Sample records for oat grain yield

  1. Impact of whole grains on the gut microbiota: the next frontier for oats?

    PubMed

    Rose, Devin J

    2014-10-01

    The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.

  2. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains.

    PubMed

    Grimberg, Åsa

    2014-10-01

    Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Responses of Oat Grains to Fusarium poae and F. langsethiae Infections and Mycotoxin Contaminations

    PubMed Central

    Martin, Charlotte; Schöneberg, Torsten; Morisoli, Romina; Bertossa, Mario; Bucheli, Thomas D.; Mauch-Mani, Brigitte; Mascher, Fabio

    2018-01-01

    Recent increases of Fusarium head blight (FHB) disease caused by infections with F. poae (FP) and F. langsethiae (FL) have been observed in oats. These pathogens are producers of nivalenol (NIV) and T-2/HT-2 toxin (T-2/HT-2), respectively, which are now considered major issues for cereal food and feed safety. To date, the impact of FP and FL on oat grains has not yet been identified, and little is known about oat resistance elements against these pathogens. In the present study, the impact of FL and FP on oat grains was assessed under different environmental conditions in field experiments with artificial inoculations. The severity of FP and FL infection on grains were compared across three field sites, and the resistance against NIV and T-2/HT2 accumulation was assessed for seven oat genotypes. Grain weight, β-glucan content, and protein content were compared between infected and non-infected grains. Analyses of grain infection showed that FL was able to cause infection on the grain only in the field site with the highest relative humidity, whereas FP infected grains in all field sites. The FP infection of grains resulted in NIV contamination (between 30–500 μg/kg). The concentration of NIV in grains was not conditioned by environmental conditions. FL provoked an average contamination of grains with T-2/HT-2 (between 15–132 μg/kg). None of the genotypes was able to fully avoid toxin accumulation. The general resistance of oat grains against toxin accumulation was weak, and resistance against NIV accumulation was strongly impacted by the interaction between the genotype and the environment. Only the genotype with hull-less grains showed partial resistance to both NIV and T-2/HT-2 contamination. FP and FL infections could change the β-glucan content in grains, depending on the genotypes and environmental conditions. FP and FL did not have a significant impact on the thousand kernel weight (TKW) and protein content. Hence, resistance against toxin

  4. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  5. Genetic progress in oat associated with fungicide use in Rio Grande do Sul, Brazil.

    PubMed

    Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A

    2016-12-19

    The State of Rio Grande do Sul (RS) is the largest producer of oat in Brazil with the aid of consolidated breeding programs, which are constantly releasing new cultivars. The main objectives of this study were to: 1) evaluate the annual genetic progress in grain yield and hectoliter weight of the oat cultivars in RS, with and without fungicide use on aerial parts of plants; and 2) evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars through network yield trials conducted with and without fungicide use on aerial plant parts. The data on grain yield and hectoliter weight were obtained from 89 competition field trials of oat cultivars carried out from 2007 to 2014 in nine municipalities of RS. Of the total 89 trials, 44 were carried out with fungicide application on aerial plant parts and 45 were carried out without fungicide application. The annual genetic progress in oat cultivars was studied using the methodology proposed by Vencovsky (1988). The annual genetic progress in oat grain yield was 1.02% with fungicide use and 4.02% without fungicide use during the eight-year study period in RS. The annual genetic progress with respect to the hectoliter weight was 0.08% for trials with fungicide use and 0.71% for trials without fungicide use. Performing network yield trials with and without fungicide use on the aerial plants parts is a feasible method to evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars.

  6. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  7. 7 CFR 810.1001 - Definition of oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Oats Terms Defined § 810.1001 Definition of oats. Grain that consists...

  8. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Kaur, Simranjeet; Singh, Pargat; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-05-01

    Our findings show that oxidized multi-walled carbon nanotubes (MWCNT) having serpent-like morphology and smaller sizes (diameter of 35 nm and lengths of 200-300 nm) are compatible with oat plant tissues. Applied by seed-priming method as 90 µg/ml concentration, these serpentine MWCNT (having open-end caps) enter the oat plant and traverse the cells. Tracking of MWCNT inside sections and tissues during growth of oat plant has been done using special sample preparation. We present clear images of MWCNT inside the primed seeds and vascular bundles, the conducting tissues of root and shoot of oat. A dye fluorescein isothiocyanate non-covalently bonded to MWCNT also helped in detecting the path through circumferential perimeters of the oat channels, using fluorescence and confocal microscopy. The presence of MWCNT inside oat enhanced the growth of xylem cells by about 1.85-fold in vasculature of shoots. Compared to controls, the chlorophyll content increased by 57%, while photosynthetic activity enhanced by 15% for the same sample in MWCNT-primed plants. Overall, the growth factors were also augmented leading to significant increase in yield components. No toxic effects of MWCNT were observed in the DNA of the primed plants, and in the human cell lines treated with grains harvested from the MWCNT-primed plants. Our study provides some new insights about the role of MWCNT in plants and their potential benefits in agriculture.

  9. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  10. Avenanthramides, unique polyphenols of oats with potential health effects

    USDA-ARS?s Scientific Manuscript database

    Oats in addition to being a good source of carbohydrate energy in food and animal feed are considered a grain with several health benefits. It is a grain with a well-accepted healthy heart effect due to its soluble fiber b-glucan content, which reduces blood cholesterol. For a long time, the oat bat...

  11. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  12. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  13. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition

    PubMed Central

    Beloshapka, Alison N.; Buff, Preston R.; Fahey, George C.; Swanson, Kelly S.

    2016-01-01

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets. PMID:28231117

  14. Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.

    PubMed

    da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A

    2017-05-04

    Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.

  15. Forward phenomics of oat panicles

    USDA-ARS?s Scientific Manuscript database

    There is a growing need for adapted and more productive germplasm to expand oat production, optimize its yield, improve groat quality, and satisfy farmers and consumers demand, especially in the Upper Midwest of the US. Oat germplasm, representing different eco-geographical origins and breeding stat...

  16. Effects of Wheat and Oat-Based Whole Grain Foods on Serum Lipoprotein Size and Distribution in Overweight Middle Aged People: A Randomised Controlled Trial

    PubMed Central

    Tighe, Paula; Duthie, Garry; Brittenden, Julie; Vaughan, Nicholas; Mutch, William; Simpson, William G.; Duthie, Susan; Horgan, Graham W.; Thies, Frank

    2013-01-01

    Introduction Epidemiological studies suggest three daily servings of whole-grain foods (WGF) might lower cardiovascular disease risk, at least partly by lowering serum lipid levels. We have assessed the effects of consuming three daily portions of wholegrain food (provided as wheat or a mixture of wheat and oats) on lipoprotein subclass size and concentration in a dietary randomised controlled trial involving middle aged healthy individuals. Methods After a 4-week run-in period on a refined diet, volunteers were randomly allocated to a control (refined diet), wheat, or wheat + oats group for 12 weeks. Our servings were determined in order to significantly increase the intakes of non starch polysaccharides to the UK Dietary Reference Value of 18 g per day in the whole grain groups (18.5 g and 16.8 g per day in the wheat and wheat + oats groups respectively in comparison with 11.3 g per day in the control group). Outcome measures were serum lipoprotein subclasses' size and concentration. Habitual dietary intake was assessed prior and during the intervention. Of the 233 volunteers recruited, 24 withdrew and 3 were excluded. Results At baseline, significant associations were found between lipoprotein size and subclasses' concentrations and some markers of cardiovascular risk such as insulin resistance, blood pressure and serum Inter cellular adhesion molecule 1 concentration. Furthermore, alcohol and vitamin C intake were positively associated with an anti-atherogenic lipoprotein profile, with regards to lipoprotein size and subclasses' distribution. However, none of the interventions with whole grain affected lipoprotein size and profile. Conclusion Our results indicate that three portions of wholegrain foods, irrelevant of the type (wheat or oat-based) do not reduce cardiovascular risk by beneficially altering the size and distribution of lipoprotein subclasses. Trial Registration www.Controlled-Trials.com ISRCTN 27657880. PMID:23940575

  17. 7 CFR 810.1004 - Grades and grade requirements for oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 810.1004 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Oats Principles Governing the...

  18. Whole-grain ready-to-eat oat cereal, as part of a dietary program for weight loss, reduces low-density lipoprotein cholesterol in adults with overweight and obesity more than a dietary program including low-fiber control foods.

    PubMed

    Maki, Kevin C; Beiseigel, Jeannemarie M; Jonnalagadda, Satya S; Gugger, Carolyn K; Reeves, Matthew S; Farmer, Mildred V; Kaden, Valerie N; Rains, Tia M

    2010-02-01

    Weight loss and consumption of viscous fibers both lower low-density lipoprotein (LDL) cholesterol levels. We evaluated whether or not a whole-grain, ready-to-eat (RTE) oat cereal containing viscous fiber, as part of a dietary program for weight loss, lowers LDL cholesterol levels and improves other cardiovascular disease risk markers more than a dietary program alone. Randomized, parallel-arm, controlled trial. Free-living, overweight and obese adults (N=204, body mass index 25 to 45) with baseline LDL cholesterol levels 130 to 200 mg/dL (3.4 to 5.2 mmol/L) were randomized; 144 were included in the main analysis of participants who completed the trial without significant protocol violations. Two portions per day of whole-grain RTE oat cereal (3 g/day oat b-glucan) or energy-matched low-fiber foods (control), as part of a reduced energy ( approximately 500 kcal/day deficit) dietary program that encouraged limiting consumption of foods high in energy and fat, portion control, and regular physical activity. Fasting lipoprotein levels, waist circumference, triceps skinfold thickness, and body weight were measured at baseline and weeks 4, 8, 10, and 12. LDL cholesterol level was reduced significantly more with whole-grain RTE oat cereal vs control (-8.7+/-1.0 vs -4.3+/-1.1%, P=0.005). Total cholesterol (-5.4+/-0.8 vs -2.9+/-0.9%, P=0.038) and non-high-density lipoprotein-cholesterol (-6.3+/-1.0 vs -3.3+/-1.1%, P=0.046) were also lowered significantly more with whole-grain RTE oat cereal, whereas high-density lipoprotein and triglyceride responses did not differ between groups. Weight loss was not different between groups (-2.2+/-0.3 vs -1.7+/-0.3 kg, P=0.325), but waist circumference decreased more (-3.3+/-0.4 vs -1.9+/-0.4 cm, P=0.012) with whole-grain RTE oat cereal. Larger reductions in LDL, total, and non-high-density lipoprotein cholesterol levels and waist circumference were evident as early as week 4 in the whole-grain RTE oat cereal group. Consumption of a

  19. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  20. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats.

    PubMed

    Criscioni, P; Fernández, C

    2016-01-01

    The objective of this experiment was to study the effects of substituting oat grain with rice bran on energy, nitrogen and carbon balance, methane emissions, and milk performance in dairy goats. Ten Murciano-Granadina dairy goats in late lactation (46.1 ± 3.07 kg) were assigned to 2 treatments in a crossover design, where each goat received both treatments in 2 periods. One group of 5 goats was fed a mixed ration with 379 g of oat grain/kg of dry matter (O diet) and the other group of 5 goats was fed a diet that replaced oat grain with 379 g/kg dry matter of rice bran (RB diet). Diets were formulated to be isoenergetic and isoproteic, so bypass fat was added to reach the same amount of energy in both diets. The goats were allocated to individual metabolism cages. After 14 d of adaptation, feed intake, total fecal and urine outputs, and milk yield were recorded daily over a 5-d period. Then, gas exchange measurements were recorded individually by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was different for both diets [1.83 ± 0.11 vs. 1.61 ± 0.08 (means ± SD), for O and RB, respectively]. Metabolizable energy intake and heat production were not significantly different between diets, with average values of 1,254 [standard error of the mean (SEM) = 110.0] and 640 (SEM = 21.0) kJ/kg of BW(0.75), respectively. Significant differences were found in milk fat content (5.3 and 6.9%, SEM = 0.36; for O and RB, respectively) and milk fatty acids: medium-chain fatty acids (17.17 vs. 12.90 g/100g, SEM = 0.969; for O and RB, respectively) and monounsaturated fatty acids (20.63 vs. 28.29 g/100g, SEM = 1.973; for O and RB, respectively). Enteric CH4 emission was lower for the RB diet (23.2 vs. 30.1g/d, SEM = 2.14; for O and RB, respectively), probably because of the higher lipid content in RB diets than O diets (11.7 vs. 4.1%, respectively). Lactating goats utilized RB without detrimental effects on energy metabolism. Higher milk fat

  1. Microstructure and nutrient distribution in oats: influence on quality

    NASA Astrophysics Data System (ADS)

    Miller, S. Shea; Frégeau-Reid, Judith

    2009-05-01

    Oats have long been recognized as having superior quality among cereals with respect to protein and lipid composition as well as soluble dietary fibre (β-glucan). The microstructure and chemistry of oats influence oat quality, and thus are determinants of the end products derived from oats. Light and scanning electron microscopies have been used to elucidate microstructure and nutrient distribution in oats. The influence of variation in these parameters on oat quality can be demonstrated, from milling through to oat products for consumption. Milling quality is determined in part by hull architecture. SEM examination of oat hulls can help predict ease of dehulling, which affects the efficiency and economics of oat milling. In addition to protein and lipid, β-glucan is an important nutritional component of oats. Fluorescence microscopy can reveal both the relative amount and distribution of β-glucan in oat kernels. Consumption of oats or oat products containing β-glucan has been shown to have beneficial effects on carbohydrate and lipid metabolism. These health benefits have generated a demand for new and palatable ways to incorporate oats into the diet as consumer demand increases. To help meet this need, we have been investigating the use of micronized naked oats as a whole grain to be cooked and consumed as a rice alternative. Different varieties of naked oats had dramatically different acceptance levels from a sensory panel. SEM of the pericarp, light microscopy of the endosperm, and analyses of starch properties of the different varieties revealed differences that corresponded with sensory data.

  2. Screening wild oat accessions from Morocco for resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Here we report the screening of 338 new accessions of 11 different wild oat species (Avena) from the USDA Small Grains Collection for resistance to crown rust (Puccinia coronata). Wild oat species were originally collected in Morocco by C. Al Faiz, INRAT Rabat: Avena agadiriana, A. atlantica, A. bar...

  3. New Advances in Marker Assisted Selection for Winter Hardiness in Oats.

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) breeding and genetics research has lagged behind other small grains, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), in the development of PCR based markers and map construction due to fewer oat researchers and reduced research funding. As a result, marke...

  4. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Grazing management for fall-grown oat forages

    USDA-ARS?s Scientific Manuscript database

    Fall forage production of oat generally will out-yield winter wheat or cereal rye by about a 2:1 ratio, regardless of weather conditions or harvest date because oat plants will joint, elongate, and produce a seedhead before winter, while winter wheat or cereal rye will remain vegetative until spring...

  6. Dielectric properties of wheat flour mixed with oat meal

    NASA Astrophysics Data System (ADS)

    Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K.

    2013-03-01

    Possibilities of using electric methods for determining admixtures of oat meal to wheat flour, type 650 are presented. In wheat flour, oat meal and mixtures containing 10, 20 and 30% of the oat meal, moisture, protein, starch and ash content, sedimentation value, yield and softening of wet gluten were determined. In samples containing 0, 5, 10, 15, 20, 25, 30 and 100% of oat meal, the dielectric loss factor and conductivity were determined using an impedance analyzer for electromagnetic field frequency ranging from 0.1-20 kHz. It was found that the dielectric loss factor varied for tested material. The best distinguishing between tested mixtures was obtained at the measuring electromagnetic field frequency of 20 kHz. The loss factor was significantly correlated with the yield of wet gluten and the sedimentation value, parameters indicating the amount and quality of gluten proteins in flour.

  7. Comparative analysis of homoeoallele expression in the tocol biosynthetic pathway during oat seed development

    USDA-ARS?s Scientific Manuscript database

    Oats are a rich source of compounds that collectively constitute vitamin E, the tocols. Significant attention has been given to the health benefits of tocols in oats, but little is known about themolecular control of their accumulation during grain development. Next generation sequencing provides an...

  8. Aluminum ions induce oat protoplasts to produce an extracellular (1 yields 3). beta. -D-glucan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, H.J.; Walton, J.D.

    1990-09-01

    Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl{sub 3} appeared identical to that produced in response to the phytotoxin victorin. Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of ({sup 14}C)glucose, AlCl{sub 3} stimulated EPS production 10- to 15-fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl{sub 3}, indicating that protein synthesis was necessary for EPS production but not formore » the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar produced less EPS in response to AlCl{sub 3} than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl{sub 3}. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase ((1{yields}3){beta}-D-glucanase) but did not pectinase (polygalacturonase). EPS was composed solely of glucose in 1{yields}3 linkages; hence it is a (1{yields}3){beta}-D-glucan (callose).« less

  9. The flounder organic anion transporter fOat has sequence, function, and substrate specificity similarity to both mammalian Oat1 and Oat3

    PubMed Central

    Aslamkhan, Amy G.; Thompson, Deborah M.; Perry, Jennifer L.; Bleasby, Kelly; Wolff, Natascha A.; Barros, Scott; Miller, David S.; Pritchard, John B.

    2007-01-01

    The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat Km values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC50 values for inhibition of cellular fluorescein accumulation was similar to that for the Km values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes. PMID:16857889

  10. PAY1 improves plant architecture and enhances grain yield in rice.

    PubMed

    Zhao, Lei; Tan, Lubin; Zhu, Zuofeng; Xiao, Langtao; Xie, Daoxin; Sun, Chuanqing

    2015-08-01

    Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  11. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.

    PubMed

    Leonova, Svetlana; Grimberg, Asa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S

    2010-06-01

    Since the cereal endosperm is a dead tissue in the mature grain, beta-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process.

  12. Gis-Based Crop Support System For Common Oatand Naked Oat in China

    NASA Astrophysics Data System (ADS)

    Wan, Fan; Wang, Zhen; Li, Fengmin; Cao, Huhua; Sun, Guojun

    The identification of the suitable areas for common oat (Avena sativa L.) and naked oat (Avena nuda L.) in China using Multi-Criteria Evaluation (MCE) approach based on GIS is presented in the current article. Climate, topography, soil, land use and oat variety databases were created. Relevant criteria,suitability levels and their weights for each factor were defined. Then the criteria maps were obtained and turned into the MCE process, and suitability maps for common oat and naked oat were created. The land use and the suitability maps were crossed to identify the suitable areas for each crop. The results identified 397,720 km2 of suitable areas for common oats of forage purpose distributed in 744 counties in 17 provinces, and 556,232 km2 of suitable areas for naked oats of grain purpose distributed in 779 counties in 19 provinces. This result is in accordance with the distribution of farmingpastoral ecozones located in semi-arid regions of northern China. The mapped areas can help define the working limits and serve as indicative zones for oat in China. The created databases, mapped results, interface of expert system and relevant hardware facilities could construct a complete crop support system for oats.

  13. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  14. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  15. Puccinia coronata f. sp. avenae: a threat to global oat production.

    PubMed

    Nazareno, Eric S; Li, Feng; Smith, Madeleine; Park, Robert F; Kianian, Shahryar F; Figueroa, Melania

    2018-05-01

    Puccinia coronata f. sp. avenae (Pca) causes crown rust disease in cultivated and wild oat (Avena spp.). The significant yield losses inflicted by this pathogen make crown rust the most devastating disease in the oat industry. Pca is a basidiomycete fungus with an obligate biotrophic lifestyle, and is classified as a typical macrocyclic and heteroecious fungus. The asexual phase in the life cycle of Pca occurs in oat, whereas the sexual phase takes place primarily in Rhamnus species as the alternative host. Epidemics of crown rust happens in areas with warm temperatures (20-25 °C) and high humidity. Infection by the pathogen leads to plant lodging and shrivelled grain of poor quality. Disease symptoms: Infection of susceptible oat varieties gives rise to orange-yellow round to oblong uredinia (pustules) containing newly formed urediniospores. Pustules vary in size and can be larger than 5 mm in length. Infection occurs primarily on the surfaces of leaves, although occasional symptoms develop in the oat leaf sheaths and/or floral structures, such as awns. Symptoms in resistant oat varieties vary from flecks to small pustules, typically accompanied by chlorotic halos and/or necrosis. The pycnial and aecial stages are mostly present in the leaves of Rhamnus species, but occasionally symptoms can also be observed in petioles, young stems and floral structures. Aecial structures display a characteristic hypertrophy and can differ in size, occasionally reaching more than 5 mm in diameter. Taxonomy: Pca belongs to the kingdom Fungi, phylum Basidiomycota, class Pucciniomycetes, order Pucciniales and family Pucciniaceae. Host range: Puccinia coronata sensu lato can infect 290 species of grass hosts. Pca is prevalent in all oat-growing regions and, compared with other cereal rusts, displays a broad telial host range. The most common grass hosts of Pca include cultivated hexaploid oat (Avena sativa) and wild relatives, such as bluejoint grass, perennial ryegrass and

  16. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    PubMed

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  18. Sorption of copper, zinc and cobalt by oat and oat products.

    PubMed

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  19. Bird cherry-oat aphid: do we have resistance?

    USDA-ARS?s Scientific Manuscript database

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a highly efficient, non-propagative, persistent vector of the phloem limited leutovirus BYD-PAV. BYD is the most important viral disease of cereal grains in the world and PAV is the most prevalent strain of BYD in North America. Not all BCO...

  20. Understanding grain yield: It is a journey, not a destination

    USDA-ARS?s Scientific Manuscript database

    Approximately 20 years ago, we began our efforts to understand grain yield in winter wheat using chromosome substitution lines between Cheyenne and Wichita. We found that two chromosome substitutions, 3A and 6A, greatly affected grain yield. Cheyenne(Wichita 3A) and Cheyenne(Wichita 6A) had 15 to 20...

  1. Digestive development in neonatal dairy calves with either whole or ground oats in the calf starter.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2015-05-01

    A series of 3 trials was conducted to determine effects of whole or ground oats in starter grain on reticulorumen fermentation and digestive system development of preweaned calves. Male Holstein calves (43.1±2.3kg at birth; n=8, 9, and 7 for trials 1, 2, and 3, respectively) were housed in individual pens in a heated facility; bedding was covered with landscape fabric to prevent consumption of bedding by the calves. In trials 1 and 2 only, calves were fitted with rumen cannulas by wk 2 of life. In all trials, a fixed amount of starter (containing 25% oats either ground and in the pellet or whole) was offered daily; orts were fed through the cannula in trials 1 and 2. Calves were randomly assigned to an all-pelleted starter or pellets plus whole oats. Rumen contents (trials 1 and 2) were sampled weekly at -8, -4, 0, 2, 4, 8, and 12 h after grain feeding for determination of pH and volatile fatty acids. Calves were killed 3 wk (trial 1) or 4 wk (trials 2 and 3) after grain was offered; organs were harvested, emptied, rinsed, and weighed to gauge digestive organ development. Starter intake was not different between treatments. Weekly measurements of rumen digesta pH did not change and only subtle changes were observed in molar proportions of individual volatile fatty acids. Molar proportion of butyrate and pH linearly decreased with age, whereas acetate proportion increased. Reticulorumen weight and papillae length tended to be greater for calves fed pelleted starter, whereas abomasum weight was greater for calves fed pellets plus whole oats. Fecal particle size and starch content were greater for calves fed pellets plus whole oats. Under the conditions of this study, physical form of oats in starter grain did not affect rumen fermentation measurements; greater rumen weight and papillae length in calves fed pelleted starter may be the result of greater nutrient availability of ground oats. Under the conditions of this study with young calves on treatments for <4 wk

  2. Level of contamination with mycobiota and contents of mycotoxins from the group of trichothecenes in grain of wheat , oats, barley, rye and triticale harvested in Poland in 2006- 2008.

    PubMed

    Stuper-Szablewska, Kinga; Perkowski, Juliusz

    2017-03-01

    The risk of cereal exposure to microbial contamination is high and possible at any time, starting from the period of plant vegetation, through harvest, up to the processing, storage and transport of the final product. Contents of mycotoxins in grain are inseparably connected with the presence of fungal biomass, the presence of which may indicate the occurrence of a fungus, and indirectly also products of its metabolism. Analyses were conducted on 378 grain samples of wheat, triticale, barley, rye and oats collected from grain silos located at grain purchase stations and at mills in Poland in 2006, 2007 and 2008. The concentrations of ERG and mycotoxins from the group of trichothecenes, as well as CFU numbers were analysed. The tested cereals were characterised by similarly low concentrations of both the investigated fungal metabolites and the level of microscopic fungi. However, conducted statistical analyses showed significant variation between tested treatments. Oat and rye grain contained the highest amounts of ERG, total toxins and CFU. In turn, the lowest values of investigated parameters were found in grain of wheat and triticale. Chemometric analyses, based on the results of chemical and microbiological tests, showed slight differences between contents of analysed metabolites between the years of the study, and do not confirm the observations on the significance of the effect of weather conditions on the development of mycobiota and production of mycotoxins; however, it does pertain to treatments showing no significant infestation. Highly significant correlations between contents of trichothecenes and ERG concentration (higher than in the case of the correlation of the total toxin concentrations/log cfu/g), indicate that the level of this metabolite is inseparably connected with mycotoxin contents in grain.

  3. Puccinia coronata f. sp. avenae: a threat to global oat production

    USDA-ARS?s Scientific Manuscript database

    Puccinia coronata f. sp. avenae causes crown rust disease in cultivated and wild oat. The significant yield losses inflicted by this pathogen makes crown rust the most devastating disease in the oat industry. P. coronata f. sp. avenae is a basidiomycete fungus with an obligate biotrophic lifestyle a...

  4. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Identification and molecular characterization of oat peptides implicated on coeliac immune response

    PubMed Central

    Comino, Isabel; Bernardo, David; Bancel, Emmanuelle; Moreno, María de Lourdes; Sánchez, Borja; Barro, Francisco; Šuligoj, Tanja; Ciclitira, Paul J.; Cebolla, Ángel; Knight, Stella C.; Branlard, Gérard; Sousa, Carolina

    2016-01-01

    Background Oats provide important nutritional and pharmacological properties, although their safety in coeliac patients remains controversial. Previous studies have confirmed that the reactivity of the anti-33-mer monoclonal antibody with different oat varieties is proportional to the immune responses in terms of T-cell proliferation. Although the impact of these varieties on the adaptive response has been studied, the role of the dendritic cells (DC) is still poorly understood. The aim of this study is to characterize different oat fractions and to study their effect on DC from coeliac patients. Methods and results Protein fractions were isolated from oat grains and analyzed by SDS–PAGE. Several proteins were characterized in the prolamin fraction using immunological and proteomic tools, and by Nano-LC-MS/MS. These proteins, analogous to α- and γ-gliadin-like, showed reactive sequences to anti-33-mer antibody suggesting their immunogenic potential. That was further confirmed as some of the newly identified oat peptides had a differential stimulatory capacity on circulating DC from coeliac patients compared with healthy controls. Conclusions This is the first time, to our knowledge, where newly identified oat peptides have been shown to elicit a differential stimulatory capacity on circulating DC obtained from coeliac patients, potentially identifying immunogenic properties of these oat peptides. PMID:26853779

  6. Effects of seeding rate on the dry matter yield and nutritive value of fall-oat

    USDA-ARS?s Scientific Manuscript database

    Several recent research projects have evaluated fall-grown oat as a fall-forage option for harvest as silage, or to extend the fall grazing season. Producers frequently ask about the appropriate seeding rates for fall-grown oat and whether or not it is the same as the traditional recommendation for ...

  7. Barley and oat beta-glucan content measured by calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucan levels in grains, particularly barley and oats, are receiving increased interest in part due to their recognized benefits to human health. While a number of methods to determine grain beta-glucan levels are available, each suffers from significant drawbacks for routine implementation. ...

  8. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology.

    PubMed

    Xie, Quan; Li, Na; Yang, Yang; Lv, Yulong; Yao, Hongni; Wei, Rong; Sparkes, Debbie L; Ma, Zhengqiang

    2018-05-01

    Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m -2 , grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m -2 , grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m -2 , and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.

  9. Root Traits Enhancing Rice Grain Yield under Alternate Wetting and Drying Condition

    PubMed Central

    Sandhu, Nitika; Subedi, Sushil R.; Yadaw, Ram B.; Chaudhary, Bedanand; Prasai, Hari; Iftekharuddaula, Khandakar; Thanak, Tho; Thun, Vathany; Battan, Khushi R.; Ram, Mangat; Venkateshwarlu, Challa; Lopena, Vitaliano; Pablico, Paquito; Maturan, Paul C.; Cruz, Ma. Teresa Sta.; Raman, K. Anitha; Collard, Bertrand; Kumar, Arvind

    2017-01-01

    Reducing water requirements and lowering environmental footprints require attention to minimize risks to food security. The present study was conducted with the aim to identify appropriate root traits enhancing rice grain yield under alternate wetting and drying conditions (AWD) and identify stable, high-yielding genotypes better suited to the AWD across variable ecosystems. Advanced breeding lines, popular rice varieties and drought-tolerant lines were evaluated in a series of 23 experiments conducted in the Philippines, India, Bangladesh, Nepal and Cambodia in 2015 and 2016. A large variation in grain yield under AWD conditions enabled the selection of high-yielding and stable genotypes across locations, seasons and years. Water savings of 5.7–23.4% were achieved without significant yield penalty across different ecosystems. The mean grain yield of genotypes across locations ranged from 3.5 to 5.6 t/ha and the mean environment grain yields ranged from 3.7 (Cambodia) to 6.6 (India) t/ha. The best-fitting Finlay-Wilkinson regression model identified eight stable genotypes with mean grain yield of more than 5.0 t/ha across locations. Multidimensional preference analysis represented the strong association of root traits (nodal root number, root dry weight at 22 and 30 days after transplanting) with grain yield. The genotype IR14L253 outperformed in terms of root traits and high mean grain yield across seasons and six locations. The 1.0 t/ha yield advantage of IR14L253 over the popular cultivar IR64 under AWD shall encourage farmers to cultivate IR14L253 and also adopt AWD. The results suggest an important role of root architectural traits in term of more number of nodal roots and root dry weight at 10–20 cm depth on 22–30 days after transplanting (DAT) in providing yield stability and preventing yield reduction under AWD compared to continuous flooded conditions. Genotypes possessing increased number of nodal roots provided higher yield over IR64 as well as no

  10. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.

    PubMed

    Vikram, Prashant; Swamy, B P Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C; Amante, Modesto; Kumar, Arvind

    2016-01-01

    Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.

  11. Impact of planting date on annual clover survival in oat

    USDA-ARS?s Scientific Manuscript database

    Interseeding annual clovers in cereal grains may help organic producers reduce the need for tillage in their cropping systems. In this study in eastern South Dakota, we evaluated seedling emergence and survival of two annual clovers in oat as affected by planting date. Berseem clover (Trifolium al...

  12. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    PubMed

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  13. Gluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity.

    PubMed

    Fritz, Ronald D; Chen, Yumin; Contreras, Veronica

    2017-02-01

    Oats are easily contaminated with gluten-rich kernels of wheat, rye and barley. These contaminants are like gluten 'pills', shown here to skew gluten analysis results. Using R-Biopharm R5 ELISA, we quantified gluten in gluten-free oatmeal servings from an in-market survey. For samples with a 5-20ppm reading on a first test, replicate analyses provided results ranging <5ppm to >160ppm. This suggests sample grinding may inadequately disperse gluten to allow a single accurate gluten assessment. To ascertain this, and characterize the distribution of 0.25-g gluten test results for kernel contaminated oats, twelve 50g samples of pure oats, each spiked with a wheat kernel, showed that 0.25g test results followed log-normal-like distributions. With this, we estimate probabilities of mis-assessment for a 'single measure/sample' relative to the <20ppm regulatory threshold, and derive an equation relating the probability of mis-assessment to sample average gluten content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs.

