Sample records for oatp2b1-mediated estrone-3-sulfate uptake

  1. Characterization of ursodeoxycholic and norursodeoxycholic acid as substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and NTCP.

    PubMed

    König, Jörg; Klatt, Sabine; Dilger, Karin; Fromm, Martin F

    2012-08-01

    Ursodeoxycholic acid (UDCA) is the only approved treatment for primary biliary cirrhosis, and norursodeoxycholic acid (norUDCA) is currently tested in clinical trials for future treatment of primary sclerosing cholangitis because of beneficial effects in cholestatic Mdr2 knock-out mice. Uptake of UDCA and norUDCA into hepatocytes is believed to be a prerequisite for subsequent metabolism and therapeutic action. However, the molecular determinants of hepatocellular uptake of UDCA and norUDCA are poorly understood. We therefore investigated whether UDCA and norUDCA are substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and Na(+) -taurocholate co-transporting polypeptide (NTCP), which are localized in the basolateral membrane of hepatocytes. Uptake of [(3) H]UDCA and [(14) C]norUDCA into Human embryonic kidney (HEK) cells stably expressing OATP1B1, OATP1B3, OATP2B1 or NTCP was investigated and compared with uptake into vector control cells. Uptake ratios were calculated by dividing uptake into transporter-transfected cells by uptake into respective control cells. Uptake ratios of OATP1B1-, OATP1B3- and OATP2B1-mediated UDCA and norUDCA uptake were at maximum 1.23 and 1.49, respectively. Uptake of UDCA was significantly higher into HEK-NTCP cells only at the lowest tested concentration (1 μM, p < 0.001) compared with the control cells with an uptake ratio of 1.34-fold. NorUDCA was not significantly transported by NTCP. The low uptake rates suggest that OATP1B1, OATP1B3, OATP2B1 and NTCP are not relevant for hepatocellular uptake and effects of UDCA and norUDCA in human beings. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  2. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver.

    PubMed

    Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  3. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-02

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  4. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-03-14

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.

  5. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions

    PubMed Central

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-01-01

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs. PMID:29538325

  6. Generation of Bayesian prediction models for OATP-mediated drug-drug interactions based on inhibition screen of OATP1B1, OATP1B1∗15 and OATP1B3.

    PubMed

    van de Steeg, E; Venhorst, J; Jansen, H T; Nooijen, I H G; DeGroot, J; Wortelboer, H M; Vlaming, M L H

    2015-04-05

    Human organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3 are important hepatic uptake transporters. Early assessment of OATP1B1/1B3-mediated drug-drug interactions (DDIs) is therefore important for successful drug development. A promising approach for early screening and prediction of DDIs is computational modeling. In this study we aimed to generate a rapid, single Bayesian prediction model for OATP1B1, OATP1B1∗15 and OATP1B3 inhibition. Besides our previously generated HEK-OATP1B1 and HEK-OATP1B1∗15 cells, we now generated and characterized HEK-OATP1B3 cells. Using these cell lines we investigated the inhibitory potential of 640 FDA-approved drugs from a commercial library (10μM) on the uptake of [(3)H]-estradiol-17β-d-glucuronide (1μM) by OATP1B1, OATP1B1∗15, and OATP1B3. Using a cut-off of ⩾60% inhibition, 8% and 7% of the 640 drugs were potent OATP1B1 and OATP1B1∗15 inhibitors, respectively. Only 1% of the tested drugs significantly inhibited OATP1B3, which was not sufficient for Bayesian modeling. Modeling of OATP1B1 and OATP1B1∗15 inhibition revealed that presence of conjugated systems and (hetero)cycles with acceptor/donor atoms in- or outside the ring enhance the probability of a molecule binding these transporters. The overall performance of the model for OATP1B1 and OATP1B1∗15 was ⩾80%, including evaluation with a true external test set. Our Bayesian classification model thus represents a fast, inexpensive and robust means of assessing potential binding of new chemical entities to OATP1B1 and OATP1B1∗15. As such, this model may be used to rank compounds early in the drug development process, helping to avoid adverse effects in a later stage due to inhibition of OATP1B1 and/or OATP1B1∗15. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of DNA methylation profile on OATP3A1 and OATP4A1 transcript levels in colorectal cancer.

    PubMed

    Rawłuszko-Wieczorek, Agnieszka Anna; Horst, Nikodem; Horbacka, Karolina; Bandura, Artur Szymon; Świderska, Monika; Krokowicz, Piotr; Jagodziński, Paweł Piotr

    2015-08-01

    Epidemiological studies indicate that 17β-estradiol (E2) prevents colorectal cancer (CRC). Organic anion transporting polypeptides (OATPs) are involved in the cellular uptake of various endogenous and exogenous substrates, including hormone conjugates. Because transfer of estrone sulfate (E1-S) can contribute to intra-tissue conversion of estrone to the biologically active form -E2, it is evident that the expression patterns of OATPs may be relevant to the analysis of CRC incidence and therapy. We therefore evaluated DNA methylation and transcript levels of two members of the OATP family, OATP3A1 and OATP4A1, that may be involved in E1-S transport in colorectal cancer patients. We detected a significant reduction in OATP3A1 and a significant increase in OATP4A1 mRNA levels in cancerous tissue, compared with histopathologically unchanged tissue (n=103). Moreover, we observed DNA hypermethylation in the OATP3A1 promoter region in a small subset of CRC patients and in HCT116 and Caco-2 colorectal cancer cell lines. We also observed increased OATP3A1 transcript following treatment with 5-aza-2-deoxycytidine and sodium butyrate. The OATP4A1 promoter region was hypomethylated in analyzed tissues and CRC cell lines and was not affected by these treatments. Our results suggest a potential mechanism for OATP3A1 downregulation that involves DNA methylation during colorectal carcinogenesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  9. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  10. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors.

    PubMed

    Choi, Min-Koo; Shin, Ho Jung; Choi, Young-Lim; Deng, Jian-Wei; Shin, Jae-Gook; Song, Im-Sook

    2011-01-01

    The purpose of this study was to investigate the effect of genetic variations in organic anion-transporting polypeptide 1B1 (OATP1B1) and Na(+)/taurocholate co-transporting polypeptide (NTCP) on the uptake of various statins having different affinities for these transporters. The functional activities and simultaneous expression of NTCP and OATP1B1 were confirmed by the uptake of taurocholate and estrone-3-sulphate as representative substrates for NTCP and OATP1B1, respectively, and by an immunofluorescence analysis. The substrate specificities of NTCP and OATP1B1 for statins and the effects of genetic variations on the uptake of rosuvastatin, pitavastatin, and atorvastatin were measured. Based on the K(m) values and intrinsic clearances of the three statins, pitavastatin was taken up more efficiently than rosuvastatin and atorvastatin by OATP1B1. Consequently, the cellular accumulation of pitavastatin was modulated according to the genetic variation of OATP1B1 (OATP1B1*15), rather than NTCP*2. In contrast, NTCP*2 displayed greater transport of atorvastatin and rosuvastatin, compared with NTCP wild type. Thus, the measurements of decreased rosuvastatin and atorvastatin transport by OATP1B1*15 were confounded by the presence of NTCP and its genetic variant, NTCP*2. In conclusion, the functional consequences of genetic variants of NTCP and OATP1B1 may be different for various statins, depending on the substrate specificity of the OATP1B1 and NTCP transporters.

  11. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCAmore » transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.« less

  12. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  13. Metabolism of dehydroepiandrosterone sulfate and estrone-sulfate by human platelets.

    PubMed

    Garrido, A; Munoz, Y; Sierralta, W; Valladares, L

    2012-01-01

    The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.

  14. Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1

    PubMed Central

    Gui, Chunshan; Hagenbuch, Bruno

    2009-01-01

    The liver-specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone-3-sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site-directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1-mediated estrone-3-sulfate transport. Comparison of the kinetics of estrone-3-sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [d-penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1. PMID:19760661

  15. Age-dependent activity of the uptake transporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood.

    PubMed

    Fattah, Sarinj; Augustijns, Patrick; Annaert, Pieter

    2015-01-01

    Recognition of the role of hepatic drug transporters in elimination of xenobiotics continues to grow. Hepatic uptake transporters, such as hepatic isoforms of the organic anion-transporting polypeptide (Oatp) family as well as the bile acid transporter Na(+)-taurocholate cotransporting polypeptide (Ntcp) have been studied extensively both at the mRNA and protein expression levels in adults. However, in pediatric/juvenile populations, there continues to be a knowledge gap about the functional activity of these transporters. Therefore, the aim of this study was to examine the functional maturation of Ntcp and Oatp isoforms as major hepatic transporters. Hepatocytes were freshly isolated from rats aged between birth and 8 weeks. Transporter activities were assessed by measuring the initial uptake rates of known substrates: taurocholate (TCA) for Ntcp and sodium fluorescein (NaFluo) for Oatp. Relative to adult values, uptake clearance of TCA in hepatocytes from rats aged 0, 1, 2, 3, and 4 weeks reached 19, 43, 22, 46, and 63%, respectively. In contrast, Oatp-mediated NaFluo uptake showed a considerably slower developmental pattern: uptake clearance of NaFluo in hepatocytes from rats aged 0, 1, 2, 3, 4, and 6 weeks were 24, 20, 19, 8, 19, and 64%, respectively. Maturation of NaFluo uptake activity correlated with the previously reported ontogeny of Oatp1b2 mRNA expression, confirming the role of Oatp1b2 for NaFluo uptake in rat liver. The outcome of this project will help in understanding and predicting age-dependent drug exposure in juvenile animals and will eventually support safe and more effective drug therapies for children. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1.

    PubMed

    Grosser, Gary; Döring, Barbara; Ugele, Bernhard; Geyer, Joachim; Kulling, Sabine E; Soukup, Sebastian T

    2015-12-01

    Soy isoflavones (IF) are phytoestrogens, which interact with estrogen receptors. They are extensively metabolized by glucuronosyltransferases and sulfotransferases, leading to the modulation of their estrogenic activity. It can be assumed that this biotransformation also has a crucial impact on the uptake of IF by active or passive cellular transport mechanisms, but little is known about the transport of IF phase II metabolites into the cell. Therefore, transport assays for phase II metabolites of daidzein (DAI) were carried out using HEK293 cell lines transfected with five human candidate carriers, i.e., organic anion transporter OAT4, sodium-dependent organic anion transporter (SOAT), Na(+)-taurocholate cotransporting polypeptide (NTCP), apical sodium-dependent bile acid transporter ASBT, and organic anion transporting polypeptide OATP2B1. Cellular uptake was monitored by UHPLC-DAD. DAI monosulfates were transported by the carriers NTCP and SOAT in a sodium-dependent manner, while OAT4-HEK293 cells revealed a partly sodium-dependent transport for these compounds. In contrast, DAI-7,4'-disulfate was only taken up by NTCP-HEK293 cells. DAI-7-glucuronide, but not DAI-4'-glucuronide, was transported exclusively by OATP2B1 in a sodium-independent manner. DAI-7-glucuronide-4'-sulfate, DAI-7-glucoside, and DAI were no substrate of any of the tested carriers. In addition, the inhibitory potency of the DAI metabolites toward estrone-sulfate (E1S) uptake of the above-mentioned carriers was determined. In conclusion, human SOAT, NTCP, OATP2B1, and OAT4 were identified as carriers for the DAI metabolites. Several metabolites were able to inhibit carrier-dependent E1S uptake. These findings might contribute to a better understanding of the bioactivity of IF especially in case of hormone-related cancers.

  17. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    PubMed Central

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  18. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems.

    PubMed

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-03-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR(-) rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Zebrafish Oatp-mediated transport of microcystin congeners.

    PubMed

    Steiner, Konstanze; Zimmermann, Lisa; Hagenbuch, Bruno; Dietrich, Daniel

    2016-05-01

    Microcystins (MC), representing >100 congeners being produced by cyanobacteria, are a hazard for aquatic species. As MC congeners vary in their toxicity, the congener composition of a bloom primarily dictates the severity of adverse effects and appears primarily to be governed by toxicokinetics, i.e., whether transport of MCs occurs via organic anion-transporting polypeptides (Oatps). Differences in observed MC toxicity in various fish species suggest differential expression of Oatp subtypes leading to varying tissue distribution of the very same MC congener within different species. The objectives of this study were the functional characterization and analysis of the tissue distribution of Oatp subtypes in zebrafish (Danio rerio) as a surrogate model for cyprinid fish. Zebrafish Oatps (zfOatps) were cloned, and the organ distribution was determined at the mRNA level. zfOatps were transiently expressed in HEK293 cells for functional characterization using the Oatp substrates estrone-3-sulfate, taurocholate and methotrexate and specific MC congeners (MC-LR, MC-RR, MC-LF and MC-LW). Novel zfOatp isoforms were isolated. Among these isoforms, the organ-specific expression of zfOatp1d1 and of members of the zfOatp1f subfamily was identified. At the functional level, zfOatp1d1, zfOatp1f2, zfOatp1f3 and zfOatp1f4 transported at least one of the Oatp substrates, and zfOatp1d1, zfOatp1f2 and zfOatp1f4 were shown to transport MC congeners. MC-LF and MC-LW were generally transported faster than MC-LR and MC-RR. The subtype-specific expression of zfOatp1d1 and of members of the zfOatp1f subfamily as well as differences in the transport of MC congeners could explain the MC congener-dependent differences in toxicity in cyprinids.

  20. Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1- and OATP1B3-expressing cells.

    PubMed

    Takumi, Shota; Ikema, Satoshi; Hanyu, Tamami; Shima, Yusuke; Kurimoto, Takashi; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Park, Ho-Dong; Ando, Seiichi; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2015-03-01

    Microcystin-LR, which is an inhibitor of serine/threonine protein phosphatase (PP)1 and PP2A, induces liver injury by its selective uptake system into the hepatocyte. It is also thought that microcystin-LR induces reactive oxygen species (ROS). We tried to establish the chemical prevention of microcystin-LR poisoning. We investigated the effect of grapefruit flavanone glycoside naringin on cytotoxicity of microcystin-LR using human hepatocyte uptake transporter OATP1B3-expressing HEK293-OATP1B3 cells. We found cytotoxicity of microcystin-LR was attenuated by naringin in a dose dependent manner. The inhibition magnitude of total cellular serine/threonine protein phosphatase activity induced by microcystin-LR was suppressed by naringin. In addition, uptake of microcystin-LR into HEK293-OATP1B3 cells was inhibited by naringin. Furthermore, microcystin-LR induced phosphorylation of p53 was inhibited by naringin. Regardless of the difference in the exposure pattern of pre-processing and post-processing of naringin, the toxicity of microcystin-LR was comparable. These results suggested that naringin is promising remedy as well as preventive medicine for liver damage with microcystin-LR. In addition, involvement of ROS production after exposure to the sublethal concentrations of microcystin-LR in the onset of cytotoxicity was negligible. Therefore, inhibition of microcystin-LR uptake and the pathway other than ROS production would be involved in the effect of naringin on the attenuation of microcystin-LR toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Marta; Zaja, Roko; Fent, Karl

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towardsmore » perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA

  2. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells.

    PubMed

    Brenner, Stefan; Riha, Juliane; Giessrigl, Benedikt; Thalhammer, Theresia; Grusch, Michael; Krupitza, Georg; Stieger, Bruno; Jäger, Walter

    2015-01-01

    The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 µl/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 µM). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy.

  3. Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Fromm, MF

    2012-01-01

    BACKGROUND AND PURPOSE The coordinate activity of hepatic uptake transporters [e.g. organic anion transporting polypeptide 1B1 (OATP1B1)], drug-metabolizing enzymes [e.g. UDP-glucuronosyltransferase 1A1 (UGT1A1)] and efflux pumps (e.g. MRP2) is a crucial determinant of drug disposition. However, limited data are available on transport of drugs (e.g. ezetimibe, etoposide) and their glucuronidated metabolites by human MRP2 in intact cell systems. EXPERIMENTAL APPROACH Using monolayers of newly established triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells as well as MDCK control cells, single- (OATP1B1) and double-transfected (OATP1B1-UGT1A1, OATP1B1-MRP2) MDCK cells, we therefore studied intracellular concentrations and transcellular transport after administration of ezetimibe or etoposide to the basal compartment. KEY RESULTS Intracellular accumulation of ezetimibe was significantly lower in MDCK-OATP1B1-UGT1A1-MRP2 triple-transfected cells compared with all other cell lines. Considerably higher amounts of ezetimibe glucuronide were found in the apical compartment of MDCK-OATP1B1-UGT1A1-MRP2 monolayers compared with all other cell lines. Using HEK cells, etoposide was identified as a substrate of OATP1B1. Intracellular concentrations of etoposide equivalents (i.e. parent compound plus metabolites) were affected only to a minor extent by the absence or presence of OATP1B1/UGT1A1/MRP2. In contrast, apical accumulation of etoposide equivalents was significantly higher in monolayers of both cell lines expressing MRP2 (MDCK-OATP1B1-MRP2, MDCK-OATP1B1-UGT1A1-MRP2) compared with the single-transfected (OATP1B1) and the control cell line. CONCLUSIONS AND IMPLICATIONS Ezetimibe glucuronide is a substrate of human MRP2. Moreover, etoposide and possibly also its glucuronide are substrates of MRP2. These data demonstrate the functional interplay between transporter-mediated uptake, phase II metabolism and export by hepatic proteins involved in drug disposition. PMID:21923755

  4. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3.

    PubMed

    Gose, Tomoka; Nakanishi, Takeo; Kamo, Shunsuke; Shimada, Hiroaki; Otake, Katsumasa; Tamai, Ikumi

    2016-01-01

    Eicosapentaenoic acid (EPA)-derived prostaglandin E3 (PGE3) possesses an anti-inflammatory effect; however, information for transporters that regulate its peri-cellular concentration is limited. The present study, therefore, aimed to clarify transporters involved in local disposition of PGE3. PGE3 uptake was assessed in HEK293 cells transfected with OATP2A1/SLCO2A1, OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, OAT1/SLC22A6, OCT1/SLC22A1 or OCT2/SLC22A2 genes, compared with HEK293 cells transfected with plasmid vector alone (Mock). PGE3 uptake by OATP2A1-expressing HEK293 cells (HEK/2A1) was the highest and followed by HEK/1B1, while no significantly higher uptake of PGE3 than Mock cells was detected by other transporters. Saturation kinetics in PGE3 uptake by HEK/2A1 estimated the Km as 7.202 ± 0.595 μM, which was 22 times higher than that of PGE2 (Km=0.331 ± 0.131 μM). Furthermore, tissue disposition of PGE3 was examined in wild-type (WT) and Slco2a1-deficient (Slco2a1(-/-)) mice after oral administration of EPA ethyl ester (EPA-E) when they underwent intraperitoneal injection of endotoxin (e.g., lipopolysaccharide). PGE3 concentration was significantly higher in the lung, and tended to increase in the colon, stomach, and kidney of Slco2a1(-/-), compared to WT mice. Ratio of PGE2 metabolite 15-keto PGE2 over PGE2 concentration was significantly lower in the lung and colon of Slco2a1(-/-) than that of WT mice, suggesting that PGE3 metabolism is downregulated in Slco2a1(-/-) mice. In conclusion, PGE3 was found to be a substrate of OATP2A1, and local disposition of PGE3 could be regulated by OATP2A1 at least in the lung. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Interaction of Silymarin Flavonolignans with Organic Anion-Transporting Polypeptides

    PubMed Central

    Köck, Kathleen; Xie, Ying; Oberlies, Nicholas H.; Brouwer, Kim L. R.

    2013-01-01

    Organic anion-transporting polypeptides (OATPs) are multispecific transporters mediating the uptake of endogenous compounds and xenobiotics in tissues that are important for drug absorption and elimination, including the intestine and liver. Silymarin is a popular herbal supplement often used by patients with chronic liver disease; higher oral doses than those customarily used (140 mg three times/day) are being evaluated clinically. The present study examined the effect of silymarin flavonolignans on OATP1B1-, OATP1B3-, and OATP2B1-mediated transport in cell lines stably expressing these transporters and in human hepatocytes. In overexpressing cell lines, OATP1B1- and OATP1B3-mediated estradiol-17β-glucuronide uptake and OATP2B1-mediated estrone-3-sulfate uptake were inhibited by most of the silymarin flavonolignans investigated. OATP1B1-, OATP1B3-, and OATP2B1-mediated substrate transport was inhibited efficiently by silymarin (IC50 values of 1.3, 2.2 and 0.3 µM, respectively), silybin A (IC50 values of 9.7, 2.7 and 4.5 µM, respectively), silybin B (IC50 values of 8.5, 5.0 and 0.8 µM, respectively), and silychristin (IC50 values of 9.0, 36.4, and 3.6 µM, respectively). Furthermore, silymarin, silybin A, and silybin B (100 µM) significantly inhibited OATP-mediated estradiol-17β-glucuronide and rosuvastatin uptake into human hepatocytes. Calculation of the maximal unbound portal vein concentrations/IC50 values indicated a low risk for silymarin-drug interactions in hepatic uptake with a customary silymarin dose. The extent of silymarin-drug interactions depends on OATP isoform specificity and concentrations of flavonolignans at the site of drug transport. Higher than customary doses of silymarin, or formulations with improved bioavailability, may increase the risk of flavonolignan interactions with OATP substrates in patients. PMID:23401473

  6. Characterization of Transporters in the Hepatic Uptake of TAK-475 M-I, a Squalene Synthase Inhibitor, in Rats and Humans.

    PubMed

    Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S

    2016-06-01

    TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Cysteine Scanning Mutagenesis of Transmembrane Domain 10 in Organic Anion Transporting Polypeptide 1B1

    PubMed Central

    2015-01-01

    Organic anion transporting polypeptide (OATP) 1B1 is an important drug transporter expressed in human hepatocytes. Previous studies have indicated that transmembrane (TM) domain 2, 6, 8, 9, and in particular 10 might be part of the substrate binding site/translocation pathway. To explore which amino acids in TM10 are important for substrate transport, we mutated 34 amino acids individually to cysteines, expressed them in HEK293 cells, and determined their surface expression. Transport activity of the two model substrates estrone-3-sulfate and estradiol-17β-glucuronide as well as of the drug substrate valsartan for selected mutants was measured. Except for F534C and F537C, all mutants were expressed at the plasma membrane of HEK293 cells. Mutants Q541C and A549C did not transport estradiol-17β-glucuronide and showed negligible estrone-3-sulfate transport. However, A549C showed normal valsartan transport. Pretreatment with the anionic and cell impermeable sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) affected the transport of each substrate differently. Pretreatment of L545C abolished estrone-3-sulfate uptake almost completely, while it stimulated estradiol-17β-glucuronide uptake. Further analyses revealed that mutant L545C in the absence of MTSES showed biphasic kinetics for estrone-3-sulfate that was converted to monophasic kinetics with a decreased apparent affinity, explaining the previously seen inhibition. In contrast, the apparent affinity for estradiol-17β-glucuronide was not changed by MTSES treatment, but the Vmax value was increased about 4-fold, explaining the previously seen stimulation. Maleimide labeling of L545C was affected by preincubation with estrone-3-sulfate but not with estradiol-17β-glucuronide. These results strongly suggest that L545C is part of the estrone-3-sulfate binding site/translocation pathway but is not directly involved in binding/translocation of estradiol-17β-glucuronide. PMID:24673529

  9. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter.

    PubMed

    Navrátilová, Lucie; Applová, Lenka; Horký, Pavel; Mladěnka, Přemysl; Pávek, Petr; Trejtnar, František

    2018-06-22

    Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The K i values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.

  10. Prioritizing pharmacokinetic drug interaction precipitants in natural products: application to OATP inhibitors in grapefruit juice

    PubMed Central

    Johnson, Emily J.; Won, Christina S.; Köck, Kathleen; Paine, Mary F.

    2017-01-01

    Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells and the probe substrate estrone 3-sulfate, IC50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6′,7′-dihydroxybergamottin), and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice juice. Nobiletin was the most potent (IC50, 3.7 μM); 6′,7′-dihydroxybergamottin, naringin, naringenin, and tangeretin were moderately potent (IC50, 20–50 μM); and bergamottin and hesperidin were the least potent (IC50, >300 μM) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine ratios of unbound concentration to IC50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. PMID:28032362

  11. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several

  12. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery.

    PubMed

    Thompson, Brandon J; Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Zhang, Yifeng; Laracuente, Mei-li; Ronaldson, Patrick T

    2014-04-01

    Cerebral hypoxia and subsequent reoxygenation stress (H/R) is a component of several diseases. One approach that may enable neural tissue rescue after H/R is central nervous system (CNS) delivery of drugs with brain protective effects such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (i.e., statins). Our present in vivo data show that atorvastatin, a commonly prescribed statin, attenuates poly (ADP-ribose) polymerase (PARP) cleavage in the brain after H/R, suggesting neuroprotective efficacy. However, atorvastatin use as a CNS therapeutic is limited by poor blood-brain barrier (BBB) penetration. Therefore, we examined regulation and functional expression of the known statin transporter organic anion transporting polypeptide 1a4 (Oatp1a4) at the BBB under H/R conditions. In rat brain microvessels, H/R (6% O2, 60 minutes followed by 21% O2, 10 minutes) increased Oatp1a4 expression. Brain uptake of taurocholate (i.e., Oap1a4 probe substrate) and atorvastatin were reduced by Oatp inhibitors (i.e., estrone-3-sulfate and fexofenadine), suggesting involvement of Oatp1a4 in brain drug delivery. Pharmacological inhibition of transforming growth factor-β (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling with the selective inhibitor SB431542 increased Oatp1a4 functional expression, suggesting a role for TGF-β/ALK5 signaling in Oatp1a4 regulation. Taken together, our novel data show that targeting an endogenous BBB drug uptake transporter (i.e., Oatp1a4) may be a viable approach for optimizing CNS drug delivery for treatment of diseases with an H/R component.

  13. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression.

    PubMed

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-09-15

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine.

  14. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression

    PubMed Central

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-01-01

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine. PMID:27629937

  15. Prioritizing pharmacokinetic drug interaction precipitants in natural products: application to OATP inhibitors in grapefruit juice.

    PubMed

    Johnson, Emily J; Won, Christina S; Köck, Kathleen; Paine, Mary F

    2017-04-01

    Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health-care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells (Madin-Darby canine kidney type II) and the probe substrate estrone 3-sulfate, IC 50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6',7'-dihydroxybergamottin) and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice. Nobiletin was the most potent (IC 50 , 3.7 μm); 6',7'-dihydroxybergamottin, naringin, naringenin and tangeretin were moderately potent (IC 50 , 20-50 μm); and bergamottin and hesperidin were the least potent (IC 50 , >300 μm) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine the ratios of unbound concentration to IC 50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy.

    PubMed

    Gilligan, Lorna C; Gondal, Ali; Tang, Vivien; Hussain, Maryam T; Arvaniti, Anastasia; Hewitt, Anne-Marie; Foster, Paul A

    2017-01-01

    Hormone replacement therapy (HRT) affects the incidence and potential progression of colorectal cancer (CRC). As HRT primarily consists of estrone sulfate (E 1 S), understanding whether this conjugated estrogen is transported and metabolized in CRC will define its potential effect in this malignancy. Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E 1 S. STS activity is significantly higher in CRC cell lysate, suggesting the importance of E 1 S transport in intracellular STS substrate availability. As E 1 S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter. All four CRC cell lines rapidly transported E 1 S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP. Transient knockdown of OATP4A1 significantly disrupted E 1 S uptake. Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells. None of the cells expressed ERβ. Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E 2 ) and G1, a GPER agonist, significantly ( p < 0.01) increased STS activity. Furthermore, tamoxifen and fulvestrant, known GPER agonist, also increased CRC STS activity, with this effect inhibited by the GPER antagonist G15. These results suggest that CRC can take up and hydrolyze E 1 S, and that subsequent GPER stimulation increases STS activity in a potentially novel positive feedback loop. As elevated STS expression is associated with poor prognosis in CRC, these results suggest HRT, tamoxifen and fulvestrant may negatively impact CRC patient outcomes.

  17. Impact of FDA-Approved Drugs on the Prostaglandin Transporter OATP2A1/SLCO2A1.

    PubMed

    Kamo, Shunsuke; Nakanishi, Takeo; Aotani, Rika; Nakamura, Yoshinobu; Gose, Tomoka; Tamai, Ikumi

    2017-09-01

    To understand interaction of drugs with the prostaglandin transporter OATP2A1/SLCO2A1 that regulates disposition of prostaglandins, we explored the impact of 636 drugs in an FDA-approved drug library on 6-carboxyfluorescein (6-CF) uptake by OATP2A1-expressing HEK293 cells (HEK/2A1). Fifty-one and 10 drugs were found to inhibit and enhance 6-CF uptake by more than 50%, respectively. Effect of the 51 drugs on 6-CF uptake was positively correlated with that on PGE 2 uptake (r = 0.64, p < 0.001). Among those, 5 drugs not structurally related to prostaglandins, suramin, pranlukast, zafirlukast, olmesartan medoxomil, and losartan potassium, exhibited more than 90% PGE 2 uptake inhibition. Inhibitory affinity of suramin to OATP2A1 was the highest (IC 50,2A1 of 0.17 μM), and its IC 50 values to MRP4-mediated PGE 2 transport (IC 50,MRP4 ) and PGE 2 synthesis in human U-937 cells treated with phorbol 12-myristate 13-acetate (IC 50,Syn ) were 73.6 and 336.7 times higher than IC 50,2A1 , respectively. Moreover, structure-activity relationship study in 29 nonsteroidal anti-inflammatory drugs contained in the library displayed inhibitory activities of anthranilic acid derivatives, but enhancing effects of propionic acid derivatives. These results demonstrate that suramin is a potent selective inhibitor of OATP2A1, providing a comprehensive information about drugs in clinical use that interact with OATP2A1. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Steroid hormones specifically modify the activity of organic anion transporting polypeptides.

    PubMed

    Koenen, Anna; Köck, Kathleen; Keiser, Markus; Siegmund, Werner; Kroemer, Heyo K; Grube, Markus

    2012-11-20

    Previously, the steroid hormone progesterone has been demonstrated to stimulate OATP2B1-mediated transport of estrone-3-sulphate (E(1)S), dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PS), which may influence the uptake of precursor molecules for steroid hormone synthesis. However, it is unclear whether OATP2B1 drug substrates like atorvastatin or glibenclamide are also affected by this phenomenon. In addition, it has not been studied so far if this stimulatory effect is specific for OATP2B1. To address these questions, we examined the influence of progesterone on OATP2B1-mediated atorvastatin and glibenclamide uptake and studied the impact of steroid hormones on the transport activity of OATP1A2, OATP1B1 and OATP1B3. Comparison of the substrate spectrum of the investigated OATPs revealed that DHEAS and atorvastatin are substrates of all transporters, while E(1)S was only significantly transported by OATP1A2, OATP2B1 and OATP1B1. Glibenclamide uptake was limited to OATP1A2, OATP1B1 and OATP2'B1. Subsequent interaction studies indicated that progesterone only increases OATP2B1-mediated E(1)S and DHEAS transport, whereas uptake of BSP, atorvastatin and glibenclamide was either inhibited or not affected. Moreover, the steroid hormone effect was specific for OATP2B1; neither OATP1B1, OATP1B3 nor OATP1A2 function was stimulated in the presence of progesterone. Similar to progesterone, the glucocorticoide dexamethasone stimulated OATP2B1-mediated transport of E(1)S and DHEAS (EC(50) for E(1)S: 10.2 ± 5.6 μM and 17.9 ± 15.4 μM for DHEAS). In conclusion, our data demonstrate that among the tested compounds the stimulatory effect of progesterone is specific for OATP2B1 and restricted to sulphated steroids like E(1)S and DHEAS while the OATP-mediated drug transport is not enhanced. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1.

    PubMed

    Yee, S W; Giacomini, M M; Hsueh, C-H; Weitz, D; Liang, X; Goswami, S; Kinchen, J M; Coelho, A; Zur, A A; Mertsch, K; Brian, W; Kroetz, D L; Giacomini, K M

    2016-11-01

    Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P < 5 × 10 -8 ). Of these, 12 metabolites were significantly higher in plasma samples from volunteers dosed with the OATP1B1 inhibitor, cyclosporine (CSA) vs. placebo (q-value < 0.2). Conjugated bile acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  20. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide.

    PubMed

    Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2016-11-01

    Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport.

    PubMed

    Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi

    2010-10-04

    Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion.

  2. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis

    PubMed Central

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E.; Chung, Leland W.K.

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy. PMID:24957295

  3. A Modified Grapefruit Juice Eliminates Two Compound Classes as Major Mediators of the Grapefruit Juice-Fexofenadine Interaction: an In Vitro-In Vivo ‘Connect’

    PubMed Central

    Won, Christina S.; Lan, Tian; VanderMolen, Karen M.; Dawson, Paul A.; Oberlies, Nicholas H.; Widmer, Wilbur W.; Scarlett, Yolanda V.; Paine, Mary F.

    2014-01-01

    The grapefruit juice-fexofenadine interaction involves inhibition of intestinal organic anion transporting polypeptide (OATP)-mediated uptake. Only naringin has been shown clinically to inhibit intestinal OATP; other constituents have not been evaluated. The effects of a modified grapefruit juice devoid of furanocoumarins (~99%) and polymethoxyflavones (~90%) on fexofenadine disposition were compared to effects of the original juice. Extracts of both juices inhibited estrone 3-sulfate and fexofenadine uptake by similar extents in OATP-transfected cells (~50% and ~25%, respectively). Healthy volunteers (n=18) were administered fexofenadine (120 mg) with water, grapefruit juice, or modified grapefruit juice (240 ml) by randomized, three-way crossover design. Compared to water, both juices decreased fexofenadine geometric mean AUC and Cmax by ~25% (p≤0.008 and p≤0.011, respectively), with no effect on terminal half-life (p=0.11). Similar effects by both juices on fexofenadine pharmacokinetics indicate furanocoumarins and polymethoxyflavones are not major mediators of the grapefruit juice-fexofenadine interaction. PMID:23878024

  4. Organic Anion-Transporting Polypeptide and Efflux Transporter-Mediated Hepatic Uptake and Biliary Excretion of Cilostazol and Its Metabolites in Rats and Humans.

