment of such restrictions. Thus, we developed a baseline status of juveniles of an important fishery species, and found effects of a fishery management regulation in Hawai'i.

  18. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2003 to June 30, 2004

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2004-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2003 and June 30, 2004. A total of 30 samples was collected over four storms during July 1, 2003 to June 30, 2004. In general, an attempt was made to collect grab samples nearly simultaneously at all five sites, and flow-weighted time-composite samples were collected at the three sites equipped with automatic samplers. However, all four storms were partially sampled because either not all stations were sampled or only grab samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  19. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2005 to June 30, 2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young-Smith, Stacie T. M.

    2006-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous discharge data at one station, continuous streamflow data at two stations, and water-quality data at five stations, which include the continuous discharge and streamflow stations. This report summarizes rainfall, discharge, streamflow, and water-quality data collected between July 1, 2005 and June 30, 2006. A total of 23 samples was collected over five storms during July 1, 2005 to June 30, 2006. The goal was to collect grab samples nearly simultaneously at all five stations, and flow-weighted time-composite samples at the three stations equipped with automatic samplers; however, all five storms were partially sampled owing to lack of flow at the time of sampling at some sites, or because some samples collected by the automatic sampler did not represent water from the storm. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  20. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2004 to June 30, 2005

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2005-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at two stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2004 and June 30, 2005. A total of 15 samples was collected over three storms during July 1, 2004 to June 30, 2005. In general, an attempt was made to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. However, all three storms were partially sampled because either not all stations were sampled or not all composite samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Chromium and nickel were added to the analysis starting October 1, 2004. Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  1. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2006 to June 30, 2007

    USGS Publications Warehouse

    Young, Stacie T.M.; Jamison, Marcael T.J.

    2007-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at three stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2006 and June 30, 2007. A total of 13 samples was collected over two storms during July 1, 2006 to June 30, 2007. The goal was to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  2. The effects of storm-drains with periodic flows on intertidal algal assemblages in 'Ewa Beach (O'ahu), Hawai'i.

    PubMed

    Cox, T E; Foster, M S

    2013-05-15

    Storm-water drainage systems have potential to collect and focus nutrient enriched runoff into coastal systems. Storm-drain effluent could support macroalgal production and result in altered communities. To test this hypothesis, we assessed species composition and percent cover of native and non-native benthic macroalgae at eight intertidal sites along 'Ewa Beach, Hawai'i. Three sites contain storm-drainage outlets (drain 16-52 acres) that deliver effluent into the intertidal zone whereas five sites were located ≥ 100 m away and served as comparisons to determine differences related to the presence of storm-water. Results revealed lush and diverse macroalgal assemblages, similar at all sites. Furthermore, the abundance of non-native species (Acanthophora spicifera, Hypnea musciformis) was not related to presence of storm-drains. The finding that macroalgal assemblages are not related to storm-waters is contrary to an earlier investigation in the same location and underscores the importance of sampling design and habitat variation when assessing impacts.

  3. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    USGS Publications Warehouse

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  4. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2001 to June 30, 2002

    USGS Publications Warehouse

    Presley, Todd K.

    2002-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall data were collected at two sites, and streamflow data were collected at 3 sites for the year July 1, 2001 to June 30, 2002. Water-quality data were collected at five sites, which include the three streamflow sites. Six storms were sampled during the year July 1, 2001 to June 30, 2002, for a total of 44 samples. For each storm event, grab samples were collected nearly simultaneously at all five sites, and flow-weighted, time-composite samples were collected at the three sites equipped with automatic samplers. Samples were analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids. Quality assurance samples were also collected to verify analytical procedures and insure proper cleaning of equipment.

  5. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2002 to June 30, 2003

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2003-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data was collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2002 to June 30, 2003. A total of 28 samples were collected over five storms during July 1, 2002 to June 30, 2003. For two of the five storms, five grab samples and three flow-weighted timecomposite samples were collected. Grab samples were collected nearly simultaneously at all five sites, and flow-weighted timecomposite samples were collected at the three sites equipped with automatic samplers. The other three storms were partially sampled, where only flow-weighted time-composite samples were collected and/or not all stations were sampled. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/qualitycontrol samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and insure proper cleaning of equipment.

  6. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    USGS Publications Warehouse

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  7. Sociodemographic characterization of ECT utilization in Hawaii.

    PubMed

    Ona, Celia M; Onoye, Jane M; Goebert, Deborah; Hishinuma, Earl; Bumanglag, R Janine; Takeshita, Junji; Carlton, Barry; Fukuda, Michael

    2014-03-01

    Minimal research has been done on sociodemographic differences in utilization of electroconvulsive therapy (ECT) for refractory depression, especially among Asian Americans and Pacific Islanders. This study examined sociodemographic and diagnostic variables using retrospective data from Hawaii, an island state with predominantly Asian Americans and Pacific Islanders. Retrospective data were obtained from an inpatient and outpatient database of ECT patients from 2008 to 2010 at a tertiary care community hospital on O'ahu, Hawaii. There was a significant increase in overall ECT utilization from 2008 to 2009, with utilization remaining stable from 2009 to 2010. European Americans (41%) and Japanese Americans (29%) have relatively higher rates of receiving ECT, and Filipino Americans and Native Hawaiians have relatively lower rates in comparison with their population demographics. Japanese Americans received significantly more ECT procedures than European Americans. Electroconvulsive therapy is underutilized by certain sociodemographic groups that may benefit most from the treatment. There are significant differences in ECT usage based on ethnicity. Such differences may be related to help-seeking behavior, economic differences, and/or attitudes regarding mental illness. Further research is needed to elucidate the reasons for differences in utilization.

  8. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.

    PubMed

    Cutler, William G; Brewer, Roger C; El-Kadi, Aly; Hue, Nguyen V; Niemeyer, Patrick G; Peard, John; Ray, Chittaranjan

    2013-01-01

    Arsenical herbicides were used extensively for emergent weed control in Hawaiian sugar cane cultivation from 1913 to about 1950. As a result, surface soil arsenic concentrations average 280 mg kg(-1) across more than 60 km(2) of former sugar plantation land in the eastern portion of the Island of Hawaii. This study was conducted to elucidate the relationship between soil properties and arsenic bioaccessibility in the iron-rich volcanic soils. Soils are predominantly Andisols, formed by weathering of basaltic lava and tephra, with pedogenic solid phases consisting of short-range order iron oxyhydroxides, allophane-like aluminosilicates, and metal-humus compounds. These reactive solid phases strongly adsorb oxyanions, such as phosphate and arsenite/arsenate. High arsenic sorption capacity limits desorption and vertical migration within the soil column and prevents contamination of the underlying groundwater aquifer, despite high arsenic loading and precipitation rates. In vitro arsenic bioaccessibility, as measured by the SBRC gastric-phase test, ranges from 2% to 35% and averages 9% of total arsenic. Bioaccessible arsenic is higher in less weathered soils (Udifolists, Typic and Lithic Hydrudands) and lower in more weathered ash-dominant soils (Acrudoxic Hydrudands). Soil weathering indicators, such as reactive iron content, are strong predictors of arsenic bioaccessibility. Based on evidence from soil mineralogy, geochemistry and arsenic speciation, as well as limited soil arsenic bioavailability/bioaccessibility comparisons, risks to human health from direct contact (soil ingestion) are significantly reduced by low arsenic bioaccessibility. Nonetheless, some soils within former sugar cane cultivation areas contain bioaccessible arsenic concentrations exceeding Hawaii Department of Health risk-based action levels, and will require mitigating actions. Even higher levels of soil arsenic contamination have been identified at former pesticide storage and mixing areas

  9. Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai'i Island

    USGS Publications Warehouse

    Peck, R.W.; Banko, P.C.; Schwarzfeld, M.; Euaparadorn, M.; Brinck, K.W.

    2008-01-01

    Through intentional and accidental introduction, more than 100 species of alien Ichneumonidae and Braconidae (Hymenoptera) have become established in the Hawaiian Islands. The extent to which these parasitoid wasps have penetrated native wet forests was investigated over a 1,765 m elevation gradient on windward Hawai'i Island. For >1 year, malaise traps were used to continuously monitor parasitoid abundance and species richness in nine sites over three elevations. A total of 18,996 individuals from 16 subfamilies were collected. Overall, the fauna was dominated by aliens, with 44 of 58 species foreign to the Hawaiian Islands. Ichneumonidae was dominant over Braconidae in terms of both diversity and abundance, comprising 67.5% of individuals and 69.0% of species collected. Parasitoid abundance and species richness varied significantly with elevation: abundance was greater at mid and high elevations compared to low elevation while species richness increased with increasing elevation, with all three elevations differing significantly from each other. Nine species purposely introduced to control pest insects were found, but one braconid, Meteorus laphygmae, comprised 98.0% of this assemblage, or 28.3% of the entire fauna. Endemic species, primarily within the genera Spolas and Enicospilus, were collected almost exclusively at mid- and high-elevation sites, where they made up 22.1% and 36.0% of the total catch, respectively. Overall, 75.9% of species and 96.0% of individuals are inferred to parasitize Lepidoptera larvae and pupae. Our results support previous data indicating that alien parasitoids have deeply penetrated native forest habitats and may have substantial impacts on Hawaiian ecosystems. ?? 2008 Springer Science+Business Media B.V.

  10. Polynesian land use decisions in Hawai`i and Rapa Nui (Easter Island) (Invited)

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Ladefoged, T. N.; Haoa, S.; Stevenson, C.; Vitousek, P.

    2009-12-01

    Over the span of several centuries ancient Hawaiians and Rapanui (Easter Islanders) developed a range of intensive agricultural systems in their volcanic homelands. In leeward Kohala (Hawai`i) people targeted relatively young geologic substrates that were naturally enriched soil nutrient zones to construct a 60 km2 intensive rain-fed field system. A series of earthen and rock embankments and trails were built to facilitate sweet potato and dryland taro production and distribution. By comparing nutrient levels under embankments of different ages it has been possible to document significant nutrient depletion over approximately 150 years of pre-European gardening. On the wet windward side of Kohala leaching driven by high rainfall depleted soil nutrients in upland areas naturally, to levels unsuitable for intensive rain-fed agriculture. As an alternative, people exploited colluvial and alluvial zones for intensive rain-fed and irrigated agriculture, respectively. Analyses from Pololu in Kohala and Halawa on Moloka`i suggests that soil nutrient levels within colluvial zones were rejuvenated by erosion and deposition from fresh bedrock. In alluvial areas, soil nutrient levels were enhanced through the deposition of soluble elements via weathering of minerals along the flowpath between rainfall and delivery of irrigation water to Hawaiian crops. On Rapa Nui the lack of perennial streams meant that people were reliant on intensive rain-fed systems for their subsistence and surplus needs. In response to the matrix of geologic substrate ages and rainfall levels several innovative agricultural strategies were employed. Basalt outcrops were intentionally broken apart and large quantities of rock were distributed over the barren landscape. In places these “rock gardens” consisted of boulder concentrations and/or smaller rock veneers, whereas in other zones rocks were mulched into the soil to a depth of 30 cm to create growing medium. The advantages of these techniques

  11. Volcanic air pollution over the Island of Hawai'i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai'i Island school children

    USGS Publications Warehouse

    Tam, Elizabeth K.; Miike, Rei; Labrenz, Susan; Sutton, Andrew; Elias, Tamar; Davis, James A.; Chen, Yi-Leng; Tantisira, Kelan; Dockery, Douglas; Avol, Edward

    2016-01-01

    Environmental data suggested 4 different vog exposure zones with SO2, PM2.5, and particulate acid concentrations (mean ± s.d.) as follows: 1) Low (0.3 ± 0.2 ppb, 2.5 ± 1.2 μg/m3, 0.6 ± 1.1 nmol H +/m3), 2) Intermittent (1.6 ± 1.8 ppb, 2.8 ± 1.5 μg/m3, 4.0 ± 6.6 nmol H +/m3), 3) Frequent (10.1 ± 5.2 ppb, 4.8 ± 1.9 μg/m3, 4.3 ± 6.7 nmol H +/m3), and 4) Acid (1.2 ± 0.4 ppb, 7.2 ± 2.3 μg/m3, 25.3 ± 17.9 nmol H +/m3). Participants (1957) in the 4 zones differed in race, prematurity, maternal smoking during pregnancy, environmental tobacco smoke exposure, presence of mold in the home, and physician-diagnosed asthma. Multivariable analysis showed an association between Acid vog exposure and cough and strongly suggested an association with FEV1/FVC < 0.8, but not with diagnosis of asthma, or chronic persistent wheeze or bronchitis in the last 12 months. Conclusions: Hawai'i Island's volcanic air pollution can be very acidic, but contains few co-contaminants originating from anthropogenic sources of air pollution. Chronic exposure to acid vog is associated with increased cough and possibly with reduced FEV1/FVC, but not with asthma or bronchitis. Further study is needed to better understand how volcanic air pollution interacts with host and environmental factors to affect respiratory symptoms, lung function, and lung growth, and to determine acute effects of episodes of increased emissions.

  12. Bibliography of marine turtles in Hawaii

    SciTech Connect

    Payne, S.F.

    1981-07-01

    Information on the organisms at proposed Ocean Thermal Energy Conversion (OTEC) sites is required to assess the potential impacts of OTEC power plant operations. This bibliography is the product of a literature survey on marine turtles at two proposed OTEC sites in Hawaii. The OTEC sites are located off Keahole Point, Hawaii and Kahe Point, Oahu. The references included in this bibliography provide information on the distribution, ecology and biology of marine turtles in Hawaii.