    PubMed

    Moen, Birgitte; Berget, Ingunn; Rud, Ida; Hole, Anastasia S; Kjos, Nils Petter; Sahlstrøm, Stefan

    2016-02-01

    The effect of extrusion of barley and oat on the fecal microbiota and the formation of SCFA was evaluated using growing pigs as model system. The pigs were fed a diet containing either whole grain barley (BU), oat groat (OU), or their respective extruded samples (BE and OE). 454 pyrosequencing showed that the fecal microbiota of growing pigs was affected by both extrusion and grain type. Extruded grain resulted in lower bacterial diversity and enrichment in operational taxonomic units (OTUs) affiliated with members of the Streptococcus, Blautia and Bulleidia genera, while untreated grain showed enrichment in OTUs affiliated with members of the Bifidobacterium and Lactobacillus genera, and the butyrate-producing bacteria Butyricicoccus, Roseburia, Coprococcus and Pseudobutyrivibrio. Untreated grain resulted in a significant increase of n-butyric, i-valeric and n-valeric acid, which correlated with an increase of Bifidobacterium and Lactobacillus. This is the first study showing that cereal extrusion affects the microbiota composition and diversity towards a state generally thought to be less beneficial for health, as well as less amounts of beneficial butyric acid.

  15. Molecular and Immunological Characterization of Gluten Proteins Isolated from Oat Cultivars That Differ in Toxicity for Celiac Disease

    PubMed Central

    Real, Ana; Comino, Isabel; de Lorenzo, Laura; Merchán, Francisco; Gil-Humanes, Javier; Giménez, María J.; López-Casado, Miguel Ángel; Cebolla, Ángel; Sousa, Carolina; Barro, Francisco; Pistón, Fernando

    2012-01-01

    A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease (CD). Traditionally, treatment with a GFD has excluded wheat, barley and rye, while the presence of oats is a subject of debate. The most-recent research indicates that some cultivars of oats can be a safe part of a GFD. In order to elucidate the toxicity of the prolamins from oat varieties with low, medium, and high CD toxicity, the avenin genes of these varieties were cloned and sequenced, and their expression quantified throughout the grain development. At the protein level, we have accomplished an exhaustive characterization and quantification of avenins by RP-HPLC and an analysis of immunogenicity of peptides present in prolamins of different oat cultivars. Avenin sequences were classified into three different groups, which have homology with S-rich prolamins of Triticeae. Avenin proteins presented a lower proline content than that of wheat gliadin; this may contribute to the low toxicity shown by oat avenins. The expression of avenin genes throughout the development stages has shown a pattern similar to that of prolamins of wheat and barley. RP-HPLC chromatograms showed protein peaks in the alcohol-soluble and reduced-soluble fractions. Therefore, oat grains had both monomeric and polymeric avenins, termed in this paper gliadin- and glutenin-like avenins. We found a direct correlation between the immunogenicity of the different oat varieties and the presence of the specific peptides with a higher/lower potential immunotoxicity. The specific peptides from the oat variety with the highest toxicity have shown a higher potential immunotoxicity. These results suggest that there is wide range of variation of potential immunotoxicity of oat cultivars that could be due to differences in the degree of immunogenicity in their sequences. PMID:23284616

  16. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress

    PubMed Central

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785

  17. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.

    PubMed

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.

  18. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial

    PubMed Central

    Sawicki, Caleigh M.; McKay, Diane L.; McKeown, Nicola M.; Dallal, Gerard; Chen, C. -Y. Oliver; Blumberg, Jeffrey B.

    2016-01-01

    While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40–70 years with a body mass index (BMI) of 27–35.9 kg/m2. After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus. PMID:27983687

  19. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Grain-size-yield stress relationship: Analysis and computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.A.; Benson, D.J.; Fu, H.H.

    1999-07-01

    The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less

  1. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  2. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum.

    PubMed

    Thapa, Sushil; Stewart, Bob A; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies.

  3. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum

    PubMed Central

    Stewart, Bob A.; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies. PMID:28264051

  4. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  5. Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro.

    PubMed

    Heaton, K W; Marcus, S N; Emmett, P M; Bolton, C H

    1988-04-01

    When normal volunteers ate isocaloric wheat-based meals, their plasma insulin responses (peak concentration and area under curve) increased stepwise: whole grains less than cracked grains less than coarse flour less than fine flour. Insulin responses were also greater with fine maizemeal than with whole or cracked maize grains but were similar with whole groats, rolled oats, and fine oatmeal. The peak-to-nadir swing of plasma glucose was greater with wheat flour than with cracked or whole grains. In vitro starch hydrolysis by pancreatic amylase was faster with decreasing particle size with all three cereals. Correlation with the in vivo data was imperfect. Oat-based meals evoked smaller glucose and insulin responses than wheat- or maize-based meals. Particle size influences the digestion rate and consequent metabolic effects of wheat and maize but not oats. The increased insulin response to finely ground flour may be relevant to the etiology of diseases associated with hyperinsulinemia and to the management of diabetes.

  6. Assessment of the Effect of Climate Change on Grain Yields in China

    NASA Astrophysics Data System (ADS)

    Chou, J.

    2006-12-01

    The paper elaborates the social background and research background; makes clear what the key scientific issues need to be resolved and where the difficulties are. In the research area of parasailing the grain yield change caused by climate change, massive works have been done both in the domestic and in the foreign. It is our upcoming work to evaluate how our countrywide climate change information provided by this pattern influence our economic and social development; and how to make related policies and countermeasures. the main idea in this paper is that the grain yield change is by no means the linear composition of social economy function effect and the climatic change function effect. This paper identifies the economic evaluation object, proposes one new concept - climate change output. The grain yields change affected by the social factors and the climatic change working together. Climate change influences the grain yields by the non ¨C linear function from both climate change and social factor changes, not only by climate change itself. Therefore, in my paper, the appraisal object is defined as: The social factors change based on actual social changing situations; under the two kinds of climate change situation, the invariable climate change situation and variable climate change situation; the difference of grain yield outputs is called " climate change output ", In order to solve this problem, we propose a method to analyze and imitate on the historical materials. Giving the condition that the climate is invariable, the social economic factor changes cause the grain yield change. However, this grain yield change is a tentative quantity index, not an actual quantity number. So we use the existing historical materials to exam the climate change output, based on the characteristic that social factor changes greater in year than in age, but the climate factor changes greater in age than in year. The paper proposes and establishes one economy - climate model (C

  7. A SNP genotyping array for hexaploid oat

    USDA-ARS?s Scientific Manuscript database

    Recognizing a need in cultivated hexaploid oat (Avena sativa L.) for a reliable set of reference SNPs, we have developed a 6K BeadChip design containing 257 Infinium I and 5,486 Infinium II designs corresponding to 5,743 SNPs. Of those, 4,975 SNPs yielded successful assays after array manufacturing...

  8. Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl.

    PubMed

    Ning, Na; Yuan, Xiangyang; Dong, Shuqi; Wen, Yinyuan; Gao, Zhenpan; Guo, Meijun; Guo, Pingyi

    2015-01-01

    Foxtail millet (Setaria italica L.) is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM) on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1) reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1) and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1) (recommended dosage). Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1). With respect to grain protein content at 22.5 g ai ha(-1,) Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  9. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs.

    PubMed

    Winkler, Louisa R; Hasenbeck, Aimee; Murphy, Kevin M; Hermes, James C

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg -1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control ( p  < 0.05 for eggs from an oat-corn diet, p  < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture ( p  < 0.01) and response to cooking ( p  < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater ( p  < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings

  11. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs

    PubMed Central

    Winkler, Louisa R.; Hasenbeck, Aimee; Murphy, Kevin M.; Hermes, James C.

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg−1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control (p < 0.05 for eggs from an oat-corn diet, p < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture (p < 0.01) and response to cooking (p < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater (p < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings are

  12. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.

    PubMed

    Harlow, Brittany E; Lawrence, Laurie M; Harris, Patricia A; Aiken, Glen E; Flythe, Michael D

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not

  13. Adaptability and stability of soybean cultivars for grain yield and seed quality.

    PubMed

    Silva, K B; Bruzi, A T; Zambiazzi, E V; Soares, I O; Pereira, J L A R; Carvalho, M L M

    2017-05-10

    This study aimed at verifying the adaptability and stability of soybean cultivars, considering the grain yield and quality of seeds, adopting univariate and multivariate approaches. The experiments were conducted in two crops, three environments, in 2013/2014 and 2014/2015 crop seasons, in the county of Inconfidentes, Lavras, and Patos de Minas, in the Minas Gerais State, Brazil. We evaluated 17 commercial soybean cultivars. For adaptability and stability evaluations, the Graphic and GGE biplot methods were employed. Previously, a selection index was estimated based on the sum of the standardized variables (Z index). The data relative to grain yield, mass of one thousand grain, uniformity test (sieve retention), and germination test were standardized (Z ij ) per cultivar. With the sum of Z ij , we obtained the selection index for the four traits evaluated together. In the Graphic method evaluation, cultivars NA 7200 RR and CD 2737 RR presented the highest values for selection index Z. By the GGE biplot method, we verified that cultivar NA 7200 RR presented greater stability in both univariate evaluations, for grain yield, and for selection index Z.

  14. Assembly and expression analysis of oat vitamin E biosynthesis gene homeologs during seed development

    USDA-ARS?s Scientific Manuscript database

    Among the cereal grains, hexaploid oats (Avena sativa L.) are particularly rich in vitamin E, an essential liposoluble vitamin that maintains membrane stability and possesses antioxidant and anti-inflammatory properties. To date, no gene sequences involved in vitamin E biosynthesis have been reporte...

  15. Suppressors of oat crown rust resistance in interspecific oat crosses

    USDA-ARS?s Scientific Manuscript database

    Attempts to transfer disease resistance genes between related species may be hindered by suppression, or lack of expression, of the trait in the interspecific combination. In crosses of diploid oat Avena strigosa (Schreb.) accession CI6954SP with resistance to oat crown rust Puccinia coronata f. sp....

  16. In vitro fermentation of oat flours from typical and high beta-glucan oat lines.

    PubMed

    Kim, Hyun Jung; White, Pamela J

    2009-08-26

    Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% beta-glucan, respectively), and one experimental oat line "N979" (7.70% beta-glucan), were used to study the effect of beta-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of beta-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with beta-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.

  17. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less

  18. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management.

    PubMed

    Wang, Yu-yan; Wei, Yan-yan; Dong, Lan-xue; Lu, Ling-li; Feng, Ying; Zhang, Jie; Pan, Feng-shan; Yang, Xiao-e

    2014-04-01

    Zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.

  19. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of the oat genome

    USDA-ARS?s Scientific Manuscript database

    Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-g...

  20. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Taniguchi, Risa; Motohashi, Hideyuki; Saito, Hideyuki; Okuda, Masahiro; Inui, Ken-ichi

    2004-10-01

    Human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8) are responsible for renal tubular secretion of an antifolic acid methotrexate, and are considered to be involved in drug interaction of methotrexate with nonsteroidal anti-inflammatory drugs (NSAIDs). In our hospital, a delay of methotrexate elimination was experienced in a patient with Hodgkin's disease, who took loxoprofen, a commonly used NSAID in Japan, which suggested a cause. In this study, we examined the drug interaction via hOAT1 and hOAT3, using Xenopus laevis oocytes. hOAT1 and hOAT3 mediated the methotrexate transport with low affinity (K(m) of 724.0 muM) and high affinity (K(m) of 17.2 muM), respectively. Loxoprofen and its trans-OH metabolite, an active major metabolite, markedly inhibited the methotrexate transport by both transporters. Their inhibition concentrations (IC(50)) were in the range of the therapeutic levels. These findings suggest that loxoprofen retards the elimination of methotrexate, at least in part, by inhibiting hOAT1 and hOAT3.

  1. A new economic assessment index for the impact of climate change on grain yield

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Chou, Jieming; Feng, Guolin

    2007-03-01

    The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional “yield impact of meteorological factor (YIMF)” or “yield impact of weather factor” to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.

  2. Transcriptome analysis of hexaploid hulless oat in response to salinity stress

    PubMed Central

    Wu, Bin; Hu, Yani; Huo, Pengjie; Zhang, Qian; Chen, Xin; Zhang, Zongwen

    2017-01-01

    Background Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq. Results Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat. Conclusions Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes. PMID:28192458

  3. Comparative Analysis of the Antioxidant Capacities and Phenolic Compounds of Oat and Buckwheat Vinegars During Production Processes.

    PubMed

    Yu, Xiao; Yang, Mei; Dong, Jilin; Shen, Ruiling

    2018-03-01

    This study aimed to explore the dynamic changes in the antioxidant activities and phenolic acid profiles of oat and buckwheat vinegars during different production stages. The results showed that both oat and buckwheat vinegar products comparably attenuated D-galactose-induced oxidative damage in mice serum and liver, indicating no obvious dose dependence within the tested concentrations. However, oat vinegar product revealed more favorable in vitro antioxidant activities than those in buckwheat vinegar product as evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities. Moreover, the alcoholic fermentation, acetic acid fermentation and fumigating induced successive increase in DPPH radical scavenging abilities and phenolic acid contents of the fermentation substrates of oat and buckwheat vinegars. Importantly, the different fermentation processes of oat and buckwheat vinegars were accompanied by the dynamic migration and transformation of specific phenolic acids across bound, esterified and free fractions. Thus, the antioxidant activities of oat and buckwheat vinegars could be improved through targeted modulation of the generation of specific phenolic acid fractions during production processes. We had evaluated the in vitro and in vivo antioxidant activities and phenolic acid contents of oat and buckwheat vinegars, and further explored the dynamic changes of bound, esterified and free phenolic acid fractions during successive fermentation processes of oat and buckwheat vinegars. This study provided the theoretical guidance for obtaining minor grain vinegar with the optimal antioxidant activities through targeted modulation of fermentation processes. © 2018 Institute of Food Technologists®.

  4. The Relationship of Red and Photographic Infrared Spectral Data to Grain Yield Variation Within a Winter Wheat Field

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data.

  5. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  6. Remobilisation of phosphorus fractions in rice flag leaves during grain filling: Implications for photosynthesis and grain yields.

    PubMed

    Jeong, Kwanho; Julia, Cecile C; Waters, Daniel L E; Pantoja, Omar; Wissuwa, Matthias; Heuer, Sigrid; Liu, Lei; Rose, Terry J

    2017-01-01

    Phosphorus (P) is translocated from vegetative tissues to developing seeds during senescence in annual crop plants, but the impact of this P mobilisation on photosynthesis and plant performance is poorly understood. This study investigated rice (Oryza sativa L.) flag leaf photosynthesis and P remobilisation in a hydroponic study where P was either supplied until maturity or withdrawn permanently from the nutrient solution at anthesis, 8 days after anthesis (DAA) or 16 DAA. Prior to anthesis, plants received either the minimum level of P in nutrient solution required to achieve maximum grain yield ('adequate P treatment'), or received luxury levels of P in the nutrient solution ('luxury P treatment'). Flag leaf photosynthesis was impaired at 16 DAA when P was withdrawn at anthesis or 8 DAA under adequate P supply but only when P was withdrawn at anthesis under luxury P supply. Ultimately, reduced photosynthesis did not translate into grain yield reductions. There was some evidence plants remobilised less essential P pools (e.g. Pi) or replaceable P pools (e.g. phospholipid-P) prior to remobilisation of P in pools critical to leaf function such as nucleic acid-P and cytosolic Pi. Competition for P between vegetative tissues and developing grains can impair photosynthesis when P supply is withdrawn during early grain filling. A reduction in the P sink strength of grains by genetic manipulation may enable leaves to sustain high rates of photosynthesis until the later stages of grain filling.

  7. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  8. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    PubMed

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  9. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat.

    PubMed

    Kurek, Marcin Andrzej; Karp, Sabina; Stelmasiak, Adrian; Pieczykolan, Ewelina; Juszczyk, Karolina; Rieder, Anne

    2018-05-15

    In this study, β-glucan was extracted from wholegrain oat and barley flours by a novel extraction and purification method employing natural flocculants (chitosan, guar gum and gelatin). The use of flocculants decreased the total amount of extracted gum, which was highest in control samples (9.07 and 7.9% for oat and barley, respectively). The β-glucan specific yield, however, increased with the use of chitosan and guar gum, which were able to remove protein and ash impurities resulting in gums with a higher purity.The highest concentration of chitosan (0.6 %) resulted in gums with the highest β-glucan content (82.0 ± 0.23 and 79.0 ± 0.19 for barley and oat, respectively) and highest β-glucan specific yield (96.9 and 93.3 % for oat and barley, respectively). Explanation is in R&D section. The use of gelatin was not successful. All gum samples had a high content of total dietary fiber (>74%) and a high water holding capacity (4.6-7.4 g/g), but differed in apparent viscosity, which was highest for the oat sample extracted with 0.6% chitosan. This sample also showed the highest β-glucan molecular weight among the oat samples, which were in general 10-fold higher than for the barley samples. Among the barley samples, β-glucan molecular weight was highest for the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  11. Neck blast disease influences grain yield and quality traits of aromatic rice.

    PubMed

    Khan, Mohammad Ashik Iqbal; Bhuiyan, Md Rejwan; Hossain, Md Shahadat; Sen, Partha Pratim; Ara, Anjuman; Siddique, Md Abubakar; Ali, Md Ansar

    2014-11-01

    A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Effect of volunteer rice infestation on grain quality and yield of rice

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  13. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  14. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo

    PubMed Central

    Harlow, Brittany E.; Lawrence, Laurie M.; Harris, Patricia A.; Aiken, Glen E.

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not

  15. Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2013-03-01

    Germination can be used to improve the sensory and nutritional properties of cereal and pseudocereal grains. Oat and quinoa are rich in minerals, vitamins and fibre while quinoa also contains high amounts of protein of a high nutritional value. In this study, oat and quinoa malts were produced and incorporated in a rice and potato based gluten free formulation. Germination of oat led to a drastic increase of α-amylase activity from 0.3 to 48 U/g, and minor increases in proteolytic and lipolytic activities. Little change was observed in quinoa except a decrease in proteolytic activity from 9.6 to 6.9 U/g. Oat malt addition decreased batter viscosities at both proofing temperature and during heating. These changes led to a decrease in bread density from 0.59 to 0.5 g/ml and the formation of a more open crumb, but overdosing of oat malt deteriorated the product as a result of excessive amylolysis during baking. Quinoa malt had no significant effect on the baking properties due to low α-amylase activity. Despite showing a very different impact on the bread quality, both malts influenced the electrophoretic patterns of rice flour protein similarly. This suggests that malt induced proteolysis does not influence the technological properties of a complex gluten free formulation.

  16. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  17. Field application of benzothiadiazole (BTH) to oats (Avena sativa): Effects on crown rust resistance and avenanthramide production

    USDA-ARS?s Scientific Manuscript database

    Plant defense activators such as benzothiadiazole (BTH) are known to elicit the biosynthesis of plant phytoalexins. In oat, BTH treatment was shown to up-regulate avenanthramide production in both the vegetative tissue and filling grain in greenhouse studies. Avenanthramides are phenolic antioxidant...

  18. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  19. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3).

    PubMed

    Race, J E; Grassl, S M; Williams, W J; Holtzman, E J

    1999-02-16

    The cloned organic anion transporters from rat, mouse, and winter flounder (rOAT1, mOAT1, fROAT) mediate the coupled exchange of alpha-ketoglutarate with multiple organic anions, including p-aminohippurate (PAH). We have isolated two novel gene products from human kidney which bear significant homology to the known OATs and belong to the amphiphilic solute facilitator (ASF) family. The cDNAs, hOAT1 and hOAT3, encode for 550- and 568-amino-acid residue proteins, respectively. hOAT1 and hOAT3 mRNAs are expressed strongly in kidney and weakly in brain. Both genes map to chromosome 11 region q11.7. PAH uptake by Xenopus laevis oocytes injected with hOAT1 mRNA is increased 100-fold compared to water-injected oocytes. PAH uptake is chloride dependent and is not further increased by preincubation of oocytes in 5 mM glutarate. Uptake of PAH is inhibited by probenicid, alpha-ketoglutarate, bumetanide, furosemide, and losartan, but not by salicylate, urate, choline, amilioride, and hydrochlorothiazide. Copyright 1999 Academic Press.

  20. Evaluation of beneficial use of wood-fired boiler ash on oat and bean growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejsl, J.A.; Scanlon, T.M.

    An evaluation on the effects of pulp and paper mill combined boiler ashes on growth and nutrient uptake by oat (Avena sativa L., var. 501) and bean (Phaseolus vulgaris L., var. blue pole) was conducted in a greenhouse. Ash with a calcium carbonate equivalent of 29.1% and a pH of 12.1 was applied at the rates 30, 40, and 50 dry Mg ha{sup -1} to Chehalis silty clay loam (fine-silty, mixed, mesic Cumulic Ultic Haploxerolls), with pH 5.4. An agricultural dolomitic lime treatment of 7.4 Mg ha{sup -1} and a nonamended control were also included. Plants grown on ash-amended soilmore » had higher biomass compared to plants grown on lime and control treatments. Ash treatments 30, 40, and 50 dry Mg ha{sup -1} increased the bean (stems and leaves) dry matter (DM) yield over the control by 49, 57, and 64%, respectively. The lime treatment increased the bean DM yield by 31% compared with the control. The ash rate 30 dry Mg ha{sup -1}, equivalent to the recommended agronomic lime rate 7.4 Mg ha{sup -1}, increased oat (shoots) DM yields over the control by 45%, while the lime treatment increased biomass by 8% over control. The highest ash treatment, 50 Mg ha{sup -1}, produced the lowest oat biomass. The ash was as effective as dolomitic lime in raising soil pH. Ash-amended soils contained higher concentrations of P, S, and B for plant growth compared to lime and nonamended soils. Soil Zn, Fe, mn, and Cu concentrations decreased as ash application rates increased. Oat and bean plants grown in the ash-amended soil had increased concentrations of K, S, and B and decreased concentrations of Mn and Cu compared with plants grown in the nonamended control soil. Overall, oat and bean benefited from the increased nutrient availability and soil pH caused by the application of boiler ash. 20 refs., 6 tabs.« less

  1. Grain yield and plant characteristics of corn hybrids in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Water supply for crop use is the primary factor controlling corn (Zea mays L.) grain yield in the west-central Great Plains. With water supply varying as production systems range from dryland through irrigated, selecting hybrids for optimum yield in the anticipated water environment is vital for suc...

  2. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  3. Polyamine binding to proteins in oat and Petunia protoplasts.

    PubMed

    Mizrahi, Y; Applewhite, P B; Galston, A W

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  4. Chemical test for mammalian feces in grain products: collaborative study.

    PubMed

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  5. Oats

    MedlinePlus

    ... saturated fat. For each gram of soluble fiber (beta-glucan) consumed, total cholesterol decreases by about 1.42 ... total cholesterol than foods containing oat bran plus beta-glucan soluble fiber. The FDA recommends that approximately 3 ...

  6. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    PubMed

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  7. Effects of drought after pollination on grain yield and quality of fresh waxy maize.

    PubMed

    Lu, Dalei; Cai, Xuemei; Zhao, Junyu; Shen, Xin; Lu, Weiping

    2015-01-01

    Waxy maize is consumed as a vegetable when harvested at fresh stage (23-26 days after pollination) in China. Fresh waxy maize is normally grown under rain-fed conditions and suffers drought frequently during plant growth. The effect of drought on grain development of fresh waxy maize is not known. Two years of pot trials showed that drought decreased fresh grain number and weight, which consequently reduced fresh ear and grain yields, especially in Yunuo7. Moisture and starch contents in grains were not affected but protein content was increased under drought treatment in both varieties. Grain soluble sugar content response to drought was not affected in Suyunuo5 but was decreased in Yunuo7. Pasting and gelatinization temperatures, trough viscosity, final viscosity, setback viscosity, gelatinization enthalpy and springiness of grain were little affected by drought. Drought decreased peak viscosity, breakdown viscosity and adhesiveness (absolute value), whereas it increased hardness. The retrogradation percentage was increased in both varieties in both years. Drought after pollination decreased the fresh waxy maize yield. Grain quality was reduced through decreased peak viscosity and adhesiveness (absolute value), while its hardness and retrogradation percentage were increased, which might be due to the increased protein content. © 2014 Society of Chemical Industry.

  8. [Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat].

    PubMed

    Zhao, Hai-bo; Lin, Qi; Liu, Yi-guo; Jiang, Wen; Liu, Jian-jun; Zhai, Yan-ju

    2010-10-01

    Taking super high-yielding wheat cultivar Jimai 22 as test material, a field experiment was conducted to study the effects of combined application of nitrogen (N) and phosphorus (P) on the diurnal variation of photosynthesis at grain-filling stage and the grain yield of the cultivar. In treatments CK (without N and P application) and low N/P application (225 kg N x hm(-2) and 75 kg P x hm(-2)), the diurnal variation of net photosynthetic rate (Pn) was presented as double-peak curve, and there existed obvious midday depression of photosynthesis. Under reasonable application of N/P (300 kg N x hm(-2) and 150 kg P x hm(-2), treatment N2P2), the midday depression of photosynthesis weakened or even disappeared. Stomatal and non-stomatal limitations could be the causes of the midday depression. Increasing N and P supply increased the Pn, stomatal conductance (Gs), stomatal limitation value (Ls), and transpiration rate (Tr). Fertilizer P had less effects on the photosynthesis, compared with fertilizer N. When the P supply was over 150 kg x hm(-2), the increment of Pn was alleviated and even decreased. Among the fertilization treatments, treatment N2P2 had the highest Pn, Gs, and water use efficiency, being significantly different from CK. It appeared that fertilizer N had greater regulatory effect on the diurnal variation of photosynthesis, compared with fertilizer P, while the combined application of N and P had significant co-effect on the Pn, Gs, and Tr. A combined application of 300 kg N x hm(-2) and 150 kg P x hm(-2) benefited the enhancement of Pn and grain yield.

  9. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain

  10. Functional properties of teff and oat composites

    USDA-ARS?s Scientific Manuscript database

    Teff-oat composites were developed using gluten free teff flour containing essential amino acids and minerals along with oat products containing ß-glucan known for lowering blood cholesterol. Teff-oat composites were evaluated for their pasting and rheological properties by a Rapid Visco Analyzer (R...

  11. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    USDA-ARS?s Scientific Manuscript database

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  12. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  13. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    PubMed

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Yongming

    The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1more » and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity. - Highlights: • DDI between MTX and Res will occur when they are co-administered. • The first targets of the DDI are P-gp and MRP2 located in intestine. • The second targets of the DDI are OAT1 and OAT3 in kidney. • Res improved MTX-induced renal damage without increasing intestinal toxicity.« less

  15. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  16. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  17. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products.

    PubMed

    Tosh, S M

    2013-04-01

    Oat and barley foods have been shown to reduce human glycaemic response, compared to similar wheat foods or a glucose control. The strength of the evidence supporting the hypothesis that the soluble fibre, mixed linkage β-glucan, reduces glycaemic response was evaluated. A search of the literature was conducted to find clinical trials with acute glycaemic response as an end point using oat or barley products. Of the 76 human studies identified, 34 met the inclusion and exclusion criteria. Dose response and ratio of β-glucan to available carbohydrate as predictors of glycaemic response were assessed. Meals provided 0.3-12.1 g oat or barley β-glucan, and reduced glycaemic response by an average of 48 ± 33 mmol · min/l compared to a suitable control. Regression analysis on 119 treatments indicated that change in glycaemic response (expressed as incremental area under the post-prandial blood-glucose curve) was greater for intact grains than for processed foods. For processed foods, glycaemic response was more strongly related to the β-glucan dose alone (r(2)=0.48, P<0.0001) than to the ratio of β-glucan to the available carbohydrate (r(2)=0.25, P<0.0001). For processed foods containing 4 g of β-glucan, the linear model predicted a decrease in glycaemic response of 27 ± 3 mmol · min/l, and 76% of treatments significantly reduced glycaemic response. Thus, intact grains as well as a variety of processed oat and barley foods containing at least 4 g of β-glucan and 30-80 g available carbohydrate can significantly reduce post-prandial blood glucose.

  18. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.

    PubMed

    Usui, Yasuhiro; Sakai, Hidemitsu; Tokida, Takeshi; Nakamura, Hirofumi; Nakagawa, Hiroshi; Hasegawa, Toshihiro

    2016-03-01

    Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 μmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of

  19. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  20. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density

    PubMed Central

    Wheeler, T. A.; Leser, J. F.; Keeling, J. W.; Mullinix, B.

    2008-01-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty. PMID:19259531

  1. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    PubMed

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  2. Whole grains in the finishing of culled ewes in pasture or feedlot: Performance, carcass characteristics and meat quality.

    PubMed

    Fruet, Ana Paula Burin; Stefanello, Flávia Santi; Rosado Júnior, Adriano Garcia; Souza, Alexandre Nunes Motta de; Tonetto, Cléber José; Nörnberg, José Laerte

    2016-03-01

    In order to evaluate the performance, carcass characteristics and meat quality of culled ewes finished in pasture or exclusivelywith grain, 41 culled Polwarth ewes, were assigned to six treatments: RY (ryegrass pasture), RYGO (ryegrass and whole grain oats), RYGM (ryegrass and whole grain maize), GM (whole grain maize), GO (whole grain oats), GS (whole grain sorghum). The finishing systemof the ewes influenced weight gain,wherein the GM and GS treatments increased daily weight gain. The GO treatment decreased the dressing percentage. Nonetheless, a*, h*, pH, cooking loss and tenderness were similar across dietary treatments. Using principal component analysis, the variables C18:2n6, h*, n6/n3, TBARS, total lipids, L* and b* were assigned as characteristics of meat from the feedlot animals, while the pasture finishing system produced meat with higher CLA and n-3 fatty acids but lower TBARS values indicating lipid stability.

  3. Structural Development of the Oat Plant

    NASA Technical Reports Server (NTRS)

    Kaufman, Peter B.; Brock, Thomas G.

    1992-01-01

    The anatomical structure and morphology of the oat plant (Avena sativa L.) have been reviewed previously by Hector (1936), Bonnett (1961a,b) and Coffman (1977). In addition, Bonnett published detailed accounts of oat panicle development (1937, 1961a,b). This work has been summarized by Esau in her book, Anatomy of Seed Plants, in 1977. It is not the purpose of the present authors to simply go over all this same material again in a repetitive fashion, but rather, to emphasize some of the more recent and previously overlooked work on structural development of the oat plant, with emphasis on the major cultivated species, A. sativa (see Stanton, 1955; Coffman, 1977 for descriptions of this species). The material presented here should be of use to oat breeders, agronomists, and plant physiologists.

  4. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    PubMed

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  5. Duplication of an upstream silencer of FZP increases grain yield in rice.

    PubMed

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  6. [Effects of salt and waterlogging stress at post-anthesis stage on wheat grain yield and quality].

    PubMed

    Zheng, Chun-Fang; Jiang, Dong; Dai, Ting-Bo; Jing, Qi; Cao, Wei-Xing

    2009-10-01

    A pot experiment was conducted to study the effects of salt (ST), waterlogging (WL), and their combination (SW) at post-anthesis on the grain yield and its starch and protein components of wheat cultivars Yangmai 12 and Huaimai 17. Comparing with the control, treatments ST, WL, and SW, especially ST and SW, decreased the allocation of nitrogen and carbon assimilates at pre- and post-anthesis to the grains significantly, resulting in an obvious decrease of grain yield and its protein and starch contents. Both ST and SW had significant negative effects on the glutenin/gliadin and amylase/amylopectin ratios in the grains, compared to CK and WL. Yangmai 12 was more sensitive to ST than SW, while Huaimai 17 was in adverse. WL decreased the accumulation of protein and starch in the grains of the two cultivars. Except that the glutenin and albumin in Huaimai 17 had some increase, the globulin and gliadin in Huaimai 17 and all protein components in Yangmai 12 were decreased under WL.