    PubMed

    Wang, Chong; Huo, Xiaokui; Wang, Changyuan; Meng, Qiang; Liu, Zhihao; Sun, Pengyuan; Cang, Jian; Sun, Huijun; Liu, Kexin

    2017-09-01

    Cilostazol undergoes extensive liver metabolism. However, the transporter-mediated hepatic disposition of cilostazol remains unknown. The present study was performed to investigate the hepatic uptake and biliary excretion of cilostazol and its metabolites (OPC-13015 and OPC-13213) using rat liver and human transporter-transfected cells in vitro. Cilostazol uptake by rat liver slices and isolated rat hepatocytes exhibited time-, concentration-, and temperature dependency and was decreased by Oatp inhibitors, which suggested that Oatp was involved in the hepatic uptake of cilostazol. Cilostazol uptake in rat hepatocytes, OATP1B1-, and OATP1B3-HEK293 cells indicated a saturable process with K m values of 2.7 μM, 17.7 μM, and 2.7 μM, respectively. Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited cilostazol uptake in OATP1B1/1B3-HEK293 cells with K i values close to their clinical plasma concentration, which suggested possible drug-drug interactions in humans via OATP1B1/1B3. Moreover, the cumulative biliary excretion of cilostazol and OPC-13015 was significantly decreased by quinidine, bilirubin, and novobiocin in perfused rat liver, but OPC-13213 biliary excretion was only inhibited by novobiocin, which suggested that the efflux transporters Mrp2, Bcrp, and P-gp were involved in the biliary excretion of cilostazol and its metabolites. Our findings indicated that multiple transporters were involved in the hepatic disposition of cilostazol and its metabolites. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome.

    PubMed

    Yoneda, Norihide; Matsui, Osamu; Ikeno, Hiroshi; Inoue, Dai; Yoshida, Kotaro; Kitao, Azusa; Kozaka, Kazuto; Kobayashi, Satoshi; Gabata, Toshifumi; Ikeda, Hiroko; Nakamura, Keishi; Ohta, Tetsuo

    2015-10-01

    We report a female case of sinusoidal obstruction syndrome (SOS) diagnosed pathologically after chemotherapy (Pmab+m-FOLFOX6) for ascending colon cancer with multiple liver metastases, focusing on the findings of gadoxetic acid-enhanced MRI (EOB-MRI) and the organic anion transporting polypeptide 1B3 (OATP1B3) expression of in the liver. The patient was a 75-year-old female. She had received chemotherapy (Pmab+m-FOLFOX6) as six cycles for preoperative chemotherapy. After the preoperative chemotherapy, tumor sizes of hepatic metastases were reduced and hepatobiliary phase of EOB-MRI clearly depicted diffuse reticular hypointensity in the background liver. On the other hand, dynamic CT and/or other sequences of EOB-MRI did not show definite abnormality in the background liver. After the operation, this patient was pathologically confirmed as SOS demonstrating centrilobular congestion, sinusoidal dilatation, and perisinusoidal fibrosis. In normal liver parenchyma, OATP1B3 (uptake transporter of the EOB-MRI) expression is observed predominantly in centrilobular hepatocytes (zone 3). On the other hand, OATP1B3 expression was remarkably reduced because of the damages in the centrilobular (zone 3) hepatocytes in this SOS case. This indicated that EOB-MRI might be extremely sensitive in diagnosing SOS in its early stage.

  6. Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk.

    PubMed

    Gertz, Michael; Tsamandouras, Nikolaos; Säll, Carolina; Houston, J Brian; Galetin, Aleksandra

    2014-09-01

    To investigate the effect of OATP1B1 genotype as a covariate on repaglinide pharmacokinetics and drug-drug interaction (DDIs) risk using a reduced physiologically-based pharmacokinetic (PBPK) model. Twenty nine mean plasma concentration-time profiles for SLCO1B1 c.521T>C were used to estimate hepatic uptake clearance (CLuptake) in different genotype groups applying a population approach in NONMEM v.7.2. Estimated repaglinide CLuptake corresponded to 217 and 113 μL/min/10(6) cells for SLCO1B1 c.521TT/TC and CC, respectively. A significant effect of OATP1B1 genotype was seen on CLuptake (48% reduction for CC relative to wild type). Sensitivity analysis highlighted the impact of CLmet and CLdiff uncertainty on the CLuptake optimization using plasma data. Propagation of this uncertainty had a marginal effect on the prediction of repaglinide OATP1B1-mediated DDI with cyclosporine; however, sensitivity of the predicted magnitude of repaglinide metabolic DDI was high. In addition, the reduced PBPK model was used to assess the effect of both CYP2C8*3 and SLCO1B1 c.521T>C on repaglinide exposure by simulations; power calculations were performed to guide prospective DDI and pharmacogenetic studies. The application of reduced PBPK model for parameter optimization and limitations of this process associated with the use of plasma rather than tissue profiles are illustrated.

  7. Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers

    PubMed Central

    Cheng, Xingguo; Klaassen, Curtis D.

    2008-01-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na+-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-α), constitutive androstane receptor, pregnane-X receptor, NF-E2–related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-α was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-α. PMID:18703564

  8. Functional expression of the 11 human Organic Anion Transporting Polypeptides in insect cells reveals that sodium fluorescein is a general OATP substrate.

    PubMed

    Patik, Izabel; Kovacsics, Daniella; Német, Orsolya; Gera, Melinda; Várady, György; Stieger, Bruno; Hagenbuch, Bruno; Szakács, Gergely; Özvegy-Laczka, Csilla

    2015-12-15

    Organic Anion Transporting Polypeptides (OATPs), encoded by genes of the Solute Carrier Organic Anion (SLCO) family, are transmembrane proteins involved in the uptake of various compounds of endogenous or exogenous origin. In addition to their physiological roles, OATPs influence the pharmacokinetics and drug-drug interactions of several clinically relevant compounds. To examine the function and molecular interactions of human OATPs, including several poorly characterized family members, we expressed all 11 human OATPs at high levels in the baculovirus-Sf9 cell system. We measured the temperature- and inhibitor-sensitive cellular accumulation of sodium fluorescein and fluorescein-methotrexate, two fluorescent substrates of the OATPs, OATP1B1 and 1B3. OATP1B1 and 1B3 were functional in Sf9 cells, showing rapid uptake (t1/2(fluorescein-methotrexate) 2.64 and 4.16 min, and t1/2(fluorescein) 6.71 and 5.58 min for OATP1B1 and 1B3, respectively) and high-affinity transport (Km(fluorescein-methotrexate) 0.23 and 0.53 μM, and Km(fluorescein) 25.73 and 38.55 μM for OATP1B1 and 1B3, respectively) of both substrates. We found that sodium fluorescein is a general substrate of all human OATPs: 1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1 and 6A1, while fluorescein-methotrexate is only transported by 1B1, 1B3, 1A2 and 2B1. Acidic extracellular pH greatly facilitated fluorescein uptake by all OATPs, and new molecular interactions were detected (between OATP2B1 and Imatinib, OATP3A1, 5A1 and 6A1 and estradiol 17-β-d-glucuronide, and OATP1C1 and 4C1 and prostaglandin E2). These studies demonstrate, for the first time, that the insect cell system is suitable for the functional analysis of the entire human OATP family, and for drug-OATP interaction screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Expression of SLCO transport genes in castration resistant prostate cancer and impact of genetic variation in SCLO1B3 and SLCO2B1 on prostate cancer outcomes

    PubMed Central

    Wright, Jonathan L; Kwon, Erika M; Ostrander, Elaine A; Montgomery, R Bruce; Lin, Daniel W; Vessella, Robert; Stanford, Janet L; Mostaghel, Elahe A

    2011-01-01

    Background Metastases from men with castration resistant prostate cancer (CRPC) harbor increased tumoral androgens vs. untreated prostate cancers (PCa). This may reflect steroid uptake by OATP/SLCO transporters. We evaluated SLCO gene expression in CRPC metastases and determined whether PCa outcomes are associated with single nucleotide polymorphisms (SNPs) in SLCO2B1 and SLCO1B3, transporters previously demonstrated to mediate androgen uptake. Methods Transcripts encoding 11 SLCO genes were analyzed in untreated PCa, and in metastatic CRPC tumors obtained by rapid autopsy. SNPs in SLCO2B1 and SLCO1B3 were genotyped in a population-based cohort of 1,309 Caucasian PCa patients. Median survival follow-up was 7.0 years (0.77–16.4). The risk of PCa recurrence/progression and PCa-specific mortality (PCSM) was estimated with Cox proportional hazards analysis. Results Six SLCO genes were highly expressed in CRPC metastases vs. untreated PCa, including SLCO1B3 (3.6 fold, p=0.0517) and SLCO2B1 (5.5 fold, p=0.0034). Carriers of the variant alleles SLCO2B1 SNP rs12422149 (HR 1.99, 95% CI 1.11 – 3.55) or SLCO1B3 SNP rs4149117 (HR 1.76, 95% CI 1.00 – 3.08) had an increased risk of PCSM. Conclusions CRPC metastases demonstrate increased expression of SLCO genes vs. primary PCa. Genetic variants of SLCO1B3 and SLCO2B1 are associated with PCSM. Expression and genetic variation of SLCO genes which alter androgen uptake may be important in PCa outcomes. Impact OATP/SLCO genes may be potential biomarkers for assessing risk of prostate cancer-specific mortality. Expression and genetic variation in these genes may allow stratification of patients to more aggressive hormonal therapy or earlier incorporation of non-hormonal based treatment strategies. PMID:21266523

  10. Hepatic OATP Transporter and Thyroid Hormone Receptor Interplay Determines Cholesterol and Glucose Homeostasis

    PubMed Central

    Meyer zu Schwabedissen, Henriette E.; Ware, Joseph A.; Finkelstein, David; Chaudhry, Amarjit S.; Lemay, Sara; Leon-Ponte, Matilde; Strom, Stephen C.; Zaher, Hani; Schwarz, Ute I.; Freeman, David J.; Schuetz, Erin G.; Tirona, Rommel G.; Kim, Richard B.

    2011-01-01

    The role of Organic Anion Transporting Polypeptides (OATPs), particularly the members of OATP1B-subfamily, in hepatocellular handling of endogenous and exogenous compounds is an important and emerging area of research. Using a mouse model lacking Slco1b2, the murine ortholog of the OATP1B-subfamily, we previously demonstrated that genetic ablation causes reduced hepatic clearance capacity for substrates. In this report we focused on the physiological function of the hepatic OATP1B transporters. First we studied the influence of the Oatp1b2 deletion on bile acid metabolism showing that lack of the transporter results in a significantly reduced expression of Cyp7a1 the key enzyme of bile acid synthesis, resulting in elevated cholesterol levels after high dietary fat challenge. Furthermore, Slco1b2−/− mice exhibited delayed clearance after oral glucose challenge resulting from reduced hepatic glucose uptake. In addition to increased hepatic glycogen content, Slco1b2−/−exhibited reduced glucose output after pyruvate challenge. This is in accordance with reduced hepatic expression of PEPCK in knockout mice. We show this phenotype is due to the loss of liver-specific Oatp1b2-mediated hepatocellular thyroid hormone entry, which then leads to reduced transcriptional activation of target genes of hepatic thyroid hormone receptor (TR) including the prior mentioned Cyp7a1 and Pepck, but also Dio1 and Glut2. Importantly, we assessed human relevance using a cohort of archived human livers where OATP1B1 expression was noted to be highly associated with TR target genes, especially for GLUT2. Furthermore, GLUT2 expression was significantly decreased in livers harboring a common genetic polymorphism in SLCO1B1. Conclusion Our findings reveal that OATP1B-mediated hepatic thyroid hormone entry is a key determinant of cholesterol and glucose homeostasis. PMID:21538436

  11. Molecular Characterization of Zebrafish Oatp1d1 (Slco1d1), a Novel Organic Anion-transporting Polypeptide*

    PubMed Central

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-01-01

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1. PMID:24126916

  12. Evaluation of a potential transporter-mediated drug interaction between rosuvastatin and pradigastat, a novel DGAT-1 inhibitor.

    PubMed

    Kulmatycki, Kenneth; Hanna, Imad; Meyers, Dan; Salunke, Atish; Movva, Aishwarya; Majumdar, Tapan; Natrillo, Adrienne; Vapurcuyan, Arpine; Rebello, Sam; Sunkara, Gangadhar; Chen, Jin

    2015-05-01

    An in vitro drugdrug interaction (DDI) study was performed to assess the potential for pradigastat to inhibit breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP), and organic anion transporter 3 (OAT3) transport activities. To understand the relevance of these in vitro findings, a clinical pharmacokinetic DDI study using rosuvastatin as a BCRP, OATP, and OAT3 probe substrate was conducted. The study used cell lines that stably expressed or over-expressed the respective transporters. The clinical study was an open-label, single sequence study where subjects (n = 36) received pradigastat (100 mg once daily x 3 days thereafter 40 mg once daily) and rosuvastatin (10 mg once daily), alone and in combination. Pradigastat inhibited BCRP-mediated efflux activity in a dose-dependent fashion in a BCRP over-expressing human ovarian cancer cell line with an IC(50) value of 5 μM. Similarly, pradigastat inhibited OATP1B1, OATP1B3 (estradiol 17β glucuronide transport), and OAT3 (estrone 3 sulfate transport) activity in a concentrationdependent manner with estimated IC(50) values of 1.66 ± 0.95 μM, 3.34 ± 0.64 μM, and 0.973 ± 0.11 μM, respectively. In the presence of steady state pradigastat concentrations, AUC(τ, ss) of rosuvastatin was unchanged and its Cmax,ss decreased by 14% (5.30 and 4.61 ng/mL when administered alone and coadministered with pradigastat, respectively). Pradigastat AUC(τ, ss) and C(max, ss) were unchanged when coadministered with rosuvastatin at steady state. Both rosuvastatin and pradigastat were well tolerated. These data indicate no clinically relevant pharmacokinetic interaction between pradigastat and rosuvastatin.

  13. More Power to OATP1B1: An Evaluation of Sample Size in Pharmacogenetic Studies Using a Rosuvastatin PBPK Model for Intestinal, Hepatic, and Renal Transporter‐Mediated Clearances

    PubMed Central

    Burt, Howard; Abduljalil, Khaled; Neuhoff, Sibylle

    2016-01-01

    Abstract Rosuvastatin is a substrate of choice in clinical studies of organic anion‐transporting polypeptide (OATP)1B1‐ and OATP1B3‐associated drug interactions; thus, understanding the effect of OATP1B1 polymorphisms on the pharmacokinetics of rosuvastatin is crucial. Here, physiologically based pharmacokinetic (PBPK) modeling was coupled with a power calculation algorithm to evaluate the influence of sample size on the ability to detect an effect (80% power) of OATP1B1 phenotype on pharmacokinetics of rosuvastatin. Intestinal, hepatic, and renal transporters were mechanistically incorporated into a rosuvastatin PBPK model using permeability‐limited models for intestine, liver, and kidney, respectively, nested within a full PBPK model. Simulated plasma rosuvastatin concentrations in healthy volunteers were in agreement with previously reported clinical data. Power calculations were used to determine the influence of sample size on study power while accounting for OATP1B1 haplotype frequency and abundance in addition to its correlation with OATP1B3 abundance. It was determined that 10 poor‐transporter and 45 intermediate‐transporter individuals are required to achieve 80% power to discriminate the AUC0‐48h of rosuvastatin from that of the extensive‐transporter phenotype. This number was reduced to 7 poor‐transporter and 40 intermediate‐transporter individuals when the reported correlation between OATP1B1 and 1B3 abundance was taken into account. The current study represents the first example in which PBPK modeling in conjunction with power analysis has been used to investigate sample size in clinical studies of OATP1B1 polymorphisms. This approach highlights the influence of interindividual variability and correlation of transporter abundance on study power and should allow more informed decision making in pharmacogenomic study design. PMID:27385171

  14. Application of a Physiologically Based Pharmacokinetic Model to Predict OATP1B1-Related Variability in Pharmacodynamics of Rosuvastatin

    PubMed Central

    Rose, R H; Neuhoff, S; Abduljalil, K; Chetty, M; Rostami-Hodjegan, A; Jamei, M

    2014-01-01

    Typically, pharmacokinetic–pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake by the organic anion-transporting polypeptide 1B1 (OATP1B1) transporter on the pharmacological response. The area under the plasma concentration–time curve (AUC0–∞) was increased by 63 and 111% for the c.521TC and c.521CC genotypes vs. the c.521TT genotype, while the PD response remained relatively unchanged (3.1 and 5.8% reduction). Using local concentration at the effect site to drive the PD response enabled us to explain the observed disconnect between the effect of the OATP1B1 c521T>C polymorphism on rosuvastatin plasma concentration and the cholesterol synthesis response. PMID:25006781

  15. Mapping SLCO1B1 Genetic Variation for Global Precision Medicine in Understudied Regions in Africa: A Focus on Zulu and Cape Admixed Populations.

    PubMed

    Hoosain, Nisreen; Pearce, Brendon; Jacobs, Clifford; Benjeddou, Mongi

    2016-09-01

    The U.S. President Barack Obama has announced, in his State of the Union address on January 20, 2015, the Precision Medicine Initiative, a US$215-million program. For global precision medicine to become a reality, however, biological and environmental "variome" in previously understudied populations ought to be mapped and catalogued. Chief among the molecular targets that warrant global mapping is the organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by solute carrier organic anion transporter family member 1B1 (SLCO1B1), a hepatic uptake transporter predominantly expressed in the basolateral side of hepatocytes. Human OATP1B1 plays a crucial role in the transport of a wide variety of substrates. This includes endogenous compounds such as bile salts as well as medicines, including benzylpenicillin, methotrexate, pravastatin, and rifampicin, and natural toxins microcystin and phalloidin. Genetic variations observed in the SLCO1B1 gene have been associated with altered in vitro and in vivo OATP1B1 transport activity, and consequently influencing patients' response to medicines, toxins, and susceptibility to common complex diseases. Well-characterized haplotypes, *5 (RS4149056C) and *15 (RS4149056T), have been associated with a strikingly reduced uptake of multiple OATP1B1 substrates, including estrone-3-sulfate, estradiol-17β-d-glucuronide, atorvastatin, cerivastatin, pravastatin, and rifampicin. In particular, RS4149056C is observed in 60% of the Cape admixed (CA) population and is associated with increased plasma concentrations of many statins as well as fexofenadine and repaglinide. We designed and optimized a SNaPshot minisequencing panel to characterize the variants of relevance for precision medicine in the clinic. We report here the first study on allele and genotype frequencies for 10 nonsynonymous, 4 synonymous, and 6 intronic single-nucleotide polymorphisms of SLCO1B1 in the Zulu and CA populations of South Africa. These variants are further

  16. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects.

    PubMed

    Shen, Hong; Chen, Weiqi; Drexler, Dieter M; Mandlekar, Sandhya; Holenarsipur, Vinay K; Shields, Eric E; Langish, Robert; Sidik, Kurex; Gan, Jinping; Humphreys, W Griffith; Marathe, Punit; Lai, Yurong

    2017-08-01

    Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration ( C max ) and area under the concentration-time curve (AUC) (0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes

    PubMed Central

    Dayal, Jasbani H. S.; Cole, Clare L.; Pourreyron, Celine; Watt, Stephen A.; Lim, Yok Zuan; Salas-Alanis, Julio C.; Murrell, Dedee F.; McGrath, John A.; Stieger, Bruno; Jahoda, Colin; Leigh, Irene M.; South, Andrew P.

    2014-01-01

    ABSTRACT Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332. PMID:24357722

  19. Estrone and estrone sulfate concentrations in milk and milk fractions.

    PubMed

    Macrina, Ann L; Ott, Troy L; Roberts, Robert F; Kensinger, Ronald S

    2012-07-01

    Dairy products naturally contain estrogens, and some consumer groups contend these estrogens cause adverse health effects. The objectives of this research were to characterize estrone (E(1)) and estrone sulfate (E(1)S) concentrations in milk from a large number of individual cows, in skim and fat fractions of milk, and in retail milk to provide food and nutrition practitioners with information to estimate potential consumption. Milk was from Holstein cows. Data are presented as means and standard deviations. Analysis of variance was used to determine differences in E(1) and E(1)S content of whole milk and its skim and fat fractions. Mean E(1) and E(1)S concentrations (n=173 cows) were 7.0±12.7 and 46.7±62.1 pg/mL (25.89±46.96 and 172.74±229.71 pmol/L), respectively. Analysis of milk fractions (n=50 samples) demonstrated that 55% of E(1) and 14% of E(1)S were associated with the fat fraction with the remainder associated with the skim fraction. Concentrations of E(1) and E(1)S in pasteurized-homogenized whole milk (n=8) averaged 10.3±0.6 and 85.9±7.3 pg/mL (38.09±2.22 and 317.74±27.00 pmol/L), respectively. Production rates of E(1) plus estradiol in human beings range from 54,000 to 630,000 ng/day. US Food and Drug administration guidelines state that no physiologic effects occur when consumption is ≤1% of the endogenous quantities produced by the segment of the population with the lowest daily production. This threshold value for intake would be 540 ng/day. Estimated total E(1) intake from three servings of whole milk was 68 ng/day, which represents 0.01% to 0.1% of daily production rates in human beings. These findings support levels below the current guidelines for safe consumption. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  20. Mixed effects of OATP1B1, BCRP and NTCP polymorphisms on the population pharmacokinetics of pravastatin in healthy volunteers.

    PubMed

    Lu, Xue-Feng; Zhou, Yang; Bi, Kai-Shun; Chen, Xiao-Hui

    2016-09-01

    1. Pravastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor used for the treatment of hyperlipidaemia. This study aims to investigate the effects of genetic polymorphisms in OATP1B1, BCRP and NTCP on pravastatin population pharmacokinetics in healthy Chinese volunteers using a non-linear mixed-effect modelling (NONMEM) approach. A two-compartment model with a first-order absorption and elimination described plasma pravastatin concentrations well. 2. Genetic polymorphisms of rs4149056 (OATP1B1) and rs2306283 (OATP1B1) were found to be associated with a significant (p < 0.01) decrease in the apparent clearance from the central compartment (CL/F), while rs2296651 (NTCP) increased CL/F to a significant degree (p < 0.01). The combination of these three polymorphisms reduced the inter-individual variability of CL/F by 78.8%. 3. There was minimal effect of rs2231137 (BCRP) and rs2231142 (BCRP) on pravastatin pharmacokinetics (0.01 < p < 0.05), whereas rs11045819 (OATP1B1), rs1061018 (BCRP) and rs61745930 (NTCP) genotypes do not appear to be associated with pravastatin pharmacokinetics based on the population model (p > 0.05). 4. The current data suggest that the combination of rs4149056, rs2306283 and rs2296651 polymorphisms is an important determinant of pravastatin pharmacokinetics.

  1. Predicting Human Clearance of OATP substrates using Cynomolgus monkey: In vitro-in vivo scaling of hepatic uptake clearance.

    PubMed

    de Bruyn, Tom; Ufuk, Ayse; Cantrill, Carina; Kosa, Rachel E; Bi, Yi-An; Niosi, Mark; Modi, Sweta; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena Vs; Galetin, Aleksandra; Houston, J Brian

    2018-05-02

    This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV, respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a similar range to human parameters and good predictions from respective hepatocyte parameters (with 2.7 and 3.8-fold bias on average, respectively). The use of cross species empirical scaling factors (based on either dataset average or individual drug scaling factor from cynomolgus monkey data) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current dataset between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance. The American Society for Pharmacology and Experimental Therapeutics.

  2. Estrone sulfate source of estrone and estradiol formation in isolated human hair roots: identification of a pathway linked to hair growth phase and subject to site-, gender-, and age-related modulations.

    PubMed

    Wehner, Gabriele; Schweikert, Hans-Udo

    2014-04-01

    The present study investigated the metabolism of estrone sulfate into bioactive estrogens in the human hair root, including the effects of hair growth phase, anatomical site, gender, and age. Healthy male (n = 18) and female (n = 20) subjects were investigated. Growing (anagen) and resting (telogen) hair roots were collected from selected scalp and body sites. Estrone sulfate metabolism in the hair root yielded substantial levels of estrone and estradiol. Estrogen synthesis exceeded that associated with aromatization of androgens in a previous study. In subjects <50 years old, estrogen synthesis in scalp hair was lower in men than in women. Comparable levels of estrogen formation were observed in 1) male and female axillary and pubic hair and 2) male beard hair. These levels were higher than the estrogen levels detected in the in scalp hair of men <50 years old. With increasing age, estrogen synthesis increased in men and decreased in women. In telogen hair from all body sites, the capacity to form estrone from estrone sulfate remained unaffected, whereas the ability to form estradiol decreased by 62% and 86% in men and women, respectively. Estrogen formation from estrone sulfate in sexually dimorphic hair is linked to the hair growth phase and is subject to gender- and age-related modulations. The magnitude of the in situ estrogen synthesis from estrone sulfate and the selective arrest of estradiol synthesis at the end of the hair cycle suggest that this pathway plays a crucial role in the regulation of human hair growth.

  3. Effect of tibolone and its principal metabolites (3α- and 3β-hydroxy, 3α-sulfate, and 4-ene derivatives) on estrone sulfatase activity in normal and cancerous human breast tissue.

    PubMed

    Chetrite, Gérard S; Cortes-Prieto, Joaquin; Pasqualini, Jorge R

    2011-12-01

    Tibolone (Org-OD14) is the active substance of Livial®, a synthetic steroid with the structure 7α,17α-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-yn-3-one, possessing weak tissue-specific estrogenic, progestogenic, and androgenic properties, used to treat menopausal complaints. After oral administration, tibolone is extensively metabolized into the 3α-(Org-4904) and 3β-(Org-30126) hydroxy derivatives with estrogenic properties, its 4-ene (Org-OM38) isomer with progestogenic/androgenic activities, and the 3α-sulfate (Org-34322) derivative, a major biologically inactive circulating form. We compared the dose response of tibolone and its metabolites on estrone sulfatase activity [conversion of estrone sulfate (E1S) to estrone (E1)] in normal and cancerous human breast tissues. Tissue minces were incubated with physiological concentrations of [3H]-E1S (5×10-9M) alone or in the presence of tibolone and its metabolites (concentration range: 5×10-7to 5×10-5M) for 4 h. Tritiated E1, estradiol (E2), and E1S were separated and evaluated quantitatively by thin-layer chromatography. The sulfatase activity was significantly higher in cancerous breast but strongly inhibited by tibolone and the different metabolites, whereas 3α- and 3β-hydroxy derivatives were the most potent inhibitors. This very significant inhibitory effect of tibolone and its principal metabolites on the enzyme involved in E2biosynthesis in the human breast provides interesting perspectives to study the biological responses of these compounds in trials with breast cancer patients.

  4. Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin.

    PubMed

    Varma, Manthena V S; Lin, Jian; Bi, Yi-An; Rotter, Charles J; Fahmi, Odette A; Lam, Justine L; El-Kattan, Ayman F; Goosen, Theunis C; Lai, Yurong

    2013-05-01

    Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time-dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characterized using sandwich-cultured human hepatocytes, and intrinsic metabolic parameters were used to build a dynamic whole-body physiologically-based pharmacokinetic (PBPK) model. The PBPK model adequately described repaglinide plasma concentration-time profiles and successfully predicted area under the plasma concentration-time curve ratios of repaglinide (within ± 25% error), dosed (staggered 0-24 hours) after rifampicin treatment when primarily considering induction of CYP3A4 and reversible inhibition of OATP1B1 by rifampicin. Further, a static mechanistic "extended net-effect" model incorporating transport and metabolic disposition parameters of repaglinide and interaction potency of rifampicin was devised. Predictions based on the static model are similar to those observed in the clinic (average error ∼19%) and to those based on the PBPK model. Both the models suggested that the combined effect of increased gut extraction and decreased hepatic uptake caused minimal repaglinide systemic exposure change when repaglinide is dosed simultaneously or 1 hour after the rifampicin dose. On the other hand, isolated induction effect as a result of temporal separation of the two drugs translated to an approximate 5-fold reduction in repaglinide systemic exposure. In conclusion, both dynamic and static mechanistic models are instrumental in delineating the quantitative contribution of transport and metabolism in the dosing time-dependent repaglinide-rifampicin interactions.

  5. Synthesis of novel 16-spiro steroids: 7-(Aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazolo estrone hybrid heterocycles.

    PubMed

    Jeyachandran, Veerappan; Vivek Kumar, Sundaravel; Ranjith Kumar, Raju

    2014-04-01

    The 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the reaction of isatins or acenaphthylene-1,2-dione and 1,3-thiazolane-4-carboxylic acid to various exocyclic dipolarophiles synthesized from estrone afforded a library of novel C-16 spiro oxindole or acenaphthylene-1-one - 7-(aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazole - estrone hybrid heterocycles. These reactions occur regio- and stereo-selectively affording a single isomer of the spiro estrones in excellent yields with the formation of two C-C and one C-N bonds along with the generation of four new contiguous stereo-centers in a single step. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Comparison of genetic variations of the SLCO1B1, SLCO1B3, and SLCO2B1 genes among five ethnic groups.

    PubMed

    Namgoong, Suhg; Cheong, Hyun Sub; Kim, Ji On; Kim, Lyoung Hyo; Na, Han Sung; Koh, In Song; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-11-01

    Organic anion-transporting polypeptide (OATP; gene symbol, SLCO) transporters are generally involved in the uptake of multiple drugs and their metabolites at most epithelial barriers. The pattern of single-nucleotide polymorphisms (SNPs) in these transporters may be determinants of interindividual variability in drug disposition and response. The objective of this study was to define the distribution of SNPs of three SLCO genes, SLCO1B1, SLCO1B3, and SLCO2B1, in a Korean population and other ethnic groups. The study was screened using the Illumina GoldenGate assay for genomic DNA from 450 interethnic subjects, including 11 pharmacogenetic core variants and 76 HapMap tagging SNPs. The genotype distribution of the Korean population was similar to East Asian populations, but significantly different from African American and European American cohorts. These interethnic differences will be useful information for prospective studies, including genetic association and pharmacogenetic studies of drug metabolism by SLCO families. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In vitro and clinical evaluation of OATP-mediated drug interaction potential of sacubitril/valsartan (LCZ696).

    PubMed

    Ayalasomayajula, S; Han, Y; Langenickel, T; Malcolm, K; Zhou, W; Hanna, I; Alexander, N; Natrillo, A; Goswami, B; Hinder, M; Sunkara, G

    2016-08-01

    Sacubitril/valsartan (LCZ696) has been recently approved for the treatment of heart failure (HF) patients with reduced ejection fraction. Several HF patients receive statins as co-medication. Because clearance of statins is meditated via OATP1B1/1B3, the inhibition potential of these transporters by LCZ696 analytes was evaluated in vitro. Furthermore, an open-label, fixed-sequence clinical study was conducted to determine the effect of LCZ696 on the exposure of simvastatin and its active metabolite simvastatin acid. In this clinical study, 26 healthy subjects received simvastatin 40 mg alone or in combination with LCZ696 or after 1 or 2 h of LCZ696 dosing. Although no significant inhibition by LBQ657 (an active metabolite of sacubitril) and valsartan was observed, sacubitril inhibited OATP1B1 and OATP1B3 in vitro, with IC50 of 1·91 and 3·81 μm, respectively. Upon co-administration of simvastatin with LCZ696, the Cmax of simvastatin and simvastatin acid decreased by 7% and 13%, respectively. When administered 1 h after LCZ696 dosing, the corresponding Cmax of simvastatin and simvastatin acid decreased by 16% and 4%, respectively. When administered 2 h after LCZ696 dosing, the Cmax of simvastatin decreased by 33% and that of simvastatin acid increased by 16%. However, no notable changes were observed in the AUCs of simvastatin or simvastatin acid upon co-administration or time-separated administration with LCZ696. No notable impact of simvastatin co-administration was observed on the pharmacokinetics of LCZ696 analytes. LCZ696 and simvastatin were generally well tolerated when administered alone or in combination. Overall, the results of this study suggest that although sacubitril inhibited OATP1B1 and OATP1B3 in vitro, it does not translate into any clinically relevant in vivo effect. © 2016 John Wiley & Sons Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Konstanze, E-mail: konstanze.steiner@uni-konstanz.de; Hagenbuch, Bruno, E-mail: bhagenbuch@kumc.edu; Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 familymore » and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.« less

  9. Characterization of SLCO5A1/OATP5A1, a Solute Carrier Transport Protein with Non-Classical Function

    PubMed Central

    Sebastian, Katrin; Detro-Dassen, Silvia; Rinis, Natalie; Fahrenkamp, Dirk; Müller-Newen, Gerhard; Merk, Hans F.; Schmalzing, Günther

    2013-01-01

    Organic anion transporting polypeptides (OATP/SLCO) have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold) and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20) and genes implicated in developmental processes (e.g. TGM2). A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F) revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration. PMID:24376674

  10. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes.

    PubMed

    Schnell, Christian; Shahmoradi, Ali; Wichert, Sven P; Mayerl, Steffen; Hagos, Yohannes; Heuer, Heike; Rossner, Moritz J; Hülsmann, Swen

    2015-01-01

    Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.

  11. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice.