  13. Geology and ground-water resources of the islands of Lanai and Kahoolawe, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Macdonald, Gordon Andrew; Swartz, Joel Howard

    1940-01-01

    Lanai lies 59 miles southeast of Honolulu, Oahu, has an area of 141 square miles, and is 3,370 feet high. (See fig. 1 and pl. 1.) Lanai City is the only town of importance. The island produces pineapples and cattle. The surface above about 1,200 feet is generally covered with lateritic soil, which reaches a maximum depth of about 50 feet. Below this level the island is partly devoid of vegetation and is strewn with boulders, the result of having been once submerged by the ocean to this depth. Traces of various emerged and submerged shore lines are described, the highest fossiliferous marine deposits being 1,070 feet above sea level. Lanai is an eroded extinct basaltic volcano built during one period of activity. No secondary eruptions occurred as on most of the other islands. It has three rift zones and a summit caldera. The summit plateau has resulted from collapse along the northwest rift zone. Elsewhere there is much evidence of faulting. About 100 faults and 275 dikes were recorded, but they are so close together in places that it was not possible to show them all on the map.The climate is semitropical, the mean annual temperature of Lanai City, altitude 1,620 feet, being 68° F. Because Lanai lies to the lee of Maui Island it is dry. The mean annual rainfall ranges from 38 inches on the summit to less than 10 inches on the coast. The windward (northeast) side is carved by streams into deep canyons. Maunalei Gulch has the only perennial stream, and it does not reach the sea. Ground water, the lifeblood of Lanai is scarce. Lanai City obtains some of its water supply by a tunnel from gravel in Maumalei Gulch. This water apparently rises from the dike complex in this gulch. The rest of the supply comes from a recently constructed shaft tapping the dike complex not far downstream. The total quantity of high-level ground water discharged by springs and tunnels ranges from about 600,000 gallons a day in wet weather to about 250,000 gallons a day in dry weather. The

  14. 76 FR 46361 - Endangered and Threatened Wildlife and Plants; Listing 23 Species on Oahu as Endangered and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... most recently assessed and reaffirmed in the November 10, 2010, Notice of Review of Native Species that... to Listing 23 Species on Oahu On the island of Oahu, as on most of the Hawaiian Islands, native... context of the broader ecosystem in which it occurs, to avoid redundancy. In addition, native species...

  15. Spatial and temporal patterns of coral health and disease along leeward Hawai'i Island

    NASA Astrophysics Data System (ADS)

    Couch, C. S.; Garriques, J. D.; Barnett, C.; Preskitt, L.; Cotton, S.; Giddens, J.; Walsh, W.

    2014-09-01

    Ecological processes including disease, competition for space, and predation strongly influence coral reef health from the colony to reef level. The leeward/west coast of the island of Hawai'i consists of the largest expanse of intact reefs in the Main Hawaiian Islands (MHI), yet little is known about the health of its coral communities. We measured prevalence of coral diseases and non-disease conditions at nine regions across two depths in the summer and winter months between 2010 and 2011. We also assessed long-term changes in coral cover (2003-2011). Mean prevalence of chronic diseases was 5-21 times greater than previously reported for the MHI. Coral health varied minimally across survey months with mild seasonality only detected in algal overgrowth (ALOG). Coral health varied considerably by depth and site, and was primarily driven by the most prevalent and common conditions: Porites growth anomalies (13.7 ± 0.82 %), Porites trematodiasis (9.5 ± 0.90 %), discoloration (5.6 ± 0.33 %), ALOG (9.9 ± 0.54 %), and gastropod predation (2.4 ± 0.23). While several conditions were significantly elevated in shallow zones, unique site × depth interactions suggest that specific site-level factors are driving prevalence. At the coast-wide level, percentage of coral cover did not change significantly between 2003 and 2011, but decreased significantly at two sites and increased at one site. Based on coral cover decline and high prevalence of certain coral health conditions, we identified four regions of concern (Puakō, Mauna Lani, Ka'ūpūlehu, and Hōnaunau). The high spatial variation in coral health not only advances our understanding of coral disease ecology, but also supports reef resilience planning by identifying vulnerable areas that would benefit most from targeted conservation and management efforts.

  16. Three-dimensional Magnetotelluric Modeling of the Pohukuloa Training Area, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Lienert, B. R.; Wallin, E.

    2015-12-01

    We report the results of 3D modeling of magnetotelluric (MT) data collected in the Pohakuloa Training Area (PTA) on the saddle between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. We have previously used lower frequency MT data to construct 1D and 2D resistivity profiles in this area and confirmed the presence of a low-resistivity region at depths of about 2 km. One of our drill holes in PTA had previously encountered temperatures of 150 C at a similar depth. However, our 1D and 2D models were unable to fit features of the data that we suspected were due to 3D variations in subsurface resistivity. For the 3D modeling, we reprocessed the higher frequency data (1 kHz sampling rate) which were available at all 20 sites. We were then able to obtain complex impedances at frequencies of 0.5-500 Hz to use for the 3D inversion. We used Siripunvaraporn's 3D inversion method to obtain resistivities in a rectangular array of 0.5x0.5x0.25 km blocks spanning the areal extent of the stations down to a depth of 2.5 km. The results confirmed that much of the anomalous data could be explained by near-surface 3D variations in resistivity. The underlying conductor of 5-10 ohm-m at 2 km depth now appears to extend over the entire survey area.

  17. Effects of ungulate management on vegetation at Hakalau Forest National Wildlife Refuge, Hawai'i Island

    USGS Publications Warehouse

    Hess, S.C.; Jeffrey, J.J.; Pratt, L.W.; Ball, D.L.

    2010-01-01

    We compiled and analysed data from 1987-2004 on vegetation monitoring during feral ungulate management at Hakalau Forest National Wildlife Refuge, a tropical montane rainforest on the island of Hawai'i All areas in the study had previously been used by ungulates, but cattle (Bos taurus) were removed and feral pig (Sus scrofa) populations were reduced during the study period. We monitored six line-intercept transects, three in previously high ungulate use areas and three in previously low ungulate use areas. We measured nine cover categories with the line-intercept method: native ferns; native woody plants; bryophytes; lichens; alien grasses; alien herbs; litter; exposed soil; and coarse woody debris. Vegetation surveys were repeated four times over a 16-year period. Vegetation monitoring revealed a strong increase in native fern cover and slight decreases in cover of bryophytes and exposed soil. Mean cover of native plants was generally higher in locations that were formerly lightly grazed, while alien grass and herb cover was generally higher in areas that were heavily grazed, although these effects were not statistically significant. These responses may represent early serai processes in forest regeneration following the reduction of feral ungulate populations. In contrast to many other Hawaiian forests which have become invaded by alien grasses and herbs after ungulate removal, HFNWR has not experienced this effect.

  18. Plant phenology in a cloud forest on the island of Maui, Hawaii

    USGS Publications Warehouse

    Berlin, Kim E.; Pratt, T.K.; Simon, John C.; Kowalsky, James R.; Hatfield, J.S.

    2000-01-01

    We recorded the times of flowering, fruiting, and leafing of ten native canopy and subcanopy trees and shrubs (monthly from December 1994 through December 1997) in a montane cloud forest with relatively aseasonal rainfall on the island of Maui, Hawaii. These species represented the great majority of individual woody plants at the site. Flowers and fruits were available in the community year-round; however, all species exhibited annual patterns of flowering, and four species showed annual patterns of fruiting while the rest fruited in supra-annual patterns. Many species had protracted flowering or fruiting peaks, and some bore small numbers of flowers or fruit year-round. Most species flowered in a monthly peak mainly between May and August, corresponding to the period of greatest solar irradiance and marginally higher temperatures. Fruit ripening followed at varying intervals. In contrast, the heaviest flowering occurred between November and March, resulting from bloom of the dominant tree, Metrosideros polymorpha. At the highest elevations, Metrosideros flowering was heaviest during September, but peak flowering of lower elevation trees occurred in late fall and winter. Two varieties of this species differed in their temporal and spatial patterns of flowering. For M. polymorpha var. polymorpha and var. incana, bloom peaked annually between November and January; however, for M. polymorpha var. glaberrima, flowering peaked from April through July, with a possible earlier secondary peak in January.

  19. Preliminary Results of a Magnetotelluric Survey in the Center of Hawaii Island

    NASA Astrophysics Data System (ADS)

    Lienert, B. R.; Thomas, D. M.; Wallin, E.

    2014-12-01

    From 2013 up to the present we have been recording magnetotelluric (MT) data at 25 sites in a 35x25 km region (elev. 1943 m) on the saddle between the active volcano of Mauna Loa (4169 m) and the dormant volcano of Mauna Kea (4205 m) on Hawai'i Island. The MT data, particularly the electric fields, are frequently contaminated by spurious components that are not due to the plane-wave magnetic signals required for derivation of the MT impedance tensor. We therefore developed interactive graphical software (MTPlot) to plot and analyze the MT signals in the field. MTPlot allows us to quickly examine records in both the time and frequency domain to in order to judge their quality. It also transforms the data into estimates of apparent resistivity and their error in the frequency range 0.001-500 Hz. This has proved very useful for selecting suitable records for subsequent analysis. We then use multi-taper remote reference processing to obtain our final apparent resistivity estimates and their errors. We present preliminary results of one and two dimensional modeling of these estimates to obtain the three-dimensional distribution of subsurface resistivities down to depths of 5 km. The results are compared to temperatures and properties of cores obtained when we drilled a research hole to a depth of 1760 m in this same region. We shall discuss how our results relate to the extent of the fresh-water and geothermal energy reservoirs that we discovered during drilling.

  20. Quantifying effects of humans and climate on groundwater resources of Hawaii through sharp-interface modeling

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2016-12-01

    Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.

  1. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  2. Rainfall, discharge, and water-quality data during stormwater monitoring, H-1 storm drain, Oahu, Hawaii, July 1, 2009, to June 30, 2010

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.

    2010-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff collected by the H-1 storm drain on the Manoa-Palolo Drainage Canal. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2009, and June 30, 2010. As part of this program, rainfall and continuous discharge data were collected at the H-1 storm drain. During the year, sampling strategy and sample processing methods were modified to improve the characterization of the effects of discharge from the storm drain on the Manoa-Palolo Drainage Canal. During July 1, 2009, to February 1, 2010, samples were collected from only the H-1 storm drain. Beginning February 2, 2010, samples were collected simultaneously from the H-1 storm drain and the Manoa-Palolo Drainage Canal at a location about 50 feet upstream of the discharge point of the H-1 storm drain. Three storms were sampled during July 1, 2009, to June 30, 2010. All samples were collected using automatic samplers. For the storm of August 12, 2009, grab samples (for oil and grease, and total petroleum hydrocarbons) and a composite sample were collected. The composite sample was analyzed for total suspended solids, nutrients, and selected dissolved and total (filtered and unfiltered) trace metals (cadmium, chromium, nickel, copper, lead, and zinc). Two storms were sampled in March 2010 at the H-1 storm drain and from the Manoa-Palolo Drainage Canal. Two samples were collected during the storm of March 4, 2010, and six samples were collected during the storm of March 8, 2010. These two storms were sampled using the modified strategy, in which discrete samples from the automatic sampler were processed and analyzed individually, rather than as a composite sample, using the simultaneously collected samples from the H-1 storm drain and from the Manoa-Palolo Drainage

  3. Quarantine security of bananas at harvest maturity against Mediterranean and Oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Armstrong, J W

    2001-02-01

    Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.

  4. Comparative analysis of the impact of geological activity on the structural design of telescope facilities in the Canary Islands, Hawaii and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; García-Lorenzo, B.; Rodriguez-Losada, J. A.; de La Nuez, J.; Hernández-Gutiérrez, L. E.; Romero-Ruiz, M. C.

    2010-09-01

    An analysis of the impact of seismic and volcanic activity has been carried out at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile), and the candidate site of Cerro Ventarrones (Chile). Hazard associated with volcanic activity is low or negligible at all sites, whereas seismic hazard is very high in Chile and Hawaii. The lowest geological hazard in both seismic and volcanic activity is found at Roque de los Muchachos observatory, on the island of La Palma.

  5. Multiplex serology for common viral infections in feral pigs (Sus scrofa) in Hawaii between 2007 and 2010.

    PubMed

    Stephenson, Rachel J; Trible, Benjamin R; Wang, Yu; Kerrigan, Maureen A; Goldstein, Samuel M; Rowland, Raymond R R

    2015-01-01

    Multiplex serology was performed for the detection of total immunoglobulin (Ig) and IgM antibodies against porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and swine influenza virus (SIV) antigens in feral swine (Sus scrofa). Serum samples were collected from the islands of Oahu (292 pigs) and Hawaii (52 pigs) between 2007 and 2010. The highest antibody prevalence was to PCV2 (63%), followed by SIV (7.8%) and PRRSV (5.8%). Antigen-specific IgM was detected at a much lower prevalence. PCR amplification and sequence analysis of PCV2 in three IgM-positive samples identified PCV2b as the only genotype. While the prevalence of PCV2 and PRRSV remained similar between 2007 and 2010, the percentage of SIV-positive samples on Oahu increased from 2% to 19%. Our results demonstrate the utility of multiplex serology for pathogen surveillance in feral pig populations.

  6. Examination of Environmental Trends in Hawaii Based on the Trace Element Distributions in Cores of the Kiawe tree (Prosopis pallida)

    NASA Astrophysics Data System (ADS)

    Parry, Y. S.; de Carlo, E. H.; Spengler, S. R.

    2003-12-01

    Annual growth rings of trees have the potential for providing a chronology of bioavailable contaminants extant in the environment in which the trees grow. Recent studies have documented a significant correlation between concentrations of metals in atmospheric particulate matter and those observed in surface and groundwater. The Kiawe (Prosopis pallida), a hardwood tree commonly found in Hawaii, represents a potential environmental tape recorder because of its life span on the order of multiple decades. Because the Kiawe is phreatophytic and has high transpiration rates, it may be ideally suited to examine past (temporal) and current (spatial) variability in the quality of groundwater where these trees grow. Because of the potential correlation between airborne and groundwater pollution we hypothesize that growth rings of Kiawe may yield clues to help unravel recent (50-100 yrs) changes in contamination patterns in Hawaii. We will present concentrations of trace elements (Cr, Mn, Co, Ni, Cu, Zn, Pb, Cd, Sb, and Pb) in cores of Kiawe trees growing on the island of Oahu, Hawaii. Oahu, the locus of more than 80 percent of the population of the State of Hawaii, is heavily urbanized, but other land uses include agriculture, conservation (rainforest), and military reservations, where live-fire military training activities over the past 60 years have raised public concern about potential contamination of natural resources. Preliminary analyses indicate that trace element concentrations in Kiawe wood range from a less than one to tens of micrograms per kilogram, depending on the element and the provenance of the tree.