  7. Immunochemical assessment of mycotoxins in 1989 grain foods: evidence for deoxynivalenol (vomitoxin) contamination.

    PubMed Central

    Abouzied, M M; Azcona, J I; Braselton, W E; Pestka, J J

    1991-01-01

    To assess the potential for mycotoxin contamination of the human food supply following the 1988 U.S. drought, 92 grain food samples were purchased from retail outlets in the summer of 1989 and surveyed for aflatoxin B1, zearalenone, and deoxynivalenol (DON [vomitoxin]) by monoclonal antibody-based competitive enzyme-linked immunosorbent assay (ELISA). Only one sample (buckwheat flour) was found to contain aflatoxin B1 (12 ng/g), whereas zearalenone was found in 26% of the samples at a mean concentration of 19 ng/g. In contrast, the DON ELISA was positive in 50% of the samples at a detection level of 1.0 micrograms/g. Between 63 and 88% of corn cereals, wheat flour/muffin mixes, rice cereals, and corn meal/muffin mixes yielded positive results for DON, whereas 25 to 50% of oat cereals, wheat- and oat-based cookies/crackers, corn chips, popcorn, and mixed-grain cereals were positive for DON. The mean DON content of the positive samples was 4.0 micrograms/g, and the minimum and maximum levels were 1.2 and 19 micrograms/g, respectively. When positive ELISA samples were also analyzed by high-performance liquid chromatography, a strong correlation between the two methods was found. The presence of DON in the two highest samples, corn meal and mixed-grain cereal, which contained 19 and 16 micrograms/g, respectively, was quantitatively confirmed by gas chromatography-mass spectrometry. The results indicated that DON was present in 1989 retail food products at concentrations that exceeded those found in previous market surveys and that have been experimentally associated with impaired animal health. Images PMID:1828138

  8. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could

  9. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  10. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice.

    PubMed

    Li, Shuangcheng; Gao, Fengyan; Xie, Kailong; Zeng, Xiuhong; Cao, Ye; Zeng, Jing; He, Zhongshan; Ren, Yun; Li, Wenbo; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping

    2016-11-01

    Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth-regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF-interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c-OsGRF4-OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  12. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Variation in chemical composition and physical characteristics of cereal grains from different genotypes.

    PubMed

    Rodehutscord, Markus; Rückert, Christine; Maurer, Hans Peter; Schenkel, Hans; Schipprack, Wolfgang; Bach Knudsen, Knud Erik; Schollenberger, Margit; Laux, Meike; Eklund, Meike; Siegert, Wolfgang; Mosenthin, Rainer

    2016-01-01

    Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.

  14. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to

  15. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    PubMed

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  16. Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea.

    PubMed

    Muchero, Wellington; Roberts, Philip A; Diop, Ndeye N; Drabo, Issa; Cisse, Ndiaga; Close, Timothy J; Muranaka, Satoru; Boukar, Ousmane; Ehlers, Jeffrey D

    2013-01-01

    The stay-green phenomenon is a key plant trait with wide usage in managing crop production under limited water conditions. This trait enhances delayed senescence, biomass, and grain yield under drought stress. In this study we sought to identify QTLs in cowpea (Vigna unguiculata) consistent across experiments conducted in Burkina Faso, Nigeria, Senegal, and the United States of America under limited water conditions. A panel of 383 diverse cowpea accessions and a recombinant inbred line population (RIL) were SNP genotyped using an Illumina 1536 GoldenGate assay. Phenotypic data from thirteen experiments conducted across the four countries were used to identify SNP-trait associations based on linkage disequilibrium association mapping, with bi-parental QTL mapping as a complementary strategy. We identified seven loci, five of which exhibited evidence suggesting pleiotropic effects (stay-green) between delayed senescence, biomass, and grain yield. Further, we provide evidence suggesting the existence of positive pleiotropy in cowpea based on positively correlated mean phenotypic values (0.34< r <0.87) and allele effects (0.07< r <0.86) for delayed senescence and grain yield across three African environments. Three of the five putative stay-green QTLs, Dro-1, 3, and 7 were identified in both RILs and diverse germplasm with resolutions of 3.2 cM or less for each of the three loci, suggesting that these may be valuable targets for marker-assisted breeding in cowpea. Also, the co-location of early vegetative delayed senescence with biomass and grain yield QTLs suggests the possibility of using delayed senescence at the seedling stage as a rapid screening tool for post-flowering drought tolerance in cowpea breeding. BLAST analysis using EST sequences harboring SNPs with the highest associations provided a genomic context for loci identified in this study in closely related common bean (Phaseolus vulgaris) and soybean (Glycine max) reference genomes.

  17. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95.

    PubMed

    Chen, Shu-Jun; Wang, Qi; Han, Jian-Rong

    2010-08-01

    Oxidative stress and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. When the fungus was grown at high oxidative stress, its sclerotial biomass and carotenoid content in sclerotia increased significantly with respect to low oxidative stress (P < 0.01). High oxidative stress also caused a statistically significant increase in carotenoid yield as compared with low oxidative stress (P < 0.01). Both the sclerotial biomass and the amount of carotenoid accumulated in sclerotia of strain PT95 were strongly dependent on the grain medium used. Among the grain media tested under high oxidative stress, buckwheat medium gave the highest content of carotenoid in sclerotia (828 microg/g dry sclerotia), millet medium gave respectively the highest sclerotial biomass (12.69 g/100 g grain) and carotenoid yield (10.152 mg/100 g grain). Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  18. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    PubMed

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  19. Structures, properties, modifications, and uses of oat starch.

    PubMed

    Zhu, Fan

    2017-08-15

    There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines

    PubMed Central

    Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing

    2017-01-01

    Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573

  1. Cereal grains and coronary heart disease.

    PubMed

    Truswell, A S

    2002-01-01

    Cereal grains and their products provide around 30% of total energy intake in British adults, (much more than any of the other major food groups). Coronary heart disease (CHD) is the largest single cause of death in Britain and many other Western countries. This review examines the question whether there is a relation between cereal consumption and CHD. Several of the nutrients in cereals have known potential for reducing risk factors for CHD: the linoleic acid, fibre, vitamin E, selenium and folate. Cereals also contain phytoestrogens of the lignan family and several phenolic acids with antioxidant properties. Processing generally reduces the content of these nutrients and bioprotective substances. Although cereals at the farm gate are very low in salt, processed cereal foods, eg bread and some breakfast cereals, are high-salt foods and thus could contribute to raising blood pressure. Human experiments have clearly shown that oat fibre tends to lower plasma total and LDL cholesterol but wheat fibre does not. Rice bran and barley may also lower cholesterol but most people do not eat enough barley to have an effect. Cereal foods with low glycaemic index such as pasta and oats are beneficial for people with diabetes and might lower plasma lipids. Between 1996 and 2001 an accumulation of five very large cohort studies in the USA, Finland and Norway have all reported that subjects consuming relatively large amounts of whole grain cereals have significantly lower rates of CHD. This confirms an earlier report from a small British cohort. The protective effect does not seem to be due to cholesterol-lowering. While cohort studies have shown this consistent protective effect of whole grain cereals, there has been (only one) randomised controlled secondary prevention trial of advice to eat more cereal fibre. In this there was no reduction of the rate of reinfarction. The trial had some weaknesses, eg there were eight different diets, compliance was not checked objectively

  2. The U.S. Oats Industry. Agricultural Economic Report Number 573.

    ERIC Educational Resources Information Center

    Hoffman, Linwood A.; Livezey, Janet

    This report describes the United States oats industry from producers to consumers and provides a single source of economic and statistical information on oats. Background information on oats is provided first. The report then examines the basic factors of supply, demand, and price to determine what caused the decline in the importance of oats and…

  3. Major Cereal Grain Fibers and Psyllium in Relation to Cardiovascular Health

    PubMed Central

    Bernstein, Adam M.; Titgemeier, Brigid; Kirkpatrick, Kristin; Golubic, Mladen; Roizen, Michael F.

    2013-01-01

    Numerous studies reveal the cardiovascular benefits of consuming dietary fiber and, especially, cereal fiber. Cereal fiber is associated with cardiovascular risk reduction through multiple mechanisms and consuming a variety of cereal fiber sources offers health benefits specific to the source. Certain cereal fibers have been studied more extensively than others and provide greater support for their incorporation into a healthful diet. β-glucan from oats or barley, or a combination of whole oats and barley, and soluble fiber from psyllium reduces the risk of coronary heart disease; inulin-type fructans added to foods and beverages may modestly decrease serum triacylglycerols; arabinoxylan and resistant starch may improve glycemic control. Individuals with low cereal fiber intake should increase their intake of whole grains in order to receive the benefits of whole grains in addition to fiber. For those adjusting to the texture and palatability of whole grains, turning to added-fiber products rich in β-glucan and psyllium may allow them to reach their fiber goals without increasing caloric intake. PMID:23628720

  4. Specific adaptation and genetic progress for grain yield in Great Plains hard winter wheats, 1987-2010

    USDA-ARS?s Scientific Manuscript database

    Meeting the food demands of a growing world population will become increasingly difficult should the rate of genetic improvement in grain yield of wheat (Triticum aestivum L.) and other grain crops decelerate. Data from USDA-ARS coordinated long-term regional performance nurseries was used to exami...

  5. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients.

    PubMed

    Giménez, María J; Real, Ana; García-Molina, M Dolores; Sousa, Carolina; Barro, Francisco

    2017-02-17

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients.

  6. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients

    PubMed Central

    Giménez, María J.; Real, Ana; García-Molina, M. Dolores; Sousa, Carolina; Barro, Francisco

    2017-01-01

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients. PMID:28209962

  7. Genetic evaluation of recombinant inbred lines of rice (Oryza sativa L.) for grain zinc concentrations, yield related traits and identification of associated SSR markers.

    PubMed

    Bekele, Berhanu D; Naveen, G K; Rakhi, S; Shashidhar, H E

    2013-12-01

    The objectives of the present study were to evaluate genetic variability parameters, correlations that exist for grain Zn concentration and yield related traits and identification of SSR markers linked to these traits in rice. One hundred seventy six Recombinant Inbred Lines (RILs) of Azucena X Moromutant were grown at University of Agricultural Sciences, Bangalore in augmented experimental design during wet seasons of 2010 and 2011. The study revealed significant genetic variability for all the traits. Grain yield per plant and grain zinc concentration showed higher phenotypic and genotypic co-efficient of variation. Significant positive correlation was observed for grain yield per plant with number of productive tillers per plant (r = 0.5) and number of tillers per plant (r = 0.4). Grain zinc concentration showed negative correlation with grain yield per plant (r = - 0.27). The path-coefficient analysis indicated the positive direct effect of number of productive tillers per plant on grain yield per plant (0.514). Grain zinc concentration showed negative direct effect on grain yield per plant (-0.186). Single-marker analysis using 26 SSR markers on RILs mapping population showed that RM212, RM263, RM6832, RM152, RM21, RM234 and RM3331 had association with grain zinc concentration and other yield related traits. But validation of these markers on fifty two rice genotypes showed that only three markers RM263, RM152 and RM21 had association with grain zinc concentration. Therefore, the genetic information generated and molecular markers identified from this study could be used for zinc biofortification programmes in rice.

  8. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach

    PubMed Central

    Liu, Henry C.; Goldenberg, Anne; Chen, Yuchen; Lun, Christina; Wu, Wei; Bush, Kevin T.; Balac, Natasha; Rodriguez, Paul; Abagyan, Ruben

    2016-01-01

    Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 “drug” transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach—which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue

  9. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome.

    PubMed

    Gutierrez-Gonzalez, Juan J; Garvin, David F

    2016-11-01

    Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-guided assembly, coding sequences of genes for each step in vitamin E synthesis in oats were reconstructed, including resolution of the sequences of homeologs. Three homeologs, presumably representing each of the three oat subgenomes, were identified for the main steps of the pathway. Partial sequences, likely representing pseudogenes, were recovered in some instances as well. Pairwise comparisons among homeologs revealed that two of the three putative subgenome-specific homeologs are almost identical for each gene. Synonymous substitution rates indicate the time of divergence of the two more similar subgenomes from the distinct one at 7.9-8.7 MYA, and a divergence between the similar subgenomes from a common ancestor 1.1 MYA. A new proposed evolutionary model for hexaploid oat formation is discussed. Homeolog-specific gene expression was quantified during oat seed development and compared with vitamin E accumulation. Homeolog expression largely appears to be similar for most of genes; however, for some genes, homoeolog-specific transcriptional bias was observed. The expression of HPPD, as well as certain homoeologs of VTE2 and VTE4, is highly correlated with seed vitamin E accumulation. Our findings expand our understanding of oat genome evolution and will assist efforts to modify vitamin E content and composition in oats. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Physical properties of sugar cookies containing chia-oat composites

    USDA-ARS?s Scientific Manuscript database

    Omega-3 of chia seeds (Salvia hispanica L.) and soluble ß-glucan of oat products could be beneficial for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were dry-blended with finely ground chia for improving nutritional ...

  11. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan

    PubMed Central

    Ain, Qurat-ul; Rasheed, Awais; Anwar, Alia; Mahmood, Tariq; Imtiaz, Muhammad; Mahmood, Tariq; Xia, Xianchun; He, Zhonghu; Quraishi, Umar M.

    2015-01-01

    Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011–2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development. PMID:26442056

  12. Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa

    USDA-ARS?s Scientific Manuscript database

    A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plant...

  13. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site

  14. Structural Make-up, Biopolymer Conformation, and Biodegradation Characteristics of Newly Developed Super Genotype of Oats (CDC SO-I vs. Conventional Varieties): Novel Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiran, D.; Yu, P

    Recently, a new 'super' genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it wasmore » observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE{sub L3x}, 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.« less

  15. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Le Vee, Marc; Abdel-Razzak, Ziad; Fardel, Olivier

    2017-10-01

    Cigarette smoke condensate (CSC) has previously been shown to impair activity and expression of hepatic drug transporters. In the present study, we provided evidence that CSC also hinders activity of organic anion transporters (OATs), notably expressed at the kidney level. CSC thus cis-inhibited OAT substrate uptake in OAT1- and OAT3-transfected HEK293 cells, in a concentration-dependent manner (IC 50 =72.1μg/mL for OAT1 inhibition and IC 50 =27.3μg/mL for OAT3 inhibition). By contrast, OAT4 as well as the renal organic cation transporter (OCT) 2 were less sensitive to the inhibitory effect of CSC (IC 50 =351.5μg/mL and IC 50 =226.2μg/mL, for inhibition of OAT4 and OCT2, respectively). OAT3 activity was further demonstrated to be blocked by some single chemicals present in cigarette smoke such as the heterocyclic amines AαC (IC 50 =11.3μM) and PhIP (IC 50 =1.9μM), whereas other major cigarette smoke components used at 100μM, like nicotine, the nitrosamine NNK and the polycyclic aromatic hydrocarbons benzo(a)pyrene and phenanthrene, were without effect. AαC and PhIP however failed to trans-stimulate activity of OAT3, suggesting that they were not substrates for this transporter. Taken together, these data establish OAT1 and OAT3 transporters as targets of cigarette smoke chemicals, which may contribute to smoking-associated pharmacokinetics alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...

  17. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  18. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region.

    PubMed

    Kamran, Muhammad; Wennan, Su; Ahmad, Irshad; Xiangping, Meng; Wenwen, Cui; Xudong, Zhang; Siwei, Mou; Khan, Aaqil; Qingfang, Han; Tiening, Liu

    2018-03-19

    A field experiment was conducted to investigate the effects of paclobutrazol on ear characteristics and grain yield by regulating root growth and root-bleeding sap of maize crop. Seed-soaking at rate of 0 (CK1), 200 (S1), 300 (S2), and 400 (S3) mg L -1 , and seed-dressing at rate of 0 (CK2), 1.5 (D1), 2.5 (D2), and 3.5 (D3) g kg -1 were used. Our results showed that paclobutrazol improved the ear characteristics and grain yield, and were consistently higher than control during 2015-2016. The average grain yield of S1, S2 and S3 were 18.9%, 61.3%, and 45.9% higher, while for D1, D2 and D3 were 20.2%, 33.3%, and 45.2%, compared to CK, respectively. Moreover, paclobutrazol-treated maize had improved root-length density (RLD), root-surface area density (RSD) and root-weight density (RWD) at most of the soil profiles (0-70 cm for seed-soaking, 0-60 cm for seed-dressing) and was attributed to enhancing the grain yield. In addition, root-activity, root-bleeding sap, root dry weight, diameter and root/shoot ratio increased by paclobutrazol, with highest values achieved in S2 and D3 treatments, across the whole growth stages in 2015-2016. Our results suggested that paclobutrazol could efficiently be used to enhance root-physiological and morphological characteristics, resulting in higher grain yield.

  19. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  20. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  1. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  2. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    PubMed

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Bioaccumulation and distribution of heavy metals in Maize, Oat and Sorghum Plants, grown in industrially polluted region

    NASA Astrophysics Data System (ADS)

    Angelova, Violina; Ivanova, Radka; Ivanov, Krasimir

    2010-05-01

    The uptake of heavy metals (Cd, Pb and Zn) by maize, oat and sorghum plants cultivated, under field conditions, in industrially polluted soils was studied. The experimental plots were situated at different distances (0.1, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness the crops were gathered and the contents of heavy metals in their different parts - roots, stems, leaves and grains, were determined after dry ashing. The quantitative measurements were carried out with ICP. A clearly distinguished species peculiarity existed in the accumulation of heavy metals in the vegetative and reproductive organs of the studied crops. Sorghum plants accumulated larger heavy metal quantities compared to maize and oat plants, as the major part of heavy metals was retained by roots and a very small part was translocated to epigeous parts. The studied crops may be considered as metal-tolerant crops and may be cultivated on soils which are low, medium or highly contaminated with lead, zinc and cadmium, as they do not show a tendency of accumulating these elements in epigeous parts and grains above the maximum permissible concentrations. The possible use of aboveground mass and grains for animal food guarantees the economic expedience upon the selection of these crops. Acknowledgment: This work is supported by the Bulgarian Ministry of Education, Project DO-02-87/08.

  4. No harm from five year ingestion of oats in coeliac disease

    PubMed Central

    Janatuinen, E K; Kemppainen, T A; Julkunen, R J K; Kosma, V-M; Mäki, M; Heikkinen, M; Uusitupa, M I J

    2002-01-01

    Background: Six to 12 months of ingestion of moderate amounts of oats does not have a harmful effect in adult patients with coeliac disease. As the safety of long term intake of oats in coeliac patients is not known, we continued our previous 6–12 month study for five years. Aim: To assess the safety of long term ingestion of oats in the diet of coeliac patients. Patients: In our previous study, the effects of a gluten free diet and a gluten free diet including oats were compared in a randomised trial involving 92 adult patients with coeliac disease (45 in the oats group, 47 in the control group). After the initial phase of 6–12 months, patients in the oats group were allowed to eat oats freely in conjunction with an otherwise gluten free diet. After five years, 35 patients in the original oats group (23 still on an oats diet) and 28 in the control group on a conventional gluten free diet were examined. Methods: Clinical and nutritional assessment, duodenal biopsies for conventional histopathology and histomorphometry, and measurement of antiendomysial, antireticulin, and antigliadin antibodies. Results: There were no significant differences between controls and those patients consuming oats with respect to duodenal villous architecture, inflammatory cell infiltration of the duodenal mucosa, or antibody titres after five years of follow up. In both groups histological and histomorphometric indexes improved equally with time. Conclusions: This study provides the first evidence of the long term safety of oats as part of a coeliac diet in adult patients with coeliac disease. It also appears that the majority of coeliac patients prefer oats in their diet. PMID:11839710

  5. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull

    PubMed Central

    Agu, Obiora S.; Tabil, Lope G.; Dumonceaux, Tim

    2017-01-01

    The effects of microwave-assisted alkali pre-treatment on pellets’ characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield. PMID:28952504

  6. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull.

    PubMed

    Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim

    2017-03-26

    The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

  7. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize

    PubMed Central

    Wang, Hongqiu; Zhang, Xiangge; Yang, Huili; Liu, Xiaoyang; Li, Huimin; Yuan, Liang; Li, Weihua; Fu, Zhiyuan; Tang, Jihua; Kang, Dingming

    2016-01-01

    Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids. PMID:27917917

  8. Why Oats Are Safe and Healthy for Celiac Disease Patients.

    PubMed

    Gilissen, Luud J W J; van der Meer, Ingrid M; Smulders, Marinus J M

    2016-11-26

    The water-insoluble storage proteins of cereals (prolamins) are called "gluten" in wheat, barley, and rye, and "avenins" in oat. Gluten can provoke celiac disease (CD) in genetically susceptible individuals (those with human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 serotypes). Avenins are present at a lower concentration (10%-15% of total protein content) in oat as compared to gluten in wheat (80%-85%). The avenins in the genus Avena (cultivated oat as well as various wild species of which gene bank accessions were analyzed) are free of the known CD immunogenic epitopes from wheat, barley, and rye. T cells that recognize avenin-specific epitopes have been found very rarely in CD patients. CD patients that consume oats daily do not show significantly increased levels of intraepithelial lymphocyte (EIL) cells. The safety and the positive health effects of the long-term inclusion of oats in the gluten-free diet have been confirmed in long-term studies. Since 2009 (EC 41/2009) and 2013 (FDA) oat products may be sold as gluten-free in several countries provided a gluten contamination level below 20 ppm. Introduction of oats in the gluten-free diet of celiac patients is advised after the recovery of the intestine. Health effects of oat consumption are reflected in European Food Safety Authority (EFSA)- and Food and Drug Administration (FDA)-approved health claims. Oats can form a healthy, nutritious, fiber-rich, and safe complement to the gluten-free diet.

  9. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach.

    PubMed

    Liu, Henry C; Goldenberg, Anne; Chen, Yuchen; Lun, Christina; Wu, Wei; Bush, Kevin T; Balac, Natasha; Rodriguez, Paul; Abagyan, Ruben; Nigam, Sanjay K

    2016-10-01

    Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 "drug" transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach-which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue

  10. Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice.

    PubMed

    Morikawa, Claudio K; Saigusa, M

    2011-08-30

    Coffee grounds and tea leaf wastes exhibit strong affinity for metals such as Fe and Zn. The objective of this experiment was to evaluate the effect of top-dressing application of Fe- and Zn-enriched coffee grounds and tea leaf wastes at the panicle initiation stage on the mineral content of rice grains and the yield of paddy rice. The Fe and Zn contents of brown rice grains increased significantly on application of both coffee and tea waste materials. The concentration of Mn was increased by top-dressing application of coffee waste material only. For Cu, no significant (P < 0.05) differences were found between the control and ferrous sulfate/zinc sulfate treatment. The application of coffee and tea waste materials led to a significant (P < 0.05) increase in the number of grains per panicle, which was reflected in increases in the total number of grains per hill and in grain yield. The top-dressing application of these materials is an excellent method to recycle coffee grounds and tea wastes from coffee shops. Use of these novel materials would not only reduce the waste going to landfill but would also benefit the mineral nutrition of rice consumers at low cost by increasing Fe and Zn levels of rice grains as well as grain yield. Copyright © 2011 Society of Chemical Industry.

  11. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss... paragraphs (c) through (h) of this section, except to the extent that similar provisions apply to claims...

  12. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss... paragraphs (c) through (h) of this section, except to the extent that similar provisions apply to claims...

  13. New sources of adult plant and seedling resistance to Puccinia coronata f. sp. avenae identified among Avena sativa accessions of the national small grains collection

    USDA-ARS?s Scientific Manuscript database

    Accessions of cultivated oat (A. sativa L.) from the USDA-ARS Small Grains Collection in Aberdeen, ID were characterized for adult plant resistance (APR) and seedling resistance to crown rust, caused by Puccinia coronata f. sp. avenae (Pca). Initially, 607 oat accessions with diverse geographic orig...

  14. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats.

    PubMed

    Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge

    2018-05-16

    Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.

  15. Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): a novel approach.

    PubMed

    Damiran, Daalkhaijav; Yu, Peiqiang

    2010-02-24

    Recently, a new "super" genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it was observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE(L3x), 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.

  16. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.

    PubMed

    Jalloh, Mohamed Alpha; Chen, Jinghong; Zhen, Fanrong; Zhang, Guoping

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg(-1)soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH(4)(+)-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO(3)(-)-N and NH(4)(+)-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH(4)(+)-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO(3)(-)-N treatment, with urea-N and NH(4)(+)-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  17. Cumulative deficit irrigation effects on corn (Zea mays, L.) biomass and grain yield

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation (DI) is sometimes used to cope with dwindling irrigation water supplies or limited water allocations. A six-year study at Akron, Colorado investigated the effects of consecutive years of DI on soil water use, soil water storage, biomass production, grain yield and water use effici...

  18. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  19. Evolution of the Oat Genetic Road Map: From Tetraploid to Hexaploid

    USDA-ARS?s Scientific Manuscript database

    The development of a genetic linkage map for hexaploid oat (Avena sativa L. 2n = 6 x = 42) that defines all 21 chromosomes has been hindered due to the lack of oat-based markers and the size and complexity of the oat genome. Recent efforts in oat DArT, SSR, and SNP marker development should improve...

  20. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    PubMed

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  1. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios.

    PubMed

    Tumino, Giorgio; Voorrips, Roeland E; Rizza, Fulvia; Badeck, Franz W; Morcia, Caterina; Ghizzoni, Roberta; Germeier, Christoph U; Paulo, Maria-João; Terzi, Valeria; Smulders, Marinus J M

    2016-09-01

    Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.

  2. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones

    PubMed Central

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter

  3. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    PubMed

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter

  4. Physical properties of sugar cookies containing chia-oat composites.

    PubMed

    Inglett, George E; Chen, Diejun; Liu, Sean

    2014-12-01

    Omega-3 fatty acids of chia seeds (Salvia hispanica L.) and soluble β-glucan of oat products are known for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were composited with finely ground chia, and used in cookies at 20% replacement of wheat flour for improved nutritional and physical quality. The objective was to evaluate physical properties of chia-oat composites, dough, and cookies. These composites had improved water-holding capacities compared to the starting materials. The geometrical properties and texture properties of the cookies were not greatly influenced by a 20% flour replacement using chia-OBC or chia-WOF composites. There was a decrease in the cookie diameter, and increases in the height of cookies and dough hardness using 20% Chia- Nutrim composite. These fine-particle chia-oat composites were prepared by a feasible procedure for improved nutritional value and physical properties of foods. The cookies containing chia-oat composites can be considered a health-promoting functional food. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China.

    PubMed

    Wu, Lilian; Yuan, Shen; Huang, Liying; Sun, Fan; Zhu, Guanglong; Li, Guohui; Fahad, Shah; Peng, Shaobing; Wang, Fei

    2016-01-01

    Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha(-1) in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha(-1), except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha(-1). HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha(-1), while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg(-1). Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

  6. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats

    USDA-ARS?s Scientific Manuscript database

    Oats have received increased scientific and public interest for their purported antioxidant-associated health benefits, however most reported studies have concentrated on oat extracts or specific oat phytochemicals, such as beta-glucans, tocols (vitamin E) or avenanthramides. Studies on whole oat gr...

  7. Influence of inocula and grains on sclerotia biomass and carotenoid yield of Penicillium sp. PT95 during solid-state fermentation.

    PubMed

    Han, Jian-Rong; Yuan, Jing-Ming

    2003-10-01

    Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).

  8. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective

    PubMed Central

    Nigam, Sanjay K.; Bush, Kevin T.; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C.; Richard, Erin; Bhatnagar, Vibha; Wu, Wei

    2015-01-01

    The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the “Remote Sensing and Signaling Hypothesis,” which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling. PMID:25540139

  9. Lipid-modifying enzymes in oat and faba bean.

    PubMed

    Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija

    2017-10-01

    The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (POX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and POX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high POX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. POX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene

    PubMed Central

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C.; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  11. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  12. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment

    PubMed Central

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se. PMID:28542571

  13. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment.

    PubMed

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter; Fleury, Delphine

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.

  14. [Effects of field border length for irrigation on the water consumption characteristics and grain yield of wheat].

    PubMed

    Ma, Shang-Yu; Yu, Zhen-Wen; Wang, Dong; Zhang, Yong-Li; Shi, Yu

    2012-09-01

    In the wheat growth seasons of 2009 -2010 and 2010-2011, six border lengths of 10, 20, 40, 60, 80 and 100 m were installed in a wheat field to study the effects of different border lengths for irrigation on the water consumption characteristics and grain yield of wheat. The results showed that with the increasing border length from 10 to 80 m, the irrigation amount and the proportion of irrigation amount to total water consumption amount, the water content in 0-200 cm soil layers and the soil water supply capacity at anthesis stage, as well as the wheat grain yield and water use efficiency increased, while the soil water consumption amount and the water consumption amount of wheat from jointing to anthesis stages as well as the total water consumption amount decreased. At the border length of <80 m, the irrigation amount was smaller, and the water content in upper soil layers was lower, as compared with those at the border length of 80 m, which led to the wheat to absorb more water from deeper soil layers, and thus, the total water consumption increased. At the border length of 100 m, the irrigation amount, soil water consumption amount, and total water consumption amount all increased, and, due to the excessive irrigation amount and the uneven distribution of irrigation water when irrigated once, the 1000-grain mass, grain yield, and water use efficiency decreased significantly, which was not conductive to the water-saving and high-yield cultivation.

  15. Remote sensing and modelling of vegetation dynamics for early estimation and spatial analysis of grain yields in semiarid context in central Tunisia

    NASA Astrophysics Data System (ADS)

    Chahbi, Aicha; Zribi, Mehrez; Lili-Chabaane, Zohra

    2016-04-01

    In arid and semi-arid areas, population growth, urbanization, food security and climate change have an impact on agriculture in general and particular on the cereal production. Therefore to improve food security in arid countries, crop canopy monitoring and yield forecasting cereals are needed. Many models, based on the use of remote sensing or agro-meteorological models, have been developed to estimate the biomass and grain yield of cereals. Through the use of a rich database, acquired over a period of two years for more than 80 test fields, and from optical satellite SPOT/HRV images, the aim of the present study is to evaluate the feasibility of two yield prediction approaches. The first approach is based on the application of the semi-empirical growth model SAFY, developed to simulate the dynamics of the LAI and the grain yield, at the field scale. The model is able to reproduce the time evolution of the leaf area index of all fields with acceptable error. However, an inter-comparison between ground yield measurements and SAFY model simulations reveals that the yields are under-estimated by this model. We can explain the limits of the semi-empirical model SAFY by its simplicity and also by various factors that were not considered (fertilization, irrigation,...). To improve the yield estimation, a new approach is proposed: the grain yield is estimated in function of the LAI in the growth period between 25 March and 5 April. The LAI of this period is estimated by SAFY model. A linear relationship is developed between the measured grain yield and the LAI area of the maximum growth period.This approach is robust, the measured and estimated grain yields are well correlated. Following the validation of this approach, yield estimations are proposed for the entire studied site using the SPOT/HRV images.

  16. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    PubMed

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P < 0.05) reduced photosynthetic pigments (chlorophyll contents and carotenoids) and inducted oxidative stress with increased production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while

  17. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.).

    PubMed

    Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin

    2012-07-20

    1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.

  18. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  19. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  20. Properties of amaranth flour with functional oat products

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was composited with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. The pasting and rheological properties of amaranth-oat composites were evaluated. The amaranth-Nutrim composites showe...

  1. Pasting and rheological properties of quinoa-oat composites

    USDA-ARS?s Scientific Manuscript database

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  2. [Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage].

    PubMed

    Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi

    2015-11-01

    A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.