    PubMed

    Bailey, D G; Dresser, G K; Leake, B F; Kim, R B

    2007-04-01

    We showed previously that grapefruit and orange juices inhibited human enteric organic anion-transporting polypeptide (OATP)1A2 in vitro and lowered oral fexofenadine bioavailability clinically. Inhibition of OATP1A2 transport by flavonoids in grapefruit (naringin) and orange (hesperidin) was conducted in vitro. Two randomized, crossover, pharmacokinetic studies were performed clinically. In one study, 120 mg of fexofenadine was ingested with 300 ml grapefruit juice, an aqueous solution of naringin at the same juice concentration (1,200 microM), or water. In the other study, fexofenadine was administered with grapefruit juice, with or 2 h before aqueous suspension of the particulate fraction of juice containing known clinical inhibitors of enteric CYP3A4, but relatively low naringin concentration (34 microM), or with water. Naringin and hesperidin's half-maximal inhibitions were 3.6 and 2.7 microM, respectively. Fexofenadine area under the plasma drug concentration-time curves (AUCs) with grapefruit juice and naringin solution were 55% (P<0.001) and 75% (P<0.05) of that with water, respectively. Fexofenadine AUCs with grapefruit juice and particulate fractions were 57% (P<0.001), 96% (not significant (NS)), and 97% (NS) of that with water, respectively. Individuals tested in both studies (n=9 of 12) had highly reproducible fexofenadine AUC with water (r(2)=0.85, P<0.001) and extent of reduction of it with grapefruit juice (r(2)=0.72, P<0.01). Naringin most probably directly inhibited enteric OATP1A2 to decrease oral fexofenadine bioavailability. Inactivation of enteric CYP3A4 was probably not involved. Naringin appears to have sufficient safety, specificity, and sensitivity to be a clinical OATP1A2 inhibitor probe. Inherent OATP1A2 activity may be influenced by genetic factors. This appears to be the first report of a single dietary constituent clinically modulating drug transport.

  12. Quantification of proteins by flow cytometry: Quantification of human hepatic transporter P-gp and OATP1B1 using flow cytometry and mass spectrometry.

    PubMed

    Hogg, Karen; Thomas, Jerry; Ashford, David; Cartwright, Jared; Coldwell, Ruth; Weston, Daniel J; Pillmoor, John; Surry, Dominic; O'Toole, Peter

    2015-07-01

    Flow cytometry is a powerful tool for the quantitation of fluorescence and is proven to be able to correlate the fluorescence intensity to the number of protein on cells surface. Mass spectroscopy can also be used to determine the number of proteins per cell. Here we have developed two methods, using flow cytometry and mass spectroscopy to quantify number of transporters in human cells. These two approaches were then used to analyse the same samples so that a direct comparison could be made. Transporters have a major impact on the behaviour of a diverse number of drugs in human systems. While active uptake studies by transmembrane protein transporters using model substrates are routinely undertaken in human cell lines and hepatocytes as part of drug discovery and development, the interpretation of these results is currently limited by the inability to quantify the number of transporters present in the test samples. Here we provide a flow cytometric method for accurate quantification of transporter levels both on the cell surface and within the cell, and compare this to a quantitative mass spectrometric approach. Two transporters were selected for the study: OATP1B1 (also known as SLCO1B1, LST-1, OATP-C, OATP2) due to its important role in hepatic drug uptake and elimination; P-gp (also known as P-glycoprotein, MDR1, ABCB1) as a well characterised system and due to its potential impact on oral bioavailability, biliary and renal clearance, and brain penetration of drugs that are substrates for this transporter. In all cases the mass spectrometric method gave higher levels than the flow cytometry method. However, the two methods showed very similar trends in the relative ratios of both transporters in the hepatocyte samples investigated. The P-gp antibody allowed quantitative discrimination between externally facing transporters located in the cytoplasmic membrane and the total number of transporters on and in the cell. The proportion of externally facing transporter

  13. Transfer of repaglinide in the dually perfused human placenta and the role of organic anion transporting polypeptides (OATPs).

    PubMed

    Tertti, Kristiina; Petsalo, Aleksanteri; Niemi, Mikko; Ekblad, Ulla; Tolonen, Ari; Rönnemaa, Tapani; Turpeinen, Miia; Heikkinen, Tuija; Laine, Kari

    2011-10-09

    Our aim was to investigate the placental transfer of repaglinide by ex vivo placental perfusion experiment. In addition, the involvement of the active organic anion transporters (OATP1B1, OATP1B3 and OATP2B1) was studied by assessing the single nucleotide polymorphisms (SNPs) in genes (SLCO1B1, SLCO1B3 and SLCO2B1) encoding OATPs. Fifteen placentas were obtained after delivery and a 2-h non-recirculating perfusion of a single placental cotyledon was performed to study maternal-to-fetal and fetal-to-maternal transport of repaglinide by using antipyrine as a reference of passive-diffusion transfer compound. Genotyping was performed for all placentas. Maternal-to-fetal transfer of repaglinide and antipyrine were 1.5% and 13.2%, respectively, and fetal-to-maternal transfers were 6.7% and 40.3%, respectively. Fetal-to-maternal transfer of repaglinide was statistically significantly higher than maternal-to-fetal transfer (P<0.0001). The number of placentas was not sufficient for proper statistical analysis, but the fetal-to-maternal transfer seemed to be affected by the SLCO1B3 polymorphism. The placental transfer of repaglinide from mother to fetus was low. Since a higher transfer rate of repaglinide was observed in fetal-to-maternal than maternal-to-fetal direction, active transport by OATP-transporters may be an important factor in fetal exposure to repaglinide. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Decoy receptor 3 suppresses TLR2-mediated B cell activation by targeting NF-κB.

    PubMed

    Huang, Zi-Ming; Kang, Jhi-Kai; Chen, Chih-Yu; Tseng, Tz-Hau; Chang, Chien-Wen; Chang, Yung-Chi; Tai, Shyh-Kuan; Hsieh, Shie-Liang; Leu, Chuen-Miin

    2012-06-15

    Decoy receptor 3 (DcR3) is a soluble protein in the TNFR superfamily. Its known ligands include Fas ligand, homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, TNF-like molecule 1A, and heparan sulfate proteoglycans. DcR3 has been reported to modulate the functions of T cells, dendritic cells, and macrophages; however, its role in regulating B cell activation is largely unknown. In this study, we found that the DcR3.Fc fusion protein bound to human and mouse B cells and suppressed the activation of B cells. DcR3.Fc attenuated Staphylococcus aureus, IgM-, Pam(3)CSK(4)-, and LPS-mediated B cell proliferation but did not affect cytokine-induced B cell growth. In the presence of these mitogens, DcR3.Fc did not induce B cell apoptosis, suggesting that DcR3 may inhibit the signal(s) important for B cell activation. Because the combination of Fas.Fc, LT-βR.Fc (homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes receptor), and DR3.Fc (TNF-like molecule 1A receptor) did not suppress B cell proliferation and because the biological effect of DcR3.Fc on B cells was not blocked by heparin, we hypothesize that a novel ligand(s) of DcR3 mediates its inhibitory activity on B cells. Moreover, we found that TLR2-stimulated NF-κB p65 activation and NF-κB-driven luciferase activity were attenuated by DcR3.Fc. The TLR2-induced cytokine production by B cells was consistently reduced by DcR3. These results imply that DcR3 may regulate B cell activation by suppressing the activation of NF-κB.

  15. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway.

    PubMed

    Li, Xiao C; Hopfer, Ulrich; Zhuo, Jia L

    2009-11-01

    Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin

  16. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition.

    PubMed

    Hanna, Imad; Alexander, Natalya; Crouthamel, Matthew H; Davis, John; Natrillo, Adrienne; Tran, Phi; Vapurcuyan, Arpine; Zhu, Bing

    2018-03-01

    1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.

  17. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.

  18. Genetic variations of the SLCO1B1 gene in the Chinese, Malay and Indian populations of Singapore.

    PubMed

    Ho, Woon Fei; Koo, Seok Hwee; Yee, Jie Yin; Lee, Edmund Jon Deoon

    2008-01-01

    OATP1B1 is a liver-specific transporter that mediates the uptake of various endogenous and exogenous compounds including many clinically used drugs from blood into hepatocytes. This study aims to identify genetic variations of SLCO1B1 gene in three distinct ethnic groups of the Singaporean population (n=288). The coding region of the gene encoding the transporter protein was screened for genetic variations in the study population by denaturing high-performance liquid chromatography and DNA sequencing. Twenty-five genetic variations of SLCO1B1, including 10 novel ones, were found: 13 in the coding exons (9 nonsynonymous and 4 synonymous variations), 6 in the introns, and 6 in the 3' untranslated region. Four novel nonsynonymous variations: 633A>G (Ile211Met), 875C>T (Ala292Val), 1837T>C (Cys613Arg), and 1877T>A (Leu626Stop) were detected as heterozygotes. Among the novel nonsynonymous variations, 633A>G, 1837T>C, and 1877T>A were predicted to be functionally significant. These data would provide fundamental and useful information for pharmacogenetic studies on drugs that are substrates of OATP1B1 in Asians.

  19. Participation of 3-O-sulfated heparan sulfates in the protection of macrophages by herpes simplex virus-1 glycoprotein D and cyclophilin B against apoptosis.

    PubMed

    Delos, Maxime; Hellec, Charles; Foulquier, François; Carpentier, Mathieu; Allain, Fabrice; Denys, Agnès

    2017-02-01

    Heparan sulfates (HS) are involved in numerous biological processes, which rely on their ability to interact with a large panel of proteins. Although the reaction of 3-O-sulfation can be catalysed by the largest family of HS sulfotransferases, very few mechanisms have been associated with this modification and to date, only glycoprotein D (gD) of herpes simplex virus-1 (HSV-1 gD) and cyclophilin B (CyPB) have been well-described as ligands for 3- O -sulfated HS. Here, we hypothesized that both ligands could induce the same responses via a mechanism dependent on 3- O -sulfated HS. First, we checked that HSV-1 gD was as efficient as CyPB to induce the activation of the same signalling events in primary macrophages. We then demonstrated that both ligands efficiently reduced staurosporin-induced apoptosis and modulated the expression of apoptotic genes. In addition to 3- O -sulfated HS, HSV-1 gD was reported to interact with other receptors, including herpes virus entry mediator (HVEM), nectin-1 and -2. Thus, we decided to identify the contribution of each binding site in the responses triggered by HSV-1 gD and CyPB. We found that knock-down of 3- O -sulfotransferase 2, which is the main 3- O -sulfated HS-generating enzyme in macrophages, strongly reduced the responses induced by both ligands. Moreover, silencing the expression of HVEM rendered macrophages unresponsive to either HSV-1 gD and CyPB, thus indicating that both proteins induced the same responses by interacting with a complex formed by 3- O -sulfated HS and HVEM. Collectively, our results suggest that HSV-1 might hijack the binding sites for CyPB in order to protect macrophages against apoptosis for efficient infection.

  20. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    PubMed

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  1. Increased Renal Clearance of Rocuronium Compensates for Chronic Loss of Bile Excretion, via upregulation of Oatp2.

    PubMed

    Wang, Long; Zhou, Mai-Tao; Chen, Cai-Yang; Yin, Wen; Wen, Da-Xiang; Cheung, Chi-Wai; Yang, Li-Qun; Yu, Wei-Feng

    2017-01-13

    Requirement for rocuronium upon surgery changes only minimally in patients with end-stage liver diseases. Our study consisted of both human and rat studies to explore the reason. The reduction rate of rocuronium infusion required to maintain neuromuscular blockade during the anhepatic phase (relative to paleohepatic phase) was examined in 16 children with congenital biliary atresia receiving orthotopic liver transplantation. Pharmacodynamics and pharmacokinetics of rocuronium were studied based on BDL rats. The role of increased Oatp2 and decrease Oatp1 expressions in renal compensation were explored. The reduction of rocuronium requirements significantly decreased in obstructively jaundiced children (24 ± 9 vs. 39 ± 11%). TOF50 in BDL rats was increased by functional removal of the kidneys but not the liver, and the percentage of rocuronium excretion through urine increased (20.3 ± 6.9 vs. 8.6 ± 1.8%), while that decreased through bile in 28d-BDL compared with control group. However, this enhanced renal secretion for rocuronium was eliminated by Oatp2 knock-down, rather than Oatp1 overexpression (28-d BDL vs. Oatp1-ShRNA or Oatp2-ShRNA, 20.3 ± 6.9 vs. 17.0 ± 6.6 or 9.3 ± 3.2%). Upon chronic/sub-chronic loss of bile excretion, rocuronium clearance via the kidneys is enhanced, by Oatp2 up-regulation.

  2. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  3. Diselenolane-mediated cellular uptake.

    PubMed

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  4. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    PubMed Central

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P.J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a high-fat diet (SFL model) or a methionine-choline-deficient diet (NASH model) for eight weeks. Hepatic uptake transporter function was determined by bromosulfophthalein (BSP) disposition. Transporter expression was determined by branched DNA signal amplification assay and western blotting; inflammation was identified by immunostaining of liver slices for interleukin 1 beta (IL-1β). MC- rats showed significant retention of BSP in the plasma when compared to control rats. Hepatic NTCP, OATP1a1, 1a4, 1b2 and 2b1; and OAT 2 and 3 mRNA levels were significantly decreased in high-fat and MC- diet rats when compared to control. Protein expression of OATP1a1 was significantly decreased in high-fat animals, while OATP1a1 and OATP1b2 expression was significantly lower in MC- rats when compared to control. Liver tissue from high-fat and MC- rats stained positive for IL-1β, a pro-inflammatory cytokine known to decrease expression of NTCP, OATP and OAT transporters, suggesting a plausible mechanism for the observed transporter alterations. These data suggest that different stages of NAFLD result in altered hepatic uptake transporter expression that can lead to a functional impairment of xenobiotic uptake from the blood. Furthermore, NAFLD may alter the plasma retention time of clinically relevant drugs that are reliant on these transporters and may increase the potential drug toxicity. PMID:19358839

  5. The Chinese Herb Jianpijiedu Contributes to the Regulation of OATP1B2 and ABCC2 in a Rat Model of Orthotopic Transplantation Liver Cancer Pretreated with Food Restriction and Diarrhea

    PubMed Central

    Sun, Baoguo; Chen, Yan; Xiang, Ting; Zhang, Lei; Chen, Zexiong; Zhang, Shijun; Zhou, Houming; Chen, Shuqing

    2015-01-01

    Traditional Chinese Medicine Jianpijiedu decoction (JPJD) could improve the general status of liver cancer patients in clinics, especially the symptoms of decreased food intake and diarrhea. In this study, our results showed that the survival rate of the liver cancer with food restriction and diarrhea (FRD-LC) rats was lower than the liver cancer (LC) rats, and the tumor volume of the FRD-LC rats was higher than the LC rats. It was also shown that the high dose of JPJD significantly improved the survival rate, weight, and organ weight when compared with FRD-LC-induced rats. Moreover, JPJD administration upregulated the mRNA and protein levels of ABCC2 and downregulated the mRNA and protein levels of OATP1B2 in liver tissues. However, opposite results were observed in the cancer tissues. In conclusion, the study indicated that the Chinese Medicine JPJD could contribute to the rats with liver cancer which were pretreated with food restriction and diarrhea by regulating the expression of ABCC2 and OATP1B2 in liver tissues and cancer tissues. PMID:26665149

  6. Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites

    PubMed Central

    Hoshino, Juma; Park, Eun-Jung; Kondratyuk, Tamara P.; Marler, Laura; Pezzuto, John M.; van Breemen, Richard B.; Mo, Shunyan; Li, Yongchao; Cushman, Mark

    2010-01-01

    Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF)-α-induced NFκB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, and proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G1 phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities, and the 4′-sulfate inhibited NFκB induction, as well as COX-1 and COX-2 activities. Resveratrol, as well as its 3′-sulfate and 4-sulfate, inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells. PMID:20527891

  7. Urinary levels of estrone sulfate and 11-ketotetranor prostaglandin F metabolite in pregnant guinea pigs given Clophen A50 (polychlorinated biphenyls).

    PubMed

    Lundkvist, U; Kindahl, H; Madej, A

    1987-02-01

    The urinary levels of estrone sulfate and 11-ketotetranor prostaglandin F metabolite (11-ketotetranor PGF metabolite) during gestation in guinea pigs were measured by radioimmunoassays. Vehicle and Clophen A50 (polychlorinated biphenyls)-treated animals were compared. Gestation was arbitrarily divided into four periods, and the mean hormone levels during each period were compared between the two treatment groups. The Clophen A50 treatment (100 mg total, during Days 16-60), which causes fetal death, was correlated to significantly higher levels of estrone sulfate (p less than 0.05) and 11-ketotetranor PGF metabolite (p less than 0.01) during Days 47-60 (Period IV) of gestation.

  8. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide.

    PubMed

    Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas

    2013-04-01

    Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.

  9. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).

    PubMed

    Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim

    2018-05-01

    The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1-O-β-Glucuronide.

    PubMed

    Kimoto, Emi; Li, Rui; Scialis, Renato J; Lai, Yurong; Varma, Manthena V S

    2015-11-02

    Gemfibrozil (GEM), which decreases serum triglycerides and low density lipoprotein, perpetrates drug-drug interactions (DDIs) with several drugs. These DDIs are primarily attributed to the inhibition of drug transporters and metabolic enzymes, particularly cytochrome P450 (CYP) 2C8 by the major circulating metabolite gemfibrozil 1-O-β-glucuronide (GG). Here, we characterized the transporter-mediated hepatic disposition of GEM and GG using sandwich-cultured human hepatocytes (SCHH) and transporter-transfect systems. Significant active uptake was noted in SCHH for the metabolite. GG, but not GEM, showed substrate affinity to organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1. In SCHH, glucuronidation was characterized affinity constants (Km) of 7.9 and 61.4 μM, and biliary excretion of GG was observed. Furthermore, GG showed active basolateral efflux from preloaded SCHH and ATP-dependent uptake into membrane vesicles overexpressing multidrug resistance-associated protein (MRP) 2, MRP3, and MRP4. A mathematical model was developed to estimate hepatic uptake and efflux kinetics of GEM and GG based on SCHH studies. Collectively, the hepatic transporters play a key role in the disposition and thus determine the local concentrations of GEM and more so for GG, which is the predominant inhibitory species against CYP2C8 and OATP1B1.

  11. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  12. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    PubMed

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. Published by Elsevier Ltd.

  13. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics.

    PubMed

    Walker, Aisha L; Lancaster, Cynthia S; Finkelstein, David; Ware, Russell E; Sparreboom, Alex

    2013-12-15

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b(-/-)) mice, hydroxyurea PK was analyzed in vivo by measuring [(14)C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled (14)CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b(-/-) mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h(-1)·ml(-1), respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b(-/-) mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b(-/-) mice, respectively) correlating with a decrease in exhaled (14)CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK.

  14. Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  15. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue.

    PubMed

    Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice

    2007-08-17

    Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.

  16. Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells.

    PubMed

    Schweigmann, H; Sánchez-Guijo, A; Ugele, B; Hartmann, K; Hartmann, M F; Bergmann, M; Pfarrer, C; Döring, B; Wudy, S A; Petzinger, E; Geyer, J; Grosser, G

    2014-09-01

    16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    PubMed Central

    Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b−/−) mice, hydroxyurea PK was analyzed in vivo by measuring [14C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled 14CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b−/− mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h−1·ml−1, respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b−/− mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b−/− mice, respectively) correlating with a decrease in exhaled 14CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK. PMID:23986199

  18. Alteration of the intravenous and oral pharmacokinetics of valsartan via the concurrent use of gemfibrozil in rats.

    PubMed

    Yang, Seung Jun; Kim, Bong Jin; Mo, Lingxuan; Han, Hyo-Kyung

    2016-07-01

    The present study aimed to examine the potential pharmacokinetic drug interaction between valsartan and gemfibrozil. Compared with the control given valsartan (10 mg/kg) alone, the concurrent use of gemfibrozil (10 mg/kg) significantly (p < 0.05) increased the oral exposure of valsartan in rats. In the presence of gemfibrozil, the Cmax and AUC of oral valsartan increased by 1.7- and 2.5-fold, respectively. Consequently, the oral bioavailability of valsartan was significantly higher (p < 0.05) in the presence of gemfibrozil compared with that of the control group. Furthermore, the intravenous pharmacokinetics of valsartan (1 mg/kg) was also altered by pretreatment with oral gemfibrozil (10 mg/kg). The plasma clearance of valsartan was decreased by two-fold in the presence of gemfibrozil, while the plasma half-life was not altered. In contrast, both the oral and intravenous pharmacokinetics of gemfibrozil were not affected by the concurrent use of valsartan. The cellular uptake of valsartan and gemfibrozil was also investigated by using cells overexpressing OATP1B1 or OATP1B3. Gemfibrozil and gemfibrozil 1-O-β glucuronide inhibited the cellular uptake of valsartan with IC50 values (µm) of 39.3 and 20.4, respectively, in MDCK/OATP1B1, while they were less interactive with OATP1B3. The cellular uptake of gemfibrozil was not affected by co-incubation with valsartan in both cells. Taken together, the present study suggests the potential drug interaction between valsartan and gemfibrozil, at least in part, via the OATP1B1-mediated transport pathways during hepatic uptake. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin

    PubMed Central

    Prueksaritanont, Thomayant; Chu, Xiaoyan; Evers, Raymond; Klopfer, Stephanie O; Caro, Luzelena; Kothare, Prajakti A; Dempsey, Cynthia; Rasmussen, Scott; Houle, Robert; Chan, Grace; Cai, Xiaoxin; Valesky, Robert; Fraser, Iain P; Stoch, S Aubrey

    2014-01-01

    Aims Rosuvastatin and pitavastatin have been proposed as probe substrates for the organic anion-transporting polypeptide (OATP) 1B, but clinical data on their relative sensitivity and selectivity to OATP1B inhibitors are lacking. A clinical study was therefore conducted to determine their relative suitability as OATP1B probes using single oral (PO) and intravenous (IV) doses of the OATP1B inhibitor rifampicin, accompanied by a comprehensive in vitro assessment of rifampicin inhibitory potential on statin transporters. Methods The clinical study comprised of two separate panels of eight healthy subjects. In each panel, subjects were randomized to receive a single oral dose of rosuvastatin (5 mg) or pitavastatin (1 mg) administered alone, concomitantly with rifampicin (600 mg) PO or IV. The in vitro transporter studies were performed using hepatocytes and recombinant expression systems. Results Rifampicin markedly increased exposures of both statins, with greater differential increases after PO vs. IV rifampicin only for rosuvastatin. The magnitudes of the increases in area under the plasma concentration–time curve were 5.7- and 7.6-fold for pitavastatin and 4.4- and 3.3-fold for rosuvastatin, after PO and IV rifampicin, respectively. In vitro studies showed that rifampicin was an inhibitor of OATP1B1 and OATP1B3, breast cancer resistance protein and multidrug resistance protein 2, but not of organic anion transporter 3. Conclusions The results indicate that pitavastatin is a more sensitive and selective and thus preferred clinical OATP1B probe substrate than rosuvastatin, and that a single IV dose of rifampicin is a more selective OATP1B inhibitor than a PO dose. PMID:24617605

  20. Investigating Transporter‐Mediated Drug‐Drug Interactions Using a Physiologically Based Pharmacokinetic Model of Rosuvastatin

    PubMed Central

    Wang, Q; Leil, T

    2017-01-01

    Rosuvastatin is a frequently used probe in transporter‐mediated drug‐drug interaction (DDI) studies. This report describes the development of a physiologically based pharmacokinetic (PBPK) model of rosuvastatin for prediction of pharmacokinetic (PK) DDIs. The rosuvastatin model predicted the observed single (i.v. and oral) and multiple dose PK profiles, as well as the impact of coadministration with transporter inhibitors. The predicted effects of rifampin and cyclosporine (6.58‐fold and 5.07‐fold increase in rosuvastatin area under the curve (AUC), respectively) were mediated primarily via inhibition of hepatic organic anion‐transporting polypeptide (OATP)1B1 (Inhibition constant (Ki) ∼1.1 and 0.014 µM, respectively) and OATP1B3 (Ki ∼0.3 and 0.007 µM, respectively), with cyclosporine also inhibiting intestinal breast cancer resistance protein (BCRP; Ki ∼0.07 µM). The predicted effects of gemfibrozil and its metabolite were moderate (1.88‐fold increase in rosuvastatin AUC) and mediated primarily via inhibition of hepatic OATP1B1 and renal organic cation transporter 3. This model of rosuvastatin will be useful in prospectively predicting transporter‐mediated DDIs with novel pharmaceutical agents in development. PMID:28296193

  1. SLCO1B1 polymorphism is not associated with risk of statin-induced myalgia/myopathy in a Czech population.

    PubMed

    Hubáček, Jaroslav A; Dlouhá, Dana; Adámková, Vera; Zlatohlavek, Lukáš; Viklický, Ondřej; Hrubá, Petra; Češka, Richard; Vrablík, Michal

    2015-05-20

    Gene SLCO1B1, encoding solute organic anionic transport polypeptide OATP1B1, belongs to the group of candidates potentially influencing statin treatment safety. OATP1B1 regulates (not only) the hepatic uptake of statins. Its genetic variation was described as an important predictor of statin-associated myopathy in a cohort of patients treated with a maximum dose of simvastatin. However, the impact of SLCO1B1 gene polymorphism on this risk in patients treated with other statins or lower doses of simvastatin needs to be assessed. Therefore, we performed the present study. SLCO1B1 tagging rs4363657 polymorphism was analyzed in 2 groups of patients with dyslipidemia (treated with simvastatin or atorvastatin, 10 or 20 mg per day), subgroup with statin-induced myalgia (N=286), and subgroup (N=707) without myalgia/myopathy, and in 2301 population controls without lipid-lowering treatment. Frequency of the individual genotypes in patients with myalgia/myopathy (TT=62.3%, CT=34.5%, CC=2.8%) did not significantly differ (both P values over 0.19) from that in patients without muscle symptoms (TT=61.4%, CT=32.9%, CC=5.7%) or from the population controls (TT=63.9%, CT=32.5%, CC=3.6%). Null results were also obtained for the dominant and recessive models of the analysis. In Czech patients treated with low statin doses, there is no association between SLCO1B1 gene polymorphism and risk of myalgia/myopathy.

  2. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko; Robinson, Donald L.

    1989-01-01

    Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars. PMID:16667193

  3. Estrone is neuroprotective in rats after traumatic brain injury.

    PubMed

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (p<0.01) and neuronal injury (p<0.001), and it reduced cerebral cortical levels of TUNEL-positive staining (p<0.0001), and decreased numbers of TUNEL-positive cells in the corpus callosum (p<0.03). We assessed the levels of β-amyloid in the injured animals and found that estrone significantly decreased the cortical levels of β-amyloid after brain injury. Cortical levels of phospho-ERK1/2 were significantly (p<0.01) increased by estrone. This increase was associated with an increase in phospho-CREB levels (p<0.021), and brain-derived neurotrophic factor (BDNF) expression (p<0.0006). In conclusion, estrone given acutely after injury increases the signaling of protective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  4. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  5. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    PubMed

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  6. SULT1A3-Mediated Regiospecific 7-O-Sulfation of Flavonoids in Caco-2 Cells Can Be Explained by the Relevant Molecular Docking Studies

    PubMed Central

    Meng, Shengnan; Wu, Baojian; Singh, Rashim; Yin, Taijun; Morrow, John Kenneth; Zhang, Shuxing; Hu, Ming

    2012-01-01

    Flavonoids are the polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 mono-hydroxyl flavonoids with –OH group at 3, 4’, 5 or 7 position, followed by 5 di-hydroxyl-flavonoids, and 2 tri-hydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at 7-OH position in Caco-2 cell lysates with minor amounts of 4’-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells. PMID:22352375

  7. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria thermodesulfobacterium sp. Strain JSP and thermodesulfovibrio sp. Strain R1Ha3

    PubMed

    Sonne-Hansen; Westermann; Ahring

    1999-03-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.

  8. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.

    PubMed

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen; Tzvetkov, Mladen Vassilev

    2017-01-01

    Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine's potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed.

  9. Kinetics of Sulfate and Hydrogen Uptake by the Thermophilic Sulfate-Reducing Bacteria Thermodesulfobacterium sp. Strain JSP and Thermodesulfovibrio sp. Strain R1Ha3

    PubMed Central

    Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.

    1999-01-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897

  10. SLCO1B1 Polymorphism is not associated with Risk of Statin-Induced Myalgia/Myopathy in a Czech Population

    PubMed Central

    Hubáček, Jaroslav A.; Dlouhá, Dana; Adámková, Vera; Zlatohlávek, Lukáš; Viklický, Ondřej; Hrubá, Petra; Češka, Richard; Vrablík, Michal

    2015-01-01

    Background Gene SLCO1B1, encoding solute organic anionic transport polypeptide OATP1B1, belongs to the group of candidates potentially influencing statin treatment safety. OATP1B1 regulates (not only) the hepatic uptake of statins. Its genetic variation was described as an important predictor of statin-associated myopathy in a cohort of patients treated with a maximum dose of simvastatin. However, the impact of SLCO1B1 gene polymorphism on this risk in patients treated with other statins or lower doses of simvastatin needs to be assessed. Therefore, we performed the present study. Material/Methods SLCO1B1 tagging rs4363657 polymorphism was analyzed in 2 groups of patients with dyslipidemia (treated with simvastatin or atorvastatin, 10 or 20 mg per day), subgroup with statin-induced myalgia (N=286), and subgroup (N=707) without myalgia/myopathy, and in 2301 population controls without lipid-lowering treatment. Results Frequency of the individual genotypes in patients with myalgia/myopathy (TT=62.3%, CT=34.5%, CC=2.8%) did not significantly differ (both P values over 0.19) from that in patients without muscle symptoms (TT=61.4%, CT=32.9%, CC=5.7%) or from the population controls (TT=63.9%, CT=32.5%, CC=3.6%). Null results were also obtained for the dominant and recessive models of the analysis. Conclusions In Czech patients treated with low statin doses, there is no association between SLCO1B1 gene polymorphism and risk of myalgia/myopathy. PMID:25992810

  11. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    PubMed

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  12. Estrogen-Mediated Breast Carcinogenesis: The Role of Sulfation Pharmacogenetics

    DTIC Science & Technology

    2000-05-01

    DATE 3. REPORT TYPE AND DATES COVERED IMay 2000 Annual (1 May 99 - 30 Apr 00) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Estrogen-Mediated Breast...Carcinogenesis: The Role of DAMD17-99-1-9281 Sulfation Pharmacogenetics 6 . AUTHOR(S) Araba Adjei, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES... 5 B O D Y

  13. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Christopher D.; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Tiwari, Vaibhav

    2006-03-15

    Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1more » gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.« less

  14. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake

    PubMed Central

    Purtell, Kerry; Paroder-Belenitsky, Monika; Reyna-Neyra, Andrea; Nicola, Juan P.; Koba, Wade; Fine, Eugene; Carrasco, Nancy; Abbott, Geoffrey W.

    2012-01-01

    The KCNQ1 α subunit and the KCNE2 β subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (−)-[3R,4S]-chromanol 293B (C293B) significantly impaired thyroid cell I− uptake, which is mediated by the Na+/I− symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028±0.004 min−1; 10 mg/kg C293B, 0.009±0.006 min−1) and in vitro (EC50: 99±10 μM C293B). Na+-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I− in the thyroid (distinguished using ClO4−, a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I− organification. However, Kcne2 deletion doubled the rate of free I− efflux from the thyroid following ClO4− injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I− uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.—Purtell, K., Paroder-Belenitsky, M., Reyna-Neyra, A., Nicola, J. P., Koba, W., Fine, E., Carrasco, N., Abbott, G. W. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake. PMID:22549510

  15. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine

    PubMed Central

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen

    2017-01-01

    Background Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. Aim In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. Methods and results We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. Conclusions We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine’s potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine

  16. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

    PubMed Central

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

  17. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Christopher D., E-mail: codonn3@uic.ed; Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Kovacs, Maria, E-mail: marcsika101@yahoo.co

    2010-02-20

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed,more » isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.« less

  18. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.

    1999-03-01

    Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less

  19. Thyroxine (T4) Transfer from Blood to Cerebrospinal Fluid in Sheep Isolated Perfused Choroid Plexus: Role of Multidrug Resistance-Associated Proteins and Organic Anion Transporting Polypeptides

    PubMed Central

    Zibara, Kazem; Zein, Nabil El; Sabra, Mirna; Hneino, Mohammad; Harati, Hayat; Mohamed, Wael; Kobeissy, Firas H.; Kassem, Nouhad

    2017-01-01

    Thyroxine (T4) enters the brain either directly across the blood–brain barrier (BBB) or indirectly via the choroid plexus (CP), which forms the blood–cerebrospinal fluid barrier (B-CSF-B). In this study, using isolated perfused CP of the sheep by single-circulation paired tracer and steady-state techniques, T4 transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with 125I-T4 and 14C-mannitol. Unlabeled T4 was applied during single tracer technique to assess the mode of maximum uptake (Umax) and the net uptake (Unet) on the blood side of the CP. On the other hand, in order to characterize T4 protein transporters, steady-state extraction of 125I-T4 was measured in presence of different inhibitors such as probenecid, verapamil, BCH, or indomethacin. Increasing the concentration of unlabeled-T4 resulted in a significant reduction in Umax%, which was reflected by a complete inhibition of T4 uptake into CP. In fact, the obtained Unet% decreased as the concentration of unlabeled-T4 increased. The addition of probenecid caused a significant inhibition of T4 transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4) and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14). Moreover, verapamil, the P-glycoprotein (P-gp) substrate, resulted in ~34% decrease in the net extraction of T4, indicating that MDR1 contributes to T4 entry into CSF. Finally, inhibition in the net extraction of T4 caused by BCH or indomethacin suggests, respectively, a role for amino acid “L” system and MRP1/Oatp1 in mediating T4 transfer. The presence of a carrier-mediated transport mechanism for cellular uptake on the basolateral membrane of the CP, mainly P-gp and Oatp2, would account for the

  20. Heterogenous uptake of gaseous N(sub 2)O(sub 5) by sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Leu, M. -T.; Kane, S. M.; Caloz, F.