  7. Map and Data for Quaternary Faults and Fault Systems on the Island of Hawai`i

    USGS Publications Warehouse

    Cannon, Eric C.; Burgmann, Roland; Crone, Anthony J.; Machette, Michael N.; Dart, Richard L.

    2007-01-01

    and catalog of data, both in Adobe Acrobat PDF format. The senior authors (Eric C. Cannon and Roland Burgmann) compiled the fault data as part of ongoing studies of active faulting on the Island of Hawai`i. The USGS is responsible for organizing and integrating the State or regional products under their National Seismic Hazard Mapping project, including the coordination and oversight of contributions from individuals and groups (Michael N. Machette and Anthony J. Crone), database design and management (Kathleen M. Haller), and digitization and analysis of map data (Richard L. Dart). After being released an Open-File Report, the data in this report will be available online at http://earthquake.usgs.gov/regional/qfaults/, the USGS Quaternary Fault and Fold Database of the United States.

  8. Estimation of Median Streamflows at Perennial Stream Sites in Hawaii

    USGS Publications Warehouse

    Fontaine, Richard A.; Wong, Michael F.; Matsuoka, Iwao

    1992-01-01

    The most accurate estimates of median streamflows at perennial stream sites in Hawaii are those made at streamflow-gaging stations. Two alternative methods for estimating median streamflows at ungaged sites are described in this report. Multiple-regression equations were developed for estimating median streamflows at ungaged, unregulated, perennial stream sites. The equations relate combinations of drainage area, mean altitude of the main stream channel, and mean annual precipitation to median streamflow. Streamflow data from 56 long-term continuous-record gaging stations were used in the analysis. Median-streamflow data for all 56 sites were adjusted using record-extension techniques to reflect base period (1912 through 1986) conditions. Hawaii was subdivided into two geographic groups and multiple-regression equations were developed for each. The standard error of predication for the equation developed for the first group, the islands of Oahu, Molokai, and Hawaii, is 41 percent. The standard error of predication for the equation developed for the second group, the islands of Kauai and Maui, is 54 percent. A method for estimating median-streamflow, based on discharge measurements and data from nearby streamflow-gaging stations, was also developed for 27 regulated, perennial windward Oahu sites. Standard errors of prediction for 23 of the sites range from 5 to 34 percent. Median-streamflow estimates for the four remaining sites were considered poor and no measures of accuracy are provided. Discharge measurements can be used to make estimates of median streamflows at ungaged, regulated sites where the regression equations developed in this report are not applicable. Discharge measurements can also be used to make estimates of median streamflows at ungaged, unregulated sites. Estimates of median streamflows based on discharge measurements have greater standard errors than estimates based on continuous streamflow records and in general have smaller standard errors

  9. Results of a preliminary serological survey of small mammal populations for plague on the Island of Hawaii*

    PubMed Central

    Meyer, K. F.; McNeill, D.; Wheeler, C. M.

    1965-01-01

    Since 1910 the District of Hamakua, Island of Hawaii, has been considered an endemic plague area. To obtain indirect evidence of plague infection in rodents and in the mongoose, serological surveys of the small mammal populations were undertaken. The passive microhaemagglutination test demonstrated the presence of positive reactors (titres of 1:16 and higher) in the sera of 2641 rodents and 385 mongooses tested. Positive percentages were: Rattus exulans, 1.5%; R. norvegicus, 1.9%; R. rattus, 0.6%; Mus musculus, 1.1%; and Herpestes auropunctatus, 12.5%. This study has proved the continued presence of a permanent reservoir of plague in indigenous rodent and mongoose populations after a period of 65 years since the introduction of plague into Hawaii and has demonstrated that the mongoose is an excellent indicator of plague infection. PMID:5295405

  10. University of Hawaii System Outreach Efforts on the Neighbor Islands. Report No. 9.

    ERIC Educational Resources Information Center

    Sugano, Dean

    This report examines the efforts of the University of Hawaii system to adopt and implement outreach programs to residents of areas without four-year and graduate-level educational institutions. Data on current programs were gathered through a questionnaire sent to officials at the University of Hawaii's three university and seven community-college…

  11. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    SciTech Connect

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support

  12. 78 FR 57835 - Endangered and Threatened Wildlife and Plants; Notice of 6-Month Extension of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ...; Charlotte Amalie, St. Thomas, U.S. Virgin Islands; Hilo, Hawaii, Hawaii; Kailua Kona, Hawaii, Hawaii; Kaunakakai, Molokai, Hawaii; Wailuku, Maui, Hawaii; Lihue, Kauai, Hawaii; Honolulu, Oahu, Hawaii; Hagatna...

  13. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    1999-01-01

    Prior to the early 1990's, ground-water in the Kona area, which is in the western part of the island of Hawaii, was withdrawn from wells located within about 3 mi from the coast where water levels were less than 10 feet above sea level. In 1990, exploratory drilling in the uplands east of the existing coastal wells first revealed the presence of high water levels (greater than 40 feet above sea level) in the Kona area. Measured water levels from 16 wells indicate that high water levels exist in a zone parallel to and inland of the Kona coast, between Kalaoa and Honaunau. Available hydrologic and geophysical evidence is generally consistent with the concept that the high ground-water levels are associated with a buried dike complex. A two-dimensional (areal), steady-state, freshwater-saltwater, sharp-interface ground-water flow model was developed for the Kona area of the island of Hawaii, to enhance the understanding of (1) the distribution of aquifer hydraulic properties, (2) the conceptual framework of the ground-water flow system, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-difference code SHARP. To estimate the hydraulic characteristics, average recharge, withdrawals, and water-level conditions for the period 1991-93 were simulated. The following horizontal hydraulic-conductivity values were estimated: (1) 7,500 feet per day for the dike-free volcanic rocks of Hualalai and Mauna Loa, (2) 0.1 feet per day for the buried dike complex of Hualalai, (3) 10 feet per day for the northern marginal dike zone (north of Kalaoa), and (4) 0.5 feet per day for the southern marginal dike zone between Palani Junction and Holualoa. The coastal leakance was estimated to be 0.05 feet per day per foot. Measured water levels indicate that ground water generally flows from inland areas to the coast. Model results are in general agreement with the limited set of measured water levels in the Kona area. Model

  14. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  15. Streamflow and Suspended-Sediment Loads Before, During, and After H-3 Highway Construction, North Halawa, Haiku, South Fork Kapunahala, and Kamooalii Drainage Basins, Oahu, Hawaii, 1983-99

    USGS Publications Warehouse

    Wong, Michael F.; Yeatts, Daniel S.

    2002-01-01

    A long-term study (1983?99) was conducted to determine the effects of the H-3 Highway construction on streamflow and suspended-sediment transport on Oahu, Hawaii. Data were collected at five streamflow-gaging stations before, during, and after construction and at two stream-gaging stations during and after construction. Drainage areas at the seven streamflow-gaging stations ranged from 0.40 to 4.01 mi2 and highway construction affected from 4 to 15 percent of these areas. Analysis of covariance and regression techniques were used to assess changes in streamflow and suspended-sediment loads during and after construction, relative to before-construction conditions. Streamflow at the seven streamflow-gaging stations was compared to streamflow at an index station unaffected by highway construction. Streamflow data were divided into low- and high-flow classes, and the two flow classes were analyzed separately. Additionally, instantaneous peak flows were analyzed at three streamflow-gaging stations. During construction, observed low flows significantly increased by 108 percent at Luluku Stream, a tributary to Kamooalii Stream, and decreased by 31 percent at Kamooalii Stream. After construction, low flows increased by 47 percent at North Halawa Stream near Honolulu compared to low flows during construction. Low flows at Luluku Stream increased by 99 percent after construction compared to before construction. Increased low flows were attributed to removal of vegetation for construction and the increase of impervious areas that reduced infiltration. Decreased low flows were attributed to increased ground-water withdrawals and construction activities. High flows observed during highway construction compared to before construction increased significantly only at Haiku Stream (by 25 percent). Observed high flows after construction compared to during construction increased significantly only at Kamooalii Stream (by 34 percent). Observed high flows after construction compared to

  16. The variation of nitric acid vapor and nitrate aerosol concentrations near the island of Hawaii

    SciTech Connect

    Lee, G.

    1992-01-01

    Anthropogenic emissions of nitrogen oxides (NO + NO[sub 2]) are estimated to be half of the global emissions to the atmosphere. To understand the effect of increasing anthropogenic reactive nitrogen inputs to the global atmosphere, one needs to monitor their long-term variations. This dissertation examines the variations of total nitrate (nitric acid vapor and nitrate aerosol) at the Mauna Loa Observatory (MLO), Hawaii. During the Mauna Loa Observatory Photochemistry Experiment (MLOPEX) in May, 1988, six different air types were identified at MLO with statistical analysis. They were: (1) volcano influenced air, (2) stratosphere-like air, (3) boundary-layer air with recent anthropogenic influence, (4) photochemical haze, (5) marine boundary-layer air, (6) well-aged and modified marine air. Samples that might be influenced by marine air or human activity from local islands were eliminated with three meterological criteria (wind direction, condensation nuclei, and dew point). To examine the negative sampling artifacts of nitric acid vapor due to ground loss, mixing ratio gradients with height were measured during August of 1991. The observed gradients of nitric acid vapor indicated that the long-term samplers at 8 m at MLO may underestimate the free tropospheric nitric acid vapor mixing ratio by about 20%. The three year mean and median of free tropospheric total nitrate during long-term measurements were 113 pptv and 93 pptv, respectively. Each year, the total nitrate mixing ratios at MLO during the spring and summer were increased by more than a factor of two higher than fall and winter. NO[sub y] from remote continents (Asia and North America) are likely sources of these increased total nitrate at MLO during these seasons. However, other processes govern the total nitrate mixing ratios, e.g., degree of mixing between free tropospheric air and boundary air at source regions, stratospheric injection, and wet removal of total nitrate.

  17. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect

    Grossman, D.H.

    1992-01-01

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  18. Systematic re-analysis of 23 years of volcanic seismicity on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Shearer, P. M.; Okubo, P.

    2014-12-01

    The analysis and interpretation of seismicity from mantle depths to the surface plays a key role in understanding how volcanoes work. We are developing and applying methods for the systematic reanalysis of waveforms from volcano-seismic networks, including high-precision earthquake relocation, spectral event classification, and robust focal mechanism and stress drop estimates. Our primary dataset is the ~50-station permanent network of the USGS Hawaiian Volcano Observatory (HVO), but we are extending our methods for application to other volcanic systems. We have converted the entire HVO digital waveform and phase-pick database from 1986 to 2009 (~260,0000 events) to a uniform custom event format, greatly facilitating systematic analyses. A comprehensive multi-year catalog of high-precision relocated seismicity for all of Hawaii Island exhibits a dramatic sharpening of earthquake clustering along faults, streaks, and magmatic features, permitting a more detailed understanding of fault geometries and volcanic and tectonic processes. Automated spectral identification and relocation of long-period (LP, 0.5-5 Hz) seismicity near the summit region of Kilauea Volcano shows that most intermediate depth (5-15 km) LP events occur within a compact volume that has remained at a fixed location for over 23 years. An unanticipated result from our relocation work is the emergence of sharp ring seismicity features. We have so far identified 2 ring features: a full ring of diameter ~2 km on the northwest flank of Mauna Loa, and a half-ring feature of diameter ~0.5 km near Makaopuhi Crater. We are also performing comprehensive spectral analyses to estimate spatial variations in stress drop of shear-failure earthquakes.

  19. Effects of trade-wind strength and direction on the leeside circulations and rainfall of the island of Hawaii

    Treesearch

    Yang Yang; Yi-Leng Chen; Francis M. Fujioka

    2009-01-01

    The leeside circulations and weather of the island of Hawaii were studied from the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) land surface model simulations for eight strong (∼7.9 m s−1) and eight weak (∼5.2 m s−1) trade-wind days and for five days with southeasterly trades (∼7.1 m s

  20. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect

    1981-06-01

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  1. An Engineering Technology Skills Framework that Reflects Workforce Needs on Maui and the Big Island of Hawai'i

    NASA Astrophysics Data System (ADS)

    Seagroves, S.; Hunter, L.

    2010-12-01

    The Akamai Workforce Initiative (AWI) is an interdisciplinary effort to improve science/engineering education in the state of Hawai'i, and to train a diverse population of local students in the skills needed for a high-tech economy. In 2009, the AWI undertook a survey of industry partners on Maui and the Big Island of Hawai'i to develop an engineering technology skills framework that will guide curriculum development at the U. of Hawai'i - Maui (formerly Maui Community College). This engineering skills framework builds directly on past engineering-education developments within the Center for Adaptive Optics Professional Development Program, and draws on curriculum development frameworks and engineering skills standards from the literature. Coupling that previous work with reviews of past Akamai Internship projects and information from previous conversations with the local high-tech community led to a structured-interview format where engineers and managers could contribute meaningful commentary to this framework. By incorporating these local high-tech companies' needs for entry-level engineers and technicians, a skills framework emerges that is unique and illuminating. Two surprising features arise in this framework: (1) "technician-like" skills of making existing technology work are on similar footing with "engineer-like" skills of creating new technology; in fact, both engineers and technicians at these workplaces use both sets of skills; and (2) project management skills are emphasized by employers even for entry-level positions.

  2. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  3. Inspiring Young Hawaiian and Pacific Island Women to Pursue S.T.E.M. Careers: Expanding Your Horizons - Hawaii

    NASA Astrophysics Data System (ADS)

    Small Griswold, J. D.