  3. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    NASA Astrophysics Data System (ADS)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  4. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    PubMed

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  5. Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice

    PubMed Central

    Liu, Xiaojun; Zhang, Ke; Zhang, Zeyu; Cao, Qiang; Lv, Zunfu; Yuan, Zhaofeng; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    Canopy chlorophyll density (Chl) has a pivotal role in diagnosing crop growth and nutrition status. The purpose of this study was to develop Chl based models for estimating N status and predicting grain yield of rice (Oryza sativa L.) with Leaf area index (LAI) and Chlorophyll concentration of the upper leaves. Six field experiments were conducted in Jiangsu Province of East China during 2007, 2008, 2009, 2013, and 2014. Different N rates were applied to generate contrasting conditions of N availability in six Japonica cultivars (9915, 27123, Wuxiangjing 14, Wuyunjing 19, Yongyou 8, and Wuyunjing 24) and two Indica cultivars (Liangyoupei 9, YLiangyou 1). The SPAD values of the four uppermost leaves and LAI were measured from tillering to flowering growth stages. Two N indicators, leaf N accumulation (LNA) and plant N accumulation (PNA) were measured. The LAI estimated by LAI-2000 and LI-3050C were compared and calibrated with a conversion equation. A linear regression analysis showed significant relationships between Chl value and N indicators, the equations were as follows: PNA = (0.092 × Chl) − 1.179 (R2 = 0.94, P < 0.001, relative root mean square error (RRMSE) = 0.196), LNA = (0.052 × Chl) − 0.269 (R2 = 0.93, P < 0.001, RRMSE = 0.185). Standardized method was used to quantity the correlation between Chl value and grain yield, normalized yield = (0.601 × normalized Chl) + 0.400 (R2 = 0.81, P < 0.001, RRMSE = 0.078). Independent experimental data also validated the use of Chl value to accurately estimate rice N status and predict grain yield. PMID:29163568

  6. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice

    PubMed Central

    Eraly, Satish A.; Rao, Satish Ramachandra; Gerasimova, Maria; Rose, Michael; Nagle, Megha; Anzai, Naohiko; Smith, Travis; Sharma, Kumar; Nigam, Sanjay K.; Rieg, Timo

    2012-01-01

    Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1−/−) and OAT3 (Oat3−/−). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1−/− (−0.03 ± 0.10 μg/min; −3 ± 18%) and Oat3−/− (0.01 ± 0.06 μg/min; −6 ± 19%), with greater variability in Oat1−/−. Expression of OAT3 protein in the renal membranes of Oat1−/− mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3−/− mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3−/− were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice. PMID:22338083

  7. Pasting and rheological properties of oat products dry-blended with ground chia seeds

    USDA-ARS?s Scientific Manuscript database

    Oat products containing ß-glucan are documented for lowering blood cholesterol that could be beneficial for preventing coronary heart disease. Oat products (oat flour, oat bran concentrate, and Nutrim) were dry-blended with ground chia (Salvia hispanica L.) that contains omega-3 polyunsaturated fatt...

  8. Recent research on inherent molecular structure, physiochemical properties, and bio-functions of food and feed-type Avena sativa oats and processing-induced changes revealed with molecular microspectroscopic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prates, Luciana Louzada; Yu, Peiqiang

    Avena sativa oat is a cereal widely used as human food and livestock feed. However, the low metabolized energy and the rapid rumen degradations of protein and starch have limited the use of A. sativa oat grains. To overcome this disadvantage, new A. sativa oat varieties have been developed. Additionally, heat-related processing has been performed to decrease the degradation rate and improve the absorption of amino acids in the small intestine. The nutritive value is reflected by both chemical composition and inherent molecular structure conformation. However, the traditional wet chemical analysis is not able to detect the inherent molecular structuresmore » within an intact tissue. The advanced synchrotron-radiation and globar-based molecular microspectroscopy have been developed recently and applied to study internal molecular structures and the processing induced structure changes in A. sativa oats and reveal how molecular structure changes in relation to nutrient availability. This review aimed to obtain the recent information regarding physiochemical properties, molecular structures, metabolic characteristics of protein, and the heat-induced changes in new A. sativa oat varieties. The use of the advanced vibrational molecular spectroscopy was emphasized, synchrotron- and globar-based (micro)spectroscopy, to reveal the inherent structure of A. sativa oats at cellular and molecular levels and to reveal the heat processing effect on the degradation characteristics and the protein molecular structure in A. sativa oats. The relationship between nutrient availability and protein molecular inherent structure was also presented. Information described in this review gives better insight in the physiochemical properties, molecular structure, and the heat-induced changes in A. sativa oat detected with advanced molecular spectroscopic techniques in combinination with conventional nutrition study techniques.« less

  9. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  10. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  11. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  12. Oat raw materials and bakery products - amino acid composition and celiac immunoreactivity.

    PubMed

    Mickowska, Barbara; Litwinek, Dorota; Gambuś, Halina

    2016-01-01

    The aim of this study was to compare the biochemical and immunochemical properties of avenins in some special oat raw materials and additionally the possibility of using them as a raw material for the gluten-free bakery products. The compared oat raw materials were - oat flakes, commercial oat flours (including gluten-free oat flour) and residual oat flour, which is by-product of β-glucan preparation. Biochemical characteristic included amino acid compositions and SDS-PAGE profiles of extracted avenins. The immunochemical reactivity with polyclonal anti-gluten and monoclonal anti-gliadin antibodies was evaluated qualitatively and quantitatively by immunoblotting and ELISA methods. Additionally, experimental bakery products made of examined raw materials were assessed according to their suitability for the celiac patients' diet. The highest protein content was measured in the β-glucan preparation "Betaven" and gluten-free oat flour. Proteins of all materials are rich in glutamic and aspartic acid, leucine and arginine. Proportions of amino acids in avenins extracted from most of oat raw materials are similar, excluding gluten-free oat flour, which has a very low avenin content and proportions of individual amino acids are different. The SDS-PAGE protein pattern consisted of proteins with molecular weight of about 25-35 kDa. Polyclonal anti-gluten anti-body recognized all protein fractions of molecular weight higher than 20 kDa. Quantitative ELISA analysis shows that the majority of samples has a gliadin-like protein content within the range of 80-260 mg/kg, excluding gluten-free flours and corresponding bakery products. Altogether, β-glucan preparation has extremely high level of gliadin-like proteins. In the examined oat raw materials and foods the contents of immunoreactive amino acid sequences exceeded the limit of 20 mg/kg (considered as gluten-free) except for gluten-free flours (oat and  the prepared mixture) and the bakery products based on gluten

  13. Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan.

    PubMed

    Tuncer, M; Ball, A S

    2003-01-01

    To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.

  14. Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport

    PubMed Central

    An, Guohua; Wang, Xiaodong

    2014-01-01

    Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway. PMID:25002746

  15. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs.

    PubMed

    Cervantes-Pahm, Sarah K; Liu, Yanhong; Stein, Hans H

    2014-03-30

    Cereal grains provide a large portion of caloric intake in diets for humans, but not all cereal grains provide the same amount of energy. Therefore, an experiment was conducted to determine and compare the metabolizable energy (ME), the apparent ileal digestibility (AID), and the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in eight cereal grains when fed to pigs. Rice had greater (P < 0.05) AID of GE than other cereal grains, greater (P < 0.05) AID of starch than yellow dent corn, dehulled barley, rye, and wheat, and greater (P < 0.05) ATTD of GE than yellow dent corn, rye, sorghum, and wheat. Dehulled barley, rye, and sorghum had less (P < 0.05) AID of starch than other cereal grains. Dehulled barley had greater (P < 0.05) ATTD of GE than rye. Dehulled oats had the greatest (P < 0.05) ME compared with other cereal grains, whereas rye had the least (P < 0.05) ME. Dehulled oats provide more energy to diets and should be used if the goal is to increase caloric intake. In contrast, sorghum and rye may be more suitable to control diabetes and manage body weight of humans. © 2013 Society of Chemical Industry.

  16. E-nose based rapid prediction of early mouldy grain using probabilistic neural networks

    PubMed Central

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua; Fu, Jun

    2015-01-01

    In this paper, early mouldy grain rapid prediction method using probabilistic neural network (PNN) and electronic nose (e-nose) was studied. E-nose responses to rice, red bean, and oat samples with different qualities were measured and recorded. E-nose data was analyzed using principal component analysis (PCA), back propagation (BP) network, and PNN, respectively. Results indicated that PCA and BP network could not clearly discriminate grain samples with different mouldy status and showed poor predicting accuracy. PNN showed satisfying discriminating abilities to grain samples with an accuracy of 93.75%. E-nose combined with PNN is effective for early mouldy grain prediction. PMID:25714125

  17. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  18. Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram.

    PubMed

    Pandey, Renu; Meena, Surendra Kumar; Krishnapriya, Vengavasi; Ahmad, Altaf; Kishora, Naval

    2014-06-01

    Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield. This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using (14)C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 μM) and sufficient (100 μM) P concentrations were exposed to (14)CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative (14)C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.

  19. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. RADIATION-INDUCED MUTATIONS FOR STEM RUST RESISTANCE IN OATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzak, C.F.

    1959-01-01

    Stem rust rcsistant viriants from earlier experiments on the induction or resistance in oats by radiation were found to result from natural field hybridization. Recent controlled experiments did, however, yield new variants at a low frequency in one instance. and no variants in another. Both experiments included over 3,000 lines from irradiated seeds. One previously unknown type of rust resistance reaction was obtained in a mutant plant. This mutant shows a temperature sensitive response for resistance to race 7A of Puccinia graminis avenae. It was suggested that some, as yet unknown, mcdifying factors mav limit the development of induced changesmore » into mutations. (auth)« less

  1. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  2. Carbon balance assessment by eddy covariance method for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.

    2018-01-01

    The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.

  3. Water consumption, grain yield, and water productivity in response to field water management in double rice systems in China.

    PubMed

    Wu, Xiao Hong; Wang, Wei; Yin, Chun Mei; Hou, Hai Jun; Xie, Ke Jun; Xie, Xiao Li

    2017-01-01

    Rice cultivation has been challenged by increasing food demand and water scarcity. We examined the responses of water use, grain yield, and water productivity to various modes of field water managements in Chinese double rice systems. Four treatments were studied in a long-term field experiment (1998-2015): continuous flooding (CF), flooding-midseason drying-flooding (F-D-F), flooding-midseason drying-intermittent irrigation without obvious standing water (F-D-S), and flooding-rain-fed (F-RF). The average precipitation was 483 mm in early-rice season and 397 mm in late-rice season. The irrigated water for CF, F-D-F, F-D-S, and F-RF, respectively, was 263, 340, 279, and 170 mm in early-rice season, and 484, 528, 422, and 206 mm in late-rice season. Grain yield for CF, F-D-F, F-D-S, and F-RF, respectively, was 4,722, 4,597, 4,479, and 4,232 kgha-1 in early-rice season, and 5,420, 5,402, 5,366, and 4,498 kgha-1 in late-rice season. Compared with CF, F-D-F consumed more irrigated water, which still decreased grain yield, leading to a decrease in water productivity by 25% in early-rice season and by 8% in late-rice season. Compared with F-D-F, F-D-S saved much irrigated water with a small yield reduction, leading to an increase in water productivity by 22% in early-rice season and by 26% in late-rice season. The results indicate that CF is best for early-rice and FDS is best for late-rice in terms of grain yield and water productivity.

  4. Plant defense activators as elicitors of oat avenanthramide biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Oats produce a group of phenolic secondary metabolites termed “avenanthramides”. Among food crops these metabolites are unique to oat. In addition to their biological role as phytoalexins, the avenanthramides are potent antioxidants in vitro and have potential as nutraceuticals. In cellular assays ...

  5. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination

    PubMed Central

    de Almeida, Rodrigo Estevam Munhoz; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications. PMID:29462178

  6. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  7. Ornithine aminotransferase (OAT): recombination between an X-linked OAT sequence (7.5 kb) and the Norrie disease locus.

    PubMed

    Ngo, J T; Bateman, J B; Spence, M A; Cortessis, V; Sparkes, R S; Kivlin, J D; Mohandas, T; Inana, G

    1990-01-01

    A human ornithine aminotransferase (OAT) locus has been mapped to the Xp11.2, as has the Norrie disease locus. We used a cDNA probe to investigate a 3-generation UCLA family with Norrie disease; a 4.2-kb RFLP was detected and a maximum lod score of 0.602 at zero recombination fraction was calculated. We used the same probe to study a second multigeneration family with Norrie disease from Utah. A different RFLP of 7.5 kb in size was identified and a recombinational event between the OAT locus represented by this RFLP and the disease loci was observed. Linkage analysis of these two loci in this family revealed a maximum load score of 1.88 at a recombination fraction of 0.10. Although both families have affected members with the same disease, the lod scores are reported separately because the 4.2- and 7.5-kb RFLPs may represent two different loci for the X-linked OAT.

  8. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace.

    PubMed

    Ying, DanYang; Hlaing, Mya Myintzu; Lerisson, Julie; Pitts, Keith; Cheng, Lijiang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Olive pomace, a waste stream from olive oil processing, was fractionated by centrifugation to obtain a supernatant and a flesh-enriched fraction, and freeze dried to obtain a powder. The dried supernatant contained 5.8% moisture, 4.8% protein, 3.5% fat, 3.5% ash, 82.4% carbohydrate (including 17.2% dietary fiber) and polyphenols (2970mg gallic acid equivalents (GAE)/100g). The dried flesh-enriched fraction, contained 5.9% moisture, 13.4% protein, 14.2% fat, 3.5% ash, 63.1% carbohydrate (including 42.7% dietary fiber) and polyphenols (1960mg GAE/100g). The extruded products using rice-oat flour or maize-oat flour mixtures as the base were formulated to contain 5% or 10% olive pomace fractions (dry basis). The extruded products with added olive pomace fractions has higher fiber (2-7g/100g) and polyphenol contents (67-161mg GAE/100g) compared to the corresponding mixtures of rice-oat flour base (0.92g/100g fiber, 20mg GAE/100g) or maize-oat flour base (3.2g/100g fiber, 20mg GAE/100g) without olive pomace fractions. Addition of olive pomace fractions reduced the die pressure and specific mechanical energy during extrusion and resulted in lower radial expansion in the extruded product. The impact of the addition of olive pomace fraction on physical characteristics of the extruded product is higher for rice-oat flour base than maize-oat flour base. The underlining mechanism was explained by FTIR analysis. FTIR showed that there were significant changes in the carbohydrate components and the structure of the proteins on extrusion, with consequent effects on the expansion and density of the extruded product. This study showed the feasibility of preparing fiber and polyphenol enriched extruded products by incorporation of olive pomace. This shows the potential of recovery and diversion of edible components from waste streams of olive oil processing for formulation of extruded products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reciprocal combinations of barley and corn grains in oil-supplemented diets: feeding behavior and milk yield of lactating cows.

    PubMed

    Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J

    2014-11-01

    The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The role of climatic variables in winter cereal yields: a retrospective analysis.

    PubMed

    Luo, Qunying; Wen, Li

    2015-02-01

    This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.

  11. The Oat Newsletter: where we've been and where we're going

    USDA-ARS?s Scientific Manuscript database

    The first Oat Newsletter was published by the National Oat Conference in 1950. It was published once a year and mailed out to “oat workers” only. The newsletter was designed to supplement the Uniform Nursery reports by providing short research updates, meeting information, community information,...

  12. Avenanthramide-enriched oats have an anti-inflammatory action: a pilot clinical trial

    USDA-ARS?s Scientific Manuscript database

    Regular consumption of oats has been shown to benefit heart health by lowering serum lipids in humans, an effect mediated primarily via beta-glucan. Other components of oats, including the polyphenolic avenanthramides (AV), may also contribute to reducing the risk of atherogenesis. In vivo, oat AV e...

  13. Acute symptoms following exposure to grain dust in farming.

    PubMed Central

    Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P

    1986-01-01

    History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486

  14. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat

    USDA-ARS?s Scientific Manuscript database

    Abstract Aluminum (Al) toxicity is a major constraint on crop production in acid soils around the world. Hexaploid oat (Avena sativa L.) possesses signi'cant Al tolerance making it a good candidate for production in these environments. Genetic improvement for Al tolerance in oat has traditionally be...

  15. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  16. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    PubMed

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p < 0.05) decreased As concentrations in husk, straw, and root in soils added with 70 mg kg(-1) As. The present results suggest that AM fungi are able to mitigate the adverse effects with enhancing rice production when growing in As-contaminated soils.

  17. Detection of Powdery Mildew in Two Winter Wheat Plant Densities and Prediction of Grain Yield Using Canopy Hyperspectral Reflectance

    PubMed Central

    Cao, Xueren; Luo, Yong; Zhou, Yilin; Fan, Jieru; Xu, Xiangming; West, Jonathan S.; Duan, Xiayu; Cheng, Dengfa

    2015-01-01

    To determine the influence of plant density and powdery mildew infection of winter wheat and to predict grain yield, hyperspectral canopy reflectance of winter wheat was measured for two plant densities at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 in the 2009–2010 and 2010–2011 seasons. Reflectance in near infrared (NIR) regions was significantly correlated with disease index at GS 10.5.3, 10.5.4, and 11.1 at two plant densities in both seasons. For the two plant densities, the area of the red edge peak (Σdr 680–760 nm), difference vegetation index (DVI), and triangular vegetation index (TVI) were significantly correlated negatively with disease index at three GSs in two seasons. Compared with other parameters Σdr 680–760 nm was the most sensitive parameter for detecting powdery mildew. Linear regression models relating mildew severity to Σdr 680–760 nm were constructed at three GSs in two seasons for the two plant densities, demonstrating no significant difference in the slope estimates between the two plant densities at three GSs. Σdr 680–760 nm was correlated with grain yield at three GSs in two seasons. The accuracies of partial least square regression (PLSR) models were consistently higher than those of models based on Σdr 680760 nm for disease index and grain yield. PLSR can, therefore, provide more accurate estimation of disease index of wheat powdery mildew and grain yield using canopy reflectance. PMID:25815468

  18. Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan.

    PubMed

    Vasquez-Orejarena, Eva; Simons, Christopher T; Litchfield, John H; Alvarez, Valente B

    2018-05-01

    This study evaluated the effect of oat flour and milk protein on the functional properties and sensory acceptability of shelf stable high protein dairy beverages containing at least 0.75 g of oat-β-glucan per serving size. Formulations adjusted to levels of 1.50% to 2.30% oat flour and 2.50% to 4.00% milk protein isolate (MPI) were thermal processed in a rotary retort. The finished product exhibited good suspension stability (>80%). The increase of oat and MPI contents lead to nectar-like beverages (51 to 100 mPas). However, oat flour was the component showing the highest effect on the viscosity coefficient values of the beverages. Sensory evaluation indicated that formulations with less than 1.9% oat flour and 2.5% MPI (thin liquid, <50 mPas) were the most accepted. Mouthfeel (perceived thickness), sweetness and aftertaste had the most influence on overall liking of the beverages. Overall, this study comprises the development of a functional food product. Supplementation of beverages with fiber from oats is an innovative approach to stabilize high protein beverages. Ready to drink protein beverage formulations use gums to stabilize the product and provide a desirable mouthfeel. The levels of oat-β-glucan used in the beverage increased the thickness and meet the requirement of the FDA approved health claim for reduction of the cardiovascular disease risk (21 CFR 101.81). © 2018 Institute of Food Technologists®.

  19. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. © 2015 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  20. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  1. Quality of Bread Supplemented with Antrodia
salmonea-Fermented Grains

    PubMed Central

    Chien, Rao-Chi; Ulziijargal, Enkhjargal

    2016-01-01

    Summary Fermented grains of buckwheat, oat, embryo rice and wheat, which were prepared by solid-state fermentation with Antrodia salmonea, and the mycelium was used to substitute 7% of wheat flour to make bread. No difference in proximate composition, texture profile and contents of non-volatile taste components was observed among bread samples. White bread and bread supplemented with mycelium and fermented grains looked different. Bread supplemented with fermented grains had similar thermal properties, which differed from those of white bread and bread supplemented with mycelium. Bread supplemented with fermented grains contained substantial mass fractions (on dry mass basis) of adenosine (0.92–1.96 µg/g), ergosterol (24.53–30.12 µg/g), ergothioneine (2.16–3.18 µg/g) and γ-aminobutyric acid (2.20–2.45 µg/g). In addition, bread supplemented with mycelium contained lovastatin (0.43 µg/g). White bread and bread supplemented with fermented grains had similar sensory results. Overall, fermented grains could be incorporated into bread to provide beneficial effects. PMID:27904408

  2. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field.

    PubMed

    Selvaraj, Michael Gomez; Ishizaki, Takuma; Valencia, Milton; Ogawa, Satoshi; Dedicova, Beata; Ogata, Takuya; Yoshiwara, Kyouko; Maruyama, Kyonoshin; Kusano, Miyako; Saito, Kazuki; Takahashi, Fuminori; Shinozaki, Kazuo; Nakashima, Kazuo; Ishitani, Manabu

    2017-11-01

    Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  4. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N

    2017-07-01

    Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly

  5. Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    Phenotypic plasticity describes the range of phenotypes produced by a single genotype under varying environmental conditions. We evaluated the extent of phenotypic variation and plasticity in thermal time to heading and grain yield in 299 hard winter wheat (Triticum aestivum L.) genotypes representa...

  6. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    PubMed

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Physical properties of gluten free sugar cookies containing teff and functional oat products

    USDA-ARS?s Scientific Manuscript database

    Teff-oat composites were developed using gluten free teff flour containing essential 15 amino acids with oat products containing ß-glucan, known for lowering blood cholesterol and improving texture. The teff-oat composites were used in sugar cookies for improving nutritional and physical properties....

  8. Bioactive compounds in cereal grains - occurrence, structure, technological significance and nutritional benefits - a review.

    PubMed

    Bartłomiej, Siurek; Justyna, Rosicka-Kaczmarek; Ewa, Nebesny

    2012-12-01

    This review presents current information about principal, biologically active compounds contained in grains of cereals that are most popular in Europe (wheat, rye, barley and oat). The tendency to provide consumers with safe foods, which promote their health and are based on cereal grains and/or their components with the high nutritive value, has been recently observed. The intake of protective substances contained in whole grains and their fractions contributes to a decreased risk of food-dependent diseases like the coronary heart disease and insulin-dependent diabetes. This study describes the structure, occurrence in cereal grains, technological importance and beneficial influence on human health of bioactive substances such as arabinoxylans, β-glucans, alkylresorcinols, tocols and phytosterols.

  9. [Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming].

    PubMed

    Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke

    2009-06-01

    A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.

  10. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield.

    PubMed

    Knight, Alexandra M; Everman, Wesley J; Jordan, David L; Heiniger, Ronnie W; Smyth, T Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn ( Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth ( Amaranthus palmeri S. Wats.) and large crabgrass ( Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.

  11. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield

    PubMed Central

    Knight, Alexandra M.; Heiniger, Ronnie W.; Smyth, T. Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield. PMID:28487878

  12. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    PubMed Central

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China. PMID:29623086

  13. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.).

    PubMed

    Bahuguna, Rajeev N; Solis, Celymar A; Shi, Wanju; Jagadish, Krishna S V

    2017-01-01

    High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios. © 2016 Scandinavian Plant Physiology Society.

  14. Shaker Oats: Fortifying Musicality

    ERIC Educational Resources Information Center

    Semmes, Laurie R.

    2010-01-01

    In this article, the author describes how an experiment in a class she taught called Minority Musics of North America developed into a surprisingly successful and flexible teaching tool known as "Shaker Oats," created to encourage the concepts of ensemble and community. Most music educators in the United States today are familiar with…

  15. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    PubMed

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  16. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) and soybean (Gylcine max (L.) Merr.) are the dominant grain crops across the Midwest and are grown on 75% of the arable land with wheat (Triticum aestivum L.) and oats (Avena sativa L.) small but economically important crops. Historically there have been variations in annual yiel...

  17. Effects of whole grains on coronary heart disease risk.

    PubMed

    Harris, Kristina A; Kris-Etherton, Penny M

    2010-11-01

    Characterizing which types of carbohydrates, including whole grains, reduce the risk for coronary heart disease (CHD) is challenging. Whole grains are characterized as being high in resistant carbohydrates as compared with refined grains, meaning they typically are high in fiber, nutrients, and bound antioxidants. Whole grain intake consistently has been associated with improved cardiovascular disease outcomes, but also with healthy lifestyles, in large observational studies. Intervention studies that assess the effects of whole grains on biomarkers for CHD have mixed results. Due to the varying nutrient compositions of different whole grains, each could potentially affect CHD risk via different mechanisms. Whole grains high in viscous fiber (oats, barley) decrease serum low-density lipoprotein cholesterol and blood pressure and improve glucose and insulin responses. Grains high in insoluble fiber (wheat) moderately lower glucose and blood pressure but also have a prebiotic effect. Obesity is inversely related to whole grain intake, but intervention studies with whole grains have not produced weight loss. Visceral fat, however, may be affected favorably. Grain processing improves palatability and can have varying effects on nutrition (e.g., the process of milling and grinding flour increases glucose availability and decreases phytochemical content whereas thermal processing increases available antioxidants). Understanding how individual grains, in both natural and processed states, affect CHD risk can inform nutrition recommendations and policies and ultimately benefit public health.

  18. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  19. Effect of environment and variety on the relationships of wheat grain physical and chemical characteristics with ethanol yield.

    PubMed

    Awole, Kedija D; Kettlewell, Peter S; Hare, Martin C; Agu, Reginald C; Brosnan, James M; Bringhurst, Thomas A

    2012-02-01

    Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein. Copyright © 2011 Society of Chemical Industry.

  20. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  1. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  2. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries?

    NASA Astrophysics Data System (ADS)

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.

    2017-12-01

    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  3. Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes.

    PubMed

    Siqueira Freitas, Douglas; Wurr Rodak, Bruna; Rodrigues Dos Reis, André; de Barros Reis, Fabio; Soares de Carvalho, Teotonio; Schulze, Joachim; Carbone Carneiro, Marco A; Guimarães Guilherme, Luiz R

    2018-01-01

    Nickel (Ni)-a component of urease and hydrogenase-was the latest nutrient to be recognized as an essential element for plants. However, to date there are no records of Ni deficiency for annual species cultivated under field conditions, possibly because of the non-appearance of obvious and distinctive symptoms, i.e., a hidden (or latent) deficiency. Soybean, a crop cultivated on soils poor in extractable Ni, has a high dependence on biological nitrogen fixation (BNF), in which Ni plays a key role. Thus, we hypothesized that Ni fertilization in soybean genotypes results in a better nitrogen physiological function and in higher grain production due to the hidden deficiency of this micronutrient. To verify this hypothesis, two simultaneous experiments were carried out, under greenhouse and field conditions, with Ni supply of 0.0 or 0.5 mg of Ni kg -1 of soil. For this, we used 15 soybean genotypes and two soybean isogenic lines (urease positive, Eu3 ; urease activity-null, eu3-a , formerly eu3-e1 ). Plants were evaluated for yield, Ni and N concentration, photosynthesis, and N metabolism. Nickel fertilization resulted in greater grain yield in some genotypes, indicating the hidden deficiency of Ni in both conditions. Yield gains of up to 2.9 g per plant in greenhouse and up to 1,502 kg ha -1 in field conditions were associated with a promoted N metabolism, namely, leaf N concentration, ammonia, ureides, urea, and urease activity, which separated the genotypes into groups of Ni responsiveness. Nickel supply also positively affected photosynthesis in the genotypes, never causing detrimental effects, except for the eu3-a mutant, which due to the absence of ureolytic activity accumulated excess urea in leaves and had reduced yield. In summary, the effect of Ni on the plants was positive and the extent of this effect was controlled by genotype-environment interaction. The application of 0.5 mg kg -1 of Ni resulted in safe levels of this element in grains for human health

  4. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm.

    PubMed

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability.

  5. New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    USDA-ARS?s Scientific Manuscript database

    Genomic discovery in oat and its application to oat improvement have been hindered by a lack of common markers on different genetic maps, and by the difficulty of conducting whole-genome analysis using high throughput markers. In this study we developed, characterized, and applied a large set oat g...

  6. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  7. Development of a model system to identify differences in spring and winter oat.

    PubMed

    Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof

    2012-01-01

    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.

  8. Excretion of Avenanthramides, Phenolic Acids and their Major Metabolites Following Intake of Oat Bran

    PubMed Central

    Schär, Manuel Y.; Corona, Giulia; Soycan, Gulten; Dine, Clemence; Kristek, Angelika; Alsharif, Sarah N. S.; Behrends, Volker; Lovegrove, Alison; Shewry, Peter R.

    2017-01-01

    Scope Wholegrain has been associated with reduced chronic disease mortality, with oat intake particularly notable for lowering blood cholesterol and glycemia. To better understand the complex nutrient profile of oats, we studied urinary excretion of phenolic acids and avenanthramides after ingestion of oat bran in humans. Methods and results After a 2‐d (poly)phenol‐low diet, seven healthy men provided urine 12 h before and 48 h after consuming 60 g oat bran (7.8 μmol avenanthramides, 139.2 μmol phenolic acids) or a phenolic‐low (traces of phenolics) control in a crossover design. Analysis by ultra‐high performance liquid chromatography (UPLC)–MS/MS showed that oat bran intake resulted in an elevation in urinary excretion of 30 phenolics relative to the control, suggesting that they are oat bran‐derived. Mean excretion levels were elevated between 0–2 and 4–8 h, following oat bran intake, and amounted to a total of 33.7 ± 7.3 μmol total excretion (mean recovery: 22.9 ± 5.0%), relative to control. The predominant metabolites included: vanillic acid, 4‐ and 3‐hydroxyhippuric acids, and sulfate‐conjugates of benzoic and ferulic acids, which accounted collectively for two thirds of total excretion. Conclusion Oat bran phenolics follow a relatively rapid urinary excretion, with 30 metabolites excreted within 8 h of intake. These levels of excretion suggest that bound phenolics are, in part, rapidly released by the microbiota. PMID:29024323

  9. Avenanthramide biosynthesis in oat cultivars treated with systemic acquired resistance elicitors

    USDA-ARS?s Scientific Manuscript database

    The synthetic systemic acquired resistance elicitor benzothiadiazole (BTH) has been shown to elicit avenanthramide biosynthesis in the oat cultivar ‘Belle’. This report investigates the response of multiple oat cultivars to BTH as well as 2,6- dichloroisonicotinic acid (INA) at different growth stag...

  10. Application of an in vitro OAT assay in drug design and optimization of renal clearance.

    PubMed

    Soars, Matthew G; Barton, Patrick; Elkin, Lisa L; Mosure, Kathleen W; Sproston, Joanne L; Riley, Robert J

    2014-07-01

    1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.