    2001-01-01

    The heterogeneous uptake of gaseous N sub 2 O sub 5 by ammonium sulfate, ammonium bisulfate, and sulfuric acid aerosols as a function of relative humididty has been investigated at room temperature and atmsopheric pressure.

  1. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    PubMed

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2017-03-01

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na+/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Carrier-mediated uptake of nobiletin, a citrus polymethoxyflavonoid, in human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi; Kato, Yoshihisa; Endo, Tetsuya

    2014-07-01

    The mechanism of intestinal absorption of nobiletin (NBL) was investigated using Caco-2 cells. The uptake of NBL from the apical membranes of Caco-2 cells was rapid and temperature-dependent and the presence of metabolic inhibitors, NaN3 and carbonylcyanide p-trifluoromethoxyphenylhydrazone, did not cause a decrease in NBL uptake. The relationship between the initial uptake of NBL and its concentration was saturable, suggesting the involvement of a carrier-mediated process. The Km and uptake clearance (Vmax/Km) values for NBL were 50.6 and 168.1μl/mg protein/min, respectively. This clearance value was about 9-fold greater than that of the non-saturable uptake clearance (Kd: 18.5μl/mg protein/min). The presence of structurally similar compounds, such as quercetin and luteolin, competitively inhibited NBL uptake. These results suggest that uptake of NBL from the apical membranes of Caco-2 cells is mainly mediated by an energy-independent facilitated diffusion process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sulfate transport in apical membrane vesicles isolated from tracheal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgavish, A.; DiBona, D.R.; Norton, P.

    1987-09-01

    Sulfate uptake in apical membrane vesicles isolated from bovine tracheal epithelium is shown to occur into an osmotically sensitive intravesicular space, via a carrier-mediated system. This conclusion is based on three lines of evidence: 1) saturation kinetics: 2) substrate specificity; and 3) inhibition by the anion transport inhibitors SITS and DIDS. The affinity of the transport system is highest in low ionic strength media and decreases in the presence of gluconate. Chloride appears to cis-inhibit sulfate uptake and to trans-stimulate sulfate efflux. Cis-inhibition and trans-stimulation studies with a variety of anions indicate that this exchange system may be shared bymore » HCO/sub 3//sup -/, S/sub 2/O/sub 3//sup 2 -/, SeO/sub 4//sup 2 -/, and MoO/sub 4//sup 2 -/ but not by H/sub 2/PO/sub 4//sup -/ or HAsO/sub 4//sup 2/. Studies indicate that protons may play two distinct roles in sulfate transport in this system. These studies show that the carrier-mediated system can function in the absence of chloride. The overshoot observed in the presence of a proton gradient indicates that under those conditions the mechanism of transport may be a SO/sub 4//sup 2 -/-OH/sup -/ exchange.« less

  4. Lumiestrone is Photochemically Derived from Estrone and may be Released to the Environment without Detection

    PubMed Central

    Trudeau, Vance L.; Heyne, Belinda; Blais, Jules M.; Temussi, Fabio; Atkinson, Susanna K.; Pakdel, Farzad; Popesku, Jason T.; Marlatt, Vicki L.; Scaiano, Juan C.; Previtera, Lucio; Lean, David R. S.

    2011-01-01

    Endocrine disrupting chemicals are adversely affecting the reproductive health and metabolic status of aquatic vertebrates. Estrone is often the dominant natural estrogen in urban sewage, yet little is known about its environmental fate and biological effects. Increased use of UV-B radiation for effluent treatments, and exposure of effluents to sunlight in holding ponds led us to examine the effects of environmentally relevant levels of UV-B radiation on the photodegradation potential of estrone. Surprisingly, UV-B-mediated degradation leads to the photoproduction of lumiestrone, a little known 13α-epimer form of estrone. We show for the first time that lumiestrone possesses novel biological activity. In vivo treatment with estrone stimulated estrogen receptor (ER) α mRNA production in the male goldfish liver, whereas lumiestrone was without effect, suggesting a total loss of estrogenicity. In contrast, results from in vitro ER-dependent reporter gene assays indicate that lumiestrone showed relatively higher estrogenic potency with the zebrafish ERβ2 than zfERα, suggesting that it may act through an ERβ-selectivity. Lumiestrone also activated human ERs. Microarray analysis of male goldfish liver following in vivo treatments showed that lumiestrone respectively up- and down-regulated 20 and 69 mRNAs, which was indicative of metabolic upsets and endocrine activities. As a photodegradation product from a common estrogen of both human and farm animal origin, lumiestrone is present in sewage effluent, is produced from estrone upon exposure to natural sunlight and should be considered as a new environmental contaminant. PMID:22654829

  5. Modulation of transport and metabolism of bile acids and bilirubin by chlorogenic acid against hepatotoxicity and cholestasis in bile duct ligation rats: involvement of SIRT1-mediated deacetylation of FXR and PGC-1α.

    PubMed

    Zhu, Lili; Wang, Lei; Cao, Fei; Liu, Peng; Bao, Haidong; Yan, Yumei; Dong, Xin; Wang, Dong; Wang, Zhongyu; Gong, Peng

    2018-03-01

    The purpose of the present study was to investigate the effect and potential mechanism of chlorogenic acid (CA) on liver injury induced by cholestasis in a rat model of bile duct ligation (BDL). Rats received vehicle or CA (20, 50, or 100 mg/kg per day) orally for 3 days. On the 4th day, the rats underwent sham or BDL surgery, and were orally administrated vehicle or CA for 3 or 7 days. mRNA and protein expression levels were evaluated by qRT-PCR and western blot. After BDL, plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and total bile acids (TBA) were increased and typical pathological changes were observed in liver morphology. Hepatic uptake transporters (Ntcp, Oatp 1a4, and Oatp 1b2) were downregulated, while efflux transporters (Bsep and Mrp 2/3/4) were upregulated. BDL inhibited the expressions of Cyp7a1, Cyp8b1, and Cyp27a1 and induced Ugt1a1. CA treatment decreased ALT, AST, TBIL, and TBA (P < 0.05) and alleviated the liver pathological changes. The degree of expression changes in the transporters and enzymes was extended by CA (P < 0.05). SIRT1 protein was induced after CA treatment in BDL rats. Chlorogenic acid attenuated hepatotoxicity and cholestasis by decreasing the uptake and synthesis of bilirubin and bile acids and accelerating the metabolism and efflux of bilirubin and bile acids. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  6. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan-o, Keiko; Matsumoto, Koichiro, E-mail: koichi@kokyu.med.kyushu-u.ac.jp; Asai-Tajiri, Yukari

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (polymore » IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.« less

  7. Dust Modeling with GEOS-Chem: Evidence for Acidic Uptake on Dust Surfaces during INTEX-B

    NASA Technical Reports Server (NTRS)

    Fairlie, T. Duncan

    2007-01-01

    We use measurements of aerosol ion composition and size made from the DC8 aircraft during the 2006 INTEX-B airborne campaign to identify mineral dust signatures, and look for evidence for interaction of dust with acidic components. Coating of dust with sulfate or nitrate favors the role of dust particles as cloud condensation nucleii, can promote further uptake of SO2 and N2O5, can impact NOx/HNO3 partitioning, and can shift sulfate or nitrate towards larger sizes, affecting atmospheric lifetimes for both aerosol and gas components. Mineral dust had a pervasive presence on flights made during the Northern Pacific deployment of the INTEX-B mission. We use scatter plots of ion mixing ratios with Na+ and Ca(2+) to distinguish sea salt and mineral components of the aerosol distribution, respectively. Positive correlations of non-sea-salt sulfate and nitrate with calcium indicate that the dusty air stream is associated with polluted air masses. Sulfate-ammonium scatter plots indicate sulfate to be primarily in the form of (NH4)2SO4. A positive correlation between Ca(2+) and NO-, but little evidence of NH4NO3, suggests that NO3- may be associated with mineral dust surfaces. 3-d model simulations conducted with the GEOS-Chem chemical transport model indicate that transpacific transport from East Asia was principally responsible for the dust observed from the aircraft over the Pacific. We compare the aerosol component relationships in the model with those observed. Uptake of sulfate and nitrate on the dust is not yet represented in the model.

  8. Magnesium sulfate provides neuroprotection in lipopolysaccharide-activated primary microglia by inhibiting NF-κB pathway.

    PubMed

    Gao, Feng; Ding, Baozhong; Zhou, Longan; Gao, Xueshan; Guo, Huiguang; Xu, Hong

    2013-10-01

    Magnesium sulfate has been used as an anticonvulsant in severe preeclamptic or eclamptic women prior to surgical trauma, but its effects on neuroinflammation is not well defined. In the present study, we investigated the neuroprotective effects of magnesium sulfate in lipopolysaccharide (LPS)-induced microglia and explored the underlying mechanism. Microglia was incubated with LPS in the presence or absence of various concentrations of magnesium sulfate, or L-type calcium channel activator BAY-K8644. The levels of inflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, were measured using enzyme-linked immunosorbent assay. The expression of inducible nitric oxide synthase mRNA was detected by reverse-transcription polymerase chain reaction. Nuclear factor κB (NF-κB) activity in the nuclear extract of microglia was detected by NF-κB p50/p65 transcription factor assay kit. Magnesium sulfate at 5 and 10 mmol/L significantly inhibited the release of nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, and the expression of inducible nitric oxide synthase mRNA in LPS-activated microglia. Furthermore, magnesium sulfate inhibited the translocation of NF-κB from the cytoplasm to the nucleus in a dose-dependent manner. Notably, these effects were significantly reversed by L-type calcium channel activator BAY-K8644. Magnesium sulfate protects microglia against LPS-induced release of inflammatory mediators, and these effects may be mediated by inhibiting L-type calcium channels and NF-κB signaling. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. Environmental and cortisol-mediated control of Ca(2+) uptake in tilapia (Oreochromis mossambicus).

    PubMed

    Lin, Chia-Hao; Kuan, Wei-Chun; Liao, Bo-Kai; Deng, Ang-Ni; Tseng, Deng-Yu; Hwang, Pung-Pung

    2016-04-01

    Ca(2+) is a vital element for many physiological processes in vertebrates, including teleosts, which live in aquatic environments and acquire Ca(2+) from their surroundings. Ionocytes within the adult gills or larval skin are critical sites for transcellular Ca(2+) uptake in teleosts. The ionocytes of zebrafish were found to contain transcellular Ca(2+) transporters, epithelial Ca(2+) channel (ECaC), plasma membrane Ca(2+)-ATPase 2 (PMCA2), and Na(+)/Ca(2+) exchanger 1b (NCX1b), providing information about the molecular mechanism of transcellular Ca(2+) transports mediated by ionocytes in fish. However, more evidence is required to establish whether or not a similar mechanism of transcellular Ca(2+) transport also exists in others teleosts. In the present study, ecac, pmca2, and ncx1 were found to be expressed in the branchial ionocytes of tilapia, thereby providing further support for the mechanism of transcellular Ca(2+) transport through ionocytes previously proposed for zebrafish. In addition, we also reveal that low Ca(2+) water treatment of tilapia stimulates Ca(2+) uptake and expression of ecac and cyp11b (the latter encodes a cortisol-synthesis enzyme). Treatment of tilapia with exogenous cortisol (20 mg/l) enhanced both Ca(2+) influx and ecac expression. Therefore, increased cyp11b expression is suggested to enhance Ca(2+) uptake capacity in tilapia exposed to low Ca(2+) water. Furthermore, the application of cortisol receptor antagonists revealed that cortisol may regulate Ca(2+) uptake through glucocorticoid and/or mineralocorticoid receptor (GR and/or MR) in tilapia. Taken together, the data suggest that cortisol may activate GR and/or MR to execute its hypercalcemic action by stimulating ecac expression in tilapia.

  10. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    PubMed

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  11. An ultrasensitive and selective electrochemical sensor for determination of estrone 3-sulfate sodium salt based on molecularly imprinted polymer modified carbon paste electrode.

    PubMed

    Song, Han; Wang, Yuli; Zhang, Lu; Tian, Liping; Luo, Jun; Zhao, Na; Han, Yajie; Zhao, Feilang; Ying, Xue; Li, Yingchun

    2017-11-01

    A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10 -12 to 6 × 10 -9  M with a limit of detection of 1.18 × 10 -12  M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner. Graphical Abstract ᅟ.

  12. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes

    PubMed Central

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-01-01

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. PMID:23313877

  13. Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*

    PubMed Central

    Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven

    2010-01-01

    Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767

  14. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Fulcher, F Kent; Smith, Bethany T; Russ, Misty; Patel, Yashomati M

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

  15. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform viamore » MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.« less

  16. Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems.

    PubMed

    Lucero, Maria Luisa; Gonzalo, Ana; Ganza, Alvaro; Leal, Nerea; Soengas, Itziar; Ioja, Eniko; Gedey, Szilvia; Jahic, Mirza; Bednarczyk, Dallas

    2012-06-01

    Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H₁ antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.

  17. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.

    PubMed

    Ezcurra, I; Wycliffe, P; Nehlin, L; Ellerström, M; Rask, L

    2000-10-01

    The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.

  18. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  19. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey.

    PubMed

    Kosa, Rachel E; Lazzaro, Sarah; Bi, Yi-An; Tierney, Brendan; Gates, Dana; Modi, Sweta; Costales, Chester; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena V

    2018-06-07

    We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP) and talinolol (P-gp) were obtained in cynomolgus monkey - alone or in combination with transporter inhibitors. Single dose rifampicin (30 mg/kg) significantly (p<0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin (AUC ratio ~21-39). Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (p<0.05) impacted the renal clearance of rosuvastatin (~8-fold). In vitro, rifampicin (10μM) inhibited uptake of pitavastatin, rosuvastatin and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP; while talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions. The American Society for Pharmacology and Experimental Therapeutics.

  20. Effect of Yin-Zhi-Huang on up-regulation of Oatp2, Ntcp, and Mrp2 proteins in estrogen-induced rat cholestasis.

    PubMed

    Zhang, Guoqiang; Zhou, Yan; Rao, Zhi; Qin, Hongyan; Wei, Yuhui; Ren, Jiangxia; Zhou, Liting; Wu, Xin'an

    2015-03-01

    Yin-Zhi-Huang (YZH), a prescription of traditional Chinese medicine, is widely used to treat neonatal jaundice or cholestasis. This study investigates the regulatory effect of YZH on the localization and expression of organic anion transporting polypeptides 2 (Oatp2), Na(+)-taurocholate co-transporting polypeptide (Ntcp), multidrug-resistance-associated protein 2 (Mrp2), and bile salt export pump (Bsep) in estrogen-induced cholestasis rats. Cholestasis model rats were induced via subcutaneous injection of estradiol benzoate (EB, 5 mg/kg/d) for 5 d. Other EB-induced rats were treated with saline (2 ml) or YZH (1.5 g/kg, two times a day) for 7, 14, and 21 d. The biochemical and pathologic examinations were performed. Moreover, the localization and expression of Oatp2, Ntcp, Mrp2, and Bsep were determined by immunohistochemisty and Western blotting, respectively. YZH treatment could significantly decrease the serum total bile acids (TBA) (4.9 ± 0.6-2.8 ± 0.8) and direct bilirubin (DBIL) (2.6 ± 0.7-1.0 ± 0.1) levels, improve the histological disorganization, and, respectively, increase the expression of Oatp2 and Ntcp by 46% and 28% compared with saline-treated (p < 0.05) rats at 14 d. The expression of Mrp2 increased by 45% was observed in YZH treated compared with saline-treated (p < 0.05) rats at 7 d. However, there was a little change in the expression of Bsep (p > 0.05) after YZH treatment for 7, 14, and 21 d. In conclusion, the therapeutic effect of YZH to cholestasis could be attributed to the regulation of Oatp2, Ntcp, Mrp2, and Bsep.

  1. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes.

    PubMed

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-03-15

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates that significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics.

    PubMed

    Bexten, Maria; Oswald, Stefan; Grube, Markus; Jia, Jia; Graf, Tanja; Zimmermann, Uwe; Rodewald, Kathrin; Zolk, Oliver; Schwantes, Ulrich; Siegmund, Werner; Keiser, Markus

    2015-01-05

    The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1

  3. Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations

    PubMed Central

    Mutsaers, Henricus A. M.; van den Heuvel, Lambertus P.; Ringens, Lauke H. J.; Dankers, Anita C. A.; Russel, Frans G. M.; Wetzels, Jack F. M.; Hoenderop, Joost G.; Masereeuw, Rosalinde

    2011-01-01

    During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [3H]-methotrexate ([3H]-MTX) uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively) and BCRP-mediated [3H]-estrone sulfate ([3H]-E1S) uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively), whereas indole-3-acetic acid and phenylacetic acid reduce [3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC50 value: 7 mM, respectively). In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations. PMID:21483698

  4. Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Yan; Ding Shaohua; Zheng Xuefang

    2007-07-15

    Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. 1 crystallizes with monoclinic symmetry, space group P2(1)/n [a=7.995(4) A, b=10.945(5) A, c=8.164(4) A, {alpha}=90{sup o}, {beta}=93.619(6){sup o}, {gamma}=90{sup o}, V=713.0(5) A{sup 3}, Z=8]. It displays a three-dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains. 2 crystallizes with monoclinic symmetry, space group C2/c, [a=13.5605(17) A, b=6.7676(8) A, c=18.318(2) A, {alpha}=90{sup o}, {beta}=102.265(2){sup o}, {gamma}=90{supmore » o}, V=1642.7 (4) A{sup 3}, Z=4]. Its layered framework is attained by the europium atoms connected by the sulfate groups arranged in a helical manner. - Graphical abstract: Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2} (SO{sub 4}){sub 3} (H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. It displays a three dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains.« less

  5. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling.

    PubMed

    Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar

    2014-04-01

    The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters

    PubMed Central

    Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.

    2015-01-01

    Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917

  7. Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 1. Dissolved oxygen and sodium chloride.

    PubMed

    Feifarek, D J; Shappell, N W; Schoenfuss, H L

    2018-01-01

    Laboratory exposures indicate that estrogens and their mimics can cause endocrine disruption in male fishes, yet while studies of resident fish populations in estrogen-polluted waters support these findings, biomarker expression associated with field versus laboratory exposure to estrogenic endocrine disruptors (EDs) often differ dramatically. Two of the environmental parameters often found to vary in dynamic aquatic ecosystems were chosen (dissolved oxygen [DO] and sodium chloride concentrations) to assess their potential impact on ED exposure. In separate experiments, male fathead minnows (Pimephales promelas) were exposed to estrone (E1) a natural ED, under either two concentrations of DO, or two concentrations of sodium chloride, in a laboratory flow-through system. Morphological and hematological parameters were assessed. While vitellogenin concentrations were elevated with exposure to estrone (29 to 390ng/L), the effect on other indices were variable. Estrone exposure altered SSC, blood glucose, hematocrit, and hepatic and gonado-somatic index in 1 of 4 experiments, while it decreased body condition factor in 3 of 4 experiments. At the concentrations tested, no main effect differences (P<0.05) were found associated with DO or sodium chloride treatments, except in one experiment low DO resulted in a decrease in secondary sex characteristic score (SSC). The combination of DO or sodium chloride and E1 altered blood glucose in one experiment each. These results indicate the variability of fathead minnow response to estrone, even within the confines of controlled laboratory conditions. Published by Elsevier B.V.

  8. Perilla frutescens Extracts Protects against Dextran Sulfate Sodium-Induced Murine Colitis: NF-κB, STAT3, and Nrf2 as Putative Targets.

    PubMed

    Dae Park, Deung; Yum, Hye-Won; Zhong, Xiancai; Kim, Seung Hyeon; Kim, Seong Hoon; Kim, Do-Hee; Kim, Su-Jung; Na, Hye-Kyung; Sato, Atsuya; Miura, Takehito; Surh, Young-Joon

    2017-01-01

    Perilla frutescens is a culinary and medicinal herb which has a strong anti-inflammatory and antioxidative effects. In the present study, we investigated the effects of Perilla frutescens extract (PE) against dextran sulfate sodium (DSS)-induced mouse colitis, an animal model that mimics human inflammatory bowel disease (IBD). Five-week-old male ICR mice were treated with a daily dose of PE (20 or 100 mg/kg, p.o. ) for 1 week, followed by administration of 3% DSS in double distilled drinking water and PE by gavage for another week. DSS-induced colitis was characterized by body weight loss, colon length shortening, diarrhea and bloody stool, and these symptoms were significantly ameliorated by PE treatment. PE administration suppressed DSS-induced expression of proinflammatory enzymes, including cyclooxygenase-2 and inducible nitric oxide synthase as well as cyclin D1, in a dose-dependent fashion. Nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) are major transcriptional regulators of inflammatory signaling. PE administration significantly inhibited the activation of both NF-κB and STAT3 induced by DSS, while it elevated the accumulation of Nrf2 and heme oxygenase-1 in the colon. In another experiment, treatment of CCD841CoN human normal colon epithelial cells with PE (10 mg/ml) resulted in the attenuation of the tumor necrosis factor-α-induced expression/activation of mediators of proinflammatory signaling. The above results indicate that PE has a preventive potential for use in the management of IBD.

  9. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes.

    PubMed

    Kudo, Toshiyuki; Hisaka, Akihiro; Sugiyama, Yuichi; Ito, Kiyomi

    2013-02-01

    The plasma concentration of repaglinide is reported to increase greatly when given after repeated oral administration of itraconazole and gemfibrozil. The present study analyzed this interaction based on a physiologically based pharmacokinetic (PBPK) model incorporating inhibition of the hepatic uptake transporter and metabolic enzymes involved in repaglinide disposition. Firstly, the plasma concentration profiles of inhibitors (itraconazole, gemfibrozil, and gemfibrozil glucuronide) were reproduced by a PBPK model to obtain their pharmacokinetic parameters. The plasma concentration profiles of repaglinide were then analyzed by a PBPK model, together with those of the inhibitors, assuming a competitive inhibition of CYP3A4 by itraconazole, mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide, and inhibition of organic anion transporting polypeptide (OATP) 1B1 by gemfibrozil and its glucuronide. The plasma concentration profiles of repaglinide were well reproduced by the PBPK model based on the above assumptions, and the optimized values for the inhibition constants (0.0676 nM for itraconazole against CYP3A4; 14.2 μM for gemfibrozil against OATP1B1; and 5.48 μM for gemfibrozil glucuronide against OATP1B1) and the fraction of repaglinide metabolized by CYP2C8 (0.801) were consistent with the reported values. The validity of the obtained parameters was further confirmed by sensitivity analyses and by reproducing the repaglinide concentration increase produced by concomitant gemfibrozil administration at various timings/doses. The present findings suggested that the reported concentration increase of repaglinide, suggestive of synergistic effects of the coadministered inhibitors, can be quantitatively explained by the simultaneous inhibition of the multiple clearance pathways of repaglinide.

  10. HSV-1 interaction to 3-O-sulfated heparan sulfate in mouse-derived DRG explant and profiles of inflammatory markers during virus infection.

    PubMed

    Sharthiya, Harsh; Seng, Chanmoly; Van Kuppevelt, T H; Tiwari, Vaibhav; Fornaro, Michele

    2017-06-01

    The molecular mechanism of herpes simplex virus (HSV) entry and the associated inflammatory response in the nervous system remain poorly understood. Using mouse-derived ex vivo dorsal root ganglia (DRG) explant model and single cell neurons (SCNs), in this study, we provided a visual evidence for the expression of heparan sulfate (HS) and 3-O-sulfated heparan sulfate (3-OS HS) followed by their interactions with HSV-1 glycoprotein B (gB) and glycoprotein D (gD) during cell entry. Upon heparanase treatment of DRG-derived SCN, a significant inhibition of HSV-1 entry was observed suggesting the involvement of HS role during viral entry. Finally, a cytokine array profile generated during HSV-1 infection in DRG explant indicated an enhanced expression of chemokines (LIX, TIMP-2, and M-CSF)-known regulators of HS. Taken together, these results highlight the significance of HS during HSV-1 entry in DRG explant. Further investigation is needed to understand which isoforms of 3-O-sulfotransferase (3-OST)-generated HS contributed during HSV-1 infection and associated cell damage.

  11. Estrogen-Mediated Breast Carcinogenesis: The Role of Sulfation Pharmacogenetics

    DTIC Science & Technology

    2002-05-01

    Final (1 May 99 - 30 Apr 02) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Estrogen-Mediated Breast Carcinogenesis: The DAMD17-99-1-9281 Role of Sulfation...Pharmacogenetics 6 . AUTHOR(S) Araba Adjei, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Mayo...4 IN TR O D U CTIO N ................................................................................................... 5 B O D Y

  12. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.

    Sulfur, most abundantly found in the environment as sulfate (SO 4 2-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO 4 2- at the molecular level is limited. CysZ has been described as a SO 4 2- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO 4 2- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO 4 2- across membranes. CysZ structures from three different bacterial speciesmore » display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. In conclusion, mutational studies highlight the functional relevance of conserved CysZ residues.« less

  13. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE PAGES

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.; ...

    2018-05-24

    Sulfur, most abundantly found in the environment as sulfate (SO 4 2-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO 4 2- at the molecular level is limited. CysZ has been described as a SO 4 2- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO 4 2- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO 4 2- across membranes. CysZ structures from three different bacterial speciesmore » display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. In conclusion, mutational studies highlight the functional relevance of conserved CysZ residues.« less

  14. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  15. The Regulation of Steroid Action by Sulfation and Desulfation

    PubMed Central

    Mueller, Jonathan W.; Gilligan, Lorna C.; Idkowiak, Jan; Arlt, Wiebke

    2015-01-01

    Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined. PMID:26213785

  16. SLCO2B1 and SLCO1B3 as New Targets for Enhancing Androgen Deprivation Therapy for Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    that statins block DHEAS uptake by competitively binding to SLCO2B1. We examined the effect of four different statins ( atorvastatin , fluvastatin...300 pmol/mg compared to ~60 pmol/mg protein for LNCaP (Fig. 2B). 100 µM atorvastatin significantly decreased DHEAS influx by ~50% in both cell...or even 100 µM atorvastatin or simvastatin was insufficient to inhibit DHEAS uptake in LNCaP, which has a relatively low level of SLCO2B1 expression

  17. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    PubMed

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  18. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    PubMed Central

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  19. Role of TonB1 in pyoverdine-mediated signaling in Pseudomonas aeruginosa.

    PubMed

    Shirley, Matt; Lamont, Iain L

    2009-09-01

    Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA.

  20. Abundance of the Organic Anion-transporting Polypeptide OATP4A1 in Early-Stage Colorectal Cancer Patients: Association With Disease Relapse.

    PubMed

    Buxhofer-Ausch, Veronika; Sheikh, Maidah; Ausch, Christoph; Zotter, Simone; Bauer, Heike; Mollik, Marina; Reiner, Angelika; Gleiss, Andreas; Jäger, Walter; Sebesta, Christian; Kriwanek, Stephan; Thalhammer, Theresia

    2018-05-03

    The abundance of OATP4A1 in colorectal cancer (CRC) might be related to tumor progression. This was studied by immunohistochemistry on paraffin-embedded samples obtained from 178 patients (43 patients with a relapse within 5 y) with early-stage CRC. Positivity for OATP4A1 in tumor cells and noncancerous mucosal cells was proved by double-immunofluorescence staining with antibodies against OATP4A1 and keratin 8, whereas antibodies against appropriate CD markers were used to identify immune cells. Automated microscopic image analysis was used to measure the percentage of OATP4A1-positive cells and OATP4A1 staining intensity in tumor, immune, and adjacent normal-looking mucosal cells separately, as well as in the mucosal and immune cells of 14 nonmalignant tissue samples. In CRC the percentage of OATP4A1-positive cells, but not staining intensity, was significantly higher in tumor and mucosal cells adjacent to the tumor compared to the mucosa of nonmalignant samples (P<0.001 each). No difference was registered between immune cells in malignant and nonmalignant samples. Importantly, high levels of OATP4A1 in immune (odds ratio, 0.73; confidence interval, 0.63-0.85; P<0.001), and tumor cells (odds ratio, 0.79; confidence interval, 0.69-0.91; P<0.001) are significantly associated with a low risk of recurrence and also significantly enhance the discriminative power of other clinical parameters [such as International Union Against Cancer (UICC), adjuvant therapy, localization of the primary tumor] of the risk of relapse (receiver operating characteristics analysis; P=0.002). Using an advanced digital microscopic quantification procedure, we showed that OATP4A1 abundance is negatively associated with tumor recurrence in early-stage CRC. This digital scoring procedure may serve as a novel tool for the assessment of potential prognostic markers in early-stage CRC.

  1. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    PubMed Central

    Krolopp, James E.; Thornton, Shantaé M.; Abbott, Marcia J.

    2016-01-01

    Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism. PMID:28066259

  2. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Ju, E-mail: juzi.cui@gmail.com; Pang, Jing; Lin, Ya-Jun

    2016-08-05

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with themore » induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. - Highlights: • The KIF5B level was up regulated during 3T3-L1 adipogenesis. • Endogenous KIF5B and adiponectin were partially colicalized. • Adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. • The secretion of adiponectin, but not leptin, is dependent on functional KIF5B.« less

  3. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  4. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  5. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  6. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  7. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration.

    PubMed

    Mayerl, Steffen; Schmidt, Manuel; Doycheva, Denica; Darras, Veerle M; Hüttner, Sören S; Boelen, Anita; Visser, Theo J; Kaether, Christoph; Heuer, Heike; von Maltzahn, Julia

    2018-06-05

    Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Multi-Laboratory Validation of Estrone (E1) ELISA Methods

    EPA Science Inventory

    This project is a round-robin evaluation of commercially available Enzyme-Linked Immunosorbent Assay (ELISA) technology to quantitatively or qualitatively measure the hormone estrone (E1) in combined animal feeding operation (CAFO) receiving streams. ELISA is meant to be a simpl...

  9. Effect of Sulfate on Selenium Uptake And Chemical Speciation in Convolvulus Arvensis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Jimenez, G.; Peralta-Video, J.R.; Rosa, G.de la

    2007-08-08

    Hydroponic experiments were performed to study several aspects of Se uptake by C. arvensis plants. Ten day old seedlings were exposed for eight days to different combinations of selenate (SeO{sub 4}{sup 2-}), sulfate (SO{sub 4}{sup 2-}), and selenite (SeO{sub 3}{sup 2-}). The results showed that in C. arvensis, SO{sub 4}{sup 2-} had a negative effect (P < 0.05) on SeO{sub 4}{sup 2-} uptake. However, a positive interaction produced a significant increase in SO{sub 4}{sup 2-} uptake when SeO{sub 4}{sup 2-} was at high concentration in the media. X-ray absorption spectroscopy studies showed that C. arvensis plants converted more than 70%more » of the supplied SeO{sub 3}{sup 2-} into organoselenium compounds. However, only approximately 50% of the supplied SeO{sub 4}{sup 2-} was converted into organoselenium species while the residual 50% remained in the inorganic form. Analysis using LC-XANES fittings confirmed that the S metabolic pathway was affected by the presence of Se. The main Se compounds that resembled those Se species identified in C. arvensis were Se-cystine, Se-cysteine, SeO{sub 3}{sup 2-}, and SeO{sub 4}{sup 2-}, whereas for S the main compounds were cysteine, cystine, oxidized glutathione, reduced glutathione, and SO{sub 4}{sup 2-}. The results of these studies indicated that C. arvensis could be considered as a possible option for the restoration of soil moderately contaminated with selenium even in the presence of sulfate.« less

  10. Enhanced visible light photocatalytic activity of sulfated CuO-Bi2O3 photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Xinlu; Zeng, Jun; Zhong, Junbo; Li, Jianzhang

    2015-09-01

    Sulfate (SO4 2-)-modified CuO-Bi2O3 composite photocatalysts with different loadings of SO4 2- were prepared by a facile pore impregnating method using ammonium persulfate (NH4)2S2O8 solution. The surface parameters, structure, morphology, the response ability to light, the binding energy of Bi 4 f and O 1 s, the hydroxyl content on the surface and the separation rate of photoinduced hole-electron pairs were characterized by Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy, respectively. The results reveal that sulfating of CuO-Bi2O3 decreases the band gap, increases the hydroxyl content on the surface, the separation rate of photoinduced hole-electron pairs and the adsorption of Rhodamine B on the sulfated photocatalysts. The photocatalytic activity of SO4 2-/CuO-Bi2O3 for decolorization of Rhodamine B aqueous solution was evaluated. The result shows that when the molar ratio of S/Bi is 5 %, SO4 2-/CuO-Bi2O3 exhibits the best photocatalytic activity under visible light irradiation and the possible reason is discussed.

  11. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes.

    PubMed

    Pentassuglia, Laura; Heim, Philippe; Lebboukh, Sonia; Morandi, Christian; Xu, Lifen; Brink, Marijke

    2016-05-01

    Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure. Copyright © 2016 the American Physiological Society.

  12. Effect of water extracts from edible Myrtaceae plants on uptake of 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose in TNF-α-treated FL83B mouse hepatocytes.

    PubMed

    Chang, Wen-Chang; Shen, Szu-Chuan

    2013-02-01

    This study investigated the glucose uptake activity of the water extracts from the leaves and fruit of edible Myrtaceae plants, including guava (Psidium guajava Linn.), wax apples [Syzygium samarangense (Blume) Merr. and L.M. Perry], Pu-Tau [Syzygium jambo (L.) Alston], and Kan-Shi Pu-Tau (Syzygium cumini Linn.) in FL83B mouse hepatocytes. The fluorescent dye 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose was used to estimate the uptake ability of the cells. Glucose uptake test showed that pink wax apple fruit extract (PWFE) exhibits the highest glucose uptake activity, at an increment of 21% in the insulin-resistant FL83B mouse hepatocytes as compared with the TNF-α-treated control group. Vescalagin was isolated using column chromatography of PWFE. This compound, at the concentration of 6.25 µg/mL, exhibits the same glucose uptake improvement in insulin-resistant cells as PWFE at a 100-µg/mL dose. We postulate that vescalagin is an active component in PWFE that may alleviate the insulin resistance in mouse hepatocytes. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    PubMed

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay. © 2016, The American College of Clinical Pharmacology.