    2016-12-01

    Expanding Your Horizons in Science and Mathematics (EYH) are conferences created to promote and foster interest for girls in the areas of science and math. The conferences are held with hopes that girls who attend will be encouraged to consider careers in these disciplines. Since 2014, the University of Hawaii at Mānoa (UH Mānoa) has held three annual EYH-Hawaii events reaching 86,163, and 150 girls respectively. EYH - Hawaii hosted 11 workshops in 2014, 22 in 2015, and 20 in 2016, primarily with atmospheric sciences, oceanography, marine biology, geology and physics related topics. The education outreach activities outlined in this work have far reaching societal implications. The lack of women in the sciences has been a problem for over 50 years and Native Hawaiian and Pacific Islanders represent an event smaller fraction of women in science. It has been shown that mentoring programs, especially those focused on STEM fields, help young women and girls to envision themselves as chemists, physicists, mathematicians and other types of scientists such as those that study the earth and atmosphere which are fields that are not commonly discussed or highlighted in K-12 curriculum. EYH and related conferences for young women increase the likelihood that they will pursue science and math in secondary educational settings. This is essential in a world in which few girls are choosing science and math as potential careers. Here we compile survey results from the three EYH - Hawaii events to determine trends in attendance, interest, and overall impact. Each year attendees were surveyed regarding their overall experience at the conference, individual workshop experience, and personal demographic information. We especially highlight statistics related to the experience of students of Native Hawaiian and Pacific Island descent. Survey results discussed include: grade level, ethnicity/race, hometown, favorite and least favorite aspect and/or workshop of the conference

  4. Barbers Point Harbor, Oahu, Hawaii Monitoring Study

    DTIC Science & Technology

    1993-09-01

    for a shore station to house the power source and receive the signals from the instruments. Data collection began in 1986 and continued through 1990...installed the connections to the site. In reviewing sources for electricity, a solar electric system was utilized since the moni- toring location is on the...with a solar panel installed in the roof was constructed to house the equip- ment (Figure 79). The building orientation and roof angle were designed for

  5. Water in the Kahuku area, Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Valenciano, Santos

    1969-01-01

    The Kahuku area comprises the north end of the Koolau Range and its bordering coastal plain. This part of the range is less deeply eroded than oth3r parts, and except for long, narrow valleys and cliffs near the shore, it has retained the general shape of the original volcanic dome. A 21/2-mile-wide dike zone of parallel and subparallel dikes along the crest is the remnant of the fissure zone of eruption. Outcrops are mostly permeable lava flows of the Koolau Volcanic Series, which are intruded by dikes inside the dike zone and are free of dikes outside it. The lava flows constitute main aquifers, and water bodies in them are called dike water inside the dike zone and basal water outside it. Dikes, because they are less permeable than the lava flows they intrude, impound ground water, thereby controlling its movement, discharge, and storage. The top of the dike-impounded water is at an altitude of at least 1,000 feet near the south end of the Kahuku area. Dike water is discharged as leakage, the amount of which fluctuates in response to changes in storage, as flow into streams, where they intersect saturated rock, and as underflow to the basal-water body. Basal water occurs on either side of the dike zone, which forms both a structural and hydrologic boundary. It is artesian on the windward side wherever it underlies the coastal plain, and the altitude of water levels ranges from 7 to 22 feet. Leeward of the dike zone, basal water occurs only under water-table conditions because of the near absence of a coastal plain, and the altitude of water levels ranges from less than 1 foot to about 3 feet. The quality of dike water is excellent except near the north end. where it is slightly contaminated by infiltration of irrigation water that contains as much as 1,200 mg/1 (milligrams per liter) chloride. Irrigation water is also a source of contamination of the basal-water body. The major contaminant, however, is sea water, which underlies the basal-water body. In the Kahuku subarea--where pumpage from the basal-water body is greatest--sea-water contamination is a major concern. Natural contamination by encroaching sea water extends more than 2 miles inland in the Waimea-Kawela subarea and generally precludes development of large quantities of basal water. At low altitudes where the perennial flow is small, all streams are intermittent except Kaluanui and Kamananui. Some streams are perennial in their upper reaches because of persistent rainfall, and some are perennial in their middle reaches owing to the discharge of dike water; however, most flows are small in the lower reaches because most of the flow has infiltrated into the ground-water reservoir. For these reasons, streamflow cannot be economically developed and is not a reliable source of water supply. Average rainfall is about 240 mgd (million gallons per day). Of this amount, about 220 mgd is in the mountains. On .the basis of a rainfall input of 220 mgd and estimates of stream runoff and evapotranspiration, ground-water flow is estimated to be 85 mgd, a figure which compares favorably with estimates based on analyses of pumping-test data. Of this amount, an average of 30 mgd is discharged by wells and the remaining 55 mgd is eventually discharged to the sea by underflow or to the atmosphere by evapotranspiration. The most promising areas for developing basal water are in the Hauula and Laie subareas, where draft is low and ground-water flow is high. The Waimea-Kawela subarea is not promising owing 'to low ground-water flow even though draft is low. Least promising for development is in the Kahuku subarea where an overdeveloped condition prevails in which draft for sugarcane irrigation exceeds the ground-water flow. The development of dike water is promising in the Waimea-Kawela subarea where ground-water flow greatly exceeds the draft.

  6. Invasive grasses change landscape structure and fire behavior in Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura

    2014-01-01

    How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...

  7. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii

    USGS Publications Warehouse

    Loope, Lloyd L.; Giambelluca, Thomas W.

    1998-01-01

    Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.

  8. Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism

    NASA Astrophysics Data System (ADS)

    ten Brink, Uri S.; Brocher, Thomas M.

    1987-12-01

    Coincident multichannel seismic reflection and refraction data acquired during a wide-aperture two-ship experiment provide evidence for a complex crust-mantle (C-M) transition under Oahu, Hawaii. Several large-aperture common depth point lines and three expanding spread profiles suggest the existence of an anomalously thick (3-6 km) C-M transition zone underneath the volcanic ridge which extends for distances of 100 km to the north and south from the center of Oahu. The anomalous C-M transition may represent a plutonic complex which intruded into the upper mantle and the lower crust in a 200-km-wide area centered at Oahu. The existence of such a large volume of intrusions near the base of the crust implies that the surficial expression of volcanism constitutes only a small fraction of the amount of melt generated at depth under the Hawaiian Islands. This interpretation is in accord with previous petrological models which predict trapping and accumulation of upwelling magma at and below the Moho. We have constructed a model which suggests that the interaction between the upwelling magma and the lithospheric flexural stress field may modulate the characteristic eruption history of Hawaiian volcanoes. In particular, the model for the plane stress field which accompanies the flexure of the oceanic crust around island chains indicates that the stress field under individual volcanoes varies considerably with its position relative to the tip of the chain. As a Hawaiian-sized volcano develops, the magnitude of deviatoric compressive stresses under it is probably sufficient to block the conduits of the upwelling magma within the oceanic crust and to terminate eruptions. Further upwelling magma is predicted by the models to be ponded at the base of the crust. Resumption of posterosional volcanism seems to occur at a constant distance behind the center of active shield volcanism, as the horizontal compressive stresses along the axis of the chain are released. Observed

  9. A Large Refined Catalog of Earthquake Relocations and Focal Mechanisms for the Entire Island of Hawaii and Their Seismotectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, G.; Okubo, P.

    2015-12-01

    We present a refined catalog of earthquake locations and focal mechanisms for the Island of Hawaii, focusing on Mauna Loa and Kilauea volcanoes. The location catalog is based on first-arrival times and waveform data of both compressional and shear waves from over 181,000 events on and near the Island of Hawaii between 1986 and 2009 recorded by the seismic stations at the Hawaiian Volcano Observatory. We relocate all the earthquakes by applying ray-tracing through an existing three-dimensional velocity model, similar event cluster analysis and a differential-time relocation method. The resulting location catalog represents an extension of previous relocation studies, covering a longer time period and consisting of more events with well-constrained absolute locations. The focal mechanisms are obtained based on the compressional-wave first motion polarities by applying the HASH program to the waveform cross-correlation relocated earthquakes. Overall, the good-quality focal solutions are dominated by normal faulting in our study area, especially in the active Kaoiki and Hilea seismic zones. Kilauea caldera is characterized by a mixture of approximately equal numbers of normal, strike-slip, and reverse faults, whereas focal mechanisms in its south flank are predominantly reverse. Our results are essential for mapping the seismic strain and stress field and for understanding the seismo-volcano-tectonic relationships within the magmatic systems.

  10. Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Teplow, W. J.; Marsh, B. D.; Hulen, J.; Spielman, P.; Kaleikini, M.; Fitch, D. C.; Rickard, W.

    2008-12-01

    A dacite melt was encountered during routine commercial drilling operations of injection well KS-13 at the Puna Geothermal Venture wellfield, Big Island of Hawaii. The KS-13 drill hole, drilled in 2005, is located along a segment of the Kilauea Lower East Rift Zone which erupted basalt flows from rift-parallel fissures in 1955. During the drilling of KS-13 a 75-meter interval of microdiorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the wellbore and was repeatedly redrilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The drill bit, when recovered at the surface, was missing several carbide insert teeth. Presumably the inserts were plucked cleanly from their sintered cone sockets due to differential thermal expansion under extreme heat conditions. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly devoid of mafic minerals with the exception of rare pyroxene phenocrysts and minor euhedral to amorphous magnetite. The melt zone is overlain by an interval of strong greenschist facies metamorphism in basaltic and dioritic dike rock. The occurrence of an anhydrous dacite melt indicates a rock temperature of approximately 1050° (1922°F) and sufficient residence time of underlying basaltic magma to generate a significant volume of differentiated material. The dacite, with an inferred temperature of 1050 °C, is separated by 526 m of rock from the deepest overlying permeable zone in KS-13 at a temperature of 356 °C. The thermal gradient through this impermeable rock section is ~700°C/526 m = 1.331 °C/m. The calculated conductive heat flux from the magma upward into the deepest zone of hydrothermal circulation is given by k×(dT/dZ)=2.9 × 1.33 = 3.83 W/m2 = 3830 mW/m2 (thermal conductivity k=2.9 W m-1 °C-1 for basalt). This

  11. Spaceport Hawaii - Environmental issues

    SciTech Connect

    Hayward, T.B. )

    1992-03-01

    The geographical, economic, and infrastructural factors of the Island of Hawaii make this island an ideal site for a privately owned and operated commercial launching facility for launching small- to medium-sized payloads into both equatorial and polar orbits. This paper describes the preparation of an environmental impact statement, which was initiated as a prelude to the eventual construction and operation of the commercial launching facility on the Island of Hawaii and which follows the Hawaii State law and the National Environmental Policy Act. The issues discussed are the regional characteristics of the Island of Hawaii, the candidate launch vehicles, the flight safety considerations, the spaceport development issues, and the potential impact of the future spaceport on the Mauna Kea Observatory on the Island of Hawaii.

  12. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M.; Hamilton, C.B.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  13. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  14. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  15. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect

    Trettin, L.D.; Petrich, C.H.; Saulsbury, J.W.

    1996-01-01

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  16. Distribution and abundance of forest birds in low-altitude habitat on Hawai'i Island: Evidence for range expansion of native species

    USGS Publications Warehouse

    Spiegel, C.S.; Hart, P.J.; Woodwort, B.L.; Tweed, E.J.; Leburn, J.J.

    2006-01-01

    The Hawaiian honeycreepers are thought to be limited primarily to middle- and high-altitude wet forests due to anthropogenic factors at lower altitudes, especially introduced mosquitotransmitted avian malaria. However, recent research has demonstrated that at least one native species, the Hawai'i 'Amakihi (Hemignathus virens virens), is common in areas of active malaria transmission. We examined the current distribution and abundance of native and exotic forest birds within approximately 640 km2 of low-altitude (0-326 m) habitat on south-eastern Hawai'i Island, using roadside variable circular plot (VCP) at 174 stations along eight survey transects. We also re-surveyed 90 stations near sea level that were last surveyed in 1994-1995. Overall, introduced species were more abundant than natives; 11 exotic species made up 87% of the total individuals detected. The most common exotic passerines were Japanese White-eye (Zosterops japonicus), House Finch (Carpodacus mexicanus) and Northern Cardinal (Cardinalis cardinalis). Two native species, Hawai'i 'Amakihi and 'Apapane (Himatione sanguina), comprised 13% of the bird community at low altitudes. Hawai'i 'Amakihi were the most common and widespread native species, being found at 47% of stations at a density of 4.98 birds/ha (95% CI 3.52-7.03). Amakihi were significantly associated with 'ohi'a (Metrosideros polymorpha)-dominated forest. 'Apapane were more locally distributed, being found at only 10% of stations. Re-surveys of 1994-1995 transects demonstrated a significant increase in 'Amakihi abundance over the past decade. This work demonstrates a widespread recovery of Hawai'i 'Amakihi at low altitude in southeastern Hawai'i. The changing composition of the forest bird community at low-altitudes in Hawai'i has important implications for the dynamics of avian malaria in low-altitude Hawai'i, and for conservation of Hawai'i's lowland forests. ?? 2006 BirdLife International.

  17. Identifications of captive and wild tilapia species existing in Hawaii by mitochondrial DNA control region sequence.

    PubMed

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus

  18. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    PubMed Central

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species

  19. Effect of mesoscale orography on tropical cyclones near Hawai'i's Big Island and in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chambers, Christopher R. S.