  11. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  12. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    PubMed

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  13. Responses of Super Rice (Oryza sativa L.) to Different Planting Methods for Grain Yield and Nitrogen-Use Efficiency in the Single Cropping Season

    PubMed Central

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS. PMID:25111805

  14. Responses of super rice (Oryza sativa L.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.

    PubMed

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

  15. Mapping QTLs for grain yield components in wheat under heat stress.

    PubMed

    Bhusal, Nabin; Sarial, Ashok Kumar; Sharma, Pradeep; Sareen, Sindhu

    2017-01-01

    The current perspective of increasing global temperature makes heat stress as a major threat to wheat production worldwide. In order to identify quantitative trait loci (QTLs) associated with heat tolerance, 251 recombinant inbred lines (RILs) derived from a cross between HD2808 (heat tolerant) and HUW510 (heat susceptible) were evaluated under timely sown (normal) and late sown (heat stress) conditions for two consecutive crop seasons; 2013-14 and 2014-15. Grain yield (GY) and its components namely, grain weight/spike (GWS), grain number/spike (GNS), thousand grain weight (TGW), grain filling rate (GFR) and grain filling duration (GFD) were recorded for both conditions and years. The data collected for both timely and late sown conditions and heat susceptibility index (HSI) of these traits were used as phenotypic data for QTL identification. The frequency distribution of HSI for all the studied traits was continuous during both the years and also included transgressive segregants. Composite interval mapping identified total 24 QTLs viz., 9 (timely sown traits), 6 (late sown traits) and 9 (HSI of traits) mapped on linkage groups 2A, 2B, and 6D during both the crop seasons 2013-14 and 2014-15. The QTLs were detected for GWS (6), GNS (6), GFR (4), TGW (3), GY (3) and GFD (2). The LOD score of identified QTLs varied from 3.03 (Qtgns.iiwbr-6D) to 21.01 (Qhsitgw.iiwbr-2A) during 2014-15, explaining 11.2 and 30.6% phenotypic variance, respectively. Maximum no of QTLs were detected in chromosome 2A followed by 6D and 2B. All the QTL detected under late sown and HSI traits were identified on chromosome 2A except for QTLs associated with GFD. Fifteen out of 17 QTL detected on chromosome 2A were clustered within the marker interval between gwm448 and wmc296 and showed tight linkage with gwm122 and these were localized in 49-52 cM region of Somers consensus map of chromosome 2A i.e. within 18-59.56 cM region of chromosome 2A where no QTL related to heat stress were reported

  16. Genetic Dissection of Grain Size and Grain Number Trade-Offs in CIMMYT Wheat Germplasm

    PubMed Central

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F.; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability. PMID:25775191

  17. Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.

    PubMed

    Egg, R P; Sweeten, J M; Coble, C G

    1985-12-01

    Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.

  18. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    ERIC Educational Resources Information Center

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  19. Fusarium mycotoxin content of UK organic and conventional oats.

    PubMed

    Edwards, S G

    2009-07-01

    Every year between 2002 and 2005 approximately 100 samples of oats from fields of known agronomy were analysed by GC/MS for 10 trichothecenes: deoxynivalenol (DON), nivalenol, 3-acetylDON, 15-acetylDON, fusarenone X, T-2 toxin (T2), HT-2 toxin (HT2), diacetoxyscirpenol, neosolaniol and T-2 triol. Samples were also analysed for moniliformin and zearalenone by HPLC. Of the 10 trichothecenes analysed from 458 harvest samples of oat only three, 15-acetylDON, fusarenone X and diacetoxyscirpenol, were not detected. Moniliformin and zearalenone were absent or rarely detected, respectively. HT2 and T2 were the most frequently detected fusarium mycotoxins, present above the limit of quantification (10 microg kg(-1)) in 92 and 84% of samples, respectively, and were usually present at the highest concentrations. The combined mean and median for HT2 and T2 (HT2 + T2) was 570 and 213 microg kg(-1), respectively. There were good correlations between concentrations of HT2 and all other type A trichothecenes detected (T2, T2 triol and neosolaniol). Year and region had a significant effect on HT2 + T2 concentration. There was also a highly significant difference between HT2 + T2 content in organic and conventional samples, with the predicted mean for organic samples five times lower than that of conventional samples. This is the largest difference reported for any mycotoxin level in organic and conventional cereals. No samples exceeded the legal limits for DON or zearalenone in oats intended for human consumption. Legislative limits for HT2 and T2 are currently under consideration by the European Commission. Depending on the limits set for unprocessed oats intended for human consumption, the levels detected here could have serious consequences for the UK oat-processing industry.

  20. Extraction and characterization of beta-D-glucan from oat for industrial utilization.

    PubMed

    Ahmad, Asif; Anjum, Faqir Muhammad; Zahoor, Tahir; Nawaz, Haq; Ahmed, Zaheer

    2010-04-01

    Oat beta-D-glucan is a valuable functional ingredient having numerous industrial, nutritional and health benefits. Its extraction needs careful attention as extraction process may affect the physiochemical and functional properties of extracted beta-D-glucan. The present study aimed at analyzing the effect of extraction of beta-D-glucan gum pellets from oat cultivar followed by detailed chemical and functional analysis. Enzymatic extraction process resulted in highest yield and recovery. Chemical analysis revealed protein as a dominating impurity. The water binding capacity of the beta-D-glucan ranged between 3.14 and 4.52 g g(-1) of sample. beta-D-Glucan exhibited ideal foaming stability when appropriate extraction technique was used. The viscosity of beta-D-glucan gum ranged between 35.6 and 56.16 cp. The color analysis showed L* value of beta-D-glucan gum pellet ranged between 72.18 and 83.54. Phosphorus, potassium and calcium appeared as major minerals in beta-D-glucan gum whereas iron, manganese and copper appeared as minor minerals. FTIR spectroscopy also confirms the presence of beta-D-glucan, protein and other components in extracted beta-D-glucan gum pellets. Overall, extracted beta-D-glucan showed a good potential for industrial usage. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data.

    PubMed

    Montesinos-López, Abelardo; Montesinos-López, Osval A; Cuevas, Jaime; Mata-López, Walter A; Burgueño, Juan; Mondal, Sushismita; Huerta, Julio; Singh, Ravi; Autrique, Enrique; González-Pérez, Lorena; Crossa, José

    2017-01-01

    Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1-8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1-23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information. In this study, we propose Bayesian functional regression models that take into account all available bands, genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for predicting grain yield, were compared with results from conventional models with and without bands. We observed that the models with B × E interaction terms were the most accurate models, whereas the functional regression models (with B-splines and Fourier

  2. Celiac Disease and Gluten-Free Oats: A Canadian Position Based on a Literature Review.

    PubMed

    La Vieille, Sébastien; Pulido, Olga M; Abbott, Michael; Koerner, Terence B; Godefroy, Samuel

    2016-01-01

    This paper provides an overview of the latest scientific data related to the safety of uncontaminated oats (<20 ppm of gluten) in the diet of individuals with celiac disease (CD). It updates the previous Health Canada position posted on the Health Canada website in 2007 and a related paper published in 2009. It considers a number of recent studies published between January 2008 and January 2015. While recognizing that a few people with celiac disease seem to be clinically intolerant to oats, this review concludes that oats uncontaminated by gluten-containing cereals (wheat, rye, and barley) can be safely ingested by most patients with celiac disease and that there is no conclusive evidence that the consumption of uncontaminated or specially produced oats containing no greater than 20 ppm gluten by patients with celiac disease should be limited to a specific daily amount. However, individuals with CD should observe a stabilization phase before introducing uncontaminated oats to the gluten-free diet (GFD). Oats uncontaminated with gluten should only be introduced after all symptoms of celiac disease have resolved and the individual has been on a GFD for a minimum of 6 months. Long-term regular medical follow-up of these patients is recommended but this is no different recommendation to celiac individuals on a GFD without oats.

  3. Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.

    2017-12-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average

  4. The Effect of Chemical Systemic Acquired Resistance Elicitors on Oat Avenanthramide Biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Abstract. Oats produce a group of phenolic antioxidants termed “avenanthramides”. These metabolites are, among food crops, unique to oats. They are known to be potent antioxidants and have shown certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and ...

  5. A comparison between corn and grain sorghum fermentation rates, Distillers Dried Grains with Solubles composition, and lipid profiles.

    PubMed

    Johnston, David J; Moreau, Robert A

    2017-02-01

    The aim of this study was to determine if the compositional difference between grain sorghum and corn impact ethanol yields and coproduct value when grain sorghum is incorporated into existing corn ethanol facilities. Fermentation properties of corn and grain sorghum were compared utilizing two fermentation systems (conventional thermal starch liquefaction and native starch hydrolysis). Fermentation results indicated that protease addition influenced the fermentation rate and yield for grain sorghum, improving yields by 1-2% over non-protease treated fermentations. Distillers Dried Grains with Solubles produced from sorghum had a statistically significant higher yields and significantly higher protein content relative to corn. Lipid analysis of the Distillers Dried Grains with Solubles showed statistically significant differences between corn and sorghum in triacylglycerol, diacylglycerol and free fatty acid levels. Published by Elsevier Ltd.

  6. Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.).

    PubMed

    Zhou, Bo; Lin, Jian Zhong; Peng, Dan; Yang, Yuan Zhu; Guo, Ming; Tang, Dong Ying; Tan, Xiaofeng; Liu, Xuan Ming

    2017-01-01

    In many plants, architecture and grain yield are affected by both the environment and genetics. In rice, the tiller is a vital factor impacting plant architecture and regulated by many genes. In this study, we cloned a novel DHHC-type zinc finger protein gene Os02g0819100 and its alternative splice variant OsDHHC1 from the cDNA of rice (Oryza sativa L.), which regulate plant architecture by altering the tiller in rice. The tillers increased by about 40% when this type of DHHC-type zinc finger protein gene was over-expressed in Zhong Hua 11 (ZH11) rice plants. Moreover, the grain yield of transgenic rice increased approximately by 10% compared with wild-type ZH11. These findings provide an important genetic engineering approach for increasing rice yields. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Dietary fiber and satiety: the effects of oats on satiety

    PubMed Central

    O’Neil, Carol E.; Greenway, Frank L.

    2016-01-01

    This review examines the effect of β-glucan, the viscous soluble fiber in oats, on satiety. A literature search for studies that examined delivery of the fiber in whole foods or as an extract was conducted. Viscosity interferes with the peristaltic mixing process in the small intestine to impede digestion and absorption of nutrients, which precipitates satiety signals. From measurements of the physicochemical and rheological properties of β-glucan, it appears that viscosity plays a key role in modulating satiety. However, the lack of standardized methods to measure viscosity and the inherent nature of appetite make it difficult to pinpoint the reasons for inconsistent results of the effects of oats on satiety. Nevertheless, the majority of the evidence suggests that oat β-glucan has a positive effect on perceptions of satiety. PMID:26724486

  8. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract

    USDA-ARS?s Scientific Manuscript database

    Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...

  9. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    PubMed

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  10. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.

    PubMed

    Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun

    2013-01-01

    Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.

  11. Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR

    PubMed Central

    Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun

    2013-01-01

    Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha−1. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly. PMID:23967112

  12. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats.

    PubMed

    Pérez-Ramírez, Iza F; Becerril-Ocampo, Laura J; Reynoso-Camacho, Rosalía; Herrera, Mayra D; Guzmán-Maldonado, S Horacio; Cruz-Bravo, Raquel K

    2018-02-01

    Common beans have been associated with anti-diabetic effects, due to its high content of bioactive compounds. Nevertheless, its consumption has decreased worldwide. Therefore, there is an increasing interest in the development of novel functional foods elaborated with common beans. The aim of this study was to evaluate the anti-diabetic effect of oat-bean flour cookies, and to analyze its bioactive composition, using commercial oat-wheat cookies for comparative purposes. Oat-bean cookies (1.2 g kg -1 ) slightly decreased serum glucose levels (∼1.1-fold) and increased insulin levels (∼1.2-fold) in diabetic rats, reducing the hyperglycemic peak in healthy rats (∼1.1-fold). Oat-bean cookies (0.8 and 1.2 g kg -1 ) exerted a greater hypolipidemic effect than commercial oat-wheat cookies (1.2 g kg -1 ), as observed in decreased serum triglycerides and low-density lipoprotein cholesterol. Furthermore, the supplementation with 1.2 g kg -1 oat-bean cookies decreased atherogenic index and serum C-reactive protein levels, suggesting their cardioprotective potential. The beneficial effect of oat-bean cookies was associated with their high content of dietary fiber and galacto oligosaccharides, as well as chlorogenic acid, rutin, protocatechuic acid, β-sitosterol and soyasaponins. These results suggest that common beans can be used as functional ingredients for the elaboration of cookies with anti-diabetic effects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. The effect of thermo-mechanical processing on physical properties of processed amaranth and oat bran composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and minerals with oat products containing ß-glucan, known for lowering blood cholesterol. Amaranth flour and oat bran concentrate (OBC) composites (1:4) were processed using different technologie...

  14. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    USDA-ARS?s Scientific Manuscript database

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  15. Effect of oat's soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties.

    PubMed

    Piñero, M P; Parra, K; Huerta-Leidenz, N; Arenas de Moreno, L; Ferrer, M; Araujo, S; Barboza, Y

    2008-11-01

    This study evaluated the effect of adding oat fibre source of β-glucan (13.45%) on physical, chemical, microbiological and sensory traits of low-fat (<10%) beef patties as compared to 20% fat control patties. Significant (p<0.05) improvements in cooking yield (74.19%), and retentions of fat (79.74%) and moisture (48.41%) of low-fat patties were attributed to the water binding ability of β-glucan. Because of larger water retentions moisture contents of raw and cooked low-fat patties were higher (p<0.05) than those of the control patties. Cholesterol content was similar across formulations. Low-fat and control beef patties remained stable in microbiological quality during 60days frozen storage. Low-fat patties were found to be of lower degree of likeness in the taste but juicer than control (p<0.05). Besides appearance, tenderness and colour were not affected by the addition of oat's soluble fibre. Oat fibre can be used successfully as a fat substitute in low-fat beef patties.

  16. Citizen Science: Dune Restoration with Sea Oats by Junior Friends of MacArthur Beach State Park

    NASA Astrophysics Data System (ADS)

    Allen, S.

    2016-12-01

    As a crucial part of the dune ecosystem, Sea Oats are a protected species in Florida. They provide excellent habitat for small birds and mammals and prevent dune erosion with their fibrous roots.Citizen science is a research and education tool that involves everyday people in real and meaningful forms of science. My volunteer group, Junior friends of Macarthur Beach State Park, used citizen science to restore dunes by growing and planting Sea Oats. Junior friends is a group of 6-12th grade students whose purpose is to support the park through monthly activities and special events. Junior Friends asked,what is the best way to germinate/grow/and plant Sea Oats to renourish the beach dune. Specifically, what planting medium is most conducive for maximizing growth of Sea Oats? We tested three scenarios: 100% potting soil, 100% sand from the beach, 50% sand-50% potting soil mixture.Using harvested Sea Oat seeds from Macarthur Beach State Park, we separated the seeds from their casings, known as spiklets. We then monitored the plant's weekly over the course of 14 weeks and charted their growth. All the seeds had similar growth rates, but the seeds that grew in 100% potting soil consistently grew the tallest. The second tallest Sea Oats were 100% sand; the 50% sand-50% potting soil mixture produced the least amount of growth. When seedlings reached their desired growth of 6-8 inches and established a root ball, we planted the Sea Oats on the dune for restoration. After planting them,we monitored the growth of the Sea Oats on the MacArthur Beach dune throughout the rest of the year, charting the height of the planted Sea Oats. Using Citizen science we had meaningful data that helped us have a better understanding of restoring Sea Oats on Florida dunes and will help further future restorations.

  17. Production and nitrogen-use efficiency of oat forage receiving slurry or urea

    USDA-ARS?s Scientific Manuscript database

    Recently, several research projects have evaluated fall-grown oat for use as emergency fall forage throughout the north-central US; however, using fall-grown oat in cropping programs also allows the practical benefit of summer manure distribution that is completely de-coupled from corn production. ‘...

  18. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total

  19. In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.

    PubMed

    Lean, I J; Golder, H M; Black, J L; King, R; Rabiee, A R

    2013-06-01

    Our objective was to evaluate a near-infrared reflectance spectroscopy (NIRS) used in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. The existing NIRS calibration was developed from in sacco and in vitro measures in cattle and grain chemical composition measurements. To evaluate the existing model, 20 cultivars of 5 grain types were fed to 40 Holstein heifers using a grain challenge protocol and changes in rumen VFA, ammonia, lactic acids, and pH that are associated with acidosis were measured. A method development study was performed to determine a grain feeding rate sufficient to induce non-life threatening but substantial ruminal changes during grain challenge. Feeding grain at a rate of 1.2% of BW met these criteria, lowering rumen pH (P = 0.01) and increasing valerate (P < 0.01) and propionate concentrations (P = 0.01). Valerate was the most discriminatory measure indicating ruminal change during challenge. Heifers were assigned using a row by column design in an in vivo study to 1 of 20 grain cultivars and were reassigned after a 9 d period (n = 4 cattle/treatment). The test grains were dry rolled oats (n = 3), wheat (n = 6), barley (n = 4), triticale (n = 4), and sorghum (n = 3) cultivars. Cattle were adapted to the test grain and had ad libitum access to grass silage 11 d before the challenge. Feed was withheld for 14 h before challenge feeding with 0.3 kg DM of silage followed by the respective test grain fed at 1.2% of BW. A rumen sample was taken by stomach tube 5, 65, 110, 155, and 200 min after grain consumption. The rumen is not homogenous and samples of rumen fluid obtained by stomach tube will differ from those gained by other methods. Rumen pH was measured immediately; individual VFA, ammonia, and D- and L-lactate concentrations were analyzed later. Rumen pH (P = 0.002) and all concentrations of fermentation products differed among grains (P = 0.001). A previously defined discriminant score

  20. Detection of gold nanoparticles signal inside wheat (Triticum Aestivum.L) and oats (Avena sativa) seedlings

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Nayyar, Harsh; Dharamvir, Keya; Verma, Gaurav

    2018-05-01

    Nanostructures have recently been reported by various research groups to induce growth enhancement in variety of crops. In this report 30-40 nm size gold nanoparticles (AuNPs) at two concentrations were found to enhance the total biomass yield of wheat and oats. Treating plants with up to 100 µl /mL and 200 µl /mL of AuNPs shows an increased growth and germination rate. The noticeable difference in fresh weight and relative leaf water content were recorded. The fluorescence and UV-Vis spectroscopy detected the gold nanoparticles inside the seedling.

  1. A gene expression atlas of developing oat seeds for enhancing nutritional composition

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) genome resources are less abundant than for wheat and barley, but next generation sequencing (NGS) technologies have great potential to accelerate new genome information for oat in a cost-effective manner. We are employing RNA-Seq to develop a gene expression atlas of developin...

  2. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  3. The Gluten-Free Diet: Can Oats and Wheat Starch Be Part of It?

    PubMed

    Poley, J Rainer

    2017-01-01

    Objective and Conclusion: Uncertainty still exists about the use of oats and wheat starch as part of a gluten-free diet in patients with celiac disease (CD). This review should help to clarify the issues at hand. Whereas uncontaminated (from gluten/gliadin) oats and oats from cultivars not containing celiac-activating sequences of proline and glutamine can be used without risk of intestinal damage, wheat starch should not be used, unless it is free of gluten-that is, deglutinized-because even small amounts of gluten over time are able to induce small intestinal mucosal damage.

  4. Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield

    USDA-ARS?s Scientific Manuscript database

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat (Triticum aestivum L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect s...

  5. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    PubMed Central

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  6. Partition coefficient of cadmium between organic soils and bean and oat plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.

    Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less

  7. Reduction of lipid oxidation by formation of caseinate-oil-oat gum emulsions

    USDA-ARS?s Scientific Manuscript database

    The concentration of oat gum, though important for formation of stable emulsion, has no effect on oxidation of Omega 3 oil; this is most prominent in fish-oil based Omega 3 oil. The optimal concentration of oat gum is about 0.2% wt for emulsion stability and visual appearance. We found that concentr...

  8. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    PubMed

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  9. QTLs for important breeding characteristics in the doubled haploid oat progeny.

    PubMed

    Tanhuanpää, Pirjo; Manninen, Outi; Kiviharju, Elina

    2010-06-01

    A homozygous mapping population, consisting of doubled haploid (DH) oat (Avena sativa L.) plants generated through anther culture of F1 plants from the cross between the Finnish cultivar 'Aslak' and the Swedish cultivar 'Matilda', was used to construct an oat linkage map. Ten agronomic and quality traits were analyzed in the DH plants from field trials in 2005 and 2006. Leaf blotch (caused by Pyrenophora avenae) resistance was also evaluated in a greenhouse test with 2 different isolates. One to 8 quantitative trait loci (QTLs) were found to be associated with each trait studied. Some chromosomal regions affected more than 1 trait; for example, 4 regions affected both protein and oil content. This study gives valuable information to oat breeders concerning the inheritance of important traits, and it provides potential tools to assist breeding.

  10. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model

    PubMed Central

    Gao, Chenfei; Gao, Zhanguo; Greenway, Frank L.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Chu, YiFang; Zheng, Jolene

    2015-01-01

    In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1–like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P < .05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P < .05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P < .01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P < .01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P < .01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism. PMID:26253816

  11. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    PubMed

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  12. Processing of oats and the impact of processing operations on nutrition and health benefits.

    PubMed

    Decker, Eric A; Rose, Devin J; Stewart, Derek

    2014-10-01

    Oats are a uniquely nutritious food as they contain an excellent lipid profile and high amounts of soluble fibre. However, an oat kernel is largely non-digestible and thus must be utilised in milled form to reap its nutritional benefits. Milling is made up of numerous steps, the most important being dehulling to expose the digestible groat, heat processing to inactivate enzymes that cause rancidity, and cutting, rolling or grinding to convert the groat into a product that can be used directly in oatmeal or can be used as a food ingredient in products such as bread, ready-to-eat breakfast cereals and snack bars. Oats can also be processed into oat bran and fibre to obtain high-fibre-containing fractions that can be used in a variety of food products.

  13. Dietary fiber and satiety: the effects of oats on satiety.

    PubMed

    Rebello, Candida J; O'Neil, Carol E; Greenway, Frank L

    2016-02-01

    This review examines the effect of β-glucan, the viscous soluble fiber in oats, on satiety. A literature search for studies that examined delivery of the fiber in whole foods or as an extract was conducted. Viscosity interferes with the peristaltic mixing process in the small intestine to impede digestion and absorption of nutrients, which precipitates satiety signals. From measurements of the physicochemical and rheological properties of β-glucan, it appears that viscosity plays a key role in modulating satiety. However, the lack of standardized methods to measure viscosity and the inherent nature of appetite make it difficult to pinpoint the reasons for inconsistent results of the effects of oats on satiety. Nevertheless, the majority of the evidence suggests that oat β-glucan has a positive effect on perceptions of satiety. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.

    PubMed

    Zhu, Peng; Jin, Zhenong; Zhuang, Qianlai; Ciais, Philippe; Bernacchi, Carl; Wang, Xuhui; Makowski, David; Lobell, David

    2018-06-14

    A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. By using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  16. Pharmacokinetics of avenanthramides (AV) from AV-enriched malted oats in healthy older adults

    USDA-ARS?s Scientific Manuscript database

    Avenanthramides (AV) are a unique group of phytochemicals found in oat bran. In vitro studies show both purified AV and concentrated oat AV mixtures have anti-atherogenic and anti-inflammatory activity, suggesting they may have similar effects in vivo if they are sufficiently bioavailable. The bioav...

  17. Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm.

    PubMed

    Klos, Kathy Esvelt; Yimer, Belayneh A; Babiker, Ebrahiem M; Beattie, Aaron D; Bonman, J Michael; Carson, Martin L; Chong, James; Harrison, Stephen A; Ibrahim, Amir M H; Kolb, Frederic L; McCartney, Curt A; McMullen, Michael; Fetch, Jennifer Mitchell; Mohammadi, Mohsen; Murphy, J Paul; Tinker, Nicholas A

    2017-07-01

    Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location-years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance. Copyright © 2017 Crop Science Society of America.

  18. The effect of replacing fat with oat bran on fatty acid composition and physicochemical properties of meatballs.

    PubMed

    Yılmaz, İsmail; Dağlıoğlu, Orhan

    2003-10-01

    Oat bran was used as a fat substitute in the production of meatballs. The effect of oat bran addition on the fatty acid composition, trans fatty acids, total fat, some physicochemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations; the addition of 5, 10, 15 and 20% oat bran. Control samples were formulated with 25% fat addition as in commercial production. The major fatty acids were cis-oleic, palmitic and stearic acid in all the meatball samples, those with oat bran added as well as the control. Meatballs containing oat bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with 20% oat bran had the highest protein, salt and ash contents, L value (lightness), b value (yellowness), and the lowest moisture content and a value (redness). There was no significant difference among the meatball samples with respect to sensory properties, and all samples had high acceptability.

  19. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  20. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  2. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations.

    PubMed

    Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne

    2018-04-04

    Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.

  3. Pure Oats as Part of the Canadian Gluten-Free Diet in Celiac Disease: The Need to Revisit the Issue

    PubMed Central

    de Souza, M. Cristina P.; Deschênes, Marie-Eve; Laurencelle, Suzanne; Godet, Patrick; Roy, Claude C.; Djilali-Saiah, Idriss

    2016-01-01

    The question about recommending pure, noncontaminated oats as part of the gluten-free diet of patients with celiac disease remains controversial. This might be due to gluten cross contamination and to the possible immunogenicity of some oat cultivars. In view of this controversy, a review of the scientific literature was conducted to highlight the latest findings published between 2008 and 2014 to examine the current knowledge on oats safety and celiac disease in Europe and North America. Results showed that regular oats consumed in Canada are largely contaminated. Overall, the consumption of pure oats has been generally considered to be safe for adults and children. However, it appears that some oat cultivars may trigger an immune response in sensitive individuals. Therefore, further long-term studies on the impact of consumption of oats identifying the cultivar(s) constitute an important step forward for drawing final recommendations. Furthermore, a closer and more accurate monitoring of the dietary intake of noncontaminated oats would be paramount to better determine what its actual contribution in the gluten-free diet of adults and children with celiac disease are in order to draw sound recommendations on the safety of pure oats as part of the gluten-free diet. PMID:27446824

  4. Pure Oats as Part of the Canadian Gluten-Free Diet in Celiac Disease: The Need to Revisit the Issue.

    PubMed

    de Souza, M Cristina P; Deschênes, Marie-Eve; Laurencelle, Suzanne; Godet, Patrick; Roy, Claude C; Djilali-Saiah, Idriss

    2016-01-01

    The question about recommending pure, noncontaminated oats as part of the gluten-free diet of patients with celiac disease remains controversial. This might be due to gluten cross contamination and to the possible immunogenicity of some oat cultivars. In view of this controversy, a review of the scientific literature was conducted to highlight the latest findings published between 2008 and 2014 to examine the current knowledge on oats safety and celiac disease in Europe and North America. Results showed that regular oats consumed in Canada are largely contaminated. Overall, the consumption of pure oats has been generally considered to be safe for adults and children. However, it appears that some oat cultivars may trigger an immune response in sensitive individuals. Therefore, further long-term studies on the impact of consumption of oats identifying the cultivar(s) constitute an important step forward for drawing final recommendations. Furthermore, a closer and more accurate monitoring of the dietary intake of noncontaminated oats would be paramount to better determine what its actual contribution in the gluten-free diet of adults and children with celiac disease are in order to draw sound recommendations on the safety of pure oats as part of the gluten-free diet.

  5. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  6. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa)

    USDA-ARS?s Scientific Manuscript database

    Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown some desirable nutritional characteristics, in experimental systems, such as inhibiting atherosclerotic plaque formation and reducing inflammatory responses. ...

  7. Effects of shading on spike differentiation and grain yield formation of summer maize in the field

    NASA Astrophysics Data System (ADS)

    Cui, Haiyan; Camberato, James J.; Jin, Libin; Zhang, Jiwang

    2015-09-01

    A field experiment was conducted to study the effects of shading on tassel and ear development and yield formation of three summer maize hybrids Zhenjie 2 (ZJ2), Denghai 605 (DH605), and Zhengdan 958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking stage (R1) to physiological maturity stage (R6) (treatment S1), from the sixth extended leaf stage (V6) to R1 (treatment S2) and from seeding to R6 (treatment S3). Shading had no significant effect on the time from seeding to shoot emergence (VE); however, subsequent growth and development were delayed with shading beyond this point. The differentiation time of both tassel and ear delayed, and female spike (tassel) floret differentiation, sexual organ formation time, and anthesis-silking interval (ASI) were lengthened. After shading, the total number of floret, silk, and fertilization floret reduced significantly; the number of abortive seeds increased, and the total setting percentage among different treatments showed that CK>S2>S1>S3; and the total setting percentages in S1, S2, and S3 of ZD958 were 44, 72, and 15 % respectively. The total floret number of tassel primordium differentiation, fertility rate, and seed setting rate of florets in S3 treatment was the minimum; kernels per ear decreased seriously and single ear setting percentage was only 16 %; although floret degeneration number of S2 during ear differentiation stages increased and floret fertility rate reduced than that of CK, fertilization flower seed production increased and abortive seed decreased after canceling shading. Aborted kernel of S1 increased and kernel dry weight reduced, resulting in a significant decrease of kernel number per ear and kernel weight, and the grain abortive rate of 40-62 %. In conclusion, shading changed the growth and development process and caused infertility of tassel and ear; tassel branches decreased

  8. Fortification of yogurt with oat hydrocolloid

    USDA-ARS?s Scientific Manuscript database

    C-Trim 30, an oat hydrocolloid was added to milk such that fermented yogurt had 0, 0.75, 1.5, 2.25, and 3 g ß-glucan per serving. The fermentation rate and physical characteristics of yogurt were studied. Lactose fermentation was not inhibited by the addition of C-Trim. All yogurt mix reached the...

  9. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    PubMed

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  10. Reduced Height (Rht) Alleles Affect Wheat Grain Quality

    PubMed Central

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0–450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  11. Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates

    USDA-ARS?s Scientific Manuscript database

    A modified wet method was developed to fractionate ground oat groats into 4 fractions enriched with beta-glucan (BG), protein, starch, and other carbohydrates (CHO), respectively. Effects of defatting oats and centrifuge force for separation were also investigated. Results show that, depending on ...

  12. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  13. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  14. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  15. Genetic Mapping of Quantitative Trait Loci for Grain Yield under Drought in Rice under Controlled Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan

    2017-12-01

    Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.

  16. The Long-Term Consumption of Oats in Celiac Disease Patients Is Safe: A Large Cross-Sectional Study

    PubMed Central

    Aaltonen, Katri; Laurikka, Pilvi; Huhtala, Heini; Mäki, Markku; Kaukinen, Katri; Kurppa, Kalle

    2017-01-01

    A strict gluten-free diet (GFD) can be diversified by non-contaminated oats, but there is a shortage of long-term studies concerning its safety. We compared long-term treatment outcomes and factors associated with the introduction of oats between celiac patients on a GFD with or without oats. Eight hundred sixty-nine previously diagnosed celiac patients were interviewed. The validated Gastrointestinal Symptom Rating Scale (GSRS), Psychological General Well-Being (PGWB), and Short-Form 36 Health Survey (SF-36) questionnaires were used to assess symptoms and quality of life, serological tests were performed, and results of histology were confirmed from patient records. We found the median duration of GFD to be 10 years and 82% using oats. Factors predicting the consumption of oats were diagnosis after the year 2000, advice from a dietitian, detection by screening, and mild clinical presentation. Oat consumers and non-consumers did not differ in dietary adherence (96.5% vs. 97.4%, p = 0.746), the prevalence of symptoms (22.9% vs. 22.5%, p = 0.931), positivity for endomysial antibodies (8.8% vs. 6.0%, p = 0.237), histological recovery after one year (63.1% vs. 60.0%, p = 0.773), malignancy (4.8% vs. 3.3%, p = 0.420), osteoporosis/osteopenia (9.2% vs. 11.0%, p = 0.489), or fractures (26.9% vs. 27.9%, p = 0.791). The oat consumers had better SF-36 physical role limitations and general health scores. Based on our results, the long-term consumption of oats in celiac disease patients is safe and may improve quality of life. PMID:28617328

  17. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    PubMed

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  18. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    PubMed Central

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  19. Effect of an oats-containing gluten-free diet on symptoms and quality of life in coeliac disease. A randomized study.