  14. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide.

    PubMed

    Varma, Manthena V S; Scialis, Renato J; Lin, Jian; Bi, Yi-An; Rotter, Charles J; Goosen, Theunis C; Yang, Xin

    2014-07-01

    The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.

  15. Role of TonB1 in Pyoverdine-Mediated Signaling in Pseudomonas aeruginosa▿

    PubMed Central

    Shirley, Matt; Lamont, Iain L.

    2009-01-01

    Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA. PMID:19592589

  16. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells

    PubMed Central

    2012-01-01

    Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells. PMID:22537242

  17. The activity of organic anion transporter-3: Role of dexamethasone.

    PubMed

    Wang, Haoxun; Liu, Chenchang; You, Guofeng

    2018-02-01

    Human organic anion transporter-3 (hOAT3) is richly expressed in the kidney, where it plays critical roles in the secretion, from the blood to urine, of clinically important drugs, such as anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. In the current study, we examined the role of dexamethasone in hOAT3 transport activity in the kidney HEK293 cells. Cis-inhibition study showed that dexamethasone exhibited a concentration-dependent inhibition of hOAT3-mediated uptake of estrone sulfate, a prototypical substrate for the transporter, with IC 50 value of 49.91 μM. Dixon plot analysis revealed that inhibition by dexamethasone was competitive with a Ki = 47.08 μM. In contrast to the cis-inhibition effect of dexamethasone, prolonged incubation (6 h) of hOAT3-expressing cells with dexamethasone resulted in an upregulation of hOAT3 expression and transport activity, kinetically revealed as an increase in the maximum transport velocity V max without meaningful alteration in substrate-binding affinity K m . Such upregulation was abrogated by GSK650394, a specific inhibitor for serum- and glucocorticoid-inducible kinases (sgk). Dexamethasone also enhanced sgk1 phosphorylation. Our study demonstrated that dexamethasone exhibits dual effects on hOAT3: it is a competitive inhibitor for hOAT3-mediated transport, and interestingly, when entering the cells, it stimulates hOAT3 expression and transport activity through sgk1. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members

    PubMed Central

    MacArthur, Jennifer M.; Bishop, Joseph R.; Stanford, Kristin I.; Wang, Lianchun; Bensadoun, André; Witztum, Joseph L.; Esko, Jeffrey D.

    2007-01-01

    We examined the role of hepatic heparan sulfate in triglyceride-rich lipoprotein metabolism by inactivating the biosynthetic gene GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) in hepatocytes using the Cre-loxP system, which resulted in an approximately 50% reduction in sulfation of liver heparan sulfate. Mice were viable and healthy, but they accumulated triglyceride-rich lipoprotein particles containing apoB-100, apoB-48, apoE, and apoCI-IV. Compounding the mutation with LDL receptor deficiency caused enhanced accumulation of both cholesterol- and triglyceride-rich particles compared with mice lacking only LDL receptors, suggesting that heparan sulfate participates in the clearance of cholesterol-rich lipoproteins as well. Mutant mice synthesized VLDL normally but showed reduced plasma clearance of human VLDL and a corresponding reduction in hepatic VLDL uptake. Retinyl ester excursion studies revealed that clearance of intestinally derived lipoproteins also depended on hepatocyte heparan sulfate. These findings show that under normal physiological conditions, hepatic heparan sulfate proteoglycans play a crucial role in the clearance of both intestinally derived and hepatic lipoprotein particles. PMID:17200715

  19. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  20. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1.

    PubMed

    Vaidyanathan, Jayabharathi; Yoshida, Kenta; Arya, Vikram; Zhang, Lei

    2016-07-01

    Evaluation of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an integral part of drug development and is recommended by regulatory agencies. In this study we compared various prediction methods and cutoff criteria based on in vitro inhibition data to assess the potential of a new molecular entity to inhibit OATP1B1 in vivo. In vitro (eg, IC50 , fu,p ) and in vivo (eg, dose, Cmax , change in area under the curve [AUC]) data for 11 substrates and 61 inhibitors for OATP1B1 were obtained from literature and Drugs@FDA, which include 107 clinical (in vivo) DDI studies. Substrate dependency and variability of IC50 values were noted. In addition to the ratio of unbound or total systemic concentration (Imax,u and Imax ) to IC50 , maximum unbound inhibitor concentration at the inlet to the liver (Iu,in,max ) was used for the estimation of "R value" where R = 1 + Iu,in,max /IC50 . Based on our analyses, Imax /Ki ≥ 0.1, R ≥ 1.04, or R ≥ 1.1 seem to be appropriate for reducing the false-negative (FN) predictions. However, as compared with R ≥ 1.1, Imax /Ki ≥ 0.1 and R ≥ 1.04 resulted in higher false positives (FPs) and lower true negatives (TNs). R ≥ 1.1, Imax,u /Ki ≥ 0.02, and R ≥ 1.25 alone, or combined criterion of Imax /Ki ≥ 0.1 and R ≥ 1.25, were reasonable to determine the need to perform clinical DDI studies with OATP1B1 substrates with similar positive and negative predictive values. Possible reasons of FP or FN from different decision criteria should be considered when interpreting prediction results, and the variability in IC50 determination needs to be understood and minimized. © 2016, The American College of Clinical Pharmacology.

  1. Aflatoxin B1 and M1 Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators

    PubMed Central

    Loi, Martina; Fanelli, Francesca; Zucca, Paolo; Liuzzi, Vania C.; Quintieri, Laura; Cimmarusti, Maria T.; Monaci, Linda; Haidukowski, Miriam; Logrieco, Antonio F.; Sanjust, Enrico; Mulè, Giuseppina

    2016-01-01

    Laccases (LCs) are multicopper oxidases that find application as versatile biocatalysts for the green bioremediation of environmental pollutants and xenobiotics. In this study we elucidate the degrading activity of Lac2 pure enzyme form Pleurotus pulmonarius towards aflatoxin B1 (AFB1) and M1 (AFM1). LC enzyme was purified using three chromatographic steps and identified as Lac2 through zymogram and LC-MS/MS. The degradation assays were performed in vitro at 25 °C for 72 h in buffer solution. AFB1 degradation by Lac2 direct oxidation was 23%. Toxin degradation was also investigated in the presence of three redox mediators, (2,2′-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid]) (ABTS) and two naturally-occurring phenols, acetosyringone (AS) and syringaldehyde (SA). The direct effect of the enzyme and the mediated action of Lac2 with redox mediators univocally proved the correlation between Lac2 activity and aflatoxins degradation. The degradation of AFB1 was enhanced by the addition of all mediators at 10 mM, with AS being the most effective (90% of degradation). AFM1 was completely degraded by Lac2 with all mediators at 10 mM. The novelty of this study relies on the identification of a pure enzyme as capable of degrading AFB1 and, for the first time, AFM1, and on the evidence that the mechanism of an effective degradation occurs via the mediation of natural phenolic compounds. These results opened new perspective for Lac2 application in the food and feed supply chains as a biotransforming agent of AFB1 and AFM1. PMID:27563923

  2. Social Cognitive Mediators of Sociodemographic Differences in Colorectal Cancer Screening Uptake

    PubMed Central

    Lo, Siu Hing; Waller, Jo; Vrinten, Charlotte; Kobayashi, Lindsay; von Wagner, Christian

    2015-01-01

    Background. This study examined if and how sociodemographic differences in colorectal cancer (CRC) screening uptake can be explained by social cognitive factors. Methods. Face-to-face interviews were conducted with individuals aged 60–70 years (n = 1309) living in England as part of a population-based omnibus survey. Results. There were differences in screening uptake by SES, marital status, ethnicity, and age but not by gender. Perceived barriers (stand. b = −0.40, p < 0.001), social norms (stand. b = 0.33, p < 0.001), and screening knowledge (stand. b = 0.17, p < 0.001) had independent associations with uptake. SES differences in uptake were mediated through knowledge, social norms, and perceived barriers. Ethnic differences were mediated through knowledge. Differences in uptake by marital status were primarily mediated through social norms and to a lesser extent through knowledge. Age differences were largely unmediated, except for a small mediated effect via social norms. Conclusions. Sociodemographic differences in CRC screening uptake were largely mediated through social cognitive factors. Impact. Our findings suggest that multifaceted interventions might be needed to reduce socioeconomic inequalities. Ethnic differences might be reduced through improved screening knowledge. Normative interventions could emphasise screening as an activity endorsed by important others outside the immediate family to appeal to a wider audience. PMID:26504782

  3. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus.

    PubMed

    Sauer, Sven W; Opp, Silvana; Mahringer, Anne; Kamiński, Marcin M; Thiel, Christian; Okun, Jürgen G; Fricker, Gert; Morath, Marina A; Kölker, Stefan

    2010-06-01

    Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs - glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) - across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood-brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na(+)-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na(+)-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na(+)-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The role of hepatic transport and metabolism in the interactions between pravastatin or repaglinide and two rOatp inhibitors in rats.

    PubMed

    Badolo, Lassina; Bundgaard, Christoffer; Garmer, Mats; Jensen, Bente

    2013-07-16

    A change in the function or expression of hepatic drug transporters may have significant effect on the efficacy or safety of orally administered drugs. Although a number of clinical drug-drug interactions associated with hepatic transport proteins have been reported, in practice it is not always straightforward to discriminate other pathways (e.g. drug metabolism) from being involved in these interactions. The present study was designed to assess the interactions between organic anion transporting polypeptide (Oatp) substrates (pravastatin or repaglinide) and inhibitors (spironolactone or diphenhydramine) in vivo in rats. The mechanisms behind the interactions were then investigated using in vitro tools (isolated hepatocytes and rat liver microsomes). The results showed a significant increase in the systemic exposures of pravastatin (2.5-fold increase in AUC) and repaglinide (1.8-fold increase in AUC) after co-administration of spironolactone to rats. Diphenhydramine increased the AUC of repaglinide by 1.4-fold. The in vivo interactions observed in rats between Oatp substrates and inhibitors may a priori be classified as transport-mediated drug-drug interactions. However, mechanistic studies performed in vitro using both isolated rat hepatocytes and rat liver microsomes showed that the interaction between pravastatin and spironolactone may be solely linked to the inhibition of pravastatin uptake in liver. On the contrary, the inhibition of cytochrome P450 seemed to be the reason for the interactions observed between repaglinide and spironolactone. Although the function and structure of transport proteins may vary between rats and humans, the approach used in the present study can be applied to humans and help to understand the role of drug transport and drug metabolism in a given drug-drug interaction. This is important to predict and mitigate the risk of drug-drug interactions for a candidate drug in pre-clinical development, it is also important for the optimal

  5. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    PubMed Central

    Assefa, Biruhalem; Mahmoud, Ayman M.; Pfeiffer, Andreas F. H.; Birkenfeld, Andreas L.; Spranger, Joachim

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism. PMID:29422987

  6. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes.

    PubMed

    Assefa, Biruhalem; Mahmoud, Ayman M; Pfeiffer, Andreas F H; Birkenfeld, Andreas L; Spranger, Joachim; Arafat, Ayman M

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKC ζ / λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKC ζ / λ /GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  7. Potential herb-drug interaction of shexiang baoxin pill in vitro based on drug metabolism/transporter

    PubMed Central

    Shen, Zhijie; Wang, Yingjie; Guo, Wei; Yao, Yili; Wang, Xiaolong

    2016-01-01

    Many researches have proved functions of anti-oxidation, endothelial protection and pro-angiogenesis efficiency of Shexiang Baoxin Pill (SBP). This study aims to investigate potential for metabolism-based interaction on CYP450s and transporter based interaction on OATP1B1, BRCP and MDR1. Human primary hepatocytes were used in this study. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without SBP and IC50 values were estimated. Inhibitive potential of SBP on activities of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. Inducible potential of SBP on activities of CYP1A2, 2B6 and 3A4 was accessed. Inhibitive potential of SBP on human OATP1B1 was evaluated using cell-based assay. Inhibitive potential of SBP on human MDR1 and BCRP was also evaluated using vesicles assay. MDR1 and BCRP vesicle kit were used to determine ATP dependent uptake activity when incubated with SBP. SBP was a competitive inhibitor of CYP2B6, 2C19, while neither inhibitory nor inductive potentials toward other CYP450s were detected. No significant MDR1 inhibitory potential was estimated, while only high concentration of SBP (500 μg/ml) could inhibit activity of BCRP. Probe substrates Estradiol-17 β-glucuronide was incubated in HEK293-OATP1B1 and HEK293-MOCK cell system with different concentration of SBP and estimated IC50 was 179 μg/mL, which demonstrated a moderate inhibition potential against OATP1B1. In conclusion, outcome of this study suggests that SBP plays an important role in inhibition of CYP450 isozymes (including CYP2B6 and 2C9) and transporter OATP1B1. Therefore, precautions should be taken when using SBP for CYP and OATP-related herb-drug interactions. PMID:28078025

  8. Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors

    PubMed Central

    Oh, Yoon Sin; Shin, Seungjin; Lee, Youn-Jung; Kim, Eung Hwi; Jun, Hee-Sook

    2011-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. Methodology/Principal Findings The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. Conclusions/Significance These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells. PMID:21897861

  9. Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2014-08-01

    fashion. SLCO2B1 is found in multiple tissues and is involved in transport of compounds including atorvastatin , DHEAS, and estrone-3 sulfate. One of...potentially ‘‘druggable’’ targets. We note that atorvastatin strongly interacts with SLCO2B1 and that (hypothetically) this observation could have

  10. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  11. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells.

    PubMed

    Kraehling, Jan R; Chidlow, John H; Rajagopal, Chitra; Sugiyama, Michael G; Fowler, Joseph W; Lee, Monica Y; Zhang, Xinbo; Ramírez, Cristina M; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L; Fernández-Hernando, Carlos; Sessa, William C

    2016-11-21

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.

  12. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2017-09-01

    The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl - /[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35 [Formula: see text] and 36 Cl - fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm -2 ·h -1 ], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl - , and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion ( U SO4 ) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas U SO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis. NEW & NOTEWORTHY Sulfate is an essential anion that is

  14. New fluorescent bile acids: synthesis, chemical characterization, and disastereoselective uptake by Caco-2 cells of 3-deoxy 3-NBD-amino deoxycholic and ursodeoxycholic acid.

    PubMed

    Májer, Ferenc; Salomon, Johanna J; Sharma, Ruchika; Etzbach, Simona V; Najib, Mohd Nadzri Mohd; Keaveny, Ray; Long, Aideen; Wang, Jun; Ehrhardt, Carsten; Gilmer, John F

    2012-03-01

    Deoxycholic acid (DCA), a secondary bile acid (BA), and ursodeoxycholic acid (UDCA), a tertiary BA, cause opposing effects in vivo and in cell suspensions. Fluorescent analogues of DCA and UDCA could help investigate important questions about their cellular interactions and distribution. We have prepared a set of isomeric 3α- and 3β-amino analogues of UDCA and DCA and derivatised these with the discrete fluorophore, 4-nitrobenzo-2-oxa-1,3-diazol (NBD), forming the corresponding four fluorescent adducts. These absorb in the range 465-470 nm and fluoresce at approx. 535 nm. In order to determine the ability of the new fluorescent bile acids to mimic the parents, their uptake was studied using monolayers of Caco-2 cells, which are known to express multiple proteins of the organic anion-transporting peptide (OATP) subfamily of transporters. Cellular uptake was monitored over time at 4 and 37°C to distinguish between passive and active transport. All four BA analogues were taken up but in a strikingly stereo- and structure-specific manner, suggesting highly discriminatory interactions with transporter protein(s). The α-analogues of DCA and to a lesser extent UDCA were actively transported, whereas the β-analogues were not. The active transport process was saturable, with Michaelis-Menten constants for 3α-NBD DCA (5) being K(m)=42.27±12.98 μM and V(max)=2.8 ± 0.4 nmol/(mg protein*min) and for 3α-NBD UDCA (3) K(m)=28.20 ± 7.45 μM and V(max)=1.8 ± 0.2 nmol/(mg protein*min). These fluorescent bile acids are promising agents for investigating questions of bile acid biology and for detection of bile acids and related organic anion transport processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...

  16. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...

  17. 40 CFR 721.5960 - N,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...

  18. Close Association of Carbonic Anhydrase (CA2a and CA15a), Na+/H+ Exchanger (Nhe3b), and Ammonia Transporter Rhcg1 in Zebrafish Ionocytes Responsible for Na+ Uptake

    PubMed Central

    Ito, Yusuke; Kobayashi, Sayako; Nakamura, Nobuhiro; Miyagi, Hisako; Esaki, Masahiro; Hoshijima, Kazuyuki; Hirose, Shigehisa

    2013-01-01

    Freshwater (FW) fishes actively absorb salt from their environment to tolerate low salinities. We previously reported that vacuolar-type H+-ATPase/mitochondrion-rich cells (H-MRCs) on the skin epithelium of zebrafish larvae (Danio rerio) are primary sites for Na+ uptake. In this study, in an attempt to clarify the mechanism for the Na+ uptake, we performed a systematic analysis of gene expression patterns of zebrafish carbonic anhydrase (CA) isoforms and found that, of 12 CA isoforms, CA2a and CA15a are highly expressed in H-MRCs at larval stages. The ca2a and ca15a mRNA expression were salinity-dependent; they were upregulated in 0.03 mM Na+ water whereas ca15a but not ca2a was down-regulated in 70 mM Na+ water. Immunohistochemistry demonstrated cytoplasmic distribution of CA2a and apical membrane localization of CA15a. Furthermore, cell surface immunofluorescence staining revealed external surface localization of CA15a. Depletion of either CA2a or CA15a expression by Morpholino antisense oligonucleotides resulted in a significant decrease in Na+ accumulation in H-MRCs. An in situ proximity ligation assay demonstrated a very close association of CA2a, CA15a, Na+/H+ exchanger 3b (Nhe3b), and Rhcg1 ammonia transporter in H-MRC. Our findings suggest that CA2a, CA15a, and Rhcg1 play a key role in Na+uptake under FW conditions by forming a transport metabolon with Nhe3b. PMID:23565095

  19. SULT2B1b Sulfotransferase: Induction by Vitamin D Receptor and Reduced Expression in Prostate Cancer

    PubMed Central

    Seo, Young-Kyo; Mirkheshti, Nooshin; Song, Chung S.; Kim, Soyoung; Dodds, Sherry; Ahn, Soon C.; Christy, Barbara; Mendez-Meza, Rosario; Ittmann, Michael M.; Abboud-Werner, Sherry

    2013-01-01

    An elevated tumor tissue androgen level, which reactivates androgen receptor in recurrent prostate cancer, arises from the intratumor synthesis of 5α-dihydrotestosterone through use of the precursor steroid dehydroepiandrosterone (DHEA) and is fueled by the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD1), aldoketoreductase (AKR1C3), and steroid 5-alpha reductase, type 1 (SRD5A1) present in cancer tissue. Sulfotransferase 2B1b (SULT2B1b) (in short, SULT2B) is a prostate-expressed hydroxysteroid SULT that converts cholesterol, oxysterols, and DHEA to 3β-sulfates. DHEA metabolism involving sulfonation by SULT2B can potentially interfere with intraprostate androgen synthesis due to reduction of free DHEA pool and, thus, conversion of DHEA to androstenedione. Here we report that in prostatectomy specimens from treatment-naive patients, SULT2B expression is markedly reduced in malignant tissue (P < .001, Mann-Whitney U test) compared with robust expression in adjacent nonmalignant glands. SULT2B was detected in formalin-fixed specimens by immunohistochemistry on individual sections and tissue array. Immunoblotting of protein lysates of frozen cancer and matched benign tissue confirmed immunohistochemistry results. An in-house–developed rabbit polyclonal antibody against full-length human SULT2B was validated for specificity and used in the analyses. Ligand-activated vitamin D receptor induced the SULT2B1 promoter in vivo in mouse prostate and increased SULT2B mRNA and protein levels in vitro in prostate cancer cells. A vitamin D receptor/retinoid X receptor-α–bound DNA element (with a DR7 motif) mediated induction of the transfected SULT2B1 promoter in calcitriol-treated cells. SULT2B knockdown caused an increased proliferation rate of prostate cancer cells upon stimulation by DHEA. These results suggest that the tumor tissue SULT2B level may partly control prostate cancer growth, and its induction in a therapeutic setting may inhibit disease

  20. Dehydroepiandrosterone sulfate (DHEAS) suppresses P2X purinoceptor-coupled responses in PC12 cells.

    PubMed

    Liu, P S; Hsieh, H L; Lin, C M

    2001-09-01

    Some steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels in addition to their well-known genomic effects via intracellular steroid receptors. Such effects were found in GABA receptor, nicotinic receptors, yet not investigated in P2X purinoceptors. In this study, the effects of dehydroepiandrosterone sulfate on the P2 purinoceptor was investigated. Results show that dehydroepiandrosterone sulfate acutely inhibits P2X purinoceptor functions in PC12 cells. Dehydroepiandrosterone sulfate suppressed ATP-induced cytosolic free calcium concentration ([Ca(2+)](i)) rise, cytosolic free sodium concentration ([Na(+)](i)) rise, and dopamine secretion in the presence of external calcium, but had no effect on ATP-induced [Ca(2+)](i) rise in the absence of external calcium or on UTP-induced [Ca(2+)](i) rise in the absence or presence of external calcium. Our data show that dehydroepiandrosterone sulfate exerted its effect on P2X, but not on the P2Y purinoceptors found in PC12 cells. Estradiol and estrone have similar effects on P2X purinoceptor, but dehydroepiandrosterone and progesterone do not.

  1. Arylsulfatase B Mediates the Sulfonation-Transport Interplay in Human Embryonic Kidney 293 Cells Overexpressing Sulfotransferase 1A3.

    PubMed

    Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian

    2016-09-01

    Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Influence of 24-Nor-Ursodeoxycholic Acid on Hepatic Disposition of [(18)F]Ciprofloxacin, a Positron Emission Tomography Study in Mice.

    PubMed

    Wanek, Thomas; Halilbasic, Emina; Visentin, Michele; Mairinger, Severin; Römermann, Kerstin; Stieger, Bruno; Kuntner, Claudia; Müller, Markus; Langer, Oliver; Trauner, Michael

    2016-01-01

    24-nor-ursodeoxycholic acid (norUDCA) is a novel therapeutic approach to cholestatic liver diseases. In mouse models of cholestasis, norUDCA induces basolateral multidrug resistance-associated proteins 4 (Mrp4) and 3 in hepatocytes, which provide alternative escape routes for bile acids accumulating during cholestasis but could also result in altered hepatic disposition of concomitantly administered substrate drugs. We used positron emission tomography imaging to study the influence of norUDCA on hepatic disposition of the model Mrp4 substrate [(18)F]ciprofloxacin in wild-type and Mdr2((-/-)) mice, a model of cholestasis. Animals underwent [(18)F]ciprofloxacin positron emission tomography at baseline and after norUDCA treatment. After norUDCA treatment, liver-to-blood area under the curve ratio of [(18)F]ciprofloxacin was significantly decreased compared to baseline, both in wild-type (-34.0 ± 2.1%) and Mdr2((-/-)) mice (-20.5 ± 6.0%). [(18)F]Ciprofloxacin uptake clearance from blood into liver was reduced by -17.1 ± 9.0% in wild-type and by -20.1 ± 7.3% in Mdr2((-/-)) mice. Real-time PCR analysis showed significant increases in hepatic Mrp4 and multidrug resistance-associated protein 3 mRNA after norUDCA. Transport experiments in organic anion transporting polypeptide (OATP)1B1-, OATP1B3-, and OATP2B1-transfected cells revealed weak transport of [(14)C]ciprofloxacin by OATP1B3 and OATP2B1 and no inhibition by norUDCA. In conclusion, our data suggest that changes in hepatic [(18)F]ciprofloxacin disposition in mice after norUDCA treatment were caused by induction of basolateral Mrp4 in hepatocytes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice1[W][OA

    PubMed Central

    Zhao, Xue Qiang; Mitani, Namiki; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2010-01-01

    Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. PMID:20498338

  4. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes

    PubMed Central

    Aizawa, Shu; Contu, Viorica Raluca; Fujiwara, Yuuki; Hase, Katsunori; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji

    2017-01-01

    ABSTRACT Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy. PMID:27846365

  5. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes.

    PubMed

    Aizawa, Shu; Contu, Viorica Raluca; Fujiwara, Yuuki; Hase, Katsunori; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2017-01-02

    Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.

  6. A novel method for determination of aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-02-01

    As a chemiluminescence (CL) probe, 3,7-dihydro-6-{4-{2-(N"-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-met -hylimi-dazo{1,2-a}pyrazin-3-one dosium salt (FCLA) can sensitively and specifically react with singlet oxygen (1O2 ) and superoxide(O2""). BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA to 860%. This report presents a novel method for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the CL intensity mediated by FCLA+BSA. This method could measure accurately ng/ml of AfB1 concentration. At the same time, the fluorescence spectrum of FCLA+BSA and FCLA+BSA+AfB1 were measured respectively, which showed that the fluorescence intensity of FCLA+BSA+AfB1 was higher than FCLA+BSA. Comparing the peak value of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL method mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  7. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via CR1 and CR3 in nonimmune serum

    PubMed Central

    Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.

    2012-01-01

    A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138

  8. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal.

    PubMed

    Maeda, A; Kurosaki, M; Ono, M; Takai, T; Kurosaki, T

    1998-04-20

    Paired immunoglobulin-like receptor B (PIR-B) (p91) molecule has been proposed to function as an inhibitory receptor in B cells and myeloid lineage cells. We demonstrate here that the cytoplasmic region of PIR-B is capable of inhibiting B cell activation. Mutational analysis of five cytoplasmic tyrosines indicate that tyrosine 771 in the motif VxYxxL plays the most crucial role in mediating the inhibitory signal. PIR-B-mediated inhibition was markedly reduced in the SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 double-deficient DT40 B cells, whereas this inhibition was unaffected in the inositol polyphosphate 5'-phosphatase SHIP-deficient cells. These data demonstrate that PIR-B can negatively regulate B cell receptor activation and that this PIR-B-mediated inhibition requires redundant functions of SHP-1 and SHP-2.

  9. Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats.

    PubMed

    Jiang, Peng; Zhang, Xiuwen; Huang, Yutong; Cheng, Nengneng; Ma, Yueming

    2017-10-25

    Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens , accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation in the liver after oral administration (1.25 and 2.5 g/kg for 14 days in rats). Serum metabolomics evaluation based on high-resolution mass spectrometry was conducted and real-time PCR was used to determine the expression levels of CPT-1, CPT-2, PPAR-α, and LCAD genes. Effects of kurarinone on triglyceride levels were evaluated in HL-7702 cells. Tissue distribution of kurarinone and kurarinone glucuronides was analyzed in rats receiving ESF (2.5 g/kg). Active uptake of kurarinone and kurarinone glucuronides was studied in OAT2-, OATP1B1-, OATP2B1-, and OATP1B3-transfected HEK293 cells. Our results revealed that after oral administration of ESF in rats, kurarinone glucuronides were actively transported into hepatocytes by OATP1B3 and hydrolyzed into kurarinone, which inhibited fatty acid β-oxidation through the reduction of l-carnitine and the inhibition of PPAR-α pathway, ultimately leading to lipid accumulation and liver injury. These findings contribute to understanding hepatotoxicity of kurarinone after oral administration of ESF.

  10. A modified grapefruit juice eliminates two compound classes as major mediators of the Grapefruit Juice-Fexofenadine Interaction: an In Vitro-In Vivo 'Connect'

    USDA-ARS?s Scientific Manuscript database

    The grapefruit juice (GFJ)-fexofenadine interaction involves inhibition of intestinal organic anion transporting polypeptide (OATP)-mediated active uptake of fexofenadine by GFJ, manifesting as a decrease in systemic drug exposure. Flavonoids, furanocoumarins, and polymethoxyflavones have been ident...

  11. Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Controls Efflux Transport of Hesperetin Sulfates in Sulfotransferase 1A3-Overexpressing Human Embryonic Kidney 293 Cells.

    PubMed

    Sun, Hua; Wang, Xiao; Zhou, Xiaotong; Lu, Danyi; Ma, Zhiguo; Wu, Baojian

    2015-10-01

    Sulfonation is an important metabolic pathway for hesperetin. However, the mechanisms for the cellular disposition of hesperetin and its sulfate metabolites are not fully established. In this study, disposition of hesperetin via the sulfonation pathway was investigated using human embryonic kidney (HEK) 293 cells overexpressing sulfotransferase 1A3. Two monosulfates, hesperetin-3'-O-sulfate (H-3'-S) and hesperetin-7-O-sulfate (H-7-S), were rapidly generated and excreted into the extracellular compartment upon incubation of the cells with hesperetin. Regiospecific sulfonation of hesperetin by the cell lysate followed the substrate inhibition kinetics (Vmax = 0.66 nmol/min per mg, Km = 12.9 μM, and Ksi= 58.1 μM for H-3'-S; Vmax = 0.29 nmol/min per mg, Km = 14.8 μM, and Ksi= 49.1 μM for H-7-S). The pan-multidrug resistance-associated protein (MRP) inhibitor MK-571 at 20 μM essentially abolished cellular excretion of both H-3'-S and H-7-S (the excretion activities were only 6% of the control), whereas the breast cancer resistance protein-selective inhibitor Ko143 had no effects on sulfate excretion. In addition, knockdown of MRP4 led to a substantial reduction (>47.1%; P < 0.01) in sulfate excretion. Further, H-3'-S and H-7-S were good substrates for transport by MRP4 according to the vesicular transport assay. Moreover, sulfonation of hesperetin and excretion of its metabolites were well characterized by a two-compartment pharmacokinetic model that integrated drug uptake and sulfonation with MRP4-mediated sulfate excretion. In conclusion, the exporter MRP4 controlled efflux transport of hesperetin sulfates in HEK293 cells. Due to significant expression in various organs/tissues (including the liver and kidney), MRP4 should be a determining factor for the elimination and body distribution of hesperetin sulfates. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP

    PubMed Central

    Kusuhara, Hiroyuki; Furuie, Hidetoshi; Inano, Akihiro; Sunagawa, Akihiro; Yamada, Saiko; Wu, Chunyong; Fukizawa, Shinya; Morimoto, Nozomi; Ieiri, Ichiro; Morishita, Mariko; Sumita, Kiminobu; Mayahara, Hiroshi; Fujita, Takuya; Maeda, Kazuya; Sugiyama, Yuichi

    2012-01-01

    BACKGROUND AND PURPOSE An ATP-binding cassette (ABC) transporter, breast cancer resistance protein (BCRP)/ABCG2, limits oral bioavailability of sulphasalazine. Here we examined the effect of curcumin, the principal curcuminoid of turmeric, on oral bioavailability of microdoses and therapeutic doses of sulphasalazine in humans. EXPERIMENTAL APPROACH Effects of curcumin were measured on the ATP-dependent sulphasalazine uptake by hBCRP-expressing membrane vesicles and on oral bioavailability of sulphasalazine in wild-type and Bcrp(–/–) mice. Eight healthy Japanese subjects received an oral dose of sulphasalazine suspension (100 µg) or tablets (2 g) alone or after curcumin tablets (2 g). Uptake of sulphasalazine was studied in HEK293 cells transfected with the influx transporter (OATP)2B1. KEY RESULTS Curcumin was a potent hBCRP inhibitor in vitro (Ki 0.70 ± 0.41 µM). Curcumin increased the area under the curve (AUC)0–8 of plasma sulphasalazine eightfold in wild-type mice at 300 and 400 mg·kg−1, but not in Bcrp(–/–) mice. Curcumin increased AUC0–24 of plasma sulphasalazine 2.0-fold at microdoses and 3.2-fold at therapeutic doses in humans. Non-linearity of the dose–exposure relationship was observed between microdoses and therapeutic doses of sulphasalazine. Sulphasalazine was a substrate for OATP2B1 (Km 1.7 ± 0.3 µM). Its linear index (dose/Km) at the therapeutic dose was high and may saturate OATP2B1. CONCLUSIONS AND IMPLICATIONS Curcumin can be used to investigate effects of BCRP on oral bioavailability of drugs in humans. Besides the limited dissolution, OATP2B1 saturation is a possible mechanism underlying non-linearity in the dose–exposure relationship of sulphasalazine. PMID:22300367

  13. Association between ALDH2 and ADH1B polymorphisms, alcohol drinking and gastric cancer: a replication and mediation analysis.

    PubMed

    Ishioka, Kuka; Masaoka, Hiroyuki; Ito, Hidemi; Oze, Isao; Ito, Seiji; Tajika, Masahiro; Shimizu, Yasuhiro; Niwa, Yasumasa; Nakamura, Shigeo; Matsuo, Keitaro

    2018-04-03

    Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms have a strong impact on carcinogenic acetaldehyde accumulation after alcohol drinking. To date, however, evidence for a significant ALDH2-alcohol drinking interaction and a mediation effect of ALDH2/ADH1B through alcohol drinking on gastric cancer have remained unclear. We conducted two case-control studies to validate the interaction and to estimate the mediation effect on gastric cancer. We calculated odds ratios (OR) and 95% confidence intervals (CI) for ALDH2/ADH1B genotypes and alcohol drinking using conditional logistic regression models after adjustment for potential confounding in the HERPACC-2 (697 cases and 1372 controls) and HERPACC-3 studies (678 cases and 678 controls). We also conducted a mediation analysis of the combination of the two studies to assess whether the effects of these polymorphisms operated through alcohol drinking or through other pathways. ALDH2 Lys alleles had a higher risk with increased alcohol consumption compared with ALDH2 Glu/Glu (OR for heavy drinking, 3.57; 95% CI 2.04-6.27; P for trend = 0.007), indicating a significant ALDH2-alcohol drinking interaction (P interaction  = 0.024). The mediation analysis indicated a significant positive direct effect (OR 1.67; 95% CI 1.38-2.03) and a protective indirect effect (OR 0.84; 95% CI 0.76-0.92) of the ALDH2 Lys alleles with the ALDH2-alcohol drinking interaction. No significant association of ADH1B with gastric cancer was observed. The observed ALDH2-alcohol drinking interaction and the direct effect of ALDH2 Lys alleles may suggest the involvement of acetaldehyde in the development of gastric cancer.