    This dissertation presents the results of numerical modeling studies of two contrasting examples of tropical cyclones interacting with topography. The first example investigates the effect of the Big Island of Hawai'i on nearby tropical cyclones. The second example investigates the formation of near-equatorial Typhoon Vamei (2001) in the South China Sea. The Big Island simulations produce topographically forced phenomena that occur primarily because the island is strongly rooted in a flow splitting regime caused by its high and broad mountains, and by its shape. Blocking of lower-tropospheric flow leads to a slowing of movement when storms approach from the east. Southward track deviations occur if storms enter enhanced northeasterly flow south of the island. On close southeasterly approach axisymmetrization of core convection and winds occurs primarily because of blocking of the stronger easterly flow to the north of the storm. It is hypothesized that this led to the unexpected eye formation of Hurricane Flossie (2007) as it approached the Big Island. Storms that pass south of the island, deviate northward if they interact with the strong westerly steering anomaly associated with the island wake. The Hurricane Dot simulations suggest that this effect contributed to the deviation to the north that led to its eventual Kauai landfall. Stronger intensities can occur as a storm interacts with the island wake where there is a tendency for weakened vertical wind shear. Landfall produces large intensity decreases as the lower-level circulation is disrupted. Sharp northward track deviations can occur close to the island as the northerly flow west of the storm center is blocked by the island. In the simulation of Typhoon Vamei, strong northerly flow interacts with the regional landmasses to produce regional scale cyclonic flow near the equator. Mesoscale convective vortices develop along the southeastern flank of the northerly surge in a region of strong horizontal shear

  20. Validation of a New Rainbow Model Over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Ricard, J. L.; Adams, P. L.; Barckike, J.

    2012-12-01

    A new realistic model of the rainbow has been developed at the CNRM. It is based on the Airy theory. The main entry parameters are the droplet size distribution, the angle of the sun above the horizon, the temperature of the droplets and the wavelength. The island of Hawaii seems to be a perfect place for the validation of the rainbow model. Not only because of its famous rainbows, but also because of the convenient ring road along the coast. The older lower islands for more frequent viewing opportunities having to do with the proximity of clear sky to heavy rainfall. Both Oahu and Kauai as well as the western part of Maui have coastal roads that offer good access to rainbows. The best time to view rainbows is when the sun angle is lowest, in other words near the winter solstice. Figure 1 = Map of mean annual rainfall for the islands of Kauai and Oahu, developed from the new 2011 Rainfall Atlas of Hawaii. The base period of the statistics is 1978-2007. Figure 2 = Moisture zone map by Gon et al (1998). Blue areas are the wet ones. Green areas are the Mesic ones. Yellow areas are the dry ones.

  1. Centipede envenomation: bringing the pain to Hawai'i and Pacific Islands.

    PubMed

    Fenderson, Joshua L

    2014-11-01

    Scolopendra subspinipes is the only clinically significant centipede found in Hawai'i. Envenomation typically leads to extreme localized pain, erythema, induration, and tissue necrosis and possible lymphedema or lymphangitis. Mortality is uncommon and results from secondary infection or anaphylaxis. Management is supportive and includes wound care, pain control, and treatment with topical or oral antihistamines and anti-inflammatory medications.

  2. Report from Hawai'i: The Rising Tide of Arts Education in the Islands

    ERIC Educational Resources Information Center

    Wood, Paul

    2005-01-01

    The establishment of Maui Arts & Cultural Center (MACC), a community arts facility that prioritizes education at the top of its mission, has been a significant factor in the growth of arts education in Hawai'i. This article describes the role such a facility can play in the kind of educational reform that people envision, and the author's…

  3. Report from Hawai'i: The Rising Tide of Arts Education in the Islands

    ERIC Educational Resources Information Center

    Wood, Paul

    2005-01-01

    The establishment of Maui Arts & Cultural Center (MACC), a community arts facility that prioritizes education at the top of its mission, has been a significant factor in the growth of arts education in Hawai'i. This article describes the role such a facility can play in the kind of educational reform that people envision, and the author's…

  4. Benefits of Eucalyptus-Albizia mixtures vary by site on Hawaii Island

    Treesearch

    Dean S. DeBell; Craig D. Whitesell; Thomas B. Crabb

    1987-01-01

    Eucalyptus saligna Sm. plantations are being tested in Hawaii as a means of providing biomass for conversion to energy. Initial growth rates have been excellent, but supplemental nitrogen (N) is needed for sustained productivity on most sites. Although responses to N fertilizer have been substantial, costs of N applications are costly in dollars and...

  5. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  6. Confronting Oahu's Water Woes: Identifying Scenarios for a Robust Evaluation of Policy Alternatives

    NASA Astrophysics Data System (ADS)

    van Rees, C. B.; Garcia, M. E.; Alarcon, T.; Sixt, G.

    2013-12-01

    The Pearl Harbor aquifer is the most important freshwater resource on Oahu (Hawaii, U.S.A), providing water to nearly half a million people. Recent studies show that current water use is reaching or exceeding sustainable yield. Climate change and increasing resident and tourist populations are predicted to further stress the aquifer. The island has lost huge tracts of freshwater and estuarine wetlands since human settlement; the dependence of many endemic, endangered species on these wetlands, as well as ecosystem benefits from wetlands, link humans and wildlife through water management. After the collapse of the sugar industry on Oahu (mid-1990s), the Waiahole ditch--a massive stream diversion bringing water from the island's windward to the leeward side--became a hotly disputed resource. Commercial interests and traditional farmers have clashed over the water, which could also serve to support the Pearl Harbor aquifer. Considering competing interests, impending scarcity, and uncertain future conditions, how can groundwater be managed most effectively? Complex water networks like this are characterized by conflicts between stakeholders, coupled human-natural systems, and future uncertainty. The Water Diplomacy Framework offers a model for analyzing such complex issues by integrating multiple disciplinary perspectives, identifying intervention points, and proposing sustainable solutions. The Water Diplomacy Framework is a theory and practice of implementing adaptive water management for complex problems by shifting the discussion from 'allocation of water' to 'benefit from water resources'. This is accomplished through an interactive process that includes stakeholder input, joint fact finding, collaborative scenario development, and a negotiated approach to value creation. Presented here are the results of the initial steps in a long term project to resolve water limitations on Oahu. We developed a conceptual model of the Pearl Harbor Aquifer system and identified

  7. Asian/Pacific Islander youth violence prevention center: interpersonal violence and deviant behaviors among youth in Hawai'i.

    PubMed

    Mayeda, David T; Hishinuma, Earl S; Nishimura, Stephanie T; Garcia-Santiago, Orlando; Mark, Gregory Y

    2006-08-01

    This study investigates the prevalence rates of violent and deviant behaviors among a sample of Filipino, Hawaiian, Japanese, and Samoan public high school students residing in Hawai'i, and is the first relatively large-scale study of its kind regarding a disaggregated sample of Asian American and Pacific Islander (AAPI) youth. Filipino, Hawaiian, and Samoan adolescents were the chosen ethnic groups for this study's focus due to their over-representation in Hawai'i's juvenile justice system. Data for this study were gathered collaboratively by researchers, community groups, and school officials who agreed that youth violence was a community concern worthy of deeper understanding and community response. The study's process included three phases: a focus group consultation phase, field-testing, and the final risk and protective factor study. For the final study, 326 randomly selected students representing three Hawai'i public high schools were surveyed on a one-on-one basis.A smaller sample of Japanese students was also included in the study, serving as a control group. Findings illustrate the importance of disaggregating specific ethnic and gender groups within the AAPI ethnic category when examining adolescent issues. As examples, Samoan youth reported significantly higher rates of violence than other ethnic groups surveyed, and Hawaiian girls reported higher rates of substance use than Hawaiian boys, which was not commensurate with other ethnic groups. Filipino, Hawaiian, and Samoan youth all reported significantly higher rates than Japanese on overall deviant behavior. Implications for further research and community development include enhancing minority youths' bicultural self-efficacy.

  8. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  9. Wind environment in the Lee of Kauai Island, Hawaii during trade wind conditions: weather setting for the Helios Mishap

    NASA Astrophysics Data System (ADS)

    Porter, John N.; Stevens, Duane; Roe, Kevin; Kono, Sheldon; Kress, David; Lau, Eric

    2007-06-01

    On 26 June 2003 (approximately 1030 local time) the Helios ultralight aircraft broke apart off the west coast of Kauai Island, Hawaii as it was climbing out of the Kauai wind shadow. Following the aircraft mishap, a study was carried out to understand the conditions on the day of the crash and to better characterize the wind in the lee of Kauai. As part of this effort, both aircraft measurements and numerical modelling studies were carried out. Measurements and models showed the trade wind flow was enhanced around the island creating a region of wind shear surrounding the leeside calm zone. This wind shear region was found to be vertically oriented along the south side but tilted northward with height along the northern side of the calm zone. Several other factors on the day of the crash were investigated including water vapour gradients, diurnal Island heating, and gravity waves but their possible influences on the crash could not be confirmed. While the numerical model captured the general features of the Kauai leeside winds, the orientation of the calm zone was north of the observed one.

  10. Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii

    USGS Publications Warehouse

    Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.

    1996-01-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and high- elevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift gone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  11. General geology and ground-water resources of the island of Maui, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Macdonald, Gordon Andrew

    1942-01-01

    Maui, the second largest island in the Hawaiian group, is 48 miles long, 26 miles wide, and covers 728 square miles. The principal town is Wailuku. Sugar cane and pineapples are the principal crops. Water is used chiefly for irrigating cane. The purpose of the investigation was to study the geology and the ground-water resources of the island.Maui was built by two volcanoes. East Maui or Haleakala Volcano is 10,025 feet high and famous for its so-called crater, which is a section of Hawaii National Park. Evidence is given to show that it is the head of two amphitheater-headed valleys in which numerous secondary eruptions have occurred and that it is not a crater, caldera, or eroded caldera. West Maui is a deeply dissected volcano 5,788 feet high. The flat Isthmus connecting the two volcanoes was made by lavas from East Maui banking against the West Maui Mountains. Plate 1 shows the geology, wells, springs, and water-development tunnels. Plate 2 is a map and description of points of geologic interest along the main highways. Volcanic terms used in the report are briefly defined. A synopsis of the climate is included and a record of the annual rainfall at all stations is given also. Puu Kukui, on West Maui, has an average annual rainfall of 389 inches and it lies just six miles from Olowalu where only 2 inches of rain fell in 1928, the lowest ever recorded in the Hawaiian Islands. The second rainiest place in the Territory is Kuhiwa Gulch on East Maui where 523 inches fell during 1937. Rainfall averages 2,360 million gallons daily on East Maui and 580 on West Maui. Ground water at the point of use in months of low rainfall is worth about $120 per million gallons, which makes most undeveloped supplies valuable.The oldest rocks on East Maui are the very permeable primitive Honomanu basalts, which were extruded probably in Pliocene and early Pleistocene time from three rift zones. These rocks form a dome about 8,000 feet high and extend an unknown distance below sea

  12. A ruby-colored Pseudobaeospora species is described as new from material collected on the island of Hawaii.

    PubMed

    Desjardin, Dennis E; Hemmes, Don E; Perry, Brian A

    2014-01-01

    Pseudobaeospora wipapatiae is described as new based on material collected in alien wet habitats on the island of Hawaii. Unique features of this beautiful species include deep ruby-colored basidiomes with two-spored basidia, amyloid cheilocystidia and a hymeniderm pileipellis with abundant pileocystidia that is initially deep ruby in KOH then changes to lilac gray. Phylogenetic analysis of nuclear large ribosomal subunit sequence data suggest a close relationship between Pseudobaeospora and Tricholoma. BLAST comparisons of internal transcribed spacer and 5.8S nuclear ribosomal subunit regions sequence data reveal greatest similarity with existing sequences of Pseudobaeospora species. A comprehensive description, color photograph, illustrations of salient micromorphological features and comparisons with phenetically similar taxa are provided. © 2014 by The Mycological Society of America.

  13. Geology and ground-water resources of the island of Kauai, Hawaii

    USGS Publications Warehouse

    Macdonald, Gordon A.; Davis, Dan A.; Cox, Doak C.

    1960-01-01

    Kauai is one of the oldest, and is structurally the most complicated, of the Hawaiian Islands. Like the others, it consists principally of a huge shield volcano, built up from the sea floor by many thousands of thin flows of basaltic lava. The volume of the Kauai shield was on the order of 1,000 cubic miles. Through much of its growth it must have resembled rather closely the presently active shield volcano Mauna Loa, on the island of Hawaii. When the Kauai volcano started its growth is not known with certainty, but it is believed that activity started late in the Tertiary period, possibly in the early or middle part of the Pliocene epoch. Growth of the shield was rapid and probably was completed before the end of the Pliocene.Toward the end of the growth of the shield, its summit collapsed to form a broad caldera, the largest that has been found in the Hawaiian Islands. Like the calderas of Kilauea and Mauna Loa, that of Kauai volcano had boundaries that were, in part, rather indefinite. The principal depression was bordered by less depressed fault blocks, some of which merged imperceptibly with the outer slopes of the volcano. Elsewhere the caldera rim was low, and flows spilled over it onto the outer slopes. The well-defined central depression of the Kauai caldera was approximately 10 to 12 miles across.At about the same time as the formation of the major caldera, another, smaller caldera was formed by collapse around a minor eruptive center on the southeastern side of the Kauai shield. Lavas accumulated in the calderas, gradually filling them and burying banks of talus that formed along the foot of the boundary cliffs. The caldera-filling lavas differed from those that built the major portion of the shield in being much thicker and more massive as a result of ponding in the depressions. The petrographic types for the most part are the same throughout. Both the flank flows that built most of the shield and the flows that filled the calderas are predominantly

  14. Reoccurrence of 'Öma'o in leeward woodland habitat and their distribution in alpine habitat on Hawai'i Island

    USGS Publications Warehouse

    Judge, Seth W.; Gaudioso, Jacqueline M.; Gorresen, P. Marcos; Camp, Richard J.

    2012-01-01

    The endemic solitaire, 'Ōma'o (Myadestes obscurus), is common in windward forests of Hawai'i Island, but has been historically extirpated from leeward forests. The last detections of Ōma'o on the leeward side of the island were in woodland habitat on the western flank of Mauna Loa in 1978. 'Ōma'o were detected in woodland habitat in relatively low densities during a 2010 forest bird survey of Hawai'i Volcanoes National Park. The source of the population is unknown. It is probable they originated from a documented but unsurveyed population of Ōma'o in scrub alpine lava. Alternatively, the birds may have persisted undetected for nearly 35 years, or expanded from windward mesic forests on southeast Mauna Loa. There is no evidence 'Ōma'o recolonized the wet mesic forests of leeward Mauna Loa. The 'Ōma'o can occupy diverse native habitats compared to other species in the Hawai'i Myadestes genus, of which most species are now extinct. The connectivity of each population is not understood but we assume there are significant geographic, physiological, and behavioral barriers for scrub alpine and wet mesic forest populations. The expansion of 'Ōma'o to leeward woodlands is encouraging as the species is Hawai'i Island's last native frugivore capable of dispersing small and medium sized seeds of rare angiosperms, and could have an important role in re-establishing ecosystem function.