    PubMed

    Peräaho, M; Kaukinen, K; Mustalahti, K; Vuolteenaho, N; Mäki, M; Laippala, P; Collin, P

    2004-01-01

    Evidence suggests the acceptability of oats in a gluten-free diet in coeliac disease. We investigated the impact of an oats-containing diet on quality of life and gastrointestinal symptoms. Thirty-nine coeliac disease patients on a gluten-free diet were randomized to take either 50 g of oats-containing gluten-free products daily or to continue without oats for 1 year. Quality of life was assessed using the Psychological General Well-Being questionnaire and gastrointestinal symptoms using the Gastrointestinal Symptom Rating Scale. Small-bowel mucosal villous architecture, CD3+, alphabeta+, gammadelta+ intraepithelial lymphocytes, serum endomysial and tissue transglutaminase antibodies were investigated. Twenty-three subjects were randomized to the oats-containing diet and 16 to the traditional gluten-free diet. All adhered strictly to their respective diet. Quality of life did not differ between the groups. In general, there were more gastrointestinal symptoms in the oats-consuming group. Patients taking oats suffered significantly more often from diarrhoea, but there was a simultaneous trend towards a more severe average constipation symptom score. The villous structure did not differ between the groups, but the density of intraepithelial lymphocytes was slightly but significantly higher in the oats group. The severity of symptoms was not dependent on the degree of inflammation. Antibody levels did not increase during the study period. The oats-containing gluten-free diet caused more intestinal symptoms than the traditional diet. Mucosal integrity was not disturbed, but more inflammation was evident in the oats group. Oats provide an alternative in the gluten-free diet, but coeliac patients should be aware of the possible increase in intestinal symptoms.

  20. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    PubMed

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Genetic diversity and crown rust resistance of oat landraces from various locations throughout Turkey

    USDA-ARS?s Scientific Manuscript database

    A diversity study was carried out to identify the origin of 375 oat landraces (Avena sativa L. and A. byzantina C. Koch.) collected from Turkey and maintained in various gene banks. New assays interrogating oat-based microsatellite and single-nucleotide polymorphism loci were used to characterize t...

  2. New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    USDA-ARS?s Scientific Manuscript database

    Background Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and ...

  3. 40 CFR 180.339 - MCPA; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Barley, straw 25 Clover, forage 0.5 Clover, hay 2.0 Flax, seed 0.1 Grain, aspirated fractions 3.0 Grass, forage 300 Grass, hay 20 Lespedeza, forage 0.5 Lespedeza, hay 2.0 Oat, forage 20 Oat, grain 1.0 Oat, hay...

  4. 40 CFR 180.339 - MCPA; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Barley, straw 25 Clover, forage 0.5 Clover, hay 2.0 Flax, seed 0.1 Grain, aspirated fractions 3.0 Grass, forage 300 Grass, hay 20 Lespedeza, forage 0.5 Lespedeza, hay 2.0 Oat, forage 20 Oat, grain 1.0 Oat, hay...

  5. Trichothecene mycotoxins and their determinants in settled dust related to grain production.

    PubMed

    Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand

    2004-01-01

    We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.

  6. Pesticide Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method Combined with Automated Direct Sample Introduction GC-TOFMS and UPLC-MS/MS Techniques

    USDA-ARS?s Scientific Manuscript database

    The QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation method was modified to accommodate various cereal grain matrices (corn, oat, rice and wheat) and provide good analytical results (recoveries in the range of 70-120% and RSDs <20%) for the majority of the target pestici...

  7. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    PubMed

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Effect of Oat Fibre Powder Particle Size on the Physical Properties of Wheat Bread Rolls

    PubMed Central

    Kurek, Marcin; Wyrwisz, Jarosław; Piwińska, Monika; Wierzbicka, Agnieszka

    2016-01-01

    Summary In response to the growing interest of modern society in functional food products, this study attempts to develop a bakery product with high dietary fibre content added in the form of an oat fibre powder. Oat fibre powder with particle sizes of 75 µm (OFP1) and 150 µm (OFP2) was used, substituting 4, 8, 12, 16 and 20% of the flour. The physical properties of the dough and the final bakery products were then measured. Results indicated that dough with added fibre had higher elasticity than the control group. The storage modulus values of dough with OFP1 most closely approximated those of the control group. The addition of OFP1 did not affect significantly the colour compared to the other samples. Increasing the proportion of oat fibre powder resulted in increased firmness, which was most prominent in wheat bread rolls with oat fibre powder of smaller particle sizes. The addition of oat fibre powder with smaller particles resulted in a product with the rheological and colour parameters that more closely resembled control sample. PMID:27904392

  9. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  10. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  11. Evaluation of fodder production systems for dairy farms

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the feasibility and challenges of implementing sprouted fodder on dairy farms. In Study 1, five grains (barley, oats, wheat, rye and triticale) were sprouted for 7 d and analyzed for yield and nutritional content. In Study 2, lactating cows were fed a TMR during winter and suppl...

  12. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    PubMed

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  13. β-glucan extract from oat bran and its industrial importance

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. N. G.; Selezneva, I. S.

    2017-09-01

    The β-Glucan exhibits a broad spectrum of biological activity, for example it is highly active against many chronic diseases such as diabetes millets, cancer and improper digestion. The β-Glucan is a polysaccharide of D-glucose. It has many different sources of extraction such as yeasts, cereals, fungus and some bacteria. The extraction of the β-Glucan has become so important in our days, because the β-Glucan is a natural substance which can be used in pharmaceutical products for prevention and treatment of many chronic diseases. As well, many food producers have interest to introduce the β-Glucan in many food products, like dairy, meat and bakery products. Taking into consideration the foregoing, we tried to isolate the β-Glucan from oat bran using the acid method of extraction. Some modifications were offered to increase the β-Glucan concentration in the final extract and increase the total extract yield. As a result, the extracts with two different concentrations 72 % and 90 % were obtained with the yields 3.14 % and 4.4 % respectively. It should be noted that the β-Glucan addition into food products can improve their quality and physical properties. Thus, the β-Glucan is now of great importance for maintaining the consumers health by functional food products.

  14. Formulation Optimization of Gluten-Free Functional Spaghetti Based on Maize Flour and Oat Bran Enriched in b-Glucans.

    PubMed

    Padalino, Lucia; Mastromatteo, Marcella; Sepielli, Grazia; Nobile, Matteo Alessandro Del

    2011-12-08

    The aim of this work concerns the manufacturing process of gluten-free functional spaghetti based on maize flour and oat bran, enriched with b-glucans (22%). More specifically, the goal of the study was to obtain oat bran-loaded maize spaghetti with sensory properties close to unloaded pasta. To this aim, the study has been organized in two subsequent trials. In the first one, the oat bran amount added to spaghetti was continuously increased until the overall sensory quality of pasta reached the set sensory threshold (oat bran concentration = 20%). The second experimental step was aimed to improve the overall sensory quality of oat bran loaded maize spaghetti. In particular, an attempt was made to increase the sensory quality of spaghetti added with 20% oat bran by means of structuring agents. To this aim, the effects of different kinds of some hydrocolloids and egg white powder on the rheological properties of dough, as well as on quality attributes of pasta were examined. The rheological analysis showed that the addition of hydrocolloids and white egg to the dough enriched with 20% oat bran did not cause any substantial difference in the viscoelastic properties, compared to samples without any structuring agents. The best overall quality for both fresh and dry spaghetti was obtained by the addition of carboxymethylcellulose and chitosan at a concentration of 2%.

  15. Community Needs Assessment Office Administration & Technology (OAT).

    ERIC Educational Resources Information Center

    Pezzoli, J. A.; Lum, Ku'uipo; Meyer, Diane

    The purpose of this survey was to obtain from employers the requisite skills and potential employment demand for office workers on Maui. Of particular interest was: (1) the assessment of various clerical skills and computer software in its relevance to the Office Administration & Technology (OAT) curriculum at Maui Community College; and (2)…

  16. Mining Centuries Old In situ Conserved Turkish Wheat Landraces for Grain Yield and Stripe Rust Resistance Genes

    PubMed Central

    Sehgal, Deepmala; Dreisigacker, Susanne; Belen, Savaş; Küçüközdemir, Ümran; Mert, Zafer; Özer, Emel; Morgounov, Alexey

    2016-01-01

    Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive 5-year (2009–2014) effort made by the International Winter Wheat Improvement Programme (IWWIP), a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), led to the collection and documentation of around 2000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS) technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA) analysis was explored. A high genetic diversity (diversity index = 0.260) and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield, and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm. PMID:27917192

  17. Whole grain intakes in Irish adults: findings from the National Adults Nutrition Survey (NANS).

    PubMed

    O'Donovan, Clare B; Devlin, Niamh F; Buffini, Maria; Walton, Janette; Flynn, Albert; Gibney, Michael J; Nugent, Anne P; McNulty, Breige A

    2018-01-20

    Observational studies link high whole grain intakes to reduced risk of many chronic diseases. This study quantified whole grain intakes in the Irish adult population and examined the major contributing sources. It also investigated potential dietary strategies to improve whole grain intakes. Whole grain intakes were calculated in a nationally representative sample of 1500 Irish adults using data from the most recent national food survey, the National Adult Nutrition Survey (NANS). Food consumption was assessed, at brand level where possible, using a 4-day semi-weighed food diary with whole grain content estimated from labels on a dry matter basis. Mean daily whole grain intakes were 27.8 ± 29.4 g/day, with only 19% of the population meeting the quantity-specific recommendation of 48 g per day. Wheat was the highest contributor to whole grain intake at 66%, followed by oats at 26%. High whole grain intakes were associated with higher dietary intakes of fibre, magnesium, potassium, phosphorus, and a higher alternative Mediterranean Diet Score. Whole grain foods were most frequently eaten at breakfast time. Regression analysis revealed that consumption of an additional 10 g of whole grain containing 'ready-to-eat breakfast cereals', 'rice or pastas', or 'breads' each day would increase intake of whole grains by an extra 5, 3.5, and 2.7 g, respectively. This study reveals low intakes of whole grains in Irish adults. Recommending cereals, breads, and grains with higher whole grain content as part of public health campaigns could improve whole grain intakes.

  18. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    PubMed

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  19. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Yield prediction by analysis of multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Suits, G. H.

    1975-01-01

    A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield.

  1. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  2. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    PubMed

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Effects of cultivar and grazing initiation date on fall-grown oat for replacement dairy heifers.

    PubMed

    Coblentz, W K; Brink, G E; Esser, N M; Cavadini, J S

    2015-09-01

    Fall-grown oat has shown promise for extending the grazing season in Wisconsin, but the optimum date for initiating grazing has not been evaluated. Our objectives for this project were (1) to assess the pasture productivity and nutritive value of 2 oat cultivars [Ogle and ForagePlus (OG and FP, respectively)] with late-September (EG) or mid-October (LG) grazing initiation dates; and (2) to evaluate growth performance by heifers grazing these oat forages compared with heifers reared in confinement (CON). A total of 160 gravid Holstein heifers (80 heifers/yr) were assigned to 10 research groups (8 heifers/group). Mean initial body weight was 509±40.5 kg in 2013 and 517±30.2 kg in 2014. Heifer groups were assigned to specific pastures arranged as a 2×2 factorial of oat cultivars and grazing initiation dates. Grazing heifer groups were allowed to strip-graze oat pastures for 6 h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Main effects of oat cultivar and sampling date interacted for forage characteristics in 2013, but not in 2014. During 2013, oat forage mass increased until early November before declining in response to freezing weather conditions, thereby exhibiting linear and quadratic effects of sampling date, regardless of oat cultivar. Similar trends over time were observed in 2014. For 2013, the maximum forage mass was 5,329 and 5,046 kg/ha for FP and OG, respectively, whereas the mean maximum forage mass for 2014 was 4,806 kg/ha. ForagePlus did not reach the boot stage of growth during either year of the trial; OG matured more rapidly, reaching the late-heading stage during 2013, but exhibited only minor maturity differences from FP in 2014. For 2013, average daily gain for CON did not differ from grazing heifer groups (overall mean=0.63 kg/d); however, average daily gain from FP was greater than OG (0.68 vs. 0.57 kg/d), and greater from EG compared with LG (0.82 vs. 0.43 kg/d). For 2013, advantages in

  4. The Influence of Roentgen Radiation and Thermic Neutrons Upon Cereals and Corn; L'INFLUENCE DE L'IRRADIATION AVEC DES RAYONS X ET DES NEUTRONS THERMIQUES SUR LES GRAINES DE CEREALES ET DE MAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priadcenco, Al.; Melacrinos, A.; Avramoaie, P.

    1959-10-31

    Seeds from several species of wheat, barley, oats, and corn of Rumanian origin were irradiated with different intensities of x radiation and thermal neutrons. The results showed that radiation inhibits the germination of the grains. The plants from the irradiated grains have a slower growth and development, a prolongment of the vegetative cycle, a pronounced sterility, and a greater sensitivity to diseases. The detailed results are tabulated. (J.S.R.)

  5. Managing for Multifunctionality in Perennial Grain Crops

    PubMed Central

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  6. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    PubMed

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  8. Fall-grown oat to extend the fall grazing season for replacement dairy heifers.

    PubMed

    Coblentz, W K; Brink, G E; Hoffman, P C; Esser, N M; Bertram, M G

    2014-03-01

    Our objective was to assess the pasture productivity and forage characteristics of 2 fall-grown oat (Avena sativa L.) cultivars, specifically for extending the grazing season and reducing reliance on harvested forages by replacement dairy heifers. A total of 160 gravid Holstein heifers (80 heifers/yr) were stratified by weight, and assigned to 1 of 10 identical research pens (8 heifers/pen). Initial body weights were 480 ± 43.5 kg in 2011 and 509 ± 39.4 kg in 2012. During both years of the trial, four 1.0-ha pasture replicates were seeded in August with Ogle oat (Schumitsch Seed Inc., Antigo, WI), and 4 separate, but similarly configured, pasture replicates were seeded with Forage Plus oat (Kratz Farms, Slinger, WI). Heifer groups were maintained as units, assigned to specific pastures, and then allowed to graze fall-oat pastures for 6h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Two heifer groups were retained in confinement (without grazing) as controls and offered the identical total mixed ration as pasture groups. During 2011, available forage mass increased with strong linear and quadratic effects for both cultivars, peaking at almost 9 Mg/ha on October 31. In contrast, forage mass was not affected by evaluation date in 2012, remaining ≤ 2,639 kg/ha across all dates because of droughty climatic conditions. During 2012, Ogle exhibited greater forage mass than Forage Plus across all sampling dates (2,678 vs. 1,856 kg/ha), largely because of its more rapid maturation rate and greater canopy height. Estimates of energy density for oat forage ranged from 59.6 to 69.1% during 2011, and ranged narrowly from 68.4 to 70.4% during 2012. For 2011, responses for both cultivars had strong quadratic character, in which the most energy-dense forages occurred in mid November, largely due to accumulation of water-soluble carbohydrates that reached maximum concentrations of 18.2 and 15.1% for Forage Plus and Ogle

  9. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.

    PubMed

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat.

  10. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    PubMed Central

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  11. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGES

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  12. [Effects of irrigation using dairy effluent on grain yield, phosphorus utilization and distribu- tion in soil profile in winter wheat-summer maize rotation system].

    PubMed

    Du, Hui-ying; Feng, Jie; Guo, Hai-gang; Wang, Feng; Zhang, Ke-qiang

    2015-08-01

    Field experiments of winter wheat-summer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg · hm(-2), winter wheat yield increased to the maximum (7646.4 kg · hm(-2)) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg · hm(-2) and the phosphorus uptake increased by 13.9-21.1 kg · hm(-2) in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg · hm(-2), and the summer maize yield increased by 2235.0 kg · hm(-2) compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheat-summer maize rotation system was the best operating mode.

  13. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  14. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Rather, Sarver A.; Suradkar, Prashant P.

    2018-03-01

    Oat β-D-glucan after extraction was degraded at doses of 3, 6, 9, 12 and 15 kGy. The average molecular weight decreased to 45 kDa at dose of 15 kGy from an initial value of 200 kDa in native sample. XRD analysis revealed no significant change in diffraction pattern of irradiated samples when compared with control, except a decrease in intensity of x-ray diffraction. The results of the antioxidant activity revealed decrease in EC50 values and corresponding increase in antioxidant activity of radiation degraded oat β-D-glucan. Results of the anticancer studies indicated that cytotoxicity of gamma irradiated oat β-D-glucan in cancer cell lines was highest against colo-205 and MCF7 cancer cells compared to T47D cell and no cytotoxicity was observed in normal cell lines at all concentrations used. Evaluation of hypoglycemic activity showed highest inhibition in α-glucosidase activity compared to α-amylase activity due to gamma irradiation of oat β-D-glucan. Comparison of the EC50 values of known standards and gamma irradiated oat beta-glucan samples indicates that radiation treatment significantly modified the biological activity of the beta-glucan samples. Therefore, it is suggested that gamma irradiation can be used for producing low molecular weight oat β-D-glucan; which can help in modifying the biological activities.

  15. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  16. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index.

    PubMed

    Connolly, M L; Tuohy, K M; Lovegrove, J A

    2012-12-28

    Population studies show a positive association between increased dietary intake of wholegrains and reduced risk of cardiometabolic disorders. Consumption of wholegrain food has been associated with lower blood glucose and therefore may contribute to a low-glycaemic load diet. The ability to mediate a prebiotic modulation of gut microbiota has recently been suggested to have an inverse correlation with risk of cardiometabolic disease. To date very little work has been carried out on the functionality of wholegrain breakfast cereals in terms of glycaemic response or impact on gut microbiota. An investigation into identifying wholegrain-based breakfast cereals demonstrating both low glycaemic index (GI) and prebiotic attributes was performed. After in vitro digestion, cereal samples were supplemented to pH-controlled anaerobic batch cultures of the human faecal microbiota. Total bacteria populations increased significantly (P < 0·05) in all treated cultures, and the fermentation of a wholegrain oat cluster cereal was associated with proliferation of the Bifidobacterium genus (P = 0·02). Smaller, but significant increases in the Bifidobacterium genus were observed for a further four oat-based cereals. Significant increases in the Lactobacillus-Enterococcus group were observed for granola (P = 0·01), 100 % wholegrain aggregate (P = 0·04) and 70 % wholegrain loops (P = 0·01). Cereals demonstrating prebiotic potential were selected for GI determination in twelve healthy subjects. The wholegrain oat aggregate cereal achieved the lowest GI value (40), three other cereals ranged between 44 and 74, with instant porridge resulting in a GI value similar to the standard glucose control. The present study suggests that wholegrain oat-based breakfast cereals may be prebiotics and have the potential to have low GI.

  17. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement

    USDA-ARS?s Scientific Manuscript database

    Hexaploid oat (Avena sativa, 2n = 6x = 42) is a member of the Poaceae family with a very large genome (~13 Gb) containing 21 chromosome pairs: seven from each of two similar ancestral diploids (A and D) and seven from a more diverged ancestral diploid (C). Physical rearrangements among ancestral oat...

  18. Spectral behavior of wheat yield variety trials

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.

    1981-01-01

    Little variation between varieties is seen at jointing, but the variability is found to increase during grain filling and decline again at maturity. No relationship is found between spectral response and yield, and when yields are segregated into various classes the spectral response is the same. Spring and winter nurseries are found to separate during the reproductive stage because of differences in dates of heading and maturity, but they exhibit similar spectral responses. The transformed normalized difference is at a minimum after the maximum grain weight occurs and the leaves begin to brown and fall off. These data of 100% ground cover demonstrate that it is not possible to predict grain yield from only spectral data. This, however, may not apply when reduced yields are caused by less-than-full ground cover

  19. Spectral reflectance indices as a selection criterion for yield improvement in wheat

    NASA Astrophysics Data System (ADS)

    Babar, Md. Ali

    2005-11-01

    Scope and methods of study. Yield in wheat ( Triticum aestivum L.) is a complex trait and influenced by many environmental factors, and yield improvement is a daunting task for wheat breeders. Spectral reflectance indices (SRIs) have been used to study different physiological traits in wheat. SRIs have the potential to differentiate genotypes for grain yield. SRIs strongly associated with grain yield can be used to achieve effective genetic gain in wheat under different environments. Three experiments (15 adapted genotypes, 25 and 36 random sister lines derived from two different crosses) under irrigated conditions, and three experiments (each with 30 advanced genotypes) under water-limited conditions were conducted in three successive years in Northwest Mexico at the CIMMYT (International Maize and wheat Improvement Center) experimental station. SRIs and different agronomic data were collected for three years, and biomass was harvested for two years. Phenotypic and genetic correlations between SRIs and grain yield, between SRIs and biomass, realized and broad sense heritability, direct and correlated selection responses for grain yield, and SRIs were calculated. Findings and conclusion. Seven SRIs were calculated, and three near infrared based indices (WI, NWI-1 and NWI-2) showed higher level of genetic and phenotypic correlations with grain yield, yield components and biomass than other SRIs (PRI, RNDVI, GNDVI, and SR) under both irrigated and water limiting environments. Moderate to high realized and broad sense heritability, and selection response were demonstrated by the three NIR based indices. High efficiency of correlated response for yield estimation was demonstrated by the three NIR based indices. The ratio between the correlated response to grain yield based on the three NIR based indices and direct selection response for grain yield was very close to one. The NIR based indices showed very high accuracy in selecting superior genotypes for grain yield

  20. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  1. Cost-effectiveness of Maintaining Daily Intake of Oat β-Glucan for Coronary Heart Disease Primary Prevention.

    PubMed

    Earnshaw, Stephanie R; McDade, Cheryl L; Chu, YiFang; Fleige, Lisa E; Sievenpiper, John L

    2017-04-01

    Oat β-glucan reduces cholesterol levels and thus reduces the risk for coronary heart disease (CHD). However, its economic impact has not been well studied. We examined the economic impact of daily intake of ≥3 g of oat β-glucan in primary prevention of CHD in patients receiving statins or no pharmacologic treatment. A decision model was developed to compare costs and outcomes associated with lowering cholesterol levels with no pharmacologic treatment and normal diet, no pharmacologic treatment plus ≥3 g/d of oat β-glucan, and statin therapy plus ≥3 g/d of oat β-glucan. The population comprised men 45, 55, or 65 years of age with no history of cardiovascular disease and a 10-year risk for CHD of 5%, 7.5%, or 10%. Clinical efficacy data were gathered from meta-analyses; safety data, costs, and utilities were gathered from published literature. Cost per quality-adjusted life years and number of first events were reported. Maintaining ≥3 g/d of β-glucan may be cost-effective in men aged 45, 55, and 65 years with 10-year CHD risks of 5.0%, 7.5%, and 10.0% taking no pharmacologic treatment or on statins. It may also reduce first events of myocardial infarction and CHD death. Results are sensitive to oat β-glucan cost but insensitive to changes in other parameters. Maintaining ≥3 g of oat β-glucan daily remains cost-effective within plausible range of values. β-glucan may be cost-effective for preventing CHD events in middle-aged men with no history of cardiovascular events whose 10-year CHD risk is ≥5%. Maintaining daily β-glucan intake may have considerable impact on first events. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Growth, Yield and Grain Nutritional Quality in Three Brazilian Pearl Millets (Pennisetum americanum L.) with African or Indian origins.

    PubMed

    Medici, Leonardo O; Gonçalves, Fabíola V; Fonseca, Marcos Paulo S DA; Gaziola, Salete A; Schmidt, Daiana; Azevedo, Ricardo A; Pimentel, Carlos

    2018-05-14

    In this study, we are presenting recommendations to the best agricultural use as well as for plant breeding of three millet cultivars namely ENA1 and ENA2, which have African origin, and BRS1501 originally from India. These cultivars were evaluated for growth, yield and grain quality traits. The morphological traits evaluated in this study indicated that the African genotypes ENA1 and ENA2 are better than the Indian genotype BRS1501 for no-till farming or to produce forage with 15% of crude protein at flowering and at harvest to produce stover (around 7% of crude protein content) for livestock feeding. The BRS1501 cultivar exhibited the highest values for total crude protein, albumins and prolamins, phytate and mineral contents in grains. ENA1 and ENA2 exhibited the highest values of globulin and glutelin contents. The electrophoretic patterns for storage proteins were similar across the three millets cultivars, except for a higher intensity of two glutelin bands with 21 and 24 kDa in BRS1501. Together, the results allow us to recommend BRS1501 for grain production and ENA1 and ENA2 for biomass production.

  3. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.)

    PubMed Central

    Foresman, Bradley J.; Oliver, Rebekah E.; Jackson, Eric W.; Chao, Shiaoman; Arruda, Marcio P.; Kolb, Frederic L.

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  4. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Resistance in oats (Avena sativa L.) to infection by Fusarium graminearum was assessed in field trials in 2011-12 including 424 spring oat lines from North America and Scandinavia. Traits measured were Fusarium Head Blight (FHB), deoxynivalenol (DON) content, days to flowering (DTF) and days to matu...

  5. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    PubMed Central

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16−49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. PMID:26246614

  6. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    PubMed Central

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  7. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.

    PubMed

    Hachmeister, K A; Fung, D Y

    1993-01-01

    A variety of indigenous fermented foods exist today; however, tempeh has been one of the most widely accepted and researched mold-modified fermented products. Tempeh is a traditional fermented food made from soaked and cooked soybeans inoculated with a mold, usually of the genus Rhizopus. After fermentation has occurred, the soybeans are bound together into a compact cake by dense cottony mycelium. An important function of the mold in the fermentation process is the synthesis of enzymes, which hydrolyze soybean constituents and contribute to the development of a desirable texture, flavor, and aroma of the product. Enzymatic hydrolysis also may decrease or eliminate antinutritional constituents; consequently, the nutritional quality of the fermented product may be improved. Current technology and new scientific advancements have enabled researchers to examine specific strains of Rhizopus and new substrates such as cereal grains. Because Kansas produces numerous cereal grains, production of a fermented tempeh-like product using wheat, sorghum (milo), oats, rye, barley, corn, and triticale is a definite possibility for generating a Kansas Value-Added Product. In this study, several different tempeh-like products were produced using various cereal grains inoculated with Rhizopus oligosporus NRRL 2549 or R. oligosporus NRRL 2710. Grains used included hard red winter wheat, triticale, yellow sorghum (milo), and red sorghum (milo). The grain source as well as the strain of R. oligosporus used influenced the product's appearance, flavor, and patty integrity. Results showed that R. oligosporus NRRL 2549 produced more mycelium at a more rapid rate than did the R. oligosporus NRRL 2710 strain. The combination of red sorghum and R. oligosporus NRRL 2549 yielded a product with good patty texture, aroma, and appearance. Furthermore, the red sorghum fermented product was well suited for slicing. On the other hand, yellow sorghum inoculated with either R. oligosporus NRRL 2549 or

  8. [Effects of shading at different phases of grain-filling on wheat grain protein components contents and processing quality].

    PubMed

    Shi, Yu; Chen, Mao-xue; Yu, Zhen-wen; Xu, Zhen-zhu

    2011-10-01

    Taking three wheat cultivars Jimai 20 (strong gluten), Taishan 23 (medium gluten), and Ningmai 9 (weak gluten) as test materials, a field experiment was conducted to examine the effects of shading at different phases of grain-filling on the grain protein components contents and processing quality. Four treatments were installed, i. e., no shading (S0), shading at early grain-filling phase (from 0 day after anthesis (DAA) to 11 DAA; S1), shading at medium grain-filling phase (from 12 DAA to 23 DAA; S2), and shading at late grain-filling phase (from 24 DAA to 35 DAA; S3). No significant differences were observed in the grain albumin+globulin contents of the three cultivars among the four treatments. Shading increased the grain HMW-GS, LMW-GS, gluten, glutenin, and total protein contents of Jimai 20 and Taishan 23 significantly, and the increments were higher in treatment S2 than in other shading treatments. Treatments S2 and S3 increased the grain protein components contents of Ningmai 9 significantly. Comparing with the control, shading decreased the grain yield significantly, but increased the dough development time, dough stability time, and sedimentation volume, especially for treatment S2, which suggested that the wheat grain quality had a close relationship with the light intensity at medium phase of grain-filling. Overall, the regulation effect of shading at grain-filling stage on the wheat grain yield, grain protein components contents, and indices values of grain processing quality for the test cultivars was in the order of Jimai 20 > Taishan 23 > Ningmai 9.

  9. Population genetics related to adaptation in elite oat germplasm

    USDA-ARS?s Scientific Manuscript database

    Six hundred thirty five oat lines and 2,635 SNP loci were used to evaluate population structure, linkage disequilibrium (LD) and genotype-phenotype association with heading date. The first five principal components (PC) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 2...

  10. The art of attrition: development of robust oat microsatellites

    USDA-ARS?s Scientific Manuscript database

    Microsatellite or simple sequence repeat (SSR) markers are important tools for genetic analyses, especially those targeting diversity, based on the fact that multiple alleles can occur at a given locus. Currently, only 160 genomic-based SSR markers are publicly available for oat, most of which have...

  11. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  12. [Effects of air temperature increase and precipitation change on grain yield and quality of spring wheat in semiarid area of Northwest China].

    PubMed

    Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong

    2015-01-01

    In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.

  13. GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats.

    PubMed

    Gu, Jiaojiao; Jing, Lulu; Ma, Xiaotao; Zhang, Zhaofeng; Guo, Qianying; Li, Yong

    2015-12-01

    The present study aimed to explore the metabolic response of oat bran consumption in dyslipidemic rats by a high-throughput metabolomics approach. Four groups of Sprague-Dawley rats were used: N group (normal chow diet), M group (dyslipidemia induced by 4-week high-fat feeding, then normal chow diet), OL group and OH group (dyslipidemia induced, then normal chow diet supplemented with 10.8% or 43.4% naked oat bran). Intervention lasted for 12weeks. Gas chromatography quadrupole time-of-flight mass spectrometry was used to identify serum metabolite profiles. Results confirmed the effects of oat bran on improving lipidemic variables and showed distinct metabolomic profiles associated with diet intervention. A number of endogenous molecules were changed by high-fat diet and normalized following supplementation of naked oat bran. Elevated levels of serum unsaturated fatty acids including arachidonic acid (Log2Fold of change=0.70, P=.02 OH vs. M group), palmitoleic acid (Log2Fold of change=1.24, P=.02 OH vs. M group) and oleic acid (Log2Fold of change=0.66, P=.04 OH vs. M group) were detected after oat bran consumption. Furthermore, consumption of oat bran was also characterized by higher levels of methionine and S-adenosylmethionine. Pathway exploration found that most of the discriminant metabolites were involved in fatty acid biosynthesis, biosynthesis and metabolism of amino acids, microbial metabolism in diverse environments and biosynthesis of plant secondary metabolites. These results point to potential biomarkers and underlying benefit of naked oat bran in the context of diet-induced dyslipidemia and offer some insights into the mechanism exploration. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?

    PubMed

    Salvador, Angelo C; Baptista, Inês; Barros, António S; Gomes, Newton C M; Cunha, Angela; Almeida, Adelaide; Rocha, Silvia M

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans.

  15. Can Volatile Organic Metabolites Be Used to Simultaneously Assess Microbial and Mite Contamination Level in Cereal Grains and Coffee Beans?

    PubMed Central

    Salvador, Ângelo C.; Baptista, Inês; Barros, António S.; Gomes, Newton C. M.; Cunha, Ângela; Almeida, Adelaide; Rocha, Silvia M.

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC–ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC–ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans. PMID:23613710

  16. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    PubMed

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  17. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.