  14. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    PubMed Central

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication. PMID:24725364

  15. Anticoagulant Activity of a Unique Sulfated Pyranosic (13)-β-l-Arabinan through Direct Interaction with Thrombin*

    PubMed Central

    Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina

    2013-01-01

    A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548

  16. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  17. An EAV-HP Insertion in 5′ Flanking Region of SLCO1B3 Causes Blue Eggshell in the Chicken

    PubMed Central

    Yang, Xiaolin; Li, Guangqi; Zhang, Yuanyuan; Li, Junying; Wang, Xiaotong; Bai, Jirong; Xu, Guiyun; Deng, Xuemei; Yang, Ning; Wu, Changxin

    2013-01-01

    The genetic determination of eggshell coloration has not been determined in birds. Here we report that the blue eggshell is caused by an EAV-HP insertion that promotes the expression of SLCO1B3 gene in the uterus (shell gland) of the oviduct in chicken. In this study, the genetic map location of the blue eggshell gene was refined by linkage analysis in an F2 chicken population, and four candidate genes within the refined interval were subsequently tested for their expression levels in the shell gland of the uterus from blue-shelled and non-blue-shelled hens. SLCO1B3 gene was found to be the only one expressed in the uterus of blue-shelled hens but not in that of non-blue-shelled hens. Results from a pyrosequencing analysis showed that only the allele of SLCO1B3 from blue-shelled chickens was expressed in the uterus of heterozygous hens (O*LC/O*N). SLCO1B3 gene belongs to the organic anion transporting polypeptide (OATP) family; and the OATPs, functioning as membrane transporters, have been reported for the transportation of amphipathic organic compounds, including bile salt in mammals. We subsequently resequenced the whole genomic region of SLCO1B3 and discovered an EAV-HP insertion in the 5′ flanking region of SLCO1B3. The EAV-HP insertion was found closely associated with blue eggshell phenotype following complete Mendelian segregation. In situ hybridization also demonstrated that the blue eggshell is associated with ectopic expression of SLCO1B3 in shell glands of uterus. Our finding strongly suggests that the EAV-HP insertion is the causative mutation for the blue eggshell phenotype. The insertion was also found in another Chinese blue-shelled breed and an American blue-shelled breed. In addition, we found that the insertion site in the blue-shelled chickens from Araucana is different from that in Chinese breeds, which implied independent integration events in the blue-shelled chickens from the two continents, providing a parallel evolutionary example at the

  18. Novel Alkylsulfatases Required for Biodegradation of the Branched Primary Alkyl Sulfate Surfactant 2-Butyloctyl Sulfate

    PubMed Central

    Ellis, Andrew J.; Hales, Stephen G.; Ur-Rehman, Naheed G. A.; White, Graham F.

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  19. NTP Toxicology and Carcinogenesis Studies of Cobalt Sulfate Heptahydrate (CAS No. 10026-24-1) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

    PubMed

    1998-08-01

    Cobalt sulfate is used in the electroplating and electro chemical industries. It is also used as a coloring agent for ceramics and as a drying agent in inks, paints, varnishes, and linoleum. Cobalt sulfate may be added to animal feed as a mineral supplement and has been used as a top dressing on pasture lands. Cobalt sulfate was nominated by the National Cancer Institute for study based on a lack of information on the toxicity of soluble salts. Male and female F344/N rats and B6C3F1 mice were exposed to cobalt sulfate heptahydrate (approximately 99% pure) by inhalation for 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium. The results of prechronic inhalation toxicity studies were reported previously (Bucher et al., 1990; NTP, 1991). 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were exposed to aerosols containing 0, 0.3, 1.0, or 3.0 mg/m3 cobalt sulfate heptahydrate 6 hours per day, 5 days per week, for 105 weeks. Survival and Body Weights Survival of exposed males and females was similar to that of the chamber controls. Mean body weights of exposed male and female rats were similar to those of the chamber controls throughout the study. Pathology Findings The incidences and severities of proteinosis, alveolar epithelial metaplasia, granulomatous alveolar inflammation, and interstitial fibrosis were markedly greater in all exposed groups of male and female rats than in the chamber controls. The incidences of alveolar epithelial hyperplasia in all groups of exposed males and in females exposed to 3.0 mg/m3 were significantly greater than those in the chamber control groups, as were the incidences of squamous metaplasia in 1.0 mg/m3 females and atypical alveolar epithelial hyperplasia in 3.0 mg/m3 females. In 3.0 mg/m3 males, the combined incidence of alveolar/ bronchiolar neoplasms (adenoma and/or carcinoma) was significantly greater than in the chamber controls. In female rats exposed to 1.0 or 3.0 mg/m3, the incidences of

  20. Responses of articular and epiphyseal cartilage zones of developing avian radii to estrone treatment and a 2-G environment

    NASA Technical Reports Server (NTRS)

    Negulesco, J. A.; Kossler, T.

    1978-01-01

    Histological measurements of radii from chickens exposed to estrone and hypergravity are reported. Female chicks at two weeks post-hatch were maintained for two weeks at earth gravity or 2 G with daily injections of 0.2 or 0.4 mg estrone. Animals were sacrificed after the last injection, and the radii were processed by described histological techniques. The results suggest that proximal and distal epiphyses of developing radii show different morphological responses to estrone and hypergravity.

  1. Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer.

    PubMed

    Saenz, Courtney; Cheruku, Ravindra R; Ohulchanskyy, Tymish Y; Joshi, Penny; Tabaczynski, Walter A; Missert, Joseph R; Chen, Yihui; Pera, Paula; Tracy, Erin; Marko, Aimee; Rohrbach, Daniel; Sunar, Ulas; Baumann, Heinz; Pandey, Ravindra K

    2017-04-21

    The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective 14 C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro & in vivo), intracellular retention and photoreaction.

  2. UNC93B1 mediates differential trafficking of endosomal TLRs

    PubMed Central

    Lee, Bettina L; Moon, Joanne E; Shu, Jeffrey H; Yuan, Lin; Newman, Zachary R; Schekman, Randy; Barton, Gregory M

    2013-01-01

    UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases. DOI: http://dx.doi.org/10.7554/eLife.00291.001 PMID:23426999

  3. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro.

    PubMed

    Weiss, Johanna; Haefeli, Walter Emil

    2013-05-01

    The objective of this study was to assess the drug-drug interaction potential of the new non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine in vitro. The following were evaluated: P-glycoprotein (P-gp/ABCB1) inhibition by calcein assay; breast cancer resistance protein (BCRP/ABCG2) inhibition by pheophorbide A efflux; and inhibition of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 enzymes was assessed using commercially available kits. Substrate characteristics were evaluated by growth inhibition assays in MDCKII cells overexpressing particular ABC transporters. Induction of drug-metabolising enzymes and transporters was quantified by real-time RT-PCR in LS180 cells, and activation of pregnane X receptor (PXR) by a reporter gene assay. Rilpivirine significantly inhibited P-gp (IC(50) = 13.1 ± 6.8 μmol/L), BCRP (IC(50) = 1.5 ± 0.3 μmol/L), OATP1B1 (IC(50) = 4.1 ± 1.8 μmol/L), OATP1B3 (IC(50) = 6.1 ± 0.9 μmol/L), CYP3A4 (IC(50) = 1.3 ± 0.6 μmol/L), CYP2C19 (IC(50) = 2.7 ± 0.3 μmol/L) and CYP2B6 (IC(50) = 4.2 ± 1.6 μmol/L). Growth inhibition assays indicate that rilpivirine is not a substrate of P-gp, BCRP, or multidrug resistance-associated proteins 1 and 2. In LS180 cells, rilpivirine induced mRNA expression of ABCB1, CYP3A4 and UGT1A3, whereas ABCC1, ABCC2, ABCG2, OATP1B1 and UGT1A9 were not induced. Moreover, rilpivirine was a PXR activator. In conclusion, rilpivirine inhibits and induces several relevant drug-metabolising enzymes and drug transporters, but owing to its low plasma concentrations it is most likely less prone to drug-drug interactions than older NNRTIs. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4).

    PubMed

    Li, Wan; Sun, Hua; Zhang, Xingwang; Wang, Huan; Wu, Baojian

    2015-11-01

    Efflux transport is a critical determinant to the pharmacokinetics of sulfate conjugates. Here we aimed to establish SULT1A3 stably transfected HEK293 cells, and to determine the contributions of BCRP and MRP transporters to excretion of chrysin and apigenin sulfates. The cDNA of SULT1A3 was stably introduced into HEK293 cells using a lentiviral vector, generating a sulfonation active cell line (i.e., SULT293 cells). Identification of sulfate transporters was achieved through chemical inhibition (using chemical inhibitors) and biological inhibition (using short-hairpin RNAs (shRNAs)) methods. Sulfated metabolites were rapidly generated and excreted upon incubation of SULT293 cells with chrysin and apigenin. Ko143 (a selective BCRP inhibitor) did not show inhibitory effects on sulfate disposition, whereas the pan-MRP inhibitor MK-571 caused significant reductions (38.5-64.3%, p<0.001) in sulfate excretion and marked elevations (160-243%, p<0.05) in sulfate accumulation. Further, two efflux transporters (BCRP and MRP4) expressed in the cells were knocked-down by shRNA-mediated silencing. Neither sulfate excretion nor sulfate accumulation was altered in BCRP knocked-down cells as compared to scramble cells. By contrast, MRP4 knock-down led to moderate decreases (17.1-20.6%, p<0.05) in sulfate excretion and increases (125-135%, p<0.05) in sulfate accumulation. In conclusion, MRP4 was identified as an exporter for chrysin and apigenin sulfates. The SULT1A3 modified HEK293 cells were an appropriate tool to study SULT1A3-mediated sulfonation and to characterize BCRP/MRP4-mediated sulfate transport. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    PubMed Central

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  6. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2017-09-01

    In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport

    PubMed Central

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) – 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG5000-DSPE]/maleimide [M]-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%–45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport. PMID:24940060

  8. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport.

    PubMed

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG₅₀₀₀-DSPE]/maleimide [M]-PEG₅₀₀₀-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG₅₀₀₀-DSPE/PEG₅₀₀₀-Glu2C₁₈ at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%-45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport.

  9. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4

    NASA Astrophysics Data System (ADS)

    Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.

    2017-11-01

    Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3 (ΔH = 463.1 kJ/mol), Eu2O2SO4 (ΔH = 378.4 kJ/mol) and EuSO4 (ΔH = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.

  10. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wanlu; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province; Tang, Zhuqi

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion ofmore » TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.« less

  11. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    PubMed

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  12. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway

    PubMed Central

    Lakhan, Ram

    2017-01-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway. PMID:28052864

  13. PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1

    PubMed Central

    Choi, Jo H.; Murray, John W.

    2011-01-01

    Although perturbation of organic anion transport protein (oatp) cell surface expression can result in drug toxicity, little is known regarding mechanisms regulating its subcellular distribution. Many members of the oatp family, including oatp1a1, have a COOH-terminal PDZ consensus binding motif that interacts with PDZK1, while serines upstream of this site (S634 and S635) can be phosphorylated. Using oatp1a1 as a prototypical member of the oatp family, we prepared plasmids in which these serines were mutated to glutamic acid [E634E635 (oatp1a1EE), phosphomimetic] or alanine [A634A635 (oatp1a1AA), nonphosphorylatable]. Distribution of oatp1a1AA and oatp1a1EE was largely intracellular in transfected human embryonic kidney (HEK) 293T cells. Cotransfection with a plasmid encoding PDZK1 revealed that oatp1a1AA was now expressed largely on the cell surface, while oatp1a1EE remained intracellular. To quantify these changes, studies were performed in HuH7 cells stably transfected with these oatp1a1 plasmids. These cells endogenously express PDZK1. Surface biotinylation at 4°C followed by shift to 37°C showed that oatp1a1EE internalizes quickly compared with oatp1a1AA. To examine a physiological role for phosphorylation in oatp1a1 subcellular distribution, studies were performed in rat hepatocytes exposed to extracellular ATP, a condition that stimulates serine phosphorylation of oatp1a1 via activity of a purinergic receptor. Internalization of oatp1a1 under these conditions was rapid. Thus, although PDZK1 binding is required for optimal cell surface expression of oatp1a1, phosphorylation provides a mechanism for fast regulation of the distribution of oatp1a1 between the cell surface and intracellular vesicular pools. Identification of the proteins and motor molecules that mediate these trafficking events represents an important area for future study. PMID:21183661

  14. Human DHEA sulfation requires direct interaction between PAPS synthase 2 and DHEA sulfotransferase SULT2A1.

    PubMed

    Mueller, Jonathan W; Idkowiak, Jan; Gesteira, Tarsis F; Vallet, Cecilia; Hardman, Rebecca; van den Boom, Johannes; Dhir, Vivek; Knauer, Shirley K; Rosta, Edina; Arlt, Wiebke

    2018-06-22

    The high-energy sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), generated by human PAPS synthase isoforms PAPSS1 and PAPSS2, is required for all human sulfation pathways. Sulfotransferase SULT2A1 uses PAPS for sulfation of the androgen precursor dehydroepiandrosterone (DHEA), thereby reducing downstream activation of DHEA to active androgens. Human PAPSS2 mutations manifest with undetectable DHEA sulfate, androgen excess, and metabolic disease, suggesting that ubiquitous PAPSS1 cannot compensate for deficient PAPSS2 in supporting DHEA sulfation. In knockdown studies in human adrenocortical NCI-H295R1 cells, we found that PAPSS2, but not PAPSS1, is required for efficient DHEA sulfation. Specific APS kinase activity, the rate-limiting step in PAPS biosynthesis, did not differ between PAPSS1 and PAPSS2. Co-expression of cytoplasmic SULT2A1 with a cytoplasmic PAPSS2 variant supported DHEA sulfation more efficiently than co-expression with nuclear PAPSS2 or nuclear/cytosolic PAPSS1. Proximity ligation assays revealed protein-protein interactions between SULT2A1 and PAPSS2 and, to a lesser extent, PAPSS1. Molecular docking studies showed a putative binding site for SULT2A1 within the PAPSS2 APS kinase domain. Energy-dependent scoring of docking solutions identified the interaction as specific for the PAPSS2 and SULT2A1 isoforms. These findings elucidate the mechanistic basis for the selective requirement for PAPSS2 in human DHEA sulfation. © 2018 Mueller et al.

  15. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics

    PubMed Central

    Wang, Li; Collins, Carol; Kelly, Edward J.; Chu, Xiaoyan; Ray, Adrian S.; Salphati, Laurent; Xiao, Guangqing; Lee, Caroline; Lai, Yurong; Liao, Mingxiang; Mathias, Anita; Evers, Raymond; Humphreys, William; Hop, Cornelis E. C. A.; Kumer, Sean C.

    2016-01-01

    Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance–associated protein (MRP)2, MRP3, MRP4, sodium taurocholate–cotransporting polypeptide (NTCP), organic anion–transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict

  16. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  17. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data.

    PubMed

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi

    2017-09-01

    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Glucose Elevates NITRATE TRANSPORTER2.1 Protein Levels and Nitrate Transport Activity Independently of Its HEXOKINASE1-Mediated Stimulation of NITRATE TRANSPORTER2.1 Expression1[W][OPEN

    PubMed Central

    de Jong, Femke; Thodey, Kate; Lejay, Laurence V.; Bevan, Michael W.

    2014-01-01

    Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth. PMID:24272701

  19. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.

    PubMed

    Chu, Yangxi; Chan, Chak K

    2017-01-12

    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  20. The foliar uptake and downward translocation of trichloroethylene and 1,2,3-trichlorobenzene in air-plant-water systems.

    PubMed

    Su, Yuhong; Liang, Yongchao

    2013-05-15

    The foliar uptake and downward translocation of trichloroethylene (TCE) and 1,2,3-trichlorobenzene (TCB) in wheat, corn, and tomato seedlings were investigated following 2-48-h exposure of the plant shoots to vapor-contaminated air. The results showed that both TCE and TCB could be rapidly transported from air to plant rhizosphere solution through the foliar uptake and downward transport; the TCE and TCB concentrations in rhizosphere solutions increased with exposure time and external contaminant concentration. Among the three plant species studied, the TCE and TCB downward transport followed the order of wheat>tomato>corn. The transport efficiency of TCE by the three plants was far greater than that of TCB. With a 24-h uptake time, the amounts of TCE transported into the rhizosphere solution by wheat, tomato, and corn seedlings were 2.39 ± 0.42, 1.50 ± 0.22 and 1.45 ± 0.08 μg TCE per gram of fresh weight biomass, respectively, when the initial external TCE concentration was set at 12 mg l(-1). In a 48-h uptake experiment with corn seedlings, the TCE concentration in the rhizosphere solutions was lower in the TCE-TCB mixture system than in the single TCE system, whereas there was no significant difference in TCB concentration between the single TCB and TCE-TCB mixture systems at 48 h. The downward transport processes of TCE were inhibited, while those of TCB were enhanced in the mixed contaminant system within a 48-h uptake time. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples.

    PubMed

    Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2011-01-15

    This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. β2-Adrenoceptors and non-β-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice

    PubMed Central

    Ngala, Robert A; O'Dowd, Jacqueline; Wang, Steven J; Stocker, Claire; Cawthorne, Michael A; Arch, Jonathan RS

    2009-01-01

    Background and purpose: In previous work, 10 pM BRL37344 and 10 pM clenbuterol stimulated glucose uptake in mouse soleus muscle. Ten nM BRL37344 also stimulated uptake but 100 nM clenbuterol inhibited uptake. Antagonist studies suggested that the opposite effects of 10 nM BRL37344 and 100 nM clenbuterol are mediated by the β2-adrenoceptor. BRL37344 and clenbuterol have been studied in muscles that lack β3-, β2- or all three β-adrenoceptors. Effects of β-adrenoceptor antagonists on responses to the agonists have been studied further using muscles from wild-type mice. Experimental approach: Soleus muscles of wild-type or β-adrenoceptor knockout mice were incubated with 2-deoxy[1-14C]-glucose, and β-adrenoceptor ligands. Formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. Key results: Concentration–response relationships were similar for BRL37344 and clenbuterol in normal muscle and muscle lacking β3-adrenoceptors. Ten pM BRL37344 and clenbuterol stimulated glucose uptake in muscle lacking β2-adrenoceptors or all three β-adrenoceptors, but 10 nM BRL37344 did not stimulate uptake in either case, and 100 nM clenbuterol stimulated, rather than inhibited, uptake in muscle lacking β2-adrenoceptors. One hundred nM clenbuterol also stimulated glucose uptake in normal muscle when β2-adrenoceptors were blocked with ICI118551, and this was not prevented by antagonism of β1- or β3-adrenoceptors. Conclusions and implications: Ten nM BRL37344 and 100 nM clenbuterol have opposite effects on glucose uptake but both effects are mediated by the β2-adrenoceptor – apparently an example of agonist-directed signalling. Ten pM BRL37344, 10 pM clenbuterol and 100 nM clenbuterol in the presence of ICI118551 stimulate glucose uptake via β-adrenoceptor-independent mechanisms, demonstrating unknown properties for the agonists. PMID:19912225

  3. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    PubMed Central

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B; Belcher-Dufrisne, Meagan; Wiriyasermkul, Pattama; Giese, M Hunter; Leal-Pinto, Edgar; Kloss, Brian; Tabuso, Shantelle; Love, James; Punta, Marco; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Rost, Burkhard; Logothetis, Diomedes; Quick, Matthias; Hendrickson, Wayne A

    2018-01-01

    Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues. PMID:29792261

  4. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.

    Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized withmore » inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.« less

  5. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia*

    PubMed Central

    Wang, Haijun; Song, Chunhua; Ding, Yali; Pan, Xiaokang; Ge, Zheng; Tan, Bi-Hua; Gowda, Chandrika; Sachdev, Mansi; Muthusami, Sunil; Ouyang, Hongsheng; Lai, Liangxue; Francis, Olivia L.; Morris, Christopher L.; Abdel-Azim, Hisham; Dorsam, Glenn; Xiang, Meixian; Payne, Kimberly J.; Dovat, Sinisa

    2016-01-01

    Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL. PMID:26655717

  6. 40 CFR 721.1500 - 1,2-Benzenediamine, 4-ethoxy, sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Benzenediamine, 4-ethoxy, sulfate... Substances § 721.1500 1,2-Benzenediamine, 4-ethoxy, sulfate. (a) Chemical substance and significant new use...-benzenediamine, 4-ethoxy, sulfate, PMN P-83-105. (2) The significant new use is: Manufacture, import, or...

  7. 40 CFR 721.1500 - 1,2-Benzenediamine, 4-ethoxy, sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1,2-Benzenediamine, 4-ethoxy, sulfate... Substances § 721.1500 1,2-Benzenediamine, 4-ethoxy, sulfate. (a) Chemical substance and significant new use...-benzenediamine, 4-ethoxy, sulfate, PMN P-83-105. (2) The significant new use is: Manufacture, import, or...

  8. 40 CFR 721.1500 - 1,2-Benzenediamine, 4-ethoxy, sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,2-Benzenediamine, 4-ethoxy, sulfate... Substances § 721.1500 1,2-Benzenediamine, 4-ethoxy, sulfate. (a) Chemical substance and significant new use...-benzenediamine, 4-ethoxy, sulfate, PMN P-83-105. (2) The significant new use is: Manufacture, import, or...

  9. 40 CFR 721.1500 - 1,2-Benzenediamine, 4-ethoxy, sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1,2-Benzenediamine, 4-ethoxy, sulfate... Substances § 721.1500 1,2-Benzenediamine, 4-ethoxy, sulfate. (a) Chemical substance and significant new use...-benzenediamine, 4-ethoxy, sulfate, PMN P-83-105. (2) The significant new use is: Manufacture, import, or...

  10. 40 CFR 721.1500 - 1,2-Benzenediamine, 4-ethoxy, sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,2-Benzenediamine, 4-ethoxy, sulfate... Substances § 721.1500 1,2-Benzenediamine, 4-ethoxy, sulfate. (a) Chemical substance and significant new use...-benzenediamine, 4-ethoxy, sulfate, PMN P-83-105. (2) The significant new use is: Manufacture, import, or...

  11. Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis.

    PubMed

    Luo, Lijun; Mei, Xue; Xi, Yuecheng; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-02-01

    Previous studies have demonstrated the presence of the sulfated form of 6-gingerol, a major pharmacologically active component of ginger, in plasma samples of normal human subjects who were administered 6-gingerol. The current study was designed to systematically identify the major human cytosolic sulfotransferase enzyme(s) capable of mediating the sulfation of 6-gingerol. Of the 13 known human cytosolic sulfotransferases examined, six (SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C4, SULT1E1) displayed significant sulfating activity toward 6-gingerol. Kinetic parameters of SULT1A1, SULT1A3, SULT1C4, and SULT1E1 that showed stronger 6-gingerol-sulfating activity were determined. Of the four human organ samples tested, small intestine and liver cytosols displayed considerably higher 6-gingerol-sulfating activity than those of the lung and kidney. Moreover, sulfation of 6-gingerol was shown to occur in HepG2 human hepatoma cells and Caco-2 human colon adenocarcinoma cells under the metabolic setting. Collectively, these results provided useful information relevant to the metabolism of 6-gingerol through sulfation both in vitro and in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  12. Cytochrome b5 Reductase 1 Triggers Serial Reactions that Lead to Iron Uptake in Plants.

    PubMed

    Oh, Young Jun; Kim, Hanul; Seo, Sung Hee; Hwang, Bae Geun; Chang, Yoon Seok; Lee, Junho; Lee, Dong Wook; Sohn, Eun Ju; Lee, Sang Joon; Lee, Youngsook; Hwang, Inhwan

    2016-04-04

    Rhizosphere acidification is essential for iron (Fe) uptake into plant roots. Plasma membrane (PM) H(+)-ATPases play key roles in rhizosphere acidification. However, it is not fully understood how PM H(+)-ATPase activity is regulated to enhance root Fe uptake under Fe-deficient conditions. Here, we present evidence that cytochrome b5 reductase 1 (CBR1) increases the levels of unsaturated fatty acids, which stimulate PM H(+)-ATPase activity and thus lead to rhizosphere acidification. CBR1-overexpressing (CBR1-OX) Arabidopsis thaliana plants had higher levels of unsaturated fatty acids (18:2 and 18:3), higher PM H(+)-ATPase activity, and lower rhizosphere pH than wild-type plants. By contrast, cbr1 loss-of-function mutant plants showed lower levels of unsaturated fatty acids and lower PM H(+)-ATPase activity but higher rhizosphere pH. Reduced PM H(+)-ATPase activity in cbr1 could be restored in vitro by addition of unsaturated fatty acids. Transcript levels of CBR1, fatty acids desaturase2 (FAD2), and fatty acids desaturase3 (FAD3) were increased under Fe-deficient conditions. We propose that CBR1 has a crucial role in increasing the levels of unsaturated fatty acids, which activate the PM H(+)-ATPase and thus reduce rhizosphere pH. This reaction cascade ultimately promotes root Fe uptake. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Regulation of the High-Affinity NO3Uptake System by NRT1.1-Mediated NO3− Demand Signaling in Arabidopsis[W

    PubMed Central

    Krouk, Gabriel; Tillard, Pascal; Gojon, Alain

    2006-01-01

    The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} transport system (HATS) that plays a crucial role in \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} uptake by the plant. Although NRT2.1 was known to be induced by \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} concentration decreases to a low level (<0.5 mm) in media containing a high concentration of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document} or Gln (≥1 mm). The NRT3.1

  14. Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4): New lead(II) borate-sulfate mixed-anion compounds with two types of 3D network structures

    NASA Astrophysics Data System (ADS)

    Ruan, Ting-Ting; Wang, Wen-Wen; Hu, Chun-Li; Xu, Xiang; Mao, Jiang-Gao

    2018-04-01

    Two new lead(II) borate-sulfate mixed-anion compounds, namely, Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), have been prepared by using high-temperature melt method or hydrothermal reaction. These compounds exhibit two different types of 3D structures composed of the same anionic units of BO3 triangles and SO4 tetrahedra which are interconnected by lead(II) cations. In Pb4(BO3)2(SO4), the lead(II) ions are bridged by borate anions into 3D [Pb4(BO3)2]2+ architectures with 1D tunnels of 8-member rings along the a-axis, which are filled by the sulfate anions. In Pb2[(BO2)(OH)](SO4), the lead(II) ions are interconnected by borate and sulfate anions into 2D Pb-B-O and Pb-S-O layers parallel to the ab plane, respectively, and these layers are further condensed into the 3D lead(II) borate-sulfate framework. TGA and DSC studies indicate that Pb4(BO3)2(SO4) is congruently melting with a melting point of 689 °C whereas Pb2[(BO2)(OH)](SO4) decomposes at approximately 335 °C. UV/Vis/NIR optical diffuse reflectance spectrum measurements reveal the optical band gaps of 4.03 and 4.08 eV for Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), respectively. Furthermore, the electronic structures of Pb4(BO3)2(SO4) have also been calculated.

  15. Selective 2-( sup 18 F)fluorodopa uptake for melanogenesis in murine metastatic melanomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, K.; Kubota, K.; Kubota, R.

    The relationship between 3,4-dihydroxy-2-({sup 18}F)fluoro-L-phenylalanine (2-({sup 18}F)FDOPA) uptake and melanogenesis was studied using mice bearing two B16 melanomas: B16-F1 has a higher melanin synthesis ability and a slower growing rate than the higher metastatic B16-F10. A significantly higher 2-({sup 18}F)FDOPA uptake by B16-F1 than by B16-F10 and a reverse relationship for the uptake of ({sup 14}C) 2-deoxy-2-fluoro-D-glucose and ({sup 3}H)thymidine were observed 1 hr postinjection. F1-to-F10 ratios of both the 2-({sup 18}F)FDOPA uptake and the acid-insoluble radioactivity increased to about 5 at 6 hr, which paralleled the melanin content. FM3A mammary carcinoma showed a 2-({sup 18}F)FDOPA uptake similar to themore » B16-F10 but without the acid-insoluble radioactivity. With D,L-DOPA loading, a 55% decreased uptake by FM3A 1 hr postinjection was significantly greater than the 20% reduction in both melanomas. O-Methylated 2-({sup 18}F)FDOPA was a predominant acid-soluble metabolite in all tumors. Whole-body autoradiography discriminated the two melanomas clearly. 2-({sup 18}F)FDOPA may be a promising tracer for the selective imaging of melanogenesis.« less

  16. Cytokine-Induction of Tumor Necrosis Factor Receptor 2 (TNFR2) is Mediated by STAT3 in Colon Cancer Cells

    PubMed Central

    Hamilton, Kathryn E.; Simmons, James G.; Ding, Shengli; Van Landeghem, Laurianne; Lund, P. Kay

    2011-01-01

    The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNFR2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined IL-6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα-induced TNFR2 were decreased by pharmacological STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα-induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a -1578 STAT response element in the TNFR2 promoter, but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Over-expression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the -1578 STAT response element. SOCS3 over-expression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells over-expressing TNFR2. Collectively, these studies demonstrate that IL-6 and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3, and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3. PMID:21994466

  17. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis

    PubMed Central

    Lagares, David; Ghassemi-Kakroodi, Parisa; Tremblay, Caroline; Santos, Alba; Probst, Clemens K.; Franklin, Alicia; Santos, Daniela M.; Grasberger, Paula; Ahluwalia, Neil; Montesi, Sydney B.; Shea, Barry S.; Black, Katharine E.; Knipe, Rachel; Blati, Meryem; Baron, Murray; Wu, Brian; Fahmi, Hassan; Gandhi, Rajiv; Pardo, Annie; Selman, Moisés; Wu, Jiangping; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Tager, Andrew M.; Kapoor, Mohit

    2017-01-01

    Maladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodelling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however the molecular mediators of myofibroblast activation remain to be fully identified. Here we identify soluble ephrin-B2 as a novel pro-fibrotic mediator in lung and skin fibrosis. We provide molecular, functional and translational evidence that the ectodomain of membrane-bound ephrin-B2 is shed from fibroblasts into the alveolar airspace after lung injury. Shedding of soluble ephrin-B2 (sEphrin-B2) promotes fibroblast chemotaxis and activation via EphB3/EphB4 receptor signaling. We found that mice lacking ephrin-B2 in fibroblasts are protected from skin and lung fibrosis and that a distintegrin and metalloproteinase 10 (ADAM10) is the major ephrin-B2 sheddase in fibroblasts. ADAM10 is induced by transforming growth factor-β1 (TGF-β1), and ADAM10-mediated sEphrin-B2 generation is required for TGF-β1–induced myofibroblast activation. Pharmacological inhibition of ADAM10 reduces sEphrin-B2 levels in bronchoalveolar lavage and prevents lung fibrosis in mice. Consistent with the mouse data, ADAM10/sEphrin-B2 signaling is upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. These results uncover a new molecular mechanism of tissue fibrogenesis and identify sEphrin-B2, its receptors Eph3/Eph4, and ADAM10 as potential therapeutic targets in the treatment of fibrotic diseases. PMID:29058717

  18. HSD3B2, HSD17B1, HSD17B2, ESR1, ESR2 and AR expression in infertile women with endometriosis.

    PubMed

    Osiński, Maciej; Wirstlein, Przemysław; Wender-Ożegowska, Ewa; Mikołajczyk, Mateusz; Jagodziński, Paweł Piotr; Szczepańska, Małgorzata

    2018-01-01

    The development of endometriosis is associated with changes in the expression of genes encoding the 3β-hydroxysteroid dehydrogenase type II (HSD3B2) and 17β-hydroxysteroid dehydrogenase type II (HSD17B2), estrogen receptors 1 (ESR1) and 2 (ESR2) and the androgen receptor (AR). However, little is known about the expression of HSD3B2, HSD17B1, HSD17B2, ESR1 ESR2 and AR during the endometrial phases in eutopic endometrium from infertile women with endometriosis. Using RT-qPCR analysis, we assessed the expression of the studied genes in the follicular and luteal phases in eutopic endometrium from fertile women (n = 17) and infertile women (n = 35) with endometriosis. In the mid-follicular eutopic endometrium, we observed a significant increase in HSD3B2 transcript levels in all infertile women with endometriosis (p = 0.003), in infertile women with stage I/II endometriosis (p = 0.008) and in infertile women with stage III/IV endometriosis (p = 0.009) compared to all fertile women. There was a significant increase in ESR1 tran-scripts in all infertile women with endometriosis (p = 0.008) and in infertile women with stage I/II endometriosis (p = 0.019) and in infertile women with stage III/IV endometriosis (p = 0.023) compared to all fertile women. In the mid-luteal eutopic endometrium, we did not observe significant differences in HSD3B2, HSD17B1, HSD17B2, ESR1, ESR2 and AR transcripts between infertile women with endometriosis and fertile women. Observed significant increase in HSD3B2 and ESR1 transcripts in follicular eutopic endometrium from infer-tile women with endometriosis may be related to abnormal biological effect of E2 in endometrium, further affecting the development of human embryos.

  19. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 043264; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  20. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  1. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  2. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  3. Effect of the novel high affinity choline uptake enhancer 2-(2-oxopyrrolidin-1-yl)-N-(2,3-dimethyl-5,6,7,8-tetrahydrofuro[2,3-b] quinolin-4-yl)acetoamide on deficits of water maze learning in rats.