  15. Genetic analysis of an ephemeral intraspecific hybrid zone in the hypervariable tree, Metrosideros polymorpha, on Hawai'i Island.

    PubMed

    Stacy, E A; Johansen, J B; Sakishima, T; Price, D K

    2016-09-01

    Intraspecific hybrid zones involving long-lived woody species are rare and can provide insights into the genetic basis of early-diverging traits in speciation. Within the landscape-dominant Hawaiian tree, Metrosideros polymorpha, are morphologically distinct successional varieties, incana and glaberrima, that dominate new and old lava flows, respectively, below 1200 me on volcanically active Hawai'i Island, with var. glaberrima also extending to higher elevations and bogs. Here, we use morphological measurements on 86 adult trees to document the presence of an incana-glaberrima hybrid zone on the 1855 Mauna Loa lava flow on east Hawai'i Island and parent-offspring analysis of 1311 greenhouse seedlings from 71 crosses involving 72 adults to estimate heritabilities and genetic correlations among vegetative traits. Both the variation in adult leaf pubescence at the site and the consistency between adult and offspring phenotypes suggest the presence of two hybrid classes, F1s and var. incana backcrosses, as would be expected on a relatively young lava flow. Nine nuclear microsatellite loci failed to distinguish parental and hybrid genotypes. All four leaf traits examined showed an additive genetic basis with moderate to strong heritabilities, and genetic correlations were stronger for the more range-restricted var. incana. The differences between varieties in trait values, heritabilities and genetic correlations, coupled with high genetic variation within but low genetic variation between varieties, are consistent with a multi-million-year history of alternating periods of disruptive selection in contrasting environments and admixture in ephemeral hybrid zones. Finally, the contrasting genetic architectures suggest different evolutionary trajectories of leaf traits in these forms.

  16. Hawaii Beach Monitoring Program: Beach Profile Data

    USGS Publications Warehouse

    Gibbs, Ann E.; Richmond, Bruce M.; Fletcher, Charles H.; Hillman, Kindra P.

    2001-01-01

    Coastal erosion is widespread and locally severe in Hawaii and other low-latitude areas. Typical erosion rates in Hawaii are in the range of 15 to 30 cm/yr (0.5 to 1 ft/yr; Hwang, 1981; Sea Engineering, Inc., 1988; Makai Ocean Engineering, Inc. and Sea Engineering, Inc.,1991). Recent studies on Oahu (Fletcher et al., 1997; Coyne et al., 1996) have shown that nearly 24%, or 27.5 km (17.1 mi) of an original 115 km (71.6 mi) of sandy shoreline (1940's) has been either significantly narrowed (17.2 km; 10.7 mi) or lost (10.3 km; 6.4 mi). Nearly one-quarter of the islands' beaches have been significantly degraded over the last half-century and all shorelines have been affected to some degree. Oahu shorelines are by far the most studied, however, beach loss has been identified on the other islands as well, with nearly 13 km (8 mi) of beach likely lost due to shoreline hardening on Maui (Makai Engineering, Inc. and Sea Engineering, Inc., 1991). Causes of coastal erosion and beach loss in Hawaii are numerous but, unfortunately, poorly understood and rarely quantified. Construction of shoreline protection structures limits coastal land loss, but does not alleviate beach loss and may actually accelerate the problem by prohibiting sediment deposition in front of the structures. Other factors contributing to beach loss include: a) reduced sediment supply; b) large storms; and, c) sea-level rise. Reduction in sand supply, either from landward or seaward (primarily reef) sources, can have a myriad of causes. Obvious causes such as beach sand mining and emplacement of structures that interrupt natural sediment transport pathways or prevent access to backbeach sand deposits, remove sediment from the active littoral system. More complex issues of sediment supply can be related to reef health and carbonate production which, in turn, may be linked to changes in water quality. Second, the accumulated effect of large storms is to transport sediment beyond the littoral system. Third

  17. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations

  18. Determination of postmortem interval by arthropod succession: a case study from the Hawaiian Islands.

    PubMed

    Goff, M L; Flynn, M M

    1991-03-01

    A postmortem interval of 34 to 36 days was established for remains recovered on the island of Oahu, Hawaii, based on interpretations of patterns of arthropod succession on the remains. This interval was primarily based on the presence of adult specimens of Philonthus longicornis (family Staphylinidae), mature larvae of Piophila casei (family Piophilidae), and empty puparial cases of Chrysomya rufifacies (family Calliphoridae). Species and developmental stages of two additional Coleoptera species and three additional Diptera species were also present, which was consistent with the estimated interval, although not definitive.

  19. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  20. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than

  1. Analysis of fractures intersecting Kahi Puka Well 1 and its relation to the growth of the island of Hawaii

    USGS Publications Warehouse

    Morin, R.H.; Paillet, Frederick L.

    1996-01-01

    As part of the Hawaii Scientific Drilling Project, Kahi Puka Well 1 penetrated about 275 m of Mauna Loa basalts overlying a sequence of Mauna Kea flow units as it was drilled and cored to a total depth of 1053 m below land surface. A borehole televiewer (BHTV) was run in most of the well in successive stages prior to casing in order to obtain magnetically oriented acoustic images of the borehole wall. A total of 283 individual fractures were identified from this log and characterized in terms of strike and dip. These data are divided into three vertical sections based upon age and volcanic source, and lower hemisphere stereographic plots identify two predominant, subparallel fracture subsets common to each section. Assuming that most of the steeply dipping fractures observed in the BHTV log are tensile features generated within basalt flows during deposition and cooling, this fracture information can be combined with models of the evolution of the island of Hawaii to investigate the depositional history of these Mauna Loa and Mauna Kea basalts over the past 400 kyr. The directions of high-angle fractures appear to be generally parallel to topography or to the coastline at the time of deposition, as is supported by surface mapping of modern flows. Consequently, an overall counterclockwise rotation of about 75?? in the strike of these fractures from the bottom to the top of the well represents a systematic change in depositional slope direction over time. We attribute the observed rotation in the orientations of the two predominant fracture subsets over the past 400 kyr to changes in the configurations of volcanic sources during shield building and to the structural interference of adjacent volcanoes that produces shifts in topographic patterns.

  2. New record for Woldstedtius flavolineatus (Ichneumonidae: Diplazontinae), a hymenopteran parasitoid of syrphid flies in Hawaii

    USGS Publications Warehouse

    Cappadonna, Justin; Euaparadorn, Melody; Peck, Robert W.; Banko, Paul C.

    2009-01-01

    The parasitoid wasp Woldstedtius flavolineatus (Gravenhorst) (Ichneumonidae) attacks the larvae of syrphid flies (Syrphidae). Woldstedtius flavolineatus was collected in Hawaii for the first time during an extensive malaise trap-based survey of parasitoids in Hawaiian forests. Since its initial collection on Hawaii Island in January 2006, it has been collected at five additional sites on Hawaii Island and at one site each on Maui and Oahu. Malaise trap results from Hakalau Forest National Wildlife Refuge showed a strong seasonal pattern of abundance, with peak population levels reached during July–September. Rearing of its host, Allograpta obliqua (Say), collected from koa (Acacia koa Gray) at Hakalau over two days, revealed a parasitism rate of approximately 95%. Broader impacts of this alien wasp are unknown, but a reduction in host syrphid abundance could result in an increase in numbers of psyllids and aphids (Homoptera) that are preyed upon by syrphid larvae. Furthermore, a reduction in adult syrphids could impact the reproductive success of some of the plants they pollinate.

  3. White rice sold in Hawaii, Guam, and Saipan often lacks nutrient enrichment

    PubMed Central

    Gebhardt, Susan E.; Holden, Joanne; Kretsch, Mary J.; Todd, Karen; Novotny, Rachel; Murphy, Suzanne P.

    2009-01-01

    Rice is a commonly consumed food staple for many Asian and Pacific cultures; thus nutrient enrichment of rice has the potential to increase nutrient intakes for these populations. The objective of this study was to determine the levels of enrichment nutrients (thiamin, niacin, iron, and folic acid) in white rice found in Guam, Saipan (CNMI), and Oahu (Hawaii). The proportion of white rice that was labeled enriched varied by type, bag size, and location. Most long-grain rice was labeled enriched, while most medium-grain rice was not. Bags of either type weighing over 10 pounds were seldom labeled enriched in Hawaii or Saipan. Samples of various types of rice were collected on these three islands (n=19, 12 of which were labeled enriched) and analyzed for their content of the enrichment nutrients. Rice that was labeled enriched in Hawaii and Guam seldom met the minimum enrichment standards for the US. For comparison, three samples of enriched rice from California were also analyzed, and all met the enrichment standards. Nutritionists who are planning or evaluating the diets of these Pacific island populations cannot assume that rice is enriched. PMID:19782173

  4. Geothermal Energy in the Pacific Region. Appendix A: Exploration for a Geothermal System in the Lualualei Valley, Oahu, Hawaii. Appendix B: Exploration on Adak Island Alaska

    DTIC Science & Technology

    1975-05-01

    O~ _xo00 A 0C 0 Co UlA’O %D 0CM LI-HC 0 0 _r \\ 00 CO HOC Nq %. ONCC t- t- LA LAn 00 c m~ L--. U" w -xt- N tl- Nm mooC LA CYV.0 O (H MC r ~~ H M’HHNUH... influence surface faulting and the shallow microseismicity of interest in this survey. lI The specific project area contains no historical epicenters...more heavily influenced by the source region and mechanism than by the travel path, therefore the value was assigned to the epicenter. Assignment of

  5. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures

  6. Mortality in Laysan ducks (Anas alysanensis) by emaciation complicated by Echinuria uncinata on Laysan Island, Hawaii

    USGS Publications Warehouse

    Work, T.M.; Meteyer, C.U.; Cole, R.A.

    2004-01-01

    In November 1993, unusual mortality occurred among endangered Laysan ducks on Laysan Island, one of the remote refugia of the Northwestern Hawaiian Islands National Wildlife Refuge (USA). Ten live ducks were emaciated, and blood samples documented anemia, heterophilia, and eosinophilia. Pathology in 13 duck carcasses revealed emaciation, marked thickening of the proventricular wall, abundant mucus, and nodules in the gastrointestinal tract. Histology revealed granulomata associated with nematodes in the proventriculus, small intestines, and body walls of nine of 10 ducks examined on histology. We suspect that low rainfall and low food abundance that year contributed to enhanced pathogenicity of parasite infection, either through increased exposure or decreased host resistance. Because the Laysan duck is found only on Laysan island and is critically endangered, translocation of this species to other islands is being considered. Given that we have not seen pathology associated with Echinuria spp. in native waterfowl on other Hawaiian Islands and given the parasitea??s potential to cause significant lesions in Laysan ducks, it will be important to prevent the translocation of Echinuria spp.

  7. Bitentaculate Cirratulidae (Annelida: Polychaeta) from the northwestern Pacific Islands with description of nine new species.

    PubMed

    Magalhães, Wagner F; Bailey-Brock, Julie H

    2013-01-01

    Thirteen cirratulid species from the Hawaiian, Mariana and Marshall Islands are described. Nine species are new to science: Aphelochaeta arizonae sp. nov., Aphelochaeta honouliuli sp. nov., Caulleriella cordiformia sp. nov., Chaetozone michellae sp. nov., Chaetozone ronaldi sp. nov., Monticellina anterobranchiata sp. nov., Monticellina hanaumaensis sp. nov., and Tharyx tumulosa sp. nov., from Oahu, Hawaii and Aphelochaeta saipanensis sp. nov., from Saipan in the Mariana Islands. Dodecaceria fewkesi and Monticellina nr. cryptica are newly recorded from the Hawaiian Islands. Dodecaceria laddi is widely distributed in the western Pacific and material collected from the Hawaiian, Mariana and Marshall islands is described. We provide SEM photographs for all species in addition to line drawings and methyl green staining pattern photographs for the new species.

  8. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  9. Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii

    USGS Publications Warehouse

    Holcomb, R.T.; Reiners, P.W.; Nelson, B.K.; Sawyer, N.-L.E.

    1997-01-01

    The island of Kauai has always been interpreted as a single shield volcano, but lavas of previously correlated reversed-to-normal magnetic-polarity transitions on opposite sides of the island differ significantly in isotopic composition. Samples from west Kauai have 87Sr/86Sr 18.25; samples from east Kauai have 87Sr/86Sr > 0.7037, ??Nd ??? 6.14, and 206Pb/204Pb < 18.25. Available data suggest that a younger eastern shield grew on the collapsed flank of an older western one.

  10. Evidence for long-range transport of aerosol from the Kuwaiti oil fires to Hawaii

    NASA Astrophysics Data System (ADS)

    Lowenthal, D. H.; Borys, R. D.; Chow, J. C.; Rogers, F.; Shaw, G. E.