    PubMed

    Rosser, C L; Beattie, A D; Block, H C; McKinnon, J J; Lardner, H A; Górka, P; Penner, G B

    2016-02-01

    The objectives were to evaluate the effect of harvest maturity of whole-crop oat (Study 1) and whole-crop barley (Study 2) on forage intake and sorting, ruminal fermentation, ruminal digestibility, and total tract digestibility when fed to beef heifers. In Study 1, 3 ruminally cannulated heifers (417 ± 5 kg) were used in a 3 × 3 Latin square design with 24-d periods. Whole-crop oat forage harvested at the late milk (LMILK), hard dough (HD), or ripe (RP) stages was fed for ad libitum intake and heifers were supplemented (1% of BW) with alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Maturity at harvest for whole-crop oat did not affect ( ≥ 0.058) forage intake, DE intake, amount of forage refused, ruminal short-chain fatty acid concentration, or digestibility of DM, OM, NDF, and ADF. Ruminal starch digestibility decreased ( < 0.001) from 92.6% at the LMILK stage to 90.0% at the RP stage, with total tract starch digestibility decreasing ( = 0.043) from 95.8% at the LMILK stage to 94.8% at the RP stage. Ruminal CP digestibility was reduced at the HD stage compared with the LMILK and RP stages ( < 0.001). Mean ruminal pH was greatest for the LMILK stage (6.36; = 0.003) compared with the HD and RP stages (6.30 and 6.28, respectively). In Study 2, 6 ruminally cannulated heifers (273 ± 16 kg) were used in a replicated 3 × 3 Latin square design with 24-d periods. Dietary treatments included ad libitum access to whole-crop barley harvested at the LMILK, HD, or RP stage and a constant rate (0.8% BW) of supplement containing alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Dry matter intake, ruminal content mass, and feeding behavior were not affected by harvest maturity ( ≥ 0.16). There was a decrease in total tract digestibility of DM, OM, and NDF observed at the HD stage compared with the LMILK and RP stages ( ≤ 0.004). Ruminal NDF digestibility decreased from 69.7% at the LMILK stage to 54.4% at the HD

  18. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

    PubMed

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung

    2014-01-01

    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr-/- mice

    USDA-ARS?s Scientific Manuscript database

    Background: The consumption of oats reduces plasma cholesterol, a major risk factor for heart disease. Oats, in addition to cholesterol lowering properties through its beta-glucan content, are a good source of several antioxidants including Avenanthramides (Avns), a unique group of polyphenols prese...

  20. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    PubMed

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. A global experimental dataset for assessing grain legume production

    PubMed Central

    Cernay, Charles; Pelzer, Elise; Makowski, David

    2016-01-01

    Grain legume crops are a significant component of the human diet and animal feed and have an important role in the environment, but the global diversity of agricultural legume species is currently underexploited. Experimental assessments of grain legume performances are required, to identify potential species with high yields. Here, we introduce a dataset including results of field experiments published in 173 articles. The selected experiments were carried out over five continents on 39 grain legume species. The dataset includes measurements of grain yield, aerial biomass, crop nitrogen content, residual soil nitrogen content and water use. When available, yields for cereals and oilseeds grown after grain legumes in the crop sequence are also included. The dataset is arranged into a relational database with nine structured tables and 198 standardized attributes. Tillage, fertilization, pest and irrigation management are systematically recorded for each of the 8,581 crop*field site*growing season*treatment combinations. The dataset is freely reusable and easy to update. We anticipate that it will provide valuable information for assessing grain legume production worldwide. PMID:27676125

  2. [Effects of irrigation with different length micro-sprinkling hoses on soil water distribution, water consumption characteristics of winter wheat, and its grain yield].

    PubMed

    Man, Jian-guo; Wang, Dong; Yu, Zhen-wen; Zhang, Yong-li; Shi, Yu

    2013-08-01

    Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.

  3. Effects of high-fiber oat and wheat cereals on postprandial glucose and lipid responses in healthy men.

    PubMed

    Maki, Kevin C; Davidson, Michael H; Witchger, Mary Sue; Dicklin, Mary R; Subbaiah, Papasani V

    2007-09-01

    This randomized, crossover study compared the effects of consuming high-fiber oat and wheat cereals on postprandial metabolic profiles in healthy men. Twenty-seven subjects received oat (providing 5.7 g/day beta-glucan) or wheat (control) cereal products, in random order, incorporated into their usual diets for two weeks. Total energy and fiber (approximately 14 g/day) contents of the cereals were matched. A meal tolerance test that included the study cereal and a high-fat milkshake (1240 kcal, 105 g fat) was performed at the end of each treatment period. Postprandial insulin and glucose responses over 10 hours did not differ between treatments. Peak triglyceride concentration was lower after oat vs. wheat cereal consumption [2.3 +/- 1.2 (mean +/- standard deviation) vs. 2.9 +/- 1.3 mmol/L, p = 0.016]. Mean area under the triglyceride curve also tended to be lower (15.1 +/- 8.2 vs. 17.6 +/- 8.6 hours x mmol/L, p = 0.068). The free fatty acid area under the curve was elevated after the oat vs. the wheat products (3.64 +/- 0.91 vs. 3.38 +/- 0.98 hours x mmol/L, p = 0.018). These results suggest that high-fiber oat cereal influenced postprandial triglyceride and free fatty acid levels, which may have implications regarding cardiovascular disease risk.

  4. Effect of amaranth and oat bran on blood serum and liver lipids in rats depending on the kind of dietary fats.

    PubMed

    Grajeta, H

    1999-04-01

    The effect of amaranth and oat bran on the lipids of blood and liver in rats depending on the kind of fats in diet was the subject of our study. Sixty male Buffalo rats were fed for 28 days one of six diet containing 15% of fat (lard or sunflower oil), 20% of protein and 0.5% of cholesterol. Amaranth and oat bran added to diet provided 4-4.5% of dietary fiber, water soluble fraction of which amounted to 30%. Amaranth significantly decreased the level of total cholesterol in rats blood serum (by 10.7% in the case of diet with lard and by 14% with sunflower oil) and in liver (by 20% in the case of diet with lard and by 23% with sunflower oil). Similarly oat bran decreased the level of total cholesterol in the blood serum: by 19% in the case of diet with lard and by 22% with sunflower oil; and in liver by 22 and 27%, respectively. Amaranth and oat bran did not influence HDL-cholesterol in the blood of rats. The influence of amaranth and oat bran on the concentration of triglycerides in the blood serum depended on the kind of fats in a diet. The diets containing amaranth or oat bran with lard did not decrease the concentration of this lipids, however, the same diets but with sunflower oil decreased this concentration significantly (by 22%). In liver significant hypotriglyceridemic effect of amaranth and oat bran was observed for both of the diets: based on lard and sunflower. The decrease of triglycerides concentration under the influence of amaranth amounted to 10% (diet with lard) and 15% (diet with sunflower oil). Oat bran decreased the concentration of triglycerides in liver by 15% (diet with lard) and 20% (diet with sunflower oil). Sunflower oil added to the diets augmented the hypolipemic effect of amaranth and oat bran.

  5. Rocky Mountain Arsenal Chemical Index. Volume 3. Potential Chemical- Specific ARARs for On-Post Operable Unit, RMA

    DTIC Science & Technology

    1988-08-01

    clover, corn, cottonseed, cowpeas , grain sorghum (milo), grapes, grass (pasture and range), kohlrabi, lima beans, meat, milk, oats, onions, peaches...cauliflower, cherries, clover, corn, cottonseed, cowpeas , grain sorghum (milo), grapes, grass (pasture and range), kohlrabi, lima beans, meat, milk, oats

  6. The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat.

    PubMed

    Shao, An; Ma, Wenying; Zhao, Xueqiang; Hu, Mengyun; He, Xue; Teng, Wan; Li, Hui; Tong, Yiping

    2017-08-01

    Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat ( Triticum aestivum ) to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 TaTAR genes, among which 12 and three genes were phylogenetically close to Arabidopsis ( Arabidopsis thaliana ) AtTAR2 and AtTAR3, respectively. TaTAR2.1 had the most abundant transcripts in the TaTAR2 genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of TaTAR2.1 caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing TaTAR2.1-3A in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Metabolism of HT-2 Toxin and T-2 Toxin in Oats

    PubMed Central

    Meng-Reiterer, Jacqueline; Bueschl, Christoph; Rechthaler, Justyna; Berthiller, Franz; Lemmens, Marc; Schuhmacher, Rainer

    2016-01-01

    The Fusarium mycotoxins HT-2 toxin (HT2) and T-2 toxin (T2) are frequent contaminants in oats. These toxins, but also their plant metabolites, may contribute to toxicological effects. This work describes the use of 13C-assisted liquid chromatography–high-resolution mass spectrometry for the first comprehensive study on the biotransformation of HT2 and T2 in oats. Using this approach, 16 HT2 and 17 T2 metabolites were annotated including novel glycosylated and hydroxylated forms of the toxins, hydrolysis products, and conjugates with acetic acid, putative malic acid, malonic acid, and ferulic acid. Further targeted quantitative analysis was performed to study toxin metabolism over time, as well as toxin and conjugate mobility within non-treated plant tissues. As a result, HT2-3-O-β-d-glucoside was identified as the major detoxification product of both parent toxins, which was rapidly formed (to an extent of 74% in HT2-treated and 48% in T2-treated oats within one day after treatment) and further metabolised. Mobility of the parent toxins appeared to be negligible, while HT2-3-O-β-d-glucoside was partly transported (up to approximately 4%) through panicle side branches and stem. Our findings demonstrate that the presented combination of untargeted and targeted analysis is well suited for the comprehensive elucidation of mycotoxin metabolism in plants. PMID:27929394

  8. Whole-Grain Intake, Reflected by Dietary Records and Biomarkers, Is Inversely Associated with Circulating Insulin and Other Cardiometabolic Markers in 8- to 11-Year-Old Children.

    PubMed

    Damsgaard, Camilla T; Biltoft-Jensen, Anja; Tetens, Inge; Michaelsen, Kim F; Lind, Mads V; Astrup, Arne; Landberg, Rikard

    2017-05-01

    Background: Whole-grain consumption seems to be cardioprotective in adults, but evidence in children is limited. Objective: We investigated whether intakes of total whole grain and dietary fiber as well as specific whole grains were associated with fat mass and cardiometabolic risk profile in children. Methods: We collected cross-sectional data on parental education, puberty, diet by 7-d records, and physical activity by accelerometry and measured anthropometry, fat mass index by dual-energy X-ray absorptiometry, and blood pressure in 713 Danish children aged 8-11 y. Fasting blood samples were obtained and analyzed for alkylresorcinols, biomarkers of whole-grain wheat and rye intake, HDL and LDL cholesterol, triacylglycerols, insulin, and glucose. Linear mixed models included puberty, parental education, physical activity, and intakes of energy, fruit and vegetables, saturated fat, and n-3 (ω-3) polyunsaturated fatty acids. Results: Median (IQR) whole-grain and dietary fiber intakes were 52 g/d (35-72 g/d) and 17 g/d (14-22 g/d), respectively. Fourteen percent of children were overweight or obese and most had low-risk cardiometabolic profiles. Dietary whole-grain and fiber intakes were not associated with fat mass index but were inversely associated with serum insulin [both P < 0.01; e.g., with 0.68 pmol/L (95% CI: 0.26, 1.10 pmol/L) lower insulin · g whole grain -1 · MJ -1 ]. Whole-grain oat intake was inversely associated with fat mass index, systolic blood pressure, and LDL cholesterol (all P < 0.05) as well as insulin ( P = 0.003), which also tended to be inversely associated with whole-grain rye intake ( P = 0.11). Adjustment for fat mass index did not change the associations. The C17-to-C21 alkylresorcinol ratio, reflecting whole-grain rye to wheat intake, was inversely associated with insulin ( P < 0.001). Conclusions: Higher whole-grain intake was associated with lower serum insulin independently of fat mass in 8- to 11-y-old Danish children. Whole-grain

  9. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    PubMed

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  10. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat.

    PubMed

    Mills, D; Robinson, K; Hodges, T K

    1985-07-01

    K(+) and Na(+) fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K(+) with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.Increasing ambient Na(+) concentrations from 0 to 50 millimolar altered K(+), in Atriplex, as follows: slightly decreased the cytoplasmic content (Q(c)), the vacuolar content (Q(v)), and the plasma membrane influx and efflux. Xylem transport for K(+) decreased by 63% in Atriplex. For oat roots, similar increases in Na(+) altered K(+) parameters as follows: plasma membrane influx and efflux decreased by about 80%. Q(c) decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Q(v) for K(+). Increasing ambient Na(+) resulted in higher (3 to 5-fold) Na(+) fluxes across the plasma membrane and in Q(c) of both species. In Atriplex, Na(+) fluxes across the tonoplast and Q(v) increased as external Na(+) was increased. In oat, however, no significant change was observed in Na(+) flux across the tonoplast or in Q(v) as external Na(+) was increased. In oat roots, Na(+) reduced K(+) uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na(+) levels, the influx transport system at the plasma membrane of both species preferred K(+) over Na(+).Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K(+) occurred across the plasma membrane, and passive movement of K(+) occurred across the tonoplast in both species. Na(+), in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na(+) was passively distributed between the free space, cytoplasm, and vacuole.

  11. [Creation of a unit for education in the self-management of oat].

    PubMed

    Camino Guiu, M Jesús; Cebollero Mata, M Luisa; Bolea Muro, Carmen; Borrel Roncalés, Mercedes

    2012-04-01

    Oral anticoagulant therapy (OAT) with Vitamin K antagonists requires frequent analytical controls that create a certain degree of dependency and a loss of autonomy in the patient. These drugs have an undesirable variability due to food and drug interactions, febrile processes, etc. which can modify the patient's INR and predispose them to a thromboembolic or hemorrhagic event. OAT self-control is supported by more than 15 years of experience in countries such as Germany and the Netherlands, and by comparative studies that reflect a reduction of thromboembolism and other adverse effects. The reason of this is because these patients are in the correct therapeutic range for longer periods of time due to more frequent controls (once a week against every 4-5 weeks of traditional control) and also to a better understanding of their treatment. In Aragon, OAT is a free health service and in our hospital, OAT has been an institutional aim since 2070. After a training course, the patient is capable to make their own INR determinations at home, to evaluate their results and adjust their own dose. Additionally the patient should acquire the appropriate knowledge to detect any adverse symptom and to know how to react to any problem in their treatment. This article summarizes our experience regarding the implementation of the programme and creation of the specific unit: the organization and training of the professionals involved, establishment of the patient selection criteria, and design of the patients' training course, follow-up strategy and equipment. In addition, the results of the study conducted in our Unit, showing a high degree of patient satisfaction, are included. At this moment 20% of our patients are included in the self-control strategy.

  12. Effect of Consuming Oat Bran Mixed in Water before a Meal on Glycemic Responses in Healthy Humans-A Pilot Study.

    PubMed

    Steinert, Robert E; Raederstorff, Daniel; Wolever, Thomas M S

    2016-08-26

    Viscous dietary fibers including oat β-glucan are one of the most effective classes of functional food ingredients for reducing postprandial blood glucose. The mechanism of action is thought to be via an increase in viscosity of the stomach contents that delays gastric emptying and reduces mixing of food with digestive enzymes, which, in turn, retards glucose absorption. Previous studies suggest that taking viscous fibers separate from a meal may not be effective in reducing postprandial glycemia. We aimed to re-assess the effect of consuming a preload of a commercially available oat-bran (4.5, 13.6 or 27.3 g) containing 22% of high molecular weight oat β-glucan (O22 (OatWell(®)22)) mixed in water before a test-meal of white bread on glycemic responses in 10 healthy humans. We found a significant effect of dose on blood glucose area under the curve (AUC) (p = 0.006) with AUC after 27.3 g of O22 being significantly lower than white bread only. Linear regression analysis showed that each gram of oat β-glucan reduced glucose AUC by 4.35% ± 1.20% (r = 0.507, p = 0.0008, n = 40) and peak rise by 6.57% ± 1.49% (r = 0.582, p < 0.0001). These data suggest the use of oat bran as nutritional preload strategy in the management of postprandial glycemia.

  13. [Evaluation of the AOAC 985.29 enzimic gravimetric method for determination of dietary fiber in oat and corn grains].

    PubMed

    da Silva, Leila Picolli; Ciocca, Maria de Lourdes Santorio; Furlong, Eliana Badiale

    2003-12-01

    The precision attributes and use of the enzymatic-gravimetric method of Prosky et al. (1992) (AOAC 985.29) were evaluated using corn (BR 5202 Pampa) and oat (UFRGS 15) samples. The effect of laboratory batches carried out in different days were evaluated in six laboratory batches, using for each material one duplicate for total fiber (FT) determination, one duplicate for insoluble fiber (FI) determination and blank ones for FT and for FI (both in duplicate). In order to characterize repetitive aspects, five other FT and FI determinations added to each sample were evaluated, summing up 11 data. The low coefficients of variation in the first six batches were considered acceptable as an expression of expected total intralaboratory variation. The repetitive of the method was considered good for FT determinations (CVs < 10%). However, in the FI determination a high frequency of negative values of ash and blanks was found, impairing the repetitive aspects evaluation. The magnitude of the total gravimetric corrections varies with the kind of the sample and is especially influenced by the protein content.

  14. Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals.

    PubMed

    Yang, Junyi; Keshavarzian, Ali; Rose, Devin J

    2013-09-01

    Gut bacteria may influence obesity through the metabolites produced by dietary fiber fermentation (mainly, short-chain fatty acids [SCFA]). Five cereal grain samples (wheat, rye, maize [corn], rice, and oats) were subjected to in vitro digestion and fermentation using fecal samples from 10 obese and nine normal weight people. No significant differences in total SCFA production between the normal weight and obese groups were observed [279 (12) vs. 280 (12), mean (standard error), respectively; P=.935]. However, the obese microbiota resulted in elevated propionate production compared with that of normal weight [24.8(2.2) vs. 17.8(1.9), respectively; P=.008]. Rye appeared to be particularly beneficial among grain samples due to the lowest propionate production and highest butyrate production during fermentation. These data suggest that the dietary fibers from cereal grains affect bacterial metabolism differently in obese and normal weight classes and that certain grains may be particularly beneficial for promoting gut health in obese states.

  15. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    PubMed

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  17. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    PubMed Central

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  18. [Effects of controlled-release fertilizers on summer maize grain yield, field ammonia volatilization, and fertilizer nitrogen use efficiency].

    PubMed

    Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng

    2009-11-01

    A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF.

  19. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.

    PubMed

    Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi

    2015-12-01

    Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.

  20. Black oat cover crop management in watermelon production systems

    USDA-ARS?s Scientific Manuscript database

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  1. Ochratoxin A Concentrations in a Variety of Grain-Based and Non-Grain-Based Foods on the Canadian Retail Market from 2009 to 2014.

    PubMed

    Kolakowski, Beata; O'Rourke, Sarah M; Bietlot, Henri P; Kurz, Karl; Aweryn, Barbara

    2016-12-01

    The extent of ochratoxin A (OTA) contamination of domestically produced foods sold across Canada was determined from 2009 to 2014 with sampling and testing occurring each fiscal year. Cereal-based, fruit-based, and soy-based food samples (n = 6,857) were analyzed. Almost half of the samples (3,200; 47%) did not contain detectable concentrations of OTA. The remaining 3,657 samples contained OTA at 0.040 to 631 ng/g. Wheat, oats, milled products of other grains (such as rye and buckwheat), and to a lesser extent corn products and their derived foods were the most significant potential sources of OTA exposure for the Canadian population. Wine, grape juice, soy products, beer, dairy-based infant formula, and licorice candy were not significant contributors to OTA consumption. Spices had the highest OTA concentrations; but because so little is ingested, these foods are not considered to be a significant source of OTA. In contrast, infant formulas and cereals can be important dietary sources of OTA. Infant cereals containing oats and infant formulas containing soy had detectable concentrations of OTA, some of which exceeded the proposed Canadian guidelines. The prevalence and concentrations of OTA in major crops (wheat, corn, and oats) varied widely across years. Because these foods were purchased at retail stores, no information was available on the OTA concentrations in the raw materials, the storage conditions before purchase of the samples, or the origin of the ingredients (may include blends of raw materials from different years and/or different geographical regions of Canada); therefore, impact of these factors could not be assessed. Overall, 2.3% of the samples exceeded the proposed Canadian OTA regulatory limits and 2.7% exceeded the current European Union (EU) OTA regulatory limits. These results are consistent with a Health Canada exposure assessment published in 2010, despite the inclusion of a wider range of products and confirm the safety of foods widely

  2. Tomato yield responses to soil-incorporated dried distillers grains

    USDA-ARS?s Scientific Manuscript database

    Dried distiller's grains (DDGs) are a coproduct of dry-grind corn ethanol production, most of which are used for animal feed, and are sold for under $150/metric ton. Developing higher-value uses for DDGs can increase the profitability of corn-based ethanol. Although DDGs applied directly to a pott...

  3. Deficit irrigation effects on yield and yield components of grain sorghum

    USDA-ARS?s Scientific Manuscript database

    Development of sustainable and efficient irrigation strategies is a priority for producers faced with water shortages. A promising management strategy for improving water use efficiency (WUE) is managed deficit irrigation (MDI), which attempts to optimize yield and WUE by synchronizing crop water u...

  4. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  5. Detection of fumonisin b1 and ochratoxin a in grain products using microsphere-based fluid array immunoassays.

    PubMed

    Anderson, George P; Kowtha, Vasudha A; Taitt, Chris R

    2010-02-01

    Grain products are a staple of diets worldwide and therefore, the ability to accurately and efficiently detect foodborne contaminants such as mycotoxins is of importance to everyone. Here we describe an indirect competitive fluid array fluoroimmunoassay to quantify the mycotoxins, fumonisin B1 and ochratoxin A. Both toxins were immobilized to the surface of microspheres using a variety of intermediate molecules and binding of biotinylated "tracer" antibody tracers determined through flow cytometry using streptavidin-phycoerythrin conjugates and the Luminex100 flow cytometer. Competitive assays were developed where the binding of biotinylated monoclonal antibodies to fumonisin B and ochratoxin A was competitively inhibited by different concentrations of those toxins in solution. Concentrations of fumonisin giving 50% inhibition were 300 pg/mL in buffer, 100 ng/g in spiked oats, and 1 μg/g in spiked cornmeal; analogous concentrations for ochratoxin A were 30 ng/mL in buffer, 30 ng/g in spiked oats, and 10 ng/g in spiked corn. The future challenge will be to expand the number of mycotoxins tested both individually and in multiplexed format using this platform.

  6. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status.

    PubMed

    Howell, Tyson; Hale, Iago; Jankuloski, Ljupcho; Bonafede, Marcos; Gilbert, Matthew; Dubcovsky, Jorge

    2014-12-01

    This study identifies a small distal region of the 1RS chromosome from rye that has a positive impact on wheat yield. The translocation of the short arm of rye (Secale cereale L.) chromosome one (1RS) onto wheat (Triticum aestivum L.) chromosome 1B (1RS.1BL) is used in wheat breeding programs worldwide due to its positive effect on yield, particularly under abiotic stress. Unfortunately, this translocation is associated with poor bread-making quality. To mitigate this problem, the 1RS arm was engineered by the removal and replacement of two interstitial rye segments with wheat chromatin: a distal segment to introduce the Glu-B3/Gli-B1 loci from wheat, and a proximal segment to remove the rye Sec-1 locus. We used this engineered 1RS chromosome (henceforth 1RS(WW)) to develop and evaluate two sets of 1RS/1RS(WW) near isogenic lines (NILs). Field trials showed that standard 1RS lines had significantly higher yield and better canopy water status than the 1RS(WW) NILs in both well-watered and water-stressed environments. We intercrossed the 1RS and 1RS(WW) lines and generated two additional NILs, one carrying the distal (1RS(RW)) and the other carrying the proximal (1RS(WR)) wheat segment. Lines not carrying the distal wheat region (1RS and 1RS(WR)) showed significant improvements in grain yield and canopy water status compared to NILs carrying the distal wheat segment (1RS(WW) and 1RS(RW)), indicating that the 1RS region replaced by the distal wheat segment carries the beneficial allele(s). NILs without the distal wheat segment also showed higher carbon isotope discrimination and increased stomatal conductance, suggesting that these plants had improved access to water. The 1RS(WW), 1RS(WR) and 1RS(RW) NILs have been deposited in the National Small Grains Collection.

  7. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    PubMed

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  8. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil.

    PubMed

    Pedó, I; Sgarbieri, V C; Gutkoski, L C

    1999-01-01

    Four oat cultivars adapted for soil and climate conditions in the southern region of Brazil were evaluated for protein nutritive value. Evaluations were done both in vitro and in vivo. In vitro evaluation was done by essential amino acid profile, available lysine, amino acid scoring, and protein digestibility corrected amino acid-scoring (PDCAAS). Nitrogen balance indices and PER were determined in vivo with rats. In all four cultivars (UFP-15, UFP-16, CTC-03, UFRGS-14), lysine was the most limiting amino acid. Available lysine, amino acid score and PDCAAS were highest for cultivar UFRGS-14 and lowest for CTC-03. When compared to casein, only nitrogen retention for UFRGS-14 did not differ statistically (p>0.05); all other indices of protein quality were inferior to casein for the oat cultivars. The oat cultivars tended to be identical among themselves, except for apparent protein digestibility which was significantly higher in the UFRGS-14 and CTC-03 cultivars. On average, the PER values of the oat cultivars were 82% of casein; the net protein utilization was 88% of casein as determined in vivo and 49% by the estimation in vitro (PDCAAS).

  9. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of replacing maize grain and soybean meal with a xylose-treated wheat grain on feed intake and performance of dairy cows.

    PubMed

    Benninghoff, Jens; Hamann, Gregor; Steingaß, Herbert; Romberg, Franz-Josef; Landfried, Karl; Südekum, Karl-Heinz

    2017-06-01

    This study evaluated wheat grain which was treated with xylose in aqueous Ca-Mg lignosulphonate solution at elevated temperatures (WeiPass®) in order to reduce ruminal degradation of starch and crude protein. The two tested isoenergetic and isonitrogenous diets contained on dry matter (DM) basis either 16% maize grain and 6.4% soybean meal (Diet CON) or 17.8% xylose-treated wheat and 4.6% soybean meal (Diet Wheat). Thirty-six German Holstein dairy cows were assigned to one of the two groups according to parity, body weight after calving, and milk yield during the previous lactation. Data collection started at 21 d before the expected calving date until 120 d in milk. The average of DM intake, energy-corrected milk (ECM) yield, and milk fat and protein yields (all given as kg/d) were 18.9, 28.7, 1.25, and 1.02 for Diet CON and 19.3, 32.5, 1.36, and 1.11 for Diet Wheat, respectively. Only ECM and milk protein yields were greater (p < 0.05) for cows receiving Diet Wheat. In conclusion, the xylose-treated wheat grain can replace maize grain and part of soybean meal in diets for lactating dairy cows and may be an alternative feedstuff depending on overall ration composition and availability and costs of grain sources.

  11. Climatic Extremes and Food Grain Production in India

    NASA Astrophysics Data System (ADS)

    A, A.; Mishra, V.

    2015-12-01

    Climate change is likely to affect food and water security in India. India has witnessed tremendous growth in its food production after the green revolution. However, during the recent decades the food grain yields were significantly affected by the extreme climate and weather events. Air temperature and associated extreme events (number of hot days and hot nights, heat waves) increased significantly during the last 50 years in the majority of India. More remarkably, a substantial increase in mean and extreme temperatures was observed during the winter season in India. On the other hand, India witnessed extreme flood and drought events that have become frequent during the past few decades. Extreme rainfall during the non-monsoon season adversely affected the food grain yields and results in tremendous losses in several parts of the country. Here we evaluate the changes in hydroclimatic extremes and its linkage with the food grain production in India. We use observed food grain yield data for the period of 1980-2012 at district level. We understand the linkages between food grain yield and crop phenology obtained from the high resolution leaf area index and NDVI datasets from satellites. We used long-term observed data of daily precipitation and maximum and minimum temperatures to evaluate changes in the extreme events. We use statistical models to develop relationships between crop yields, mean and extreme temperatures for various crops to understand the sensitivity of these crops towards changing climatic conditions. We find that some of the major crop types and predominant crop growing areas have shown a significant sensitivity towards changes in extreme climatic conditions in India.

  12. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.

    PubMed

    Soong, Yean Yean; Quek, Rina Yu Chin; Henry, Christiani Jeyakumar

    2015-12-01

    Muffins made with wheat flour are a popular snack consumed in western and emerging countries. This study aimed to examine the content of amylose, glycemic response (GR) and glycemic index (GI) of muffins baked with refined wheat and rice flours, as well as wholegrain corn, oat and barley flours. This study adopted a randomized, controlled, crossover, non-blind design. Twelve healthy participants consumed wheat, rice, corn, oat and barley muffins once and the reference glucose solution three times in a random order on non-consecutive day. Capillary blood samples were taken every 15 min in the first 60 min and every 30 min for the remaining 60 min for blood glucose analysis. The Megazyme amylose/amylopectin assay procedure was employed to measure amylose content. The GR elicited from the consumption of wheat, rice and corn muffins was comparable between these samples but significantly greater when compared with oat and barley muffins. Consumption of wholegrain muffins, apart from corn muffin, blunted postprandial GR when compared with muffins baked with refined cereal flours. Muffins baked with wheat, rice, corn, oat and barley flours gave rise to GI values of 74, 79, 74, 53 and 55, respectively. The content of amylose was significantly higher in corn, oat and barley muffins than wheat and rice muffins. The greater content of amylose and fibre may play a part in the reduced glycemic potency of oat and barley muffins. Wheat flour can be substituted with oat and barley flours for healthier muffins and other bakery products.

  13. Photoperiod shift effects on yield characteristics of rice

    NASA Technical Reports Server (NTRS)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  14. Enhanced Erosion of Carbon Grains in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Johnson, R. E.; Salonen, E.; Nordlund, K. H.; Jurac, S.

    2001-12-01

    Grain creation and survival plays an important role in the overall mass balance, ionization state, and chemistry in the interstellar medium (ISM), in the early solar nebula and in the giant planet magnetospheres. Grain erosion by a high temperature plasma or in a shocked gas depends strongly on the values of the sputtering yield, Y. For instance, Draine [1] considered an energy dependence for Y extrapolated from high energy data and calculated a fractional erosion of less than 1% for a grain which encounters a shocked gas moving with a velocity vo < 90 km/s). Since carbon grains rapidly become hydrogenated in a space environment, we present new data based on accurate simulations for the sputtering of hydrogenated carbon surfaces [2]. The yield is larger at low velocities and is found to have a lower threshold for sputter erosion due to chemical sputtering effects. Here we present results of two sets of calculations. First we use the Draine model for erosion of a grain in a shock as in Jurac et al [3], but change the energy dependence of the sputtering yield based on our new simulation data. This leads to a grain destruction rate which is much larger than Draine's estimate. This worsens the problem of grain destruction in the ISM, which is already larger than currently accepted grain formation rates. Second we give the erosion rates vs. plasma temperature for such grains in a stationery plasma. These data can now be used for modeling grain erosion in the early solar system, in the solar wind or in a trapped plasma in a planetary magnetosphere. [1] B.T. Draine, Astrophys. Space Sci. 233, 111 (1995).\

  15. Sodium and Potassium Fluxes and Compartmentation in Roots of Atriplex and Oat 1

    PubMed Central

    Mills, David; Robinson, Kenneth; Hodges, Thomas K.

    1985-01-01

    K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions. Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+. Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole. PMID:16664273

  16. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield

    PubMed Central

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-01-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1–T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20–30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. PMID:26220082

  17. SEP events and wake region lunar dust charging with grain radii

    NASA Astrophysics Data System (ADS)

    Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu

    2017-01-01

    Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.

  18. New market opportunities for rice grains

    USDA-ARS?s Scientific Manuscript database

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  19. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies.

    PubMed

    Gangopadhyay, Nirupama; Hossain, Mohammad B; Rai, Dilip K; Brunton, Nigel P

    2015-06-12

    Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.

  20. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  1. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration

    PubMed Central

    Prasad, P. V. V.; Djanaguiraman, Maduraimuthu; Perumal, Ramasamy; Ciampitti, Ignacio A.