    PubMed

    Bessho, T; Takashina, K; Tabata, R; Ohshima, C; Chaki, H; Yamabe, H; Egawa, M; Tobe, A; Saito, K

    1996-04-01

    The pharmacological properties of MKC-231 (2-(2-oxopyrrolidin-1-yl)-N- (2,3-dimethyl-5,6,7,8-tetrahydrofuro[2,3-b]quinolin-4-yl) acetoamide, CAS 135463-81-9) in comparison with an acetylcholinesterase (AChE) inhibitor, tacrine (CAS 1684-40-8) were studied. MKC-231(10(-10)-10(-6) moll) significantly increased high affinity choline uptake (HACU) when it was incubated with the hippocampal synaptosomes of ethylcholine mustard aziridinium ion (AF64A) treated rats, but not of normal rats. MKC-231 did not affect the AChE activity, [3H]- quinuclidinyl benzilate binding, and [3H]-pirenzepine binding. Oral administration of MKC-231 (1-10 mg/kg) significantly improved the learning deficits in the Morris' water maze of AF64A-treated rats, but it did not produce any significant side effects, like tremor, salivation or hypothermia, which were observed in rats treated with high doses of tacrine. Tacrine (0.1-3 mg/kg p.o.) failed to ameliorate the learning deficits in AF64A-treated rats. These results suggest that MKC-231 is a novel and quite unique compound, which improves the memory impairment induced by AF64A through the enhancement of HACU without any side effects at the effective doses.

  4. EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation

    PubMed Central

    Banerjee, Shuvomoy; Lu, Jie; Cai, Qiliang; Sun, Zhiguo; Jha, Hem Chandra; Robertson, Erle S.

    2014-01-01

    Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. PMID:25121590

  5. Distinct 3-O-Sulfated Heparan Sulfate Modification Patterns Are Required for kal-1−Dependent Neurite Branching in a Context-Dependent Manner in Caenorhabditis elegans

    PubMed Central

    Tecle, Eillen; Diaz-Balzac, Carlos A.; Bülow, Hannes E.

    2013-01-01

    Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo. By examining patterning of the Caenorhabditis elegans nervous system in loss of function mutants of the two 3-O-sulfotransferases, hst-3.1 and hst-3.2, we found HS 3-O-sulfation to be largely dispensable for overall neural development. However, generation of stereotypical neurite branches in hermaphroditic-specific neurons required hst-3.1, hst-3.2, as well as an extracellular cell adhesion molecule encoded by kal-1, the homolog of Kallmann Syndrome associated gene 1/anosmin-1. In contrast, kal-1−dependent neurite branching in AIY neurons required catalytic activity of hst-3.2 but not hst-3.1. The context-dependent requirement for hst-3.2 and hst-3.1 indicates that both enzymes generate distinct types of HS modification patterns in different cell types, which regulate kal-1 to promote neurite branching. We conclude that HS 3-O-sulfation does not play a general role in establishing the HS code in C. elegans but rather plays a specialized role in a context-dependent manner to establish defined aspects of neuronal circuits. PMID:23451335

  6. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.

    PubMed

    Miyanokoshi, Miki; Yokosawa, Takumi; Wakasugi, Keisuke

    2018-06-01

    The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: iamicehe@163.com

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression andmore » nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.« less

  8. [Methoxyflurane and ethanol do not inhibit the neuronal uptake of noradrenaline (uptake 1) at the desipramine binding site].

    PubMed

    Kress, H G; Schömig, E

    1990-07-01

    We recently demonstrated that the net accumulation of 3H-norepinephrine in the rat pheochromocytoma cell line PC12 was reduced by anesthetic concentrations of n-alkanols and the volatile anesthetics halothane, enflurane, isoflurane, and methoxyflurane. In PC12 cells, as in adrenergic neurons, norepinephrine is transported across the plasma membrane by a saturable, high-affinity, carrier-mediated mechanism (uptake1), which follows Michaelis-Menten kinetics, is energy- and sodium-dependent, and is inhibited by low concentrations of cocaine and the tricyclic antidepressant desipramine. Although uptake1 is the most important process for the removal of norepinephrine from the synaptic cleft, the net accumulation of norepinephrine within the neuron also depends on other factors including its vesicular uptake and storage within the granules, its metabolism by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT), and the efflux of its more lipophilic metabolites. In our previous report we could not exclude the contribution of any of these factors to the observed inhibitory effects of volatile substances. Therefore, the aim of the present study with ethanol and methoxyflurane was: (1) to elucidate further the exact mechanism responsible for the reduction of the norepinephrine accumulation; and (2) to investigate the anesthetics' interaction with the substrate recognition site, which is identical with the desipramine binding site on the norepinephrine carrier. METHODS. For 3H-norepinephrine uptake experiments, PC12 cells were cultured on dishes (60 mm, Nunc) coated with polyornithine. Reserpine (10 microM) was added to the culture 24 h before the experiment to deplete endogenous norepinephrine. The initial carrier-mediated transport rate (60 s) was measured as previously described. 3H-desipramine equilibrium binding was determined with isolated plasma membranes prepared from PC12 cells grown in suspension culture. The carrier-mediated uptake of 3H

  9. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  10. The development of benzo- and naphtho-fused quinoline-2,4-dicarboxylic acids as vesicular glutamate transporter (VGLUT) inhibitors reveals a possible role for neuroactive steroids

    PubMed Central

    Carrigan, Christina N.; Patel, Sarjubhai A.; Cox, Holly D.; Bolstad, Erin S.; Gerdes, John M.; Smith, Wesley E.; Bridges, Richard J.

    2014-01-01

    Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50 ~ 70 µM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈ 20 µM. PMID:24424130

  11. Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2015-10-01

    Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.

  12. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  13. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  14. Endothelin‐1 suppresses insulin‐stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells

    PubMed Central

    Hoshi, Akimasa; Harada, Takuya; Higa, Tsunaki; Karki, Sarita; Terada, Koji; Higashi, Tsunehito; Mai, Yosuke; Nepal, Prabha; Mazaki, Yuichi; Miwa, Soichi

    2016-01-01

    Background and Purpose Endothelin‐1 (ET‐1) reduces insulin‐stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET‐1 of insulin signalling. Experimental Approach We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET‐1 on insulin‐stimulated glucose uptake was assessed with [3H]‐2‐deoxy‐d‐glucose ([3H]2‐DG). The C‐terminus region of GPCR kinase 2 (GRK2‐ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus‐mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short‐interfering RNA (siRNA). Key Results In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr308 and Ser473, which was suppressed by ET‐1. The inhibitory effects of ET‐1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2‐ct and knockdown of GRK2. Insulin increased [3H]2‐DG uptake rate in a concentration‐dependent manner. ET‐1 noncompetitively antagonized insulin‐stimulated [3H]2‐DG uptake. Blockade of ETA receptors, overexpression of GRK2‐ct and knockdown of GRK2 prevented the ET‐1‐induced suppression of insulin‐stimulated [3H]2‐DG uptake. In L6 myotubes overexpressing FLAG‐tagged GRK2, ET‐1 facilitated the interaction of endogenous Akt with FLAG‐GRK2. Conclusions and Implications Activation of ETA receptors with ET‐1 suppressed insulin‐induced Akt phosphorylation at Thr308 and Ser473 and [3H]2‐DG uptake in a GRK2‐dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance. PMID:26660861

  15. Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events.

    PubMed

    Han, Jie; Goldstein, Leslie A; Gastman, Brian R; Froelich, Christopher J; Yin, Xiao-Ming; Rabinowich, Hannah

    2004-05-21

    Recent studies have suggested that in the absence of Bid, granzyme B (GrB) can utilize an unknown alternative pathway to mediate mitochondrial apoptotic events. The current study has elucidated just such a pathway for GrB-mediated mitochondrial apoptotic alterations. Two Bcl-2 family members have been identified as interactive players in this newly discovered mitochondrial response to GrB: the pro-survival protein Mcl-1L and the pro-apoptotic protein, Bim. Expression of Mcl-1L, which localizes mainly to the outer mitochondrial membrane, decreases significantly in cells subjected to CTL-free cytotoxicity mediated by a combination of GrB and replication-deficient adenovirus. The data suggest that Mcl-1L is a substrate for GrB and for caspase-3, but the two enzymes appear to target different cleavage sites. The cleavage pattern of endogenous Mcl-1L resembles that of in vitro translated Mcl-1L subjected to similar proteolytic activity. Co-immunoprecipitation experiments performed with endogenous as well as with in vitro translated proteins suggest that Mcl-1L is a high affinity binding partner of the three isoforms of Bim (extra-long, long, and short). Bim, a BH3-only protein, is capable of mediating the release of mitochondrial cytochrome c, and this activity is inhibited by the presence of exogenous Mcl-1L. The findings presented herein imply that Mcl-1L degradation by either GrB or caspase-3 interferes with Bim sequestration by Mcl-1L.

  16. Repaglinide-irbesartan drug interaction: effects of SLCO1B1 polymorphism on repaglinide pharmacokinetics and pharmacodynamics in Chinese population.

    PubMed

    Pei, Qi; Liu, Jun-Yan; Yin, Ji-Ye; Yang, Guo-Ping; Liu, Shi-Kun; Zheng, Yi; Xie, Pan; Guo, Cheng-Xian; Luo, Mi; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2018-05-11

    On account of the potential inhibition of OATP1B1 (organic anion transporting polypeptide) by angiotensin II receptor blockers (ARBs) and the effects of SLCO1B1 (solute carrier organic anion transporter family member) polymorphism, the aim of current study is to assess the impact of ARBs on the pharmacokinetics (PK) and pharmacodynamics (PD) of repaglinide in Chinese healthy volunteers with different SLCO1B1 genotypes. The in vitro study was conducted on irbesartan, valsartan, olmesartan, and losartan by using HEK293 cells transfected with OATP1B1. Data on drug interactions between repaglinide and irbesartan from 21 healthy Chinese-Han male volunteers were collected and analyzed. IC 50 from in vitro study suggested irbesartan was the most potent inhibitor of OATP1B1 transporter. Clinical data from single dose of repaglinide indicated SLCO1B1 c.521 T>C polymorphism influenced the PK and PD of repaglinide in healthy Chinese-Han male volunteers. In subjects with SLCO1B1 c.521 TT genotype, irbesartan comedication increased the exposure of repaglinide. In details, the peak plasma concentration [C max ] increased 84% (P = 0.003) and the area under the curve of plasma concentration 0-8 h [AUC 0-8 ] increased 34% (P = 0.004), while the minimum blood glucose concentration [C min ] decreased 33.8% (P = 0.005). No significant change was observed in repaglinide exposure in subjects with SLCO1B1 c.521 TC genotype in presence or absence of irbesartan. SLCO1B1 c.521 T>C polymorphism affects the PK of repaglinide in Chinese population. Irbesartan increased repaglinide exposure in subjects with SLCO1B1 c.521 TT genotype, but not SLCO1B1 c.521 TC genotype.

  17. Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation.

    PubMed

    Brooks, Kelsey; Burns, Gregory; Spencer, Thomas E

    2015-08-01

    In sheep, the elongating conceptus synthesizes and secretes interferon tau (IFNT) as well as prostaglandins (PGs) and cortisol. The enzymes, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) and HSD11B2 interconvert cortisone and cortisol. In sheep, HSD11B1 is expressed and active in the conceptus trophectoderm as well as in the endometrial luminal epithelia; in contrast, HSD11B2 expression is most abundant in conceptus trophectoderm. Cortisol is a biologically active glucocorticoid and ligand for the glucocorticoid receptor (NR3C1 or GR) and mineralocorticoid receptor (NR3C2 or MR). Expression of MR is not detectable in either the ovine endometrium or conceptus during early pregnancy. In tissues that do not express MR, HSD11B2 protects cells from the growth-inhibiting and/or proapoptotic effects of cortisol, particularly during embryonic development. In study one, an in utero loss-of-function analysis of HSD11B1 and HSD11B2 was conducted in the conceptus trophectoderm using morpholino antisense oligonucleotides (MAOs) that inhibit mRNA translation. Elongating, filamentous conceptuses were recovered on Day 14 from ewes infused with control morpholino or HSD11B2 MAO. In contrast, HSD11B1 MAO resulted in severely growth-retarded conceptuses or conceptus fragments with apoptotic trophectoderm. In study two, clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing was used to determine the role of GR in conceptus elongation and development. Elongating, filamentous-type conceptuses (12-14 cm in length) were recovered from ewes gestating control embryos (n = 7/7) and gestating GR-edited embryos (n = 6/7). These results support the idea that the effects of HSD11B1-derived cortisol on conceptus elongation are indirectly mediated by the endometrium and are not directly mediated through GR in the trophectoderm. © 2015 by the Society for the Study of Reproduction, Inc.

  18. MiR-344b-1-3p targets TLR2 and negatively regulates TLR2 signaling pathway

    PubMed Central

    Xu, Hong; Wu, Yuting; Li, Li; Yuan, Weifeng; Zhang, Deming; Yan, Qitao; Guo, Zhenhui; Huang, Wenjie

    2017-01-01

    Objectives COPD is an abnormal inflammatory response characterized by decreased expression of TLR2 in patients, which is suggested to induce invasive pulmonary aspergillosis (IPA). MicroRNAs (miRNAs) have been shown to play important roles in the pathogenesis of human respiratory system disorders. Therefore, the aim of this study was to identify the miRNAs involved in the regulation of TLR2 signaling in COPD. Materials and methods miRNA microarray analysis was performed to screen for the dysregulated miRNAs in alveolar macrophages (AMs) isolated from COPD rats. The interaction between these miRNAs and TLR2 gene was predicted using miRBase and validated using dual luciferase assay. Based on the analysis, a novel miR-344b-1-3p was identified as a novel modulator of TLR2 gene. Then, the mechanism through which miR-344b-1-3p regulated TLR2 expression was explored using cigarette smoke extract (CSE)-pretreated NR8383 cells. Moreover, by subjecting CSE-pretreated NR8383 cells to Pam3CSK4, the effect of miR-344b-1-3p on NF-κB activity and other important mediators of COPD, including IRAK-1, ERK, TNF-α, IL-1β, and MIP-2, was also assessed. Results COPD rat model was successfully induced by smoke inhalation. Among the 11 upregulated miRNAs in AMs from COPD rats, miR-344b-1-3p was predicted to be a novel miRNA targeting TLR2 gene. In the CSE pretreated NR8383 cells exposed to Pam3CSK4, miR-344b-1-3p inhibition increased the expression levels of TLR2, TNF-α, and IL-1β and decreased the expression levels of MIP-2. In addition, the phosphorylation of IRAK-1, IκBα, and IRK was augmented by miR-344b-1-3p inhibition. Conclusion Findings outlined in this study suggest that miR-344b-1-3p was an effective modulator of TLR2 gene, which can be employed as a promising therapeutic and preventive target of IPA in COPD patients. PMID:28243080

  19. Induction of AID-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5′-CpG-3′-rich 14-3-3γ promoter and is sustained by E2A

    PubMed Central

    Mai, Thach; Pone, Egest J.; Li, Guideng; Lam, Tonika S.; Moehlman, J’aime; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) crucially diversifies antibody biological effectors functions. 14-3-3γ specifically binds to the 5′-AGCT-3′ repeats in the IgH locus switch (S) regions. By directly interacting with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. Here, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by lipopolysaccharides (LPS), and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites (TSSs) for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A. PMID:23851690

  20. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study.

    PubMed

    Paudel, Pradeep; Yu, Ting; Seong, Su Hui; Kuk, Eun Bi; Jung, Hyun Ah; Choi, Jae Sue

    2018-05-22

    Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G ( 1 ), albanol B ( 2 ), and kuwanon G ( 3 ) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 13 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 13 demonstrated negative binding energies in both enzymes. Moreover, 13 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 13 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.

  1. hPEPT1 is responsible for uptake and transport of Gly-Sar in the human bronchial airway epithelial cell-line Calu-3.

    PubMed

    Søndergaard, Helle Bach; Brodin, Birger; Nielsen, Carsten Uhd

    2008-06-01

    The purpose of this work was to investigate the apical uptake and transepithelial transport of Gly-Sar along with the expression of the di-/tripeptide transporters hPEPT1 and hPEPT2 in human Calu-3 bronchial epithelial cells. The apical Gly-Sar uptake rate in Calu-3 cells followed Michaelis-Menten kinetics with a Km value of 1.3 +/- 0.3 mM and a Vmax value of 0.60 +/- 0.06 nmol cm(-2) min(-1). Transepithelial apical to basolateral transport of 50 microM [3H]-labelled Gly-Sar across the Calu-3 cell monolayer was pH-dependent. The Gly-Sar flux was significantly reduced in the presence of delta-aminolevulinic acid (2.5 mM), cephalexin (25 mM), and captopril (25 mM; p < 0.05, n = 3). Reverse transcriptase polymerase chain reaction (RT-PCR) revealed the presence of both hPEPT1 and hPEPT2 mRNA in the Calu-3 cells. These findings were confirmed in healthy human bronchial cDNA. Restriction-endonuclease analysis identified hPEPT2 in Calu-3 cells to be the hPEPT2*1 haplotype. Western blotting demonstrated expression of the hPEPT1 protein (approximately 80 kDa), and the immunolabel was mainly localized in the apical membrane as judged by immunolocalization studies using confocal laser scanning microscopy (CLSM). This work presents for the first time hPEPT1 and hPEPT2*1 expression in human Calu-3 cells. Surprisingly, the results indicate that Gly-Sar uptake and transport in Calu-3 cells are hPEPT1-mediated rather than hPEPT2-mediated.

  2. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity.

    PubMed

    Yonesaka, Kimio; Haratani, Koji; Takamura, Shiki; Sakai, Hitomi; Kato, Ryoji; Takegawa, Naoki; Takahama, Takayuki; Tanaka, Kaoru; Hayashi, Hidetoshi; Takeda, Masayuki; Kato, Sigeki; Maenishi, Osamu; Sakai, Kazuko; Chiba, Yasutaka; Okabe, Takafumi; Kudo, Keita; Hasegawa, Yoshikazu; Kaneda, Hiroyasu; Yamato, Michiko; Hirotani, Kenji; Miyazawa, Masaaki; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-06-01

    Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC ( n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8 + tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8 + TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8 + TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8 + TILs and recovery of effector function. CD8 + T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8 + T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8 + -T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. Estrone and 17beta-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products.

    PubMed

    Pape-Zambito, D A; Roberts, R F; Kensinger, R S

    2010-06-01

    Some individuals fear that estrogens in dairy products may stimulate growth of estrogen-sensitive cancers in humans. The presence of estrone (E(1)) and 17beta-estradiol (E(2)) in raw whole cow's milk has been demonstrated. The objectives of this study were to determine if pasteurization-homogenization affects E(2) concentration in milk and to quantify E(1) and E(2) concentrations in commercially available dairy products. The effects of pasteurization-homogenization were tested by collecting fresh raw milk, followed by pasteurization and homogenization at 1 of 2 homogenization pressures. All treated milks were tested for milk fat globule size, percentages of milk fat and solids, and E(2) concentrations. Estrone and E(2) were quantified from organic or conventional skim, 1%, 2%, and whole milks, as well as half-and-half, cream, and butter samples. Estrone and E(2) were quantified by RIA after organic solvent extractions and chromatography. Pasteurization-homogenization reduced fat globule size, but did not significantly affect E(2), milk fat, or milk solids concentrations. Estrone concentrations averaged 2.9, 4.2, 5.7, 7.9, 20.4, 54.1 pg/mL, and 118.9 pg/g in skim, 1%, 2%, and whole milks, half-and-half, cream, and butter samples, respectively. 17Beta-estradiol concentrations averaged 0.4, 0.6, 0.9, 1.1, 1.9, 6.0 pg/mL, and 15.8 pg/g in skim, 1%, 2%, whole milks, half-and-half, cream, and butter samples, respectively. The amount of fat in milk significantly affected E(1) and E(2) concentrations in milk. Organic and conventional dairy products did not have substantially different concentrations of E(1) and E(2). Compared with information cited in the literature, concentrations of E(1) and E(2) in bovine milk are small relative to endogenous production rates of E(1) and E(2) in humans. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. 75 FR 28188 - Airworthiness Directives; General Electric Company CF34-1A, -3A, -3A1, -3A2, -3B, and -3B1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Frost, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New..., Massachusetts, on May 10, 2010. Peter A. White, Assistant Manager, Engine and Propeller Directorate, Aircraft... Airworthiness Directives; General Electric Company CF34-1A, -3A, -3A1, -3A2, -3B, and -3B1 Turbofan Engines...

  5. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be

  6. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  8. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    OH and HO2 (HOx) radicals are closely coupled and OH is responsible for the majority of the oxidation in the troposphere and controls the concentrations of many trace species. Therefore, it is important to be able to accurately predict HOx concentrations. However, some field measurement studies have reported significantly lower HO2 radical concentrations than calculated by constrained box models using detailed chemical mechanisms. Although the inclusion of halogen chemistry into the mechanisms can explain much of the differences in the marine boundary layer (MBL) (1,2), HO2 uptake by aerosols has been suggested as a possible sink in the MBL (2), the Arctic troposphere (3) and the upper troposphere (4). There have been very few laboratory studies (5,6) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for a variety of atmospherically relevant inorganic and organic aerosols. The measurements were performed using an aerosol flow tube combined with a Fluorescence Assay by Gas Expansion (FAGE) detector. The sensitive FAGE cell allowed low HO2 concentrations (108-109 molecule cm-3) to be injected into the flow tube using a moveable injector. By moving the injector along the flow tube, position dependent HO2 decays were able to be recorded which when plotted against the total aerosol surface area allowed an uptake coefficient to be obtained. The aerosols were generated using an atomiser or by homogeneous nucleation and the total aerosol surface area was measured using a Scanning Mobility Particle Sizer. The HO2 uptake coefficient (γ) was measured at room temperature for dry inorganic salts and dry organics (γ< 0.004), wet inorganic salts and wet organics (γ= 0.002-0.005), wet copper doped ammonium sulfate aerosols (γ= 0.28± 0.05) and ammonium sulfate aerosols doped with different molar amounts of iron (γ= 0.003-0.06). The pH dependence of the HO2 uptake coefficient was investigated, however no

  9. Enhanced expression of rat hepatic CYP2B1/2B2 and 2E1 by pyridine: differential induction kinetics and molecular basis of expression.

    PubMed

    Kim, H; Putt, D; Reddy, S; Hollenberg, P F; Novak, R F

    1993-11-01

    Expression of the cytochrome P450 (CYP) 2B subfamily in rat and rabbit hepatic tissues after pyridine (PY) treatment has been examined, and the molecular basis for enhanced 2B1/2B2 expression has been determined. P450 expression was monitored using metabolic activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses, and the identity of the proteins was confirmed through N-terminus microsequence analysis. PY caused a dose-dependent elevation of hepatic CYP2B1/B2B levels in rats, which ranged from 4- to 22-fold over the dosing regimen of 100 to 400 mg PY/kg/day, for 3 days, respectively. PY at low dose failed to induce CYP2B in rabbit hepatic tissue, suggesting a species-dependent response in 2B expression. Anti-2B1 IgG addition to PY-induced microsomes inhibited benzphetamine N-demethylase activity by only approximately 15%, in sharp contrast to the approximately 73% inhibition observed for phenobarbital-induced microsomes, suggesting the induction of other form(s) of P450 having benzphetamine N-demethylase activity. Northern blot analysis revealed that PY treatment increased 2B1 and 2B2 poly(A)+ RNA levels approximately 69- and approximately 34-fold, respectively, whereas the 2E1 poly(A)+ RNA levels failed to increase. The results of this study show that PY induces CYP2B1/2B2 and that induction is species-dependent and kinetically distinguishable from 2E1 induction. Moreover, 2B1/2B2 induction occurs as a result of elevated mRNA levels associated with either transcriptional activation or mRNA stabilization, and it differs from the mechanism of hepatic 2E1 induction by PY.

  10. Genetic variants of organic cation transporter 1 (OCT1) and OCT2 significantly reduce lamivudine uptake.

    PubMed

    Choi, Min-Koo; Song, Im-Sook

    2012-04-01

    The study sought to investigate the effect of genetic variants of OCT1 (OCT1-P283L and -P341L) and OCT2 (OCT2-T199I, -T201M and -A270S), which were identified in a Korean population, on the transport of lamivudine in vitro and to compare the substrate dependent effects of OCT1 and OCT2 variants with 1-methyl-4-phenylpyridinium (MPP+), tetraethyl ammonium (TEA), metformin and lamivudine as substrates for these transporters. When the transport kinetics of lamivudine uptake in oocytes overexpressing OCT1 and OCT2 wild-type (WT) and variant proteins were measured, lamivudine uptake mediated by OCT1-WT was saturable, and uptake was decreased in oocytes expressing OCT1-P283L and -P341L variants compared with that in OCT1-WT. The Clint of lamivudine in oocytes expressing OCT1-P283L was decreased by 85.1% compared with OCT1-WT, whereas it was decreased by 48.7% in oocytes expressing OCT1-P341L. The Clint of lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S was decreased by 86.2%, 88.9% and 73.6%, respectively, compared with OCT2-WT. When comparing various substrates such as MPP+, TEA, metformin and lamivudine, the effects of the OCT1 genetic polymorphisms on their uptake were not identical. However, contrary to the case of OCT1, the uptake of MPP+, TEA, metformin and lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S variants was decreased significantly compared with that in oocytes expressing OCT2-WT. In conclusion, the effect of genetic variations of OCT1 and OCT2 on the uptake of MPP+, TEA, metformin and lamivudine was substrate-dependent. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells.

    PubMed

    Chihara, Kazuyasu; Nakashima, Kenji; Takeuchi, Kenji; Sada, Kiyonao

    2011-12-01

    Adaptor protein 3BP2, a c-Abl Src homology 3 (SH3) domain-binding protein, is tyrosine phosphorylated and positively regulates mast cell signal transduction after the aggregation of the high affinity IgE receptor (FcεRI). Overexpression of the Src homology 2 (SH2) domain of 3BP2 results in the dramatic suppression of antigen-induced degranulation in rat basophilic leukemia RBL-2H3 cells. Previously, a linker for activation of T cells (LAT) was identified as one of the 3BP2 SH2 domain-binding protein. In this report, to further understand the functions of 3BP2 in FcεRI-mediated activation of mast cell, we explored the protein that associates with the SH2 domain of 3BP2 and found that SH2 domain-containing phosphatase-1 (SHP-1) inducibly interacts with the SH2 domain of 3BP2 after the aggregation of FcεRI. The phosphorylation of Tyr(564) in the carboxy (C)-terminal tail region of SHP-1 is required for the direct interaction of SHP-1 to the SH2 domain of 3BP2. The expression of the mutant form of SHP-1 which was unable to interact with 3BP2 resulted in the significant reduction in SHP-1-mediated tumor necrosis factor-α (TNF-α) production without any effects on the degranulation in antigen-stimulated RBL-2H3 cells. These findings suggest that 3BP2 directly interacts with Tyr(564) -phosphorylated form of SHP-1 and positively regulates the function of SHP-1 in FcεRI-mediated signaling in mast cells. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  12. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    PubMed

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. 76 FR 70046 - Airworthiness Directives; Eurocopter France Model AS350B, B1, B2, B3, BA, C, D, and D1; and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Airworthiness Directives; Eurocopter France Model AS350B, B1, B2, B3, BA, C, D, and D1; and AS355E, F, F1, F2, N... France (Eurocopter) Model AS350B, B1, B2, B3, BA, C, D, and D1 helicopters; and Model AS355E, F, F1, F2... (AD 2003- 22-06), for Eurocopter Model AS350B, B1, B2, B3, BA, C, D, and D1; and Model AS355E, F, F1...

  14. Uptake of Sulfate but Not Phosphate by Mycobacterium tuberculosis Is Slower than That for Mycobacterium smegmatis

    PubMed Central

    Song, Houhui

    2012-01-01

    Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452

  15. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP

    PubMed Central

    Armbruster, Chelsie E.; Pang, Bing; Murrah, Kyle; Juneau, Richard A.; Perez, Antonia C.; Weimer, Kristin E.D.; Swords, W. Edward

    2011-01-01

    Summary Nontypeable Haemophilus influenzae (NTHI) is a respiratory commensal and opportunistic pathogen, which persists within biofilms on airway mucosal surfaces. For many species, biofilm formation is impacted by quorum signaling. Our prior work shows that production of autoinducer-2 (AI-2) promotes biofilm development and persistence for NTHI 86-028NP. NTHI 86-028NP encodes an ABC transporter annotated as a ribose transport system that includes a protein (RbsB) with similarity to the Escherichia coli LsrB and Aggregatibacter actinomycetemcomitans RbsB proteins that bind AI-2. In this study, inactivation of rbsB significantly reduced uptake of AI-2 and the AI-2 precursor dihydroxypentanedione (DPD) by NTHI 86-028NP. Moreover, DPD uptake was not competitively inhibited by ribose or other pentose sugars. Transcript levels of rbsB increased in response to DPD and as bacteria approached stationary-phase growth. The NTHI 86-028NP rbsB mutant also formed biofilms with significantly reduced thickness and total biomass and reduced surface phosphorylcholine, similar to a luxS mutant. Infection studies revealed that loss of rbsB impaired bacterial persistence in the chinchilla middle-ear, similar to our previous results with luxS mutants. Based on these data, we conclude that in NTHI 86-028NP, RbsB is a LuxS/AI-2 regulated protein that is required for uptake of and response to AI-2. PMID:21923771

  16. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP.

    PubMed

    Armbruster, Chelsie E; Pang, Bing; Murrah, Kyle; Juneau, Richard A; Perez, Antonia C; Weimer, Kristin E D; Swords, W Edward

    2011-11-01

    Nontypeable Haemophilus influenzae (NTHI) is a respiratory commensal and opportunistic pathogen, which persists within biofilms on airway mucosal surfaces. For many species, biofilm formation is impacted by quorum signalling. Our prior work shows that production of autoinducer-2 (AI-2) promotes biofilm development and persistence for NTHI 86-028NP. NTHI 86-028NP encodes an ABC transporter annotated as a ribose transport system that includes a protein (RbsB) with similarity to the Escherichia coli LsrB and Aggregatibacter actinomycetemcomitans RbsB proteins that bind AI-2. In this study, inactivation of rbsB significantly reduced uptake of AI-2 and the AI-2 precursor dihydroxypentanedione (DPD) by NTHI 86-028NP. Moreover, DPD uptake was not competitively inhibited by ribose or other pentose sugars. Transcript levels of rbsB increased in response to DPD and as bacteria approached stationary-phase growth. The NTHI 86-028NP rbsB mutant also formed biofilms with significantly reduced thickness and total biomass and reduced surface phosphorylcholine, similar to a luxS mutant. Infection studies revealed that loss of rbsB impaired bacterial persistence in the chinchilla middle ear, similar to our previous results with luxS mutants. Based on these data, we conclude that in NTHI 86-028NP, RbsB is a LuxS/AI-2 regulated protein that is required for uptake of and response to AI-2. © 2011 Blackwell Publishing Ltd.

  17. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. Copyright © 2014. Published by Elsevier Ltd.

  18. 3-O sulfation of heparin leads to hepatotropism and longer circulatory half-life.

    PubMed

    Miller, Colton M; Xu, Yongmei; Kudrna, Katrina M; Hass, Blake E; Kellar, Brianna M; Egger, Andrew W; Liu, Jian; Harris, Edward N

    2018-05-17

    Heparins are common blood anticoagulants that are critical for many surgical and biomedical procedures used in modern medicine. In contrast to natural heparin derived from porcine gut mucosa, synthetic heparins are homogenous by mass, polymer length, and chemistry. Stable cell lines expressing the human and mouse Stabilin receptors were used to evaluate endocytosis of natural and synthetic heparin. We chemoenzymatically produced synthetic heparin consisting of 12 sugars (dodecamers) containing 14 sulfate groups resulting in a non-3-O sulfated structure (n12mer). Half of the n12mer was modified with a 3-O sulfate on a single GlcNS sugar producing the 3-O sulfated heparin (12mer). Wildtype (WT), Stabilin-1 knock-out (KO), and Stabilin-2 KO C57BL/6 mice were developed and used for metabolic studies and provided as a source for primary liver sinusoidal endothelial cells. Human and mouse Stabilin-2 receptors had very similar endocytosis rates of both the 12mer and n12mer, suggesting that they are functionally similar in primary cells. Subcutaneous injections of the n12mer and 12mer revealed that the 12mer had a much longer half-life in circulation and a higher accumulation in liver. The n12mer never accumulated in circulation and was readily excreted by the kidneys before liver accumulation could occur. Liver sinusoidal endothelial cells from the Stabilin-2 KO mice had lower uptake rates for both dodecamers, whereas, the Stabilin-1 KO mice had lower endocytosis rates for the 12mer than the n12mer. 3-O sulfation of heparin is correlated to both a longer circulatory half-life and hepatotropism which is largely performed by the Stabilin receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP.

    PubMed

    Järvinen, Erkka; Deng, Feng; Kidron, Heidi; Finel, Moshe

    2018-04-01

    Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E 1 -G), estradiol-3- and 17-glucuronides (E 2 -3G and E 2 -17G), as well as estriol-3- and 16-glucuronides (E 3 -3G and E 3 -16G) are found in human plasma and urine. Unlike E 2 -17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E 1 -G, E 2 -3G, E 3 -3G, E 3 -16G and estrone-3-sulfate (E 1 -S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E 1 -S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E 1 -G and E 2 -3G, were still transported by BCRP at 10-fold higher rates than E 1 -S. BCRP also transported E 3 -16G at higher rates than the studied MRPs, while it transported E 3 -3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E 1 -G, E 2 -3G, E 3 -3G and E 3 -16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high K m values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at K m values below 20 μM, but lower V max values than other transporters. In the case of E 3 -3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E 3 -16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans. Copyright © 2017 Elsevier Ltd. All

  20. Bartonella henselae engages inside-out and outside-in signaling by integrin β1 and talin1 during invasome-mediated bacterial uptake.