    1992-09-01

    To detect long-range transport of Kuwaiti oil-fire smoke, fine-particle aerosol samples were collected on a weekly basis from May through July 1991 at the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory's Mauna Loa Observatory (MLO, 19.5°N, 155.6°W) at an altitude of 3.4 km in the free troposphere and at a sea level site in the marine boundary layer on the island of Oahu (21.4°N, 157.7°W). Samplers were sector controlled by wind speed and direction to operate only during on-shore flow at the coastal Oahu site and during downslope flow at Mauna Loa. Cloud and rainwater samples were also collected at a windward site on the island of Hawaii. A hand-held sun photometer was used at MLO to determine aerosol optical depths at three wavelengths. Aerosol samples were analyzed for trace elements and elemental (EC) and organic (OC) carbon. EC concentrations and temporal variations were similar at both sites. At MLO, concentrations of S, Pb, Zn, As, Sb, and Si covaried with that of EC. MLO vanadium crustal enrichment factors ranged from 1 to 2.5. The noncrustal V/Zn ratios of several samples indicated a higher level of oil-combustion emissions than would be expected from regional emissions from Japan or China. Cloud and rainwater measurements indicated a preferential fractionation of V, Mn, and I to the cloud water. The results of this experiment are evidence for (1) long-range transport of pollution and crustal aerosol from Asia and/or North America to Mauna Loa and (2) the possible influence of the Kuwaiti oil fires at Mauna Loa and Oahu.

  11. 32 CFR 552.25 - Entry regulations for certain Army training areas in Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soldiers and Army civilians of the United States who in performance of their official duties enter the...) Makua Valley, Waianae, Oahu, Hawaii: That area reserved for military use by Executive Order No. 11166 (paragraph (c)(1) of this section). (2) Pohakuloa Training Area, Hawaii: That area reserved for military use...

  12. 32 CFR 552.25 - Entry regulations for certain Army training areas in Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soldiers and Army civilians of the United States who in performance of their official duties enter the...) Makua Valley, Waianae, Oahu, Hawaii: That area reserved for military use by Executive Order No. 11166 (paragraph (c)(1) of this section). (2) Pohakuloa Training Area, Hawaii: That area reserved for military use...

  13. 32 CFR 552.25 - Entry regulations for certain Army training areas in Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soldiers and Army civilians of the United States who in performance of their official duties enter the...) Makua Valley, Waianae, Oahu, Hawaii: That area reserved for military use by Executive Order No. 11166 (paragraph (c)(1) of this section). (2) Pohakuloa Training Area, Hawaii: That area reserved for military use...

  14. 32 CFR 552.25 - Entry regulations for certain Army training areas in Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soldiers and Army civilians of the United States who in performance of their official duties enter the...) Makua Valley, Waianae, Oahu, Hawaii: That area reserved for military use by Executive Order No. 11166 (paragraph (c)(1) of this section). (2) Pohakuloa Training Area, Hawaii: That area reserved for military use...

  15. 32 CFR 552.25 - Entry regulations for certain Army training areas in Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soldiers and Army civilians of the United States who in performance of their official duties enter the...) Makua Valley, Waianae, Oahu, Hawaii: That area reserved for military use by Executive Order No. 11166 (paragraph (c)(1) of this section). (2) Pohakuloa Training Area, Hawaii: That area reserved for military use...

  16. Emplacement mechanisms of the South Kona slide complex, Hawaii Island: Sampling and observations by remotely operated vehicle Kaiko

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.

    2004-01-01

    Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.

  17. SNP markers identify widely distributed clonal lineages of Phytophthora colocasiae in Vietnam, Hawaii and Hainan Island, China.

    PubMed

    Shrestha, Sandesh; Hu, Jian; Fryxell, Rebecca Trout; Mudge, Joann; Lamour, Kurt

    2014-01-01

    Taro (Colocasia esculenta) is an important food crop, and taro leaf blight caused by Phytophthora colocasiae can significantly affect production. Our objectives were to develop single nucleotide polymorphism (SNP) markers for P. colocasiae and characterize populations in Hawaii (HI), Vietnam (VN) and Hainan Island, China (HIC). In total, 379 isolates were analyzed for mating type and multilocus SNP profiles including 214 from HI, 97 from VN and 68 from HIC. A total of 1152 single nucleotide variant (SNV) sites were identified via restriction site-associated DNA (RAD) sequencing of two field isolates. Genotyping with 27 SNPs revealed 41 multilocus SNP genotypes grouped into seven clonal lineages containing 2-232 members. Three clonal lineages were shared among countries. In addition, five SNP markers had a low incidence of loss of heterozygosity (LOH) during asexual laboratory growth. For HI and VN, >95% of isolates were the A2 mating type. On HIC, isolates within single clonal lineages had A1, A2 and A0 (neuter) isolates. The implications for the wide dispersal of clonal lineages are discussed.

  18. Ethnic Variations in Prevalence of High-Risk Sexual Behaviors Among Asian and Pacific Islander Adolescents in Hawaii

    PubMed Central

    Kameoka, Velma A.

    2009-01-01

    Objectives. We examined ethnic variations in high-risk sexual behaviors among Asian and Pacific Islander (API) adolescents in comparison with White adolescents. Methods. We obtained data from the 2003 Hawaii Youth Risk Behavior Survey on 4953 students in grades 9 through 12. We conducted χ2 and logistic regression analyses on these data to examine the prevalence of high-risk sexual behaviors among Japanese, Filipino, Native Hawaiian, and White adolescents. Results. We found significant ethnic variation in prevalence of high-risk sexual behaviors among API adolescents. Relative to White adolescents, Native Hawaiian adolescents were most likely to engage in lifetime sexual intercourse, recent sexual intercourse, and sexual initiation before age 13 years; Japanese adolescents were least likely to engage in these behaviors. Filipino adolescents were least likely to use substances before last sexual intercourse and condoms during last sexual intercourse. Conclusions. Our findings suggest divergent patterns of risk among API ethnic groups, underscoring the heterogeneity of API subgroups and emphasizing the need for health disparities research on disaggregated API ethnic groups. The findings of such research should be used to design ethnically relevant interventions aimed at mitigating the negative health consequences of high-risk sexual behaviors. PMID:19106424

  19. Identifying Barriers in the Use of Electronic Health Records in Hawai'i.

    PubMed

    Hamamura, Faith D; Withy, Kelley; Hughes, Kira

    2017-03-01

    Hawai'i faces unique challenges to Electronic Health Record (EHR) adoption due to physician shortages, a widespread distribution of Medically Underserved Areas and Populations (MUA/P), and a higher percentage of small independent practices. However, research on EHR adoption in Hawai'i is limited. To address this gap, this article examines the current state of EHR in Hawai'i, the barriers to adoption, and the future of Health Information Technology (HIT) initiatives to improve the health of Hawai'i's people. Eight focus groups were conducted on Lana'i, Maui, Hawai'i Island, Kaua'i, Moloka'i, and O'ahu. In these groups, a total of 51 diverse health professionals were asked about the functionality of EHR systems, barriers to use, facilitators of use, and what EHRs would look like in a perfect world. Responses were summarized and analyzed based on constant comparative analysis techniques. Responses were then clustered into thirteen themes: system compatibility, loss of productivity, poor interface, IT support, hardware/software, patient factors, education/training, noise in the system, safety, data quality concerns, quality metrics, workflow, and malpractice concerns. Results show that every group mentioned system compatibility. In response to these findings, the Health eNet Community Health Record initiative - which allows providers web-based access to patient health information from the patient's provider network- was developed as a step toward alleviating some of the barriers to sharing information between different EHRs. The Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) legislation will introduce a new payment model in 2017 that is partially based on EHR utilization. Therefore, more research should be done to understand EHR adoption and how this ruling will affect providers in Hawai'i.

  20. Habitat use and home range of the Laysan Teal on Laysan Island, Hawaii

    USGS Publications Warehouse

    Reynolds, M.H.

    2004-01-01

    The 24-hour habitat use and home range of the Laysan Teal (Anas laysanensis), an endemic dabbling duck in Hawaii, was studied using radio telemetry during 1998-2000. Radios were retained for a mean of 40 days (0-123 d; 73 adult birds radio-tagged). Comparisons of daily habitat use were made for birds in the morning, day, evening, and night. Most birds showed strong evidence of selective habitat use. Adults preferred the terrestrial vegetation (88%), and avoided the lake and wetlands during the day. At night, 63% of the birds selected the lake and wetlands. Nocturnal habitat use differed significantly between the non-breeding and breeding seasons, while the lake and wetland habitats were used more frequently during the non-breeding season. Most individuals showed strong site fidelity during the study, but habitat selection varied between individuals. Mean home range size was 9.78 ha (SE ?? 2.6) using the fixed kernel estimator (95% kernel; 15 birds, each with >25 locations). The average minimum convex polygon size was 24 ha (SE ?? 5.6). The mean distance traveled between tracking locations was 178 m (SE ?? 30-5), with travel distances between points ranging up to 1,649 m. Tracking duration varied from 31-121 days per bird (mean tracking duration 75 days).

  1. Aerial observations of Hawaii`s wake

    SciTech Connect

    Smith, R.B.; Grubisic, V.

    1993-11-01

    Under the influence of the east-northeasterly trade winds, the island of Hawaii generates a wake that extends about 200 km to the west-southwest. During the Hawaiian Rain Band Project (NCAR) Electra. The patterns of wind aerosol concentration revealed by these flights suggest that Hawaii`s wake consists of two large quasi-steady conterrotating eddies. The southern clockwise-rotating eddy carries a heavy aerosol load due to input from the Kilauea volcano. At the eastern end of the wake, the eddies are potentially warmer and more humid than the surrounding trade wind air. Several other features are discussed: sharp shear lines near the northern and southern tips of the island, dry and warm air bands along the shear lines, a small embedded wake behind the Kohala peninsula, wake centerline clouds, hydraulic jumps to the north and south of the island, a descending inversion connected with accelerating trade winds, and evidence for side-to-side wake movement.

  2. Age and petrology of the Kalaupapa Basalt, Molokai, Hawaii ( geochemistry, Sr isotopes).

    USGS Publications Warehouse

    Clague, D.A.

    1982-01-01

    The post-erosional Kalaupapa Basalt on East Molokai, Hawaii, erupted between 0.34 and 0.57 million years ago to form the Kalaupapa Peninsula. The Kalaupapa Basalt ranges in composition from basanite to lava transitional between alkalic and tholeiitic basalt. Rare-earth and other trace-element abundances suggest that the Kalaupapa Basalt could be generated by 11-17% partial melting of a light-REE-enriched source like that from which the post-erosional lavas of the Honolulu Group on Oahu were generated by 2-11% melting. The 87Sr/86Sr ratios of the lavas range from 0.70320 to 0.70332, suggesting that the variation in composition mainly reflects variation in the melting process rather than heterogeneity of sources. The length of the period of volcanic quiescence that preceded eruption of post-erosional lavas in the Hawaiian Islands decreased as volcanism progressed from Kauai toward Kilauea. - Authors

  3. Geology and ground-water resources of the island of Niihau, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Macdonald, Gordon A.

    1947-01-01

    Niihau lies 171/2 miles southwest of Kauai. Its area is 72 square miles, and its highest point has an altitude of 1,281 feet. The population is about 180, chiefly Hawaiians. The annual rainfall at Kiekie, the ranch headquarters, generally ranges between 18 and 26 inches. The chief industries are the raising of sheep and cattle and production of honey. The island is privately owned.The main mass of the island is composed of a deeply weathered remnant of a basalt dome of Tertiary age, cut by a dike complex trending NE-SW. These Tertiary rocks are herein named the Paniau volcanic series. The central vent lay about 2 miles out to sea to the east of the present island. The dome, after deep gulches were cut into it by stream erosion and it was cliffed all around by the sea, was partly submerged. During Pleistocene time a broad wave-cut platform on the north, west, and south sides was built above sea level and widened by the eruption of lavas and tuffs, from 9 vents now visible and other vents now buried, to form a low coastal plain. These Pleistocene volcanic rocks are named the Kiekie volcanic series. Ash from Lehua Island, a Pleistocene tuff cone, has been drifted into duties on the north end of Niihau. Lithified dunes that extend below sea level, and the small outcrops of emerged fossiliferous limestone above sea level, indicate the plus 100-foot, minus 60-foot, plus 25-foot, and plus 5-foot eustatic stands of the sea correlative with changes in the volume of the polar ice caps and concurrent changes in the configuration of ocean basins.Calcareous dune and beach deposits, short stretches of nullipore reef and beach rock, and playa and alluvial deposits constitute the Recent rocks.No perennial streams exist on the island but about a dozen playa lakes, fresh or brackish during rainy weather, lie on the plain. The domestic water supply is rain caught from roofs. Only three wells on the island yield water with less than 25 grains of salt per gallon (260 parts per million

  4. Practical Seismology in Undergraduate Education: A Short-Term Seismic Deployment on the Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Polet, J.; Thelen, W.; Greenwood, R.; Butcher, A.