    2015-01-01

    Sorghum [Sorghum bicolor (L.) Moench] yield formation is severely affected by high temperature stress during reproductive stages. This study pursues to (i) identify the growth stage(s) most sensitive to high temperature stress during reproductive development, (ii) determine threshold temperature and duration of high temperature stress that decreases floret fertility and individual grain weight, and (iii) quantify impact of high daytime temperature during floret development, flowering and grain filling on reproductive traits and grain yield under field conditions. Periods between 10 and 5 d before anthesis; and between 5 d before- and 5 d after-anthesis were most sensitive to high temperatures causing maximum decreases in floret fertility. Mean daily temperatures >25°C quadratically decreased floret fertility (reaching 0% at 37°C) when imposed at the start of panicle emergence. Temperatures ranging from 25 to 37°C quadratically decreased individual grain weight when imposed at the start of grain filling. Both floret fertility and individual grain weights decreased quadratically with increasing duration (0–35 d or 49 d during floret development or grain filling stage, respectively) of high temperature stress. In field conditions, imposition of temperature stress (using heat tents) during floret development or grain filling stage also decreased floret fertility, individual grain weight, and grain weight per panicle. PMID:26500664

  2. Physical and molecular changes during the storage of gluten-free rice and oat bread.

    PubMed

    Hager, Anna-Sophie; Bosmans, Geertrui M; Delcour, Jan A

    2014-06-18

    Gluten-free bread crumb generally firms more rapidly than regular wheat bread crumb. We here combined differential scanning calorimetry (DSC), texture analysis, and time-domain proton nuclear magnetic resonance (TD (1)H NMR) to investigate the mechanisms underlying firming of gluten-free rice and oat bread. The molecular mobility of water and biopolymers in flour/water model systems and changes thereof after heating and subsequent cooling to room temperature were investigated as a basis for underpinning the interpretation of TD (1)H NMR profiles of fresh crumb. The proton distributions of wheat and rice flour/water model systems were comparable, while that of oat flour/water samples showed less resolved peaks and an additional population at higher T2 relaxation times representing lipid protons. No significant crumb moisture loss during storage was observed for the gluten-free bread loaves. Crumb firming was mainly caused by amylopectin retrogradation and water redistribution within bread crumb. DSC, texture, and TD (1)H NMR data correlated well and showed that starch retrogradation and crumb firming are much more pronounced in rice flour bread than in oat flour bread.

  3. [Effects of irrigation amount and stage on water consumption characteristics and grain yield of wheat].

    PubMed

    Wang, De-Mei; Yu, Zhen-Wen

    2008-09-01

    Field experiment was conducted in 2005 -2007 to study the effects of irrigation amount and stage on the water consumption characteristics, grain yield, and water use efficiency of wheat. The results showed that the variation coefficient of the proportion of soil water consumption amount to total water consumption amount was significantly higher than that of precipitation to total water consumption amount, suggesting the relatively wide regulation range of soil water use efficiency. The proportions of irrigation amount, precipitation, and soil water consumption amount to total water consumption amount were 31.0%, 38.9%, and 30.1% in treatment W3 (irrigated at jointing and flowering stages, with total irrigation amount of 120 mm), and 51.7%, 32.4%, and 15.9% in treatment W5 (irrigated before winter and at jointing, flowering and grain-filling stages, with total irrigation amount of 240 mm), respectively, indicating that treatment W3 had a significantly higher proportion of soil water consumption amount to total water consumption amount than treatment W5. Though treatments W2 (irrigated before winter and at jointing stage) and W3 (irrigated at jointing and flowering stages) had the same irrigation amount (120 mm), the water consumption amount during the period from flowering to maturing was significantly higher in W3 than in W2, while the water consumption amount before jointing was significantly lower in W3 than in W2. The water consumption pattern in treatment W3 was in agreement with the water requirement pattern of wheat, which was the physiological basis of high water use efficiency.

  4. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  5. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    PubMed

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  6. Safety of Adding Oats to a Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies.

    PubMed

    Pinto-Sánchez, María Inés; Causada-Calo, Natalia; Bercik, Premysl; Ford, Alexander C; Murray, Joseph A; Armstrong, David; Semrad, Carol; Kupfer, Sonia S; Alaedini, Armin; Moayyedi, Paul; Leffler, Daniel A; Verdú, Elena F; Green, Peter

    2017-08-01

    Patients with celiac disease should maintain a gluten-free diet (GFD), excluding wheat, rye, and barley. Oats might increase the nutritional value of a GFD, but their inclusion is controversial. We performed a systematic review and meta-analysis to evaluate the safety of oats as part of a GFD in patients with celiac disease. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases for clinical trials and observational studies of the effects of including oats in GFD of patients with celiac disease. The studies reported patients' symptoms, results from serology tests, and findings from histologic analyses. We used the GRADE approach to assess the quality of evidence. We identified 433 studies; 28 were eligible for analysis. Of these, 6 were randomized and 2 were not randomized controlled trials comprising a total of 661 patients-the remaining studies were observational. All randomized controlled trials used pure/uncontaminated oats. Oat consumption for 12 months did not affect symptoms (standardized mean difference: reduction in symptom scores in patients who did and did not consume oats, -0.22; 95% CI, -0.56 to 0.13; P = .22), histologic scores (relative risk for histologic findings in patients who consumed oats, 0.24; 95% CI, 0.01-4.8; P = .35), intraepithelial lymphocyte counts (standardized mean difference, 0.21; 95% CI, reduction of 1.44 to increase in 1.86), or results from serologic tests. Subgroup analyses of adults vs children did not reveal differences. The overall quality of evidence was low. In a systematic review and meta-analysis, we found no evidence that addition of oats to a GFD affects symptoms, histology, immunity, or serologic features of patients with celiac disease. However, there were few studies for many endpoints, as well as limited geographic distribution and low quality of evidence. Rigorous double-blind, placebo-controlled, randomized controlled trials, using commonly available oats sourced from

  7. Cadmium-induced accumulation of putrescine in oat and bean leaves

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Kaur-Sawhney, R.; Rajam, M. V.; Wettlaufer, S. H.; Galston, A. W.

    1986-01-01

    The effects of Cd2+ on putrescine (Put), spermidine (Spd), and spermine (Spm) titers were studied in oat and bean leaves. Treatment with Cd2+ for up to 16 hours in the light or dark resulted in a large increase in Put titer, but had little or no effect on Spd or Spm. The activity of arginine decarboxylase (ADC) followed the pattern of Put accumulation, and experiments with alpha-difluoromethylarginine established that ADC was the enzyme responsible for Put increase. Concentrations of Cd2+ as low as 10 micromolar increased Put titer in oat segments. In bean leaves, there was a Cd(2+)-induced accumulation of Put in the free and soluble conjugated fractions, but not in the insoluble fraction. This suggests a rapid exchange between Put that exists in the free form and Put found in acid soluble conjugate forms. It is concluded that Cd2+ can act like certain other stresses (K+ and Mg2+ deficiency, excess NH4+, low pH, salinity, osmotic stress, wilting) to induce substantial increases in Put in plant cells.

  8. Molecular Basis of the Increase in Invertase Activity Elicited by Gravistimulation of Oat-Shoot Pulvini

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Kim, Donghern; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom) increase in invertase activity is elicited by gravistimulation in oatshoot pulvini starting within 3h after treatment. In order to analyze the regulation of invertase gene expression in this system, we examined the effect of gravistimulation on invertase mRNA induction. Total RNA and poly(A)(+)RNA, isolated from oat pulvini, and two oligonucleotide primers, corresponding to two conserved amino-acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the Polymerase Chain Reaction (PCR). A partial-length cDNA (550 base pairs) was obtained and characterized. There was a 52 % deduced amino-acid sequence homology to that of carrot beta-fructosi- dase and a 48 % homology to that of tomato invertase. Northern blot analysis showed that there was an obvious transient accumulation of invertase mRNA elicited by gravistimulation of oat pulvini. The mRNA was rapidly induced to a maximum level at 1h following gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher (five-fold) than that in the top half of the pulvinus tissue. The induction of invertase mRNA was consistent with the transient enhancement of invertase activity during the graviresponse of the pulvinus. These data indicate that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional and/or translational levels. Southern blot analysis showed that there were four genomic DNA fragments hybridized to the invertase cDNA. This suggests that an invertase gene family may exist in oat plants.

  9. Swedish children with celiac disease comply well with a gluten-free diet, and most include oats without reporting any adverse effects: a long-term follow-up study.

    PubMed

    Tapsas, Dimitrios; Fälth-Magnusson, Karin; Högberg, Lotta; Hammersjö, Jan-Åke; Hollén, Elisabet

    2014-05-01

    The only known treatment for celiac disease is a gluten-free diet (GFD), which initially meant abstention from wheat, rye, barley, and oats. Recently, oats free from contamination with wheat have been accepted in the GFD. Yet, reports indicate that all celiac disease patients may not tolerate oats. We hypothesized that celiac children comply well with a GFD and that most have included oats in their diet. A food questionnaire was used to check our patients; 316 questionnaires were returned. Mean time on the GFD was 6.9 years, and 96.8% of the children reported that they were trying to keep a strict GFD. However, accidental transgressions occurred in 263 children (83.2%). In 2 of 3 cases, mistakes took place when the patients were not at home. Symptoms after incidental gluten intake were experienced by 162 (61.6%) patients, mostly (87.5%) from the gastrointestinal tract. Small amounts of gluten (<4 g) caused symptoms in 38% of the cases, and 68% reported symptoms during the first 3 hours after gluten consumption. Oats were included in the diet of 89.4% of the children for a mean of 3.4 years. Most (81.9%) ate purified oats, and 45.3% consumed oats less than once a week. Among those who did not consume oats, only 5.9% refrained because of symptoms. General compliance with the GFD was good. Only the duration of the GFD appeared to influence adherence to the diet. Most patients did not report adverse effects after long-term consumption of oats. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dietary patterns and whole grain cereals in the Scandinavian countries--differences and similarities. The HELGA project.

    PubMed

    Engeset, Dagrun; Hofoss, Dag; Nilsson, Lena M; Olsen, Anja; Tjønneland, Anne; Skeie, Guri

    2015-04-01

    To identify dietary patterns with whole grains as a main focus to see if there is a similar whole grain pattern in the three Scandinavian countries; Denmark, Sweden and Norway. Another objective is to see if items suggested for a Nordic Food Index will form a typical Nordic pattern when using factor analysis. The HELGA study population is based on samples of existing cohorts: the Norwegian Women and Cancer Study, the Swedish Västerbotten cohort and the Danish Diet, Cancer and Health study. The HELGA study aims to generate knowledge about the health effects of whole grain foods. The study included a total of 119 913 participants. The associations among food variables from FFQ were investigated by principal component analysis. Only food groups common for all three cohorts were included. High factor loading of a food item shows high correlation of the item to the specific diet pattern. The main whole grain for Denmark and Sweden was rye, while Norway had highest consumption of wheat. Three similar patterns were found: a cereal pattern, a meat pattern and a bread pattern. However, even if the patterns look similar, the food items belonging to the patterns differ between countries. High loadings on breakfast cereals and whole grain oat were common in the cereal patterns for all three countries. Thus, the cereal pattern may be considered a common Scandinavian whole grain pattern. Food items belonging to a Nordic Food Index were distributed between different patterns.

  11. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying.

    PubMed

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min

    2012-08-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

  12. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcés, G., E-mail: ggarces@cenim.csic.es

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallizedmore » grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.« less

  13. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress

    PubMed Central

    2014-01-01

    Background Drought is one of the most important abiotic stresses that cause drastic reduction in rice grain yield (GY) in rainfed environments. The identification and introgression of QTL leading to high GY under drought have been advocated to be the preferred breeding strategy to improve drought tolerance of popular rice varieties. Genetic control of GY under reproductive-stage drought stress (RS) was studied in two BC1F4 mapping populations derived from crosses of Kali Aus, a drought-tolerant aus cultivar, with high-yielding popular varieties MTU1010 and IR64. The aim was to identify QTL for GY under RS that show a large and consistent effect for the trait. Bulk segregant analysis (BSA) was used to identify significant markers putatively linked with high GY under drought. Results QTL analysis revealed major-effect GY QTL: qDTY 1.2 , qDTY 2.2 and qDTY 1.3 , qDTY 2.3 (DTY; Drought grain yield) under drought consistently over two seasons in Kali Aus/2*MTU1010 and Kali Aus/2*IR64 populations, respectively. qDTY 1.2 and qDTY 2.2 explained an additive effect of 288 kg ha−1 and 567 kg ha−1 in Kali Aus/2*MTU1010, whereas qDTY 1.3 and qDTY 2.3 explained an additive effect of 198 kg ha−1 and 147 kg ha−1 in Kali Aus/2*IR64 populations, respectively. Epistatic interaction was observed for DTF (days to flowering) between regions on chromosome 2 flanked by markers RM154–RM324 and RM263–RM573 and major epistatic QTL for GY showing interaction between genomic locations on chromosome 1 at marker interval RM488–RM315 and chromosome 2 at RM324–RM263 in 2012 DS and 2013 DS RS in Kali Aus/2*IR64 mapping populations. Conclusion The QTL, qDTY 1.2 , qDTY 1.3 , qDTY 2.2 , and qDTY 2.3, identified in this study can be used to improve GY of mega varieties MTU1010 and IR64 under different degrees of severity of drought stress through marker-aided backcrossing and provide farmers with improved varieties that effectively combine high yield potential with good yield

  14. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  15. Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system.

    PubMed

    Kummu, M; Sieppi, E; Koponen, J; Laatio, L; Vähäkangas, K; Kiviranta, H; Rautio, A; Myllynen, P

    2015-10-01

    Perfluorinated alkyl acids (PFAAs) are widely used in industry and consumer products. Pregnant women are exposed to PFAAs and their presence in umbilical cord blood represents fetal exposure. Interestingly, PFAAs are substrates for organic anion transporters (OAT) of which OAT4 is expressed in human placenta. To evaluate the contribution of OAT4 and ATP-binding cassette transporter G2 (ABCG2) proteins in the transplacental transfer of perfluoro octane sulfonate (PFOS) and perfluoro octanoate (PFOA) an ex vivo dual recirculating human placental perfusion was used. Altogether 8 placentas from healthy mothers with uncomplicated pregnancies were successfully perfused. Both PFOS and PFOA crossed the placenta as suggested by in vivo data in the literature. The expression of OAT4 and ABCG2 proteins were studied by immunoblotting and correlation with the transfer index %(TI %) of PFOS and PFOA at 120 and 240 min (n = 4) was studied. The expression of OAT4 was in negative correlation with TI % of PFOA (R(2) = 0.92, p = 0.043) and PFOS (R(2) = 0.99, p = 0.007) at 120 min while at 240 min the correlation was statistically significant only with PFOA. The expression of ABCG2 did not correlate with TI% of PFOS or PFOA. Data obtained in this study suggest the involvement of OAT4 in placental passage of PFAAs. Placental passage of PFOS and PFOA is modified by the transporter protein OAT4 but not by ABCG2. This is the first study indicating that OAT4 may decrease the fetal exposure to PFAAs and protect the fetus after maternal exposure to PFAAs but further studies are needed to confirm our findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  17. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet; Lavender, Curt

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  18. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo).

    PubMed

    Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K

    2012-05-01

    Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.

  19. A decade of precision agriculture impacts on grain yield and yield variation

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have do...

  20. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE PAGES

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; ...

    2017-10-27

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  1. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sychantha, David; Jones, Carys S.; Little, Dustin J.

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  2. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    PubMed Central

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; Howell, P. Lynne

    2017-01-01

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens. PMID:29077761

  3. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin.

    PubMed

    Furuya, Takahito; Takehara, Issey; Shimura, Asuka; Kishimoto, Hisanao; Yasujima, Tomoya; Ohta, Kinya; Shirasaka, Yoshiyuki; Yuasa, Hiroaki; Inoue, Katsuhisa

    2018-01-15

    Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (K m ) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent K m of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials.

    PubMed

    He, Li-xia; Zhao, Jian; Huang, Yuan-sheng; Li, Yong

    2016-03-01

    Increasing oats and beta-glucan extract intake has been associated with improved glycemic control, which is associated with the reduction in the development of diabetes. This study aims to assess the different effects between oat (whole and bran) and beta-glucan extract intake on glycemic control and insulin sensitivity. PubMed, Embase, Medline, The Cochrane Library, CINAHL and Web of Science were searched up to February 2014. We included randomized controlled trials with interventions that lasted at least four weeks that compared oats and beta-glucan (extracted from oats or other sources) intake with a control. A total of 1351 articles were screened for eligibility, and relevant data were extracted from 18 studies (n = 1024). Oat product dose ranged from 20 g d(-1) to 136 g d(-1), and beta-glucan extract dose ranged from 3 g d(-1) to 10 g d(-1). Compared with the control, oat intake resulted in a greater decrease in fasting glucose and insulin of subjects (P < 0.05), but beta-glucan extract intake did not. Furthermore, oat intake resulted in a greater decrease in glycosylated hemoglobin (HbA1c) (P < 0.001, I(2) = 0%) and fasting glucose (P < 0.001, I(2) = 68%) after removing one study using a concentrate and a different design and fasting insulin of type 2 diabetes (T2D) (P < 0.001, I(2) = 0%). The intake of oats and beta-glucan extracted from oats were effective in decreasing fasting glucose (P = 0.007, I(2) = 91%) and fasting insulin of T2D (P < 0.001, I(2) = 0%) and tented to lower HbA1c (P = 0.09, I(2) = 92%). Higher consumption of whole oats and oat bran, but not oat or barley beta-glucan extracts, are associated with lower HbA1c, fasting glucose and fasting insulin of T2D, hyperlipidaemic and overweight subjects, especially people with T2D, which supports the need for clinical trials to evaluate the potential role of oats in approaching to the management of glycemic control and insulin sensitivity of diabetes or metabolic syndrome subjects.

  5. OATE Journal: Oklahoma Association of Teacher Educators. Volume 14, Spring 2010

    ERIC Educational Resources Information Center

    Green, Malinda Hendricks, Ed.

    2010-01-01

    The "OATE Journal" is published annually by the Oklahoma Association of Teacher Educators. Articles in this issue include: (1) "The Transition of Middle School Students into High School" by Aric Sappington, Malinda Hendricks Green, Jennifer J. R. Endicott, and Susan C. Scott; (2) "Graduate Students' Perceptions of Teacher…

  6. Effects of dietary oat, barley, and guar gums on serum and liver lipid concentrations in diet-induced hypertriglyceridemic rats.

    PubMed

    Oda, T; Aoe, S; Imanishi, S; Kanazawa, Y; Sanada, H; Ayano, Y

    1994-04-01

    Effects of dietary oat, barley, and guar gums on serum and liver triglyceride or cholesterol concentrations were examined in diet-induced hypertriglyceridemic rats. Male Sprague-Dawley rats were fed a hypertriglyceridemic diet that contained 20% coconut oil, 17.5% fructose, 17.5% sucrose, and 5% cellulose at 4 weeks of age for 14 days. In the gum-supplemented diets, 2% cellulose was replaced by oat gum, barley gum, or guar gum. Hypertriglyceridemia was observed in the control group, whereas serum cholesterol concentration was not increased. All of the gums lowered serum and liver cholesterol concentrations except barley gum which had no significant effect on liver cholesterol. Both oat and barley gums suppressed the elevation of serum and liver triglyceride concentrations but guar gum had no effect.

  7. Crop water production functions for grain sorghum and winter wheat

    USDA-ARS?s Scientific Manuscript database

    Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...

  8. Synergistic effect in carbon coated LiFePO4 for high yield spontaneous grafting of diazonium salt. Structural examination at the grain agglomerate scale.

    PubMed

    Madec, Lénaïc; Robert, Donatien; Moreau, Philippe; Bayle-Guillemaud, Pascale; Guyomard, Dominique; Gaubicher, Joël

    2013-08-07

    Molecular grafting of p-nitrobenzene diazonium salt at the surface of (Li)FePO4-based materials was thoroughly investigated. The grafting yields obtained by FTIR, XPS, and elemental analysis for core shell LiFePO4-C are found to be much higher than the sum of those associated with either the LiFePO4 core or the carbon shell alone, thereby revealing a synergistic effect. Electrochemical, XRD, and EELS experiments demonstrate that this effect stems from the strong participation of the LiFePO4 core that delivers large amounts of electrons to the carbon substrate at a constant energy, above the Fermi level of the diazonium salt. Correspondingly large multilayer anisotropic structures that are associated with outstanding grafting yields could be observed from TEM experiments. Results therefore constitute strong evidence of a grafting mechanism where homolytic cleavage of the N2(+) species occurs together with the formation and grafting of radical nitro-aryl intermediates. Although the oxidation and concomitant Li deintercalation of LiFePO4 grains constitute the main driving force of the functionalization reaction, EFTEM EELS mapping shows a striking lack of spatial correlation between grafted grains and oxidized ones.

  9. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

    PubMed Central

    Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  10. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    PubMed

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  11. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  12. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    PubMed

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  13. Yield potential of pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  14. Physical properties of gluten-free sugar cookies made from amaranth-oat composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was blended with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. These composites improved nutritional value, water holding capacity and the pasting properties along with their gluten fr...

  15. Functional properties of gluten-free sugar cookies made from amaranth-oat composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was blended with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. These composites improved nutritional value, water holding capacity and the pasting properties along with their gluten fr...

  16. Digital image sensor-based assessment of the status of oat (Avena sativa L.) crops after frost damage.

    PubMed

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu's method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.

  17. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  18. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  19. Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    PubMed Central

    2010-01-01

    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426

  20. Natural Variations in SLG7 Regulate Grain Shape in Rice

    PubMed Central

    Zhou, Yong; Miao, Jun; Gu, Haiyong; Peng, Xiurong; Leburu, Mamotshewa; Yuan, Fuhai; Gu, Houwen; Gao, Yun; Tao, Yajun; Zhu, Jinyan; Gong, Zhiyun; Yi, Chuandeng; Gu, Minghong; Yang, Zefeng; Liang, Guohua

    2015-01-01

    Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance. PMID:26434724

  1. Natural Variations in SLG7 Regulate Grain Shape in Rice.

    PubMed

    Zhou, Yong; Miao, Jun; Gu, Haiyong; Peng, Xiurong; Leburu, Mamotshewa; Yuan, Fuhai; Gu, Houwen; Gao, Yun; Tao, Yajun; Zhu, Jinyan; Gong, Zhiyun; Yi, Chuandeng; Gu, Minghong; Yang, Zefeng; Liang, Guohua

    2015-12-01

    Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance. Copyright © 2015 by the Genetics Society of America.

  2. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    PubMed

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  4. The Expression of TaRca2-α Gene Associated with Net Photosynthesis Rate, Biomass and Grain Yield in Bread Wheat (Triticum aestivum L.) under Field Conditions

    PubMed Central

    Saeed, Iqbal; Bachir, Daoura Goudia; Chen, Liang; Hu, Yin-Gang

    2016-01-01

    Improvement in activation of Rubisco by Rubisco activase can potentially enhance CO2 assimilation and photosynthetic efficiency in plants. The three homoeologous copies of TaRca2-α were identified on chromosomes 4AL, 4BS and 4DS (TaRca2-α-4AL, TaRca2-α-4BS, and TaRca2-α-4DS) in bread wheat. Expression patterns of the three copies at heading (Z55), anthesis (Z67) and grain-filling (Z73) stages were investigated through qRT-PCR analyses in a panel of 59 bread wheat genotypes and their effects on net photosynthesis rate (Pn), biomass plant-1 (BMPP) and grain yield plant-1 (GYPP) were further explored. Different but similar expression patterns were observed for the three copies of TaRca2-α at the three growth stages with highest expression at grain-filling stage. TaRca2-α-4BS expressed higher at the three stages than TaRca2-α-4AL and TaRca2-α-4DS. The 59 genotypes could be clustered into three groups as high (7 genotypes), intermediate (41 genotypes) and low (11 genotypes) expression based on the expression of the three copies of TaRca2-α at three growth stages. Significant variations (P<0.01) were observed among the three groups of bread wheat genotypes for Pn, BMPP and GYPP. Generally, the genotypes with higher TaRca2-α expression also showed higher values for Pn, BMPP and GYPP. The expressions of the three copies of TaRca2-α at heading, anthesis and grain-filling stages were positively correlated with Pn, BMPP and GYPP (P<0.01) with stronger association for TaRca2-α-4BS at grain-filling stage. These results revealed that the expression of TaRca2-α contribute substantially to Pn, BMPP and GYPP, and suggested that manipulating TaRca-α expression may efficiently improve Pn, BMPP and GYPP in bread wheat and detecting TaRca-α expression levels with emphasis on TaRca2-α-4BS may be a positive strategy for selection in improving photosynthetic efficiency and grain yield of bread wheat. PMID:27548477

  5. Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite

    NASA Astrophysics Data System (ADS)

    van Aken, D. C.; Krajewski, P. E.; Vyletel, G. M.; Allison, J. E.; Jones, J. W.

    1995-06-01

    Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter.

  6. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn.

    PubMed

    Li, Y L; Niu, S Z; Dong, Y B; Cui, D Q; Wang, Y Z; Liu, Y Y; Wei, M G

    2007-06-01

    Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F(2:3) lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F(2:3) population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.

  7. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    PubMed

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls

    USDA-ARS?s Scientific Manuscript database

    The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...

  9. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khan, Waqas-Ud-Din; Iqbal, Muhammad; Kausar, Salma; Ali, Shafaqat; Rizwan, Muhammad; Virk, Zaheer Abbas

    2016-09-01

    Rice ( Oryza sativa L.) is one of the main staple food crops which is inherently low in micronutrients, especially iron (Fe), and can lead to severe Fe deficiency in populations having higher consumption of rice. Soils polluted with nickel (Ni) can cause toxicity to rice and decreased Fe uptake by rice plants. We investigated the potential role of biochar (BC) and gravel sludge (GS), alone and in combination, for in situ immobilization of Ni in an industrially Ni-contaminated soil at original and sulfur-amended altered soil pH. Our further aim was to increase Fe bioavailability to rice plants by the exogenous application of ferrous sulfate to the Ni-immobilized soil. Application of the mixture of both amendments reduced grain Ni concentration, phytate, Phytate/Fe, Phyt/Zn molar ratios, and soil DTPA-extractable Ni. In addition, the amendment mixture increased 70 % Fe and 229 % ferritin concentrations in rice grains grown in the soil at original pH. The Fe and ferritin concentrations in S-treated soil was increased up to 113 and 383 % relative to control respectively. This enhanced Fe concentration and corresponding ferritin in rice grains can be attributed to Ni/Fe antagonism where Ni has been immobilized by GS and BC mixture. This proposed technique can be used to enhance growth, yield, and Fe biofortification in rice by reducing soil pH while in parallel in situ immobilizing Ni in polluted soil.

  10. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content.

    PubMed

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes.

  11. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    PubMed Central

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  12. [Effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics, photosynthesis and grain yield of winter wheat].

    PubMed

    Man, Jian-guo; Yu, Zhen-wen; Shi, Yu; Zhang, Yong-li

    2015-08-01

    Field experiments were conducted during 2012-2014 winter wheat growing seasons. Six irrigation treatments were designed: rainfed, W0; a local irrigation practice that irrigated at jointing and anthesis with 60 mm each time, W1; four irrigation treatments were designed with target relative soil moisture of 65% field capacity (FC) at jointing and 70% FC at anthesis in 0-20 (W2) 0-40 (W3), 0-60 (W4) , and 0-140 cm (W5) soil layers, respectively, to study the effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics and photosynthesis and grain yield of winter wheat. The irrigation amounts at jointing in W1 and W4 were the highest, followed by W3 treatment, W2 and W5 were the lowest. The irrigation amounts at anthesis and total irrigation amounts were ranked as W5 > Wl, W4 > W3 > W2, the total water consumption in W3 was higher than that in W2, but had no difference with that in W1, W4 and W5 treatments, W3 had the higher soil water consumption than W1, W4 and W5 treatments, and the soil water consumption in 40-140 cm soil layers from jointing to anthesis and in 60-140 cm soil layers from anthesis to maturity in W3 were significantly higher than the other treatments. The photosynthetic rate, transpiration rate and water use efficiency of flag leaf at middle stage of grain filling from the W3 treatment were the highest, followed by the W1 and W4 treatments, and W0 treatment was the lowest. In the two growing seasons, the grain yield and water use efficiency in the W3 were 9077-9260 kg · hm(-2) and 20.7-20.9 kg · hm(-2) · mm(-1), respectively, which were higher than those from the other treatments, and the irrigation water productivity in the W3 was the highest. As far as high-yield and high-water use efficiency were concerned in this experiment, the most appropriate soil layer for measuring moisture content was 0-40 cm.

  13. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  14. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.

    PubMed

    Elsgaard, L; Børgesen, C D; Olesen, J E; Siebert, S; Ewert, F; Peltonen-Sainio, P; Rötter, R P; Skjelvåg, A O

    2012-01-01

    Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.

  15. Effects of oat β-glucan consumption at breakfast on ad libitum eating, appetite, glycemia, insulinemia and GLP-1 concentrations in healthy subjects.

    PubMed

    Zaremba, Suzanne M M; Gow, Iain F; Drummond, Sandra; McCluskey, Jane T; Steinert, Robert E

    2018-06-18

    There is evidence that oat β-glucan lowers appetite and ad libitum eating; however, not all studies are consistent, and the underpinning mechanisms are not entirely understood. We investigated the effects of 4 g high molecular weight (MW) oat β-glucan on ad libitum eating, subjective appetite, glycemia, insulinemia and plasma GLP-1 responses in 33 normal-weight subjects (22 female/11 male, mean age (y): 26.9 ± 1.0, BMI (kg/m 2 ): 23.5 ± 0.4). The study followed a randomised double-blind, cross-over design with subjects fed two test breakfasts with and without oat β-glucan followed by an ad libitum test meal on two different days. Blood samples and ratings for subjective appetite were collected postprandially at regular time intervals. Oat β-glucan increased feelings of fullness (p = 0.048) and satiety (p = 0.034), but did not affect energy and amount eaten at the ad libitum test meal. There was a treatment by time interaction for plasma GLP-1, plasma insulin and blood glucose. GLP-1 was significantly reduced at 90 min (p = 0.021), blood glucose at 30 min (p = 0.008) and plasma insulin at 30 and 60 min (p = 0.002 and 0.017, respectively) following the oat β-glucan breakfast when compared with the control breakfast. Four grams of high MW oat β-glucan lowers appetite but not ad libitum eating and beneficially modulates postprandial glycaemia, it does however, not increase plasma GLP-1 secretion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    PubMed

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  17. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.

    PubMed

    Kurdziel, Magdalena; Filek, Maria; Łabanowska, Maria

    2018-05-01

    UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O 2 -• , H 2 O 2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Ammonium as sole N source improves grain quality in wheat.

    PubMed

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  19. Comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepfer, M.; Cleland, R.E.

    The acid-induced loosening of cell walls of Valonia ventricosa has been compared to that of frozen-thawed oat coleoptiles. The two acid extension responses are similar in regard to the shape of the pH response curve and the increase in plastic compliance induced by acid treatment. In both systems the acid response can be inhibited by Ca/sup 2 +/ and in both the removal of the protons leads to a rapid termination of wall loosening. The two responses differ in several significant ways, however. The acid-induced extension of Valonia walls is more rapid than that of coleoptile walls, but of smallermore » total magnitude. Acid-induced loosening can occur in Valonia without the wall being under tension, but not in coleoptiles. The acid-induced extension of Valonia walls is not inhibited by 8 molar urea, whereas the response in oat coleoptiles is completely inhibited by this treatment. Ethylenediaminetetraacetate (EDTA) can cause wall loosening in Valonia comparable to that produced by low pH, whereas in coleoptiles EDTA causes a much smaller response. These results with Valonia are consistent with a mechanism of acid-induced wall loosening in which a central role is played by the displacement of Ca/sup 2 +/ from the wall, while the larger part of acid-induced wall loosening in oat coleoptiles appears to be via a different mechanism.« less

  20. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    PubMed

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.