    2011-12-01

    In June 2011, we deployed three broadband seismometers on and near Kilauea volcano on the Big Island of Hawaii as a pilot project in geophysical undergraduate education at Cal Poly Pomona. Although large-scale temporary seismic deployments are now fairly common, usually undergraduate students do not have a leading role. The main purpose of this specific field experiment was for the undergraduate students to be active participants, or even leaders, in the installation and data gathering process, and thus have true ownership of the recorded data. This pilot project is part of Cal Poly Pomona's growing undergraduate geophysics program, which includes significant components of practical fieldwork, using modern geophysical equipment, as well as computational analysis, both in keeping with the polytechnic approach of the university. In this seismological field experiment, eight Geology majors were directly responsible for installing the seismic equipment using three different types of deployment. One seismometer was installed in a large instrument vault close to Kilauea Caldera, the second was installed in a pre-built buried container and the final installation was completely free field, using basic supplies from a local hardware store to build a shelter. Students had been taught how to work with the equipment during an on campus hands-on tutorial session. The specific type of seismometers was specifically chosen for its relative ease and speed of deployment, thus enabling the students to carry out the entire installation process almost completely independently. They aligned and centered the seismometers, built shelters for seismometers and batteries, installed GPS sensors and checked that the instruments were functioning correctly using a laptop. During the deployment period, students were able to see some of the volcanic and tectonic processes that were being recorded on the seismometers in action and in the field. We visited the Hawaii Volcano Observatory; explored a

  5. Characteristics of Marshallese with Type 2 Diabetes on Oahu: A Pilot Study to Implement a Community-Based Diabetic Health Improvement Project

    PubMed Central

    Reddy, Ravi; Shehata, Cherie; Smith, Garrett

    2006-01-01

    Objectives To determine the feasibility of a resident physician-based, culturally appropriate method of decreasing the disease burden of Type 2 Diabetes Mellitus (DM2) in a group of Pacific Islanders, Marshallese living in Hawai’i. Methods Thirty one Marshallese with diabetes who live on the island of Oahu, Hawaii were recruited. Baseline health status of the participants was characterized. Health parameters included HgbA1c, random blood sugar (RBS), lipid panels, body mass index (BMI), blood pressure, and medical history, along with qualitative information. A focus group was held with participants prior to beginning the curriculum to determine cultural views on diabetes, health, treatment, and to identify potential obstacles to health improvement. A DM2 educational curriculum culturally relevant to Marshallese populations was then started, including instruction in lifestyle modification, adherence to medication regimens, and planned quarterly assessment of health improvement. Results Baseline quantitative analysis revealed Marshallese with diabetes to be obese and hyperglycemic, with average BMI of 30 kg/m2, RBS of 285, and HgbA1c of 9.3. Qualitative analysis revealed that nearly half the participants admitted to symptoms of severe hyperglycemia. The initial focus group had a substantial turnout. Attendance rapidly declined, becoming so low that classes were eventually terminated. However, in two participants who attended more than three classes there was evidence of major improvements in HgbA1c, cholesterol, and qualitative markers, which were sustained after one year. Conclusions This pilot study of Marshallese with diabetes on Oahu showed that the majority had poor glycemic control with secondary co-morbid conditions. Although many barriers exist for successful implementation of a diabetes health improvement project in this group, the groundwork for translation of this project to the Republic of Marshall Islands (RMI) has been laid; curriculum translation and

  6. Hawaii Play Fairway Analysis: Hawaiian Place Names

    DOE Data Explorer

    Nicole Lautze

    2015-11-15

    Compilation of Hawaiian place names indicative of heat. Place names are from the following references: Pukui, M.K., and S.H. Elbert, 1976, Place Names of Hawaii, University of Hawaii Press, Honolulu, HI 96822, 289 pp. ; Bier, J. A., 2009, Map of Hawaii, The Big Island, Eighth Edition, University of Hawaii Press, Honolulu, HI  96822, 1 sheet.; and Reeve, R., 1993, Kahoolawe Place Names, Consultant Report No. 16, Kahoolawe Island Conveyance Commission, 259 pp.

  7. Youngest volcanism about 1 million years ago at Kahoolawe Island, Hawaii

    USGS Publications Warehouse

    Sano, H.; Sherrod, D.R.; Tagami, Takahiro

    2006-01-01

    Young volcanic deposits in Kahoolawe Island, cutting up through the caldera-filling lava, colluvium and talus in the west wall of Kanapou Bay, had long been stratigraphically considered the rejuvenated-stage products. New K-Ar ages, combined with magnetic polarity data, show that young volcanism was at about 0.98-1.04 Ma and indicate no substantial quiescence between the filling of the caldera and the young volcanism. This result, and the tholeiitic characteristics of the young deposits, suggest they are a component of late shield-stage volcanism. ?? 2005 Elsevier B.V. All rights reserved.

  8. Modeling of the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Yamazaki, Y.; Roeber, V.; Lay, T.

    2011-12-01

    The 2011 Tohoku-oki great earthquake (Mw 9.0) generated a destructive tsunami along the entire Pacific coast of northeastern Japan. The tsunami, which registered 6.7 m amplitude at a coastal GPS gauge and 1.75 m at an open-ocean DART buoy, triggered warnings across the Pacific. The waves reached Hawaii 7 hours after the earthquake and caused localized damage and persistent coastal oscillations along the island chain. Several tide gauges and a DART buoy west of Hawaii Island recorded clear signals of the tsunami. The Tsunami Observer Program of Hawaii State Civil Defense immediately conducted field surveys to gather runup and inundation data on Kauai, Oahu, Maui, and Hawaii Island. The extensive global seismic networks and geodetic instruments allows evaluation and validation of finite fault solutions for the tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami using the long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) and a finite fault solution based on inversion of teleseismic P waves. The depth-integrated model describes dispersive waves through the non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum-conserved advection scheme. Four levels of two-way nested grids in spherical coordinates allow description of tsunami evolution processes of different time and spatial scales for investigation of the impacts around the Hawaiian Islands. The model results are validated with DART data across the Pacific as well as tide gauge and runup measurements in Hawaii. Spectral analysis of the computed surface elevation reveals a series of resonance modes over the insular shelf and slope complex along the archipelago. Resonance oscillations provide an explanation for the localized impacts and the persistent wave activities in the

  9. Mesoscale flow variability and its impact on connectivity for the island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Vaz, A. C.; Richards, K. J.; Jia, Y.; Paris, C. B.

    2013-01-01

    Understanding population connectivity is a contemporary challenge in marine ecology. Connectivity results from a combination of biological traits and physical mechanisms, at different life stages. We focus on the transport of particles around an oceanic island, simulating transport at early life stages of marine organisms. We aim to investigate through case studies how mesoscale features influence particle transport, recruitment, and connectivity. We determine particle dispersion by using an individual-based model and the flow fields derived from a regional implementation of an ocean circulation model. To understand the underlying physical processes of transport, we locate coherent structures in the flow field, identify recurrent physical features, and observe how particle transport is related to them. Our results show that the varying eddying flow increases connectivity among populations located on different sides of the island. Both the flow field and dispersal patterns are highly variable. In this scenario, eddy events influence transport in distinct ways, and the timing of release plays an important role in dispersal. Our results highlight the need for modeling studies to use hydrodynamical model flows that represent the scales of variability affecting transport and dispersion.

  10. Annotated bibliography, seismicity of and near the island of Hawaii and seismic hazard analysis of the East Rift of Kilauea

    SciTech Connect

    Klein, F.W.

    1994-03-28

    This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.

  11. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  12. 76 FR 33336 - Endangered Plants and Wildlife; Receipt of Application for Enhancement of Survival Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... reintroduce or translocate) Oahu tree snails (Achatinella spp.) on Oahu Island, Hawaii, in conjunction with... limited take (capture, mark, release, and salvage) of the Oahu tree snails, as well as take of...

  13. Quantifying effects of humans and climate on groundwater resources through modeling of volcanic-rock aquifers of Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2015-12-01

    The volcanic-rock aquifers of Kauai, Oahu, and Maui are heavily developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and streamflow. A numerical modeling analysis using the most recently available data (e.g., information on recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) will substantially advance current understanding of groundwater flow and provide insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed relatively fast model run times without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), automated-parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and current (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and preliminary results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, reduction in stream base flow, and rise of the freshwater-saltwater interface.

  14. Health Disparities in Native Hawaiians and Other Pacific Islanders Following Hysterectomy for Endometrial Cancer.

    PubMed

    Terada, Keith; Carney, Michael; Kim, Robert; Ahn, Hyeong Jun; Miyamura, Jill

    2016-05-01

    The current study was undertaken to assess disparities in 5 year admission rates and mortality following hysterectomy for endometrial cancer in the State of Hawai'i. Data from the Hawai'i Health Information Corporation was utilized to determine five-year admission rates and overall mortality. Native Hawaiian and Other Pacific Islander (NHOPI) patients were compared to non-NHOPI patients for the period January 1, 2007 to December 31, 2013. Secondary admission rates were significantly higher for NHOPI patients compared to non-NHOPI patients (P=.02). Overall mortality was not different. NHOPI patients living on Oahu were less likely to live in Honolulu (P=.01), were more likely to have government insurance (P=.01), and were significantly younger (P=.02) than non-NHOPI patients. The findings suggest that race, insurance, and demographic factors are interrelated and are associated with disparities following surgery for endometrial cancer.

  15. Status, ecology, and management of the invasive plant, Miconia calvescens DC (Melastomataceae) in the Hawaiian islands

    USGS Publications Warehouse

    Medieros, Arthur C.; Loope, Lloyd L.; Conant, P.; McElvaney, S.

    1997-01-01

    Miconia calvescens (Melastomataceae), native to montane forests of the neotropics, has now invaded wet forests of both the Society and Hawaiian Islands. This tree, which grows up to 15 m tall, is potentially the most invasive and damaging weed of rainforests of Pacific islands. In moist conditions, it grows rapidly, tolerates shade, and produces abundant seed that is effectively dispersed by birds and accumulates in a large, persistent soil seed-bank. Introduced to the Hawaiian Islands in 1961, M. calvescens appears to threaten much of the biological diversity in native forests receiving 1800–2000 mm or more annual precipitation. Currently, M. calvescens is found on 4 Hawaiian islands— Hawaii, Maui, Oahu, and Kauai. Widespread awareness of this invader began in the early 1990s. Although biological control is being pursued, conventional control techniques (mechanical and chemical) to contain and eradicate it locally are underway.

  16. Long-term Patterns of Climate, Tree Growth, and Tree Mortality in Permanent Forest Plots of Hawaii Island

    NASA Astrophysics Data System (ADS)

    Ostertag, R.; Buckley, W.; Cordell, S.; Giambelluca, T. W.; Giardina, C. P.; Inman-Narahari, F.; Litton, C. M.; Nullet, M.; Sack, L.; Sibley, A.; VanDeMark, J.

    2014-12-01

    Long-term permanent vegetation plots provide opportunities for in-depth examinations of forest dynamics and climate. We used Center for Tropical Forest Science (CTFS) methodology to establish 4-ha forest dynamics plots in two contrasting climates on Hawaii Island. We established a montane wet forest dynamics plot in a site with 1150 m elevation, mean annual temperature (MAT) of 16.0 C, and mean annual precipitation (MAP) of 3440 mm. A second plot was established in a lowland dry forest site at 240 m elevation, 20.0 C MAT, and 835 mm MAP. The lowland wet forest site averaged only one month per year with < 100 mm rainfall (considered a dry season month), while the lowland dry forest had 12 dry season months. All trees greater or equal to 1 cm diameter were tagged, mapped, and followed from 2008/2009 to 2013/2014 as part of a 5-year census, and a subset of trees were measured annually. Climate variables measured were shortwave and longwave radiation, air temperature, photosynthetically active radiation, relative humidity, windspeed, soil moisture, and rainfall. At both sites, rainfall was the best predictor of annual growth rates. Rainfall and soil moisture were the two variables that demonstrated the greatest interannual variation; coefficients of variation were 36.7% and 61.6% for rainfall at the montane wet forest and lowland dry forest sites, respectively, and 13.4% and 66.1% for soil moisture at the two sites. Preliminary results from the five-year resurvey demonstrate that Hawaiian trees grow slowly, averaging 0.05 cm/y among 19 species in the montane wet forest, at much slower rates for the 15 species in the lowland dry forest plot. Preliminary mortality rates are 11.8% in the montane wet forest and 14.5% in the lowland dry forest. Forest dynamics appear highly related to water availability, even in wet forests, and are likely to be sensitive to climate change, under which reduced rainfall is predicted for much of the Hawaiian Islands.

  17. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  18. Shear-wave velocity characterization of the USGS Hawaiian strong-motion network on the Island of Hawaii and development of an NEHRP site-class map

    USGS Publications Warehouse

    Wong, Ivan G.; Stokoe, Kenneth; Cox, Brady R.; Yuan, Jiabei; Knudsen, Keith L.; Terra, Fabia; Okubo, Paul G.; Lin, Yin-Cheng

    2011-01-01

    To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, spectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (VS) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. VS profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. VS30 (average VS in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new VS data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.

  19. Status and trends of native birds in the Keauhou and Kilauea forest, Hawai`i Island.

    USGS Publications Warehouse

    Camp, Richard J.; Jacobi, James D.; Pratt, Thane K.; Gorresen, P. Marcos; Rubenstein, Tanya

    2010-01-01

    A Safe Harbor Agreement (SHA) is a voluntary arrangement between the U.S. Fish and Wildlife Service and non-Federal landowners to promote the protection, conservation, and recovery of listed species without imposing further land use restrictions on the landowners. Kamehameha Schools is considering entering into a SHA for their Keauhou and Kīlauea Forest lands on the island of Hawai′i. Bird surveys were conducted in 2008 to determine the current occurrence and density of listed species for the Keauhou and Kīlauea Forest, a prerequisite for establishing an agreement. Because of different management practices in the proposed SHA area we stratified the survey data into intact and altered forest strata. The listed passerines—′Akiapōlā′au (Hemignathus munroi), Hawai′i Creeper (Oreomystis mana), and Hawai′i ′Ākepa (Loxops coccineus)—occur in both strata but at low densities. The endangered ′Io (Hawaiian Hawk; Buteo solitarius) also occurs within both strata at low densities. This report was prepared for the U.S. Fish and Wildlife Service and Kamehameha Schools to provide information they can use to establish baseline levels for the SHA. In addition, we describe the status and trends of the non-listed native birds.

  20. Thorn-like prickles and heterophylly in Cyanea: adaptations to extinct avian browsers on Hawaii?

    PubMed Central

    Givnish, T J; Sytsma, K J; Smith, J F; Hahn, W J

    1994-01-01

    The evolution of thorn-like structures in plants on oceanic islands that lack mammalian and reptilian herbivores is puzzling, as is their tendency toward juvenile-adult leaf dimorphism. We propose that these traits arose in Cyanea (Campanulaceae) on Hawaii as mechanical and visual defenses against herbivory by flightless geese and goose-like ducks that were extirpated by Polynesians within the last 1600 years. A chloroplast DNA phylogeny indicates that thorn-like prickles evolved at least four times and leaf dimorphism at least three times during the last 3.7 million years. The incidence of both traits increases from Oahu eastward toward younger islands, paralleling the distribution of avian species apparently adapted for browsing. The effectiveness of visual defenses against avian browsers (once dominant on many oceanic islands, based on the vagility of their ancestors) may provide a general explanation for insular heterophylly: the other islands on which this previously unexplained phenomenon is marked (New Zealand, New Caledonia, Madagascar, Mascarene Islands) are exactly those on which one or more large flightless avian browsers evolved. Images PMID:11607469