    PubMed

    Truttmann, Matthias C; Misselwitz, Benjamin; Huser, Sonja; Hardt, Wolf-Dietrich; Critchley, David R; Dehio, Christoph

    2011-11-01

    The VirB/D4 type IV secretion system (T4SS) of the bacterial pathogen Bartonella henselae (Bhe) translocates seven effector proteins (BepA-BepG) into human cells that subvert host cellular functions. Two redundant pathways dependent on BepG or the combination of BepC and BepF trigger the formation of a bacterial uptake structure termed the invasome. Invasome formation is a multi-step process consisting of bacterial adherence, effector translocation, aggregation of bacteria on the cell surface and engulfment, and eventually, complete internalization of the bacterial aggregate occurs in an F-actin-dependent manner. In the present study, we show that Bhe-triggered invasome formation depends on integrin-β1-mediated signaling cascades that enable assembly of the F-actin invasome structure. We demonstrate that Bhe interacts with integrin β1 in a fibronectin- and VirB/D4 T4SS-independent manner and that activated integrin β1 is essential for both effector translocation and the actin rearrangements leading to invasome formation. Furthermore, we show that talin1, but not talin2, is required for inside-out activation of integrin β1 during invasome formation. Finally, integrin-β1-mediated outside-in signaling by FAK, Src, paxillin and vinculin is necessary for invasome formation. This is the first example of a bacterial entry process that fully exploits the bi-directional signaling capacity of integrin receptors in a talin1-specific manner.

  1. Effect of inhalation exposure to toluene on the activity of organic anion transporting polypeptide (Oatp) using pravastatin as a probe drug in rats.

    PubMed

    Mauro, Mariana; Lepera, Jose Salvador; Borsari, Bruno; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares

    2018-07-01

    1. Toluene, used as a pure substance or in solvent mixtures, is the cause of occupational exposures of large numbers of workers in the world. The organic anion transporting polypeptides (OATP: human; Oatp: rodents) are drug carriers which have been frequently associated to drug-drug interactions. The objective of this study was to evaluate the influence of inhalation exposure to toluene in Oatp in vivo activity using pravastatin as a probe drug in rats. 2. Male Wistar rats ((n = 6 per sampling time) were exposed to 85 mg/m 3 toluene by inhalation or air in a nose only exposure system for 6 h/d, 5 d/week during 4 weeks, in order to simulate the occupational exposure to toluene at level slightly above the occupational exposure limit proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). After 4 weeks of exposure, animals received a single dose of 20 mg/kg pravastatin orally. 3. Areas under concentration × time curves extrapolated to infinite (AUC 0-∞ ) were calculated by Gauss Laguerre quadrature. Non-exposed animals showed AUC 0-∞ of 726.0 (261.8) ng h/mL for pravastatin and rats exposed to toluene 85 mg/m3 showed AUC 0-∞ of 681.8 (80.1) ng h/mL [data presented as mean (standard error of the mean)]. No significant difference was observed in pravastatin kinetic disposition between groups in terms of 95% confidence interval for the difference between means. 4. Toluene exposure by inhalation did not change the in vivo activity of Oatp evaluated by pravastatin kinetic disposition in rats.

  2. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Greupink, Rick; Dillen, Lieve; Monshouwer, Mario; Huisman, Maarten T; Russel, Frans G M

    2011-11-20

    It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma.

    PubMed

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, XinWei; Kaneko, Shuichi

    2014-11-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in ∼15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n=70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n=109). This noninvasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. © 2014 by the American Association for the Study of Liver Diseases.

  5. Gd-EOB-DTPA-enhanced Magnetic Resonance Imaging and Alpha-fetoprotein Predict Prognosis of Early-Stage Hepatocellular Carcinoma

    PubMed Central

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, Xin Wei; Kaneko, Shuichi

    2014-01-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here, we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in approximately 15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n = 70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n = 109). Conclusion: This non-invasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. PMID:24700365

  6. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    PubMed

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  8. Inhibition of B16-BL6 melanoma lung colonies by semisynthetic sulfaminoheparosan sulfates from E. coli K5 polysaccharide.

    PubMed

    Poggi, Andreina; Rossi, Cosmo; Casella, Nicola; Bruno, Cristiana; Sturiale, Luisella; Dossi, Carla; Naggi, Annamaria

    2002-08-01

    Heparin (H), heparan sulfate (HS), and related glycosaminoglycans can inhibit cancer cell invasion, possibly due to their ability to interact with vascular growth factors, adhesion molecules, endoglycosidases, and signaling proteins, in addition to the well-known effects on the clotting system. We evaluated the antitumor activity of a series of semisynthetic sulfaminoheparosan sulfates (SAHSs) with different degree and distribution of sulfates, obtained by chemical modifications of the E. coli K5 polysaccharide, namely type A, B, and C compounds. B16-BL6 melanoma cells (10 5 cells/mouse) were injected intravenously (i.v.) in a lateral tail vein of C57BL6 mice at a dose of 0.5 mg/ mouse together with test compounds. Tumor lung nodules were significantly reduced as compared with controls only by H (95.5 +/- 1.0% inhibition), SAHS-2 (84.2 +/- 5.0% inhibition), and SAHS-4 (91.1 +/- 4.2% inhibition), among compounds tested. SAHS-2 and SAHS-4 are type B compounds, with a sulfate/carboxylate ratio similar to that of H. A typical mammalian HS showed only 54.8% inhibition. Supersulfated low-molecular-weight heparin and heparan sulfate (ssLMWH and ssLMWHS) showed an activity similar to that of unfractionated compounds. H and SAHS-4 inhibited dose dependently B16-BL6 lung colonies, with IC-50 values of 0.05 and 0.1 mg/mouse, respectively. The relationship with ex vivo anticoagulant potency was evaluated by activated partial thromboplastin time (aPTT) on mouse plasma at different time intervals after i.v. injection (0.1 to 0.5 mg/mouse) of the compound. H showed a dose-dependent anticoagulant activity lasting up to 2 hours, whereas SAHS-4 showed a potent anticoagulant effect only at a dose of 0.5 mg/mouse. Accordingly, H but not SAHS-4 consistently inhibited B16-BL6 lung colonies when given 1 hour before tumor cells. SAHS-4 derivatives, with different size and/or affinity depleted of AT binding sites, showed an inhibitory effect on B16-BL6 melanoma similar to that of SAHS-4

  9. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  10. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?

    PubMed

    Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T

    2017-07-01

    Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.

  11. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts.

    PubMed

    Makoveichuk, Elena; Castel, Susanna; Vilaró, Senen; Olivecrona, Gunilla

    2004-11-08

    Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.

  12. Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans.

    PubMed

    O'Connor, Isabel A; Veltman, Karin; Huijbregts, Mark A J; Ragas, Ad M J; Russel, Frans G M; Hendriks, A Jan

    2014-11-01

    Most toxicokinetic models consider passive diffusion as the only mechanism when modeling the oral uptake of chemicals. However, the overall uptake of nutrients and xenobiotics, such as pharmaceuticals and environmental pollutants, can be increased by influx transport proteins. We incorporated carrier-mediated transport into a one-compartment toxicokinetic model originally developed for passive diffusion only. The predictions were compared with measured oral uptake efficiencies of nutrients and pharmaceuticals, i.e. the fraction of the chemical reaching systemic circulation. Including carrier-mediated uptake improved model predictions for hydrophilic nutrients (RMSE=10% vs. 56%, Coefficient of Efficiency CoE=0.5 vs. -9.6) and for pharmaceuticals (RMSE=21% vs. 28% and CoE=-0.4 vs. -1.1). However, the negative CoE for pharmaceuticals indicates that further improvements are needed. Most important in this respect is a more accurate estimation of vMAX and KM as well as the determination of the amount of expressed and functional transport proteins both in vivo and in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. No significant effect of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid.

    PubMed

    Xiang, Xiaoqiang; Vakkilainen, Juha; Backman, Janne T; Neuvonen, Pertti J; Niemi, Mikko

    2011-11-01

    To investigate possible effects of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid (UDCA) and its metabolites in healthy volunteers. In a crossover study with two phases, 15 healthy volunteers with the SLCO1B1*1A/*1A genotype, seven with the *1B/*1B genotype, and five with the *15/*15 or *5/*15 genotype ingested placebo or a single 150-mg dose of UDCA. Plasma concentrations of bile acids and their biosynthesis marker were determined up to 24 h post-ingestion by liquid chromatography-tandem mass spectrometry. The SLCO1B1 genotype had no significant effect on the pharmacokinetics of UDCA. The geometric mean ratios (95% confidence interval) of UDCA area under the plasma concentration-time curve from 0 to 12 h (AUC(0-12)) in subjects with the SLCO1B1*1B/*1B genotype and in subjects with the SLCO1B1*15/*15 or *5/*15 genotype to the AUC(0-12) in subjects with the SLCO1B1*1A/*1A genotype were 1.07 (0.85, 1.35; P = 0.459) and 0.93 (0.75, 1.15; P = 0.563), respectively. In addition, following either placebo or UDCA administration, the SLCO1B1 polymorphism showed no association with the AUC(0-24) of the glycine and taurine conjugates of UDCA, with endogenous bile acids, or with the incremental AUC(0-24) of a bile acid synthesis marker. Compared with placebo, UDCA ingestion increased the AUC(0-24) of cholic acid, glycochenodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid by 1.5-, 1.1-, 1.2-, and 1.2- fold (P < 0.05), respectively. Genetic polymorphism in SLCO1B1 does not affect pharmacokinetics of UDCA, suggesting that OATP1B1 is not rate-limiting to the hepatic uptake of therapeutic UDCA. Further studies are required to clarify the mechanisms by which UDCA increases the plasma concentrations of endogenous bile acids.

  14. Effect of chondroitin sulfate on turpentine-induced down-regulation of CYP1A2 and CYP3A6.

    PubMed

    Iovu, Mirela-Onita; Héroux, Lucie; Vergés, Josep; Montell, Eulália; Paiement, Jacques; du Souich, Patrick

    2012-07-01

    This study aimed to assess whether chronic administration of chondroitin sulfate (CS) affects baseline expression of cytochrome P450 isoforms and impedes the decrease in expression and activity of CYP1A2 and CYP3A6 in rabbits with a turpentine-induced inflammatory reaction (TIIR). Seven groups of 5 rabbits, 3 control groups and 4 receiving 20 mg/kg/day of CS for 20 and 30 days, were used. The rabbits of 1 control group and 2 groups receiving CS had a TIIR; finally, the rabbits of one of the control groups remained in the animal facilities for 30 days to assess the effect of time and environment on cytochrome P450. In control rabbits, intake of CS for 20 and 30 days did not affect CYP3A6, CYP1A2 and NADPH cytochrome P450 reductase (CPR) mRNA, protein expression and activity. Compared with control rabbits, the TIIR not only reduced mRNA, protein expression and activity of CYP3A6 and CYP1A2 but also that of CPR. In rabbits with TIIR, CS prevented the decrease of CYP3A6 expression but not the reduction in activity. CS did not impede TIIR-induced down-regulation of CYP1A2. Hepatic NO() concentrations and NF-κB nuclear translocation were increased by the TIIR, effect reversed by CS. In vitro, in hepatocytes, CS did not alter the expression and activity of CYP3A6, CYP1A2, and CPR. In conclusion, oral CS elicits a systemic effect but does not affect CYP1A2, CYP3A6, and CPR in control rabbits, although in rabbits with TIIR, CS prevents CYP3A6 protein down-regulation but not that of CYP1A2. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. B1 Cell IgE Impedes Mast Cell-Mediated Enhancement of Parasite Expulsion through B2 IgE Blockade.

    PubMed

    Martin, Rebecca K; Damle, Sheela R; Valentine, Yolander A; Zellner, Matthew P; James, Briana N; Lownik, Joseph C; Luker, Andrea J; Davis, Elijah H; DeMeules, Martha M; Khandjian, Laura M; Finkelman, Fred D; Urban, Joseph F; Conrad, Daniel H

    2018-02-13

    Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1 -/- mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester.

    PubMed

    Gillard, Baiba K; Bassett, G Randall; Gotto, Antonio M; Rosales, Corina; Pownall, Henry J

    2017-05-26

    Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[ 3 H]CE labeled with [ 125 I]apoAI or [ 125 I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR -/- ) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis.

    PubMed

    Anzinger, Joshua J; Chang, Janet; Xu, Qing; Buono, Chiara; Li, Yifu; Leyva, Francisco J; Park, Bum-Chan; Greene, Lois E; Kruth, Howard S

    2010-10-01

    To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.

  18. 21 CFR 524.1044b - Gentamicin sulfate, betamethasone valerate otic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate, betamethasone valerate otic... NEW ANIMAL DRUGS § 524.1044b Gentamicin sulfate, betamethasone valerate otic solution. (a) Specifications. Each milliliter of solution contains gentamicin sulfate equivalent to 3 milligrams (mg...

  19. 21 CFR 524.1044b - Gentamicin sulfate, betamethasone valerate otic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate, betamethasone valerate otic... NEW ANIMAL DRUGS § 524.1044b Gentamicin sulfate, betamethasone valerate otic solution. (a) Specifications. Each milliliter of solution contains gentamicin sulfate equivalent to 3 milligrams (mg...

  20. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    PubMed

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  1. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  2. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle

    PubMed Central

    McMillin, Shawna L.; Schmidt, Denise L.; Kahn, Barbara B.

    2017-01-01

    GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. PMID:28279980

  3. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle.

    PubMed

    McMillin, Shawna L; Schmidt, Denise L; Kahn, Barbara B; Witczak, Carol A

    2017-06-01

    GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [ 3 H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [ 3 H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. © 2017 by the American Diabetes Association.

  4. 40 CFR 721.2465 - Xanthylium, 9-(2-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. 721.2465 Section 721.2465 Protection of...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. (a) Chemical substance and significant...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate (PMN P-00-1195; CAS No. 26694-69-9) is...

  5. 40 CFR 721.2465 - Xanthylium, 9-(2-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. 721.2465 Section 721.2465 Protection of...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. (a) Chemical substance and significant...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate (PMN P-00-1195; CAS No. 26694-69-9) is...

  6. 40 CFR 721.2465 - Xanthylium, 9-(2-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. 721.2465 Section 721.2465 Protection of...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. (a) Chemical substance and significant...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate (PMN P-00-1195; CAS No. 26694-69-9) is...

  7. 40 CFR 721.2465 - Xanthylium, 9-(2-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. 721.2465 Section 721.2465 Protection of...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate. (a) Chemical substance and significant...-(ethoxycarbonyl)phenyl)-3,6-bis(ethylamino)-2,7-dimethyl-, ethyl sulfate (PMN P-00-1195; CAS No. 26694-69-9) is...

  8. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    PubMed

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  11. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer.

    PubMed

    O'Hara, F Patrick; Beck, Ernestine; Barr, Lauren K; Wong, Lily L; Kessler, Daniel S; Riddle, Robert D

    2005-07-01

    The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.

  12. Impact of Experimental Conditions on the Evaluation of Interactions between Multidrug and Toxin Extrusion Proteins and Candidate Drugs.

    PubMed

    Lechner, Christian; Ishiguro, Naoki; Fukuhara, Ayano; Shimizu, Hidetada; Ohtsu, Naoko; Takatani, Masahito; Nishiyama, Kotaro; Washio, Ikumi; Yamamura, Norio; Kusuhara, Hiroyuki

    2016-08-01

    Multidrug and toxin extrusion transporters (MATEs) have a determining influence on the pharmacokinetic profiles of many drugs and are involved in several clinical drug-drug interactions (DDIs). Cellular uptake assays with recombinant cells expressing human MATE1 or MATE2-K are widely used to investigate MATE-mediated transport for DDI assessment; however, the experimental conditions and used test substrates vary among laboratories. We therefore initially examined the impact of three assay conditions that have been applied for MATE substrate and inhibitor profiling in the literature. One of the tested conditions resulted in significantly higher uptake rates of the three test substrates, [(14)C]metformin, [(3)H]thiamine, and [(3)H]1-methyl-4-phenylpyridinium (MPP(+)), but IC50 values of four tested MATE inhibitors varied only slightly among the three conditions (<2.5-fold difference). Subsequently, we investigated the uptake characteristics of the five MATE substrates: [(14)C]metformin, [(3)H]thiamine, [(3)H]MPP(+), [(3)H]estrone-3-sulfate (E3S), and rhodamine 123, as well as the impact of the used test substrate on the inhibition profiles of 10 MATE inhibitors at one selected assay condition. [(3)H]E3S showed atypical uptake characteristics compared with those observed with the other four substrates. IC50 values of the tested inhibitors were in a similar range (<4-fold difference) when [(14)C]metformin, [(3)H]thiamine, [(3)H]MPP(+), or [(3)H]E3S were used as substrates but were considerably higher with rhodamine 123 (9.8-fold and 4.1-fold differences compared with [(14)C]metformin with MATE1 and MATE2-K, respectively). This study demonstrated for the first time that the impact of assay conditions on IC50 determination is negligible, that kinetic characteristics differ among used test substrates, and that substrate-dependent inhibition exists for MATE1 and MATE2-K, giving valuable insight into the assessment of clinically relevant MATE-mediated DDIs in vitro

  13. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    masses assigned to sulfate esters in previous work (Liggio et al. Environ. Sci. Technol. 39, 1532, 2005) via low resolution AMS studies were assigned as glyoxal oligomers in our study via high resolution AMS spectra. However, organosulfates were identified under irradiated conditions, and we present attempts to identify the specific species via comparison with lab synthesized organosulfates. The influence of irradiation on organosulfate formation is still under investigation. Under irradiated conditions we see clear evidence for active oxidative photochemistry. The aerosol phase becomes increasingly oxidized and oxidation products, such as organic acids, similar to those observed in studies using bulk samples by Carlton et al. (Atmos. Environ. 41, 7588, 2007) are formed. Overall uptake is reduced under our experimental conditions, likely due to increasing temperature and decreasing relative humidity. We also report observation of imidazoles (carbon-nitrogen containing aromatic heterocycles) resulting from reaction of glyoxal with the nitrogen component of the ammonium sulfate seed aerosol. The imidazoles form irreversibly under dark and irradiated conditions, in ammonium sulfate and acidified ammonium sulfate (pH~1) aerosol. The molecular framework of imidazoles is very stable as a result of the aromaticity. The primary imidazole product, which has a low vapor pressure estimated at 0.0014 Torr, is predicted to be present as a (protonated) cation, owing to its basicity (pKB = 7). It is thus likely not a candidate for repartitioning to the gas phase. Evidence for participation of ammonium in reactions with glyoxal using bulk samples has recently been reported by Noziere et al. (JPCA 113, 231, 2008; ACPD 9, 1, 2009). This study reveals the complex chemistry occurring within ammonium sulfate seed aerosol even for systems with greatly reduced complexity compared to atmospheric aerosol. The results increase our understanding of the contribution of glyoxal to SOA formation

  14. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  15. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter

    PubMed Central

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A.; Boyer, James L.

    2017-01-01

    The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea. The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. PMID:28077388

  16. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter.

    PubMed

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A; Boyer, James L; Cai, Shi-Ying

    2017-04-01

    The Na + -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na + -dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [ 3 H]TCA uptake assay revealed that skSlc10a1 functioned as a Na + -dependent transporter, but with low affinity for TCA ( K m = 92.4 µM) and scymnol sulfate ( K i = 31 µM), compared with hNTCP (TCA, K m = 5.4 µM; Scymnol sulfate, K i = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na + -dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. Copyright © 2017 the American Physiological Society.

  17. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells.

    PubMed

    Tunduguru, Ragadeepthi; Zhang, Jing; Aslamy, Arianne; Salunkhe, Vishal A; Brozinick, Joseph T; Elmendorf, Jeffrey S; Thurmond, Debbie C

    2017-11-17

    Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Inclusion of Endogenous Hormone Levels in Risk Prediction Models of Postmenopausal Breast Cancer

    PubMed Central

    Tworoger, Shelley S.; Zhang, Xuehong; Eliassen, A. Heather; Qian, Jing; Colditz, Graham A.; Willett, Walter C.; Rosner, Bernard A.; Kraft, Peter; Hankinson, Susan E.

    2014-01-01

    Purpose Endogenous hormones are risk factors for postmenopausal breast cancer, and their measurement may improve our ability to identify high-risk women. Therefore, we evaluated whether inclusion of plasma estradiol, estrone, estrone sulfate, testosterone, dehydroepiandrosterone sulfate, prolactin, and sex hormone–binding globulin (SHBG) improved risk prediction for postmenopausal invasive breast cancer (n = 437 patient cases and n = 775 controls not using postmenopausal hormones) in the Nurses' Health Study. Methods We evaluated improvement in the area under the curve (AUC) for 5-year risk of invasive breast cancer by adding each hormone to the Gail and Rosner-Colditz risk scores. We used stepwise regression to identify the subset of hormones most associated with risk and assessed AUC improvement; we used 10-fold cross validation to assess model overfitting. Results Each hormone was associated with breast cancer risk (odds ratio doubling, 0.82 [SHBG] to 1.37 [estrone sulfate]). Individual hormones improved the AUC by 1.3 to 5.2 units relative to the Gail score and 0.3 to 2.9 for the Rosner-Colditz score. Estrone sulfate, testosterone, and prolactin were selected by stepwise regression and increased the AUC by 5.9 units (P = .003) for the Gail score and 3.4 (P = .04) for the Rosner-Colditz score. In cross validation, the average AUC change across the validation data sets was 6.0 (P = .002) and 3.0 units (P = .03), respectively. Similar results were observed for estrogen receptor–positive disease (selected hormones: estrone sulfate, testosterone, prolactin, and SHBG; change in AUC, 8.8 [P < .001] for Gail score and 5.8 [P = .004] for Rosner-Colditz score). Conclusion Our results support that endogenous hormones improve risk prediction for invasive breast cancer and could help identify women who may benefit from chemoprevention or more screening. PMID:25135988

  19. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures

    PubMed Central

    Ramboer, Eva; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures. PMID:26648816

  20. Implications of Efficient Hepatic Delivery by Tenofovir Alafenamide (GS-7340) for Hepatitis B Virus Therapy

    PubMed Central

    Wang, Ting; Park, Yeojin; Hao, Jia; Lepist, Eve-Irene; Babusis, Darius; Ray, Adrian S.

    2015-01-01

    Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) currently in clinical evaluation for treatment for HIV and hepatitis B virus (HBV) infections. Since the target tissue for HBV is the liver, the hepatic delivery and metabolism of TAF in primary human hepatocytes in vitro and in dogs in vivo were evaluated here. Incubation of primary human hepatocytes with TAF resulted in high levels of the pharmacologically active metabolite tenofovir diphosphate (TFV-DP), which persisted in the cell with a half-life of >24 h. In addition to passive permeability, studies of transfected cell lines suggest that the hepatic uptake of TAF is also facilitated by the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3, respectively). In order to inhibit HBV reverse transcriptase, TAF must be converted to the pharmacologically active form, TFV-DP. While cathepsin A is known to be the major enzyme hydrolyzing TAF in cells targeted by HIV, including lymphocytes and macrophages, TAF was primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes, with cathepsin A making a small contribution. Following oral administration of TAF to dogs for 7 days, TAF was rapidly absorbed. The appearance of the major metabolite TFV in plasma was accompanied by a rapid decline in circulating TAF. Consistent with the in vitro data, high and persistent levels of TFV-DP were observed in dog livers. Notably, higher liver TFV-DP levels were observed after administration of TAF than those given TDF. These results support the clinical testing of once-daily low-dose TAF for the treatment of HBV infection. PMID:25870059

  1. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  2. Synthesis of Substituted 2,3,5,6-tetraarylbenzo(1,2-b:5,4-b')difurans

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Mahmoud; Auping, Judith V.; Meador, Michael A.

    1995-01-01

    A series of substituted 2,3,5,6-tetraarylbenzo(l,2-b:5,4-b')difurans 1 was synthesized. This synthesis is based upon the photocyclization of 2,5-dibenzoylresorcinol dibenzyl ethers to the corresponding tetrahydrobenzo(1,2-b:5,4-b')difurans. Treatment of the photoproducts with methanesulfonyl chloride in pyridine afforded 1 in overall yields ranging from 30-72%. A number of these compounds have high fluorescence quantum yields (of phi(sub f) = 0.76-0.90), and their fluorescence spectra exhibit large solvatochromic shifts. These compounds may be suitable for use as fluorescent probes.

  3. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  4. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  5. Osthole Attenuates Inflammatory Responses and Regulates the Expression of Inflammatory Mediators in HepG2 Cells Grown in Differentiated Medium from 3T3-L1 Preadipocytes.

    PubMed

    Wu, Shu-Ju

    2015-09-01

    This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.

  6. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells.

    PubMed

    Lim, Diana M; Narasimhan, Sneha; Michaylira, Carmen Z; Wang, Mei-Lun

    2009-12-01

    Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1-10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-kappaB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-kappaB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-kappaB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-kappaB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-kappaB signaling may play an important regulatory role in esophageal epithelial homeostasis.

  8. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    USGS Publications Warehouse

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  9. Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release.

    PubMed

    Zhao, Shengnan; Gong, Zizhen; Du, Xixi; Tian, Chunyan; Wang, Lingyu; Zhou, Jiefei; Xu, Congfeng; Chen, Yingwei; Cai, Wei; Wu, Jin

    2018-01-01

    We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1 β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.

  10. The 2√{32√{3}R30 surface reconstruction of alkali/Si(1 1 1):B semiconducting surfaces

    NASA Astrophysics Data System (ADS)

    Tournier-Colletta, C.; Chaput, L.; Tejeda, A.; Cardenas, L. A.; Kierren, B.; Malterre, D.; Fagot-Revurat, Y.; Fèvre, P. Le; Bertran, F.; Taleb-Ibrahimi, A.

    2013-02-01

    The surface structure of alkali doped Si(1 1 1):B ultra-thin films has been studied by low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM). A comparative study of K/Si(1 1 1)-3 × 1 and K/Si(1 1 1):B-2√{32√{3}R30 interfaces allowed us to determine the saturation coverage to be 0.5 monolayer in the later case. The 2√{3}-surface reconstruction is shown to be a common property of pure K, Rb, Cs materials and K0.4Rb0.6 alloys but progressively disappears if Rb is replaced by Ca. Taking into account the existence of two distinct boron sites in the ratio 1/3 as seen from B-1s core levels spectra, LAPW-DFT calculations have been carried out in order to optimize the atomic structure. As a result, alkali adatoms are shown to form trimers leading to a large modulation of the Sisbnd B bonds accompanied by an inhomogeneous doping of the dangling bonds in agreement with voltage dependent STM images.

  11. 75 FR 34062 - Airworthiness Directives; Eurocopter France Model AS 350 B, BA, B1, B2, B3, and D, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Airworthiness Directives; Eurocopter France Model AS 350 B, BA, B1, B2, B3, and D, and Model AS355 E, F, F1, F2... AS 350 B, BA, B1, B2, B3, and D, and Model AS355 E, F, F1, F2, and N helicopters, with certain main... an unsafe condition for certain Eurocopter France Model AS 350 B, BA, BB, B1, B2, B3, and D, and...

  12. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.

    PubMed

    Sakuma, Shinji; Kanamitsu, Shun; Teraoka, Yumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Shirasaka, Yoshiyuki; Tamai, Ikumi; Muraoka, Masahiro; Nakatsuji, Yohji; Kida, Toshiyuki; Akashi, Mitsuru

    2012-04-02

    A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na⁺/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated D-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated D-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro D-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated D-glucose uptake.

  13. EFFECTS OF CYTOSOLIC CONVERSION OF ESTRONE TO ESTRADIOL ON RAINBOW TROUT ER BINDING AFFINITY

    EPA Science Inventory

    Relative binding affinity (RBA) for estrone (E1) to the rainbow trout (Oncorhynchus mykiss) estrogen receptor (rtER) was measured as part of a larger effort to determine chemical structural features predictive of chemical estrogenicity in fish. Estrone RBA was found to vary consi...

  14. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome.

    PubMed

    Sharp, Fiona A; Ruane, Darren; Claass, Benjamin; Creagh, Emma; Harris, James; Malyala, Padma; Singh, Manomohan; O'Hagan, Derek T; Pétrilli, Virginie; Tschopp, Jurg; O'Neill, Luke A J; Lavelle, Ed C

    2009-01-20

    Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.

  15. NO3- , PO43- and SO42- deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants.

    PubMed

    Ródenas, Reyes; García-Legaz, Manuel Francisco; López-Gómez, Elvira; Martínez, Vicente; Rubio, Francisco; Ángeles Botella, M

    2017-08-01

    Regulation of essential macronutrients acquisition by plants in response to their availability is a key process for plant adaptation to changing environments. Here we show in tomato and Arabidopsis plants that when they are subjected to NO 3 - , PO 4 3 - and SO 4 2 - deprivation, low-affinity K + uptake and K + translocation to the shoot are reduced. In parallel, these nutritional deficiencies produce reductions in the messenger levels of the genes encoding the main systems for low-affinity K + uptake and K + translocation, i.e. AKT1 and SKOR in Arabidopsis and LKT1 and the tomato homolog of SKOR, SlSKOR in tomato, respectively. The results suggest that the shortage of one nutrient produces a general downregulation of the acquisition of other nutrients. In the case of K + nutrient, one of the mechanisms for such a response resides in the transcriptional repression of the genes encoding the systems for K + uptake and translocation. © 2017 Scandinavian Plant Physiology Society.

  16. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    PubMed

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  17. Ectopic Expression of Homeobox Gene NKX2-1 in Diffuse Large B-Cell Lymphoma Is Mediated by Aberrant Chromatin Modifications

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies. PMID:23637834

  18. Ectopic expression of homeobox gene NKX2-1 in diffuse large B-cell lymphoma is mediated by aberrant chromatin modifications.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies.

  19. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis.

    PubMed

    Fang, Xian Zhi; Tian, Wen Hao; Liu, Xing Xing; Lin, Xian Yong; Jin, Chong Wei; Zheng, Shao Jian

    2016-07-01

    Protons in acid soil are highly rhizotoxic to plants, but the mechanism of tolerance of plants to protons is largely unknown. Nitrate uptake by root cells is accompanied by the uptake of protons. Therefore, nitrate uptake transporters (NRTs) may be involved in plant tolerance to proton toxicity. We investigated the root nitrate uptake response to proton stress in Arabidopsis and its association with proton tolerance using NRT-related mutants and pharmacological methods. Lack of NRT1.1 in knockout nrt1.1 mutants led to impaired proton tolerance in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and NRT1.2-, NRT2.1-, NRT2.2-, and NRT2.4-null mutants. Another nrt1.1 point mutant, which is defective in nitrate uptake but has a normal nitrate-sensing function, also had impaired proton tolerance compared with the wild-type plant. Furthermore, proton stress induced NRT1.1-mediated nitrate uptake. These results indicate that NRT1.1-conferred proton tolerance depends on nitrate uptake activity. In addition, the rooting medium was alkalified by wild-type plants, but not by knockout nrt1.1 mutants, and in pH-buffered medium, there were no differences in proton tolerance between wild-type plants and knockout nrt1.1 mutants. We conclude that NRT1.1-mediated nitrate uptake plays a crucial role in plant proton tolerance by alkalifying the rhizosphere. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Fate of estrone in laboratory-scale constructed wetlands

    USDA-ARS?s Scientific Manuscript database

    A horizontal, subsurface, laboratory-scale constructed wetland (CW) consisting of four cells in series was used to determine the attenuation of the steroid hormone estrone (E1) present in animal wastewater. Liquid swine manure diluted 1:80 with farm pond water and dosed with [14C]E1 flowed through ...

  1. Risk of adverse events among older adults following co-prescription of clarithromycin and statins not metabolized by cytochrome P450 3A4

    PubMed Central

    Li, Daniel Q.; Kim, Richard; McArthur, Eric; Fleet, Jamie L.; Bailey, David G.; Juurlink, David; Shariff, Salimah Z.; Gomes, Tara; Mamdani, Muhammad; Gandhi, Sonja; Dixon, Stephanie; Garg, Amit X.

    2015-01-01

    Background: The cytochrome P450 3A4 (CYP3A4) inhibitor clarithromycin may also inhibit liver-specific organic anion–transporting polypeptides (OATP1B1 and OATP1B3). We studied whether concurrent use of clarithromycin and a statin not metabolized by CYP3A4 was associated with an increased frequency of serious adverse events. Methods: Using large health care databases, we studied a population-based cohort of older adults (mean age 74 years) who were taking a statin not metabolized by CYP3A4 (rosuvastatin [76% of prescriptions], pravastatin [21%] or fluvastatin [3%]) between 2002 and 2013 and were newly prescribed clarithromycin (n = 51 523) or azithromycin (n = 52 518), the latter an antibiotic that inhibits neither CYP3A4 nor OATP1B1 and OATP1B3. Outcomes were hospital admission with a diagnostic code for rhabdomyolysis, acute kidney injury or hyperkalemia, and all-cause mortality. All outcomes were assessed within 30 days after co-prescription. Results: Compared with the control group, patients co-prescribed clarithromycin and a statin not metabolized by CYP3A4 were at increased risk of hospital admission with acute kidney injury (adjusted relative risk [RR] 1.65, 95% confidence interval [CI] 1.31 to 2.09), admission with hyperkalemia (adjusted RR 2.17, 95% CI 1.22 to 3.86) and all-cause mortality (adjusted RR 1.43, 95% CI 1.15 to 1.76). The adjusted RR for admission with rhabdomyolysis was 2.27 (95% CI 0.86 to 5.96). The absolute increase in risk for each outcome was small and likely below 1%, even after we considered the insensitivity of some hospital database codes. Interpretation: Among older adults taking a statin not metabolized by CYP3A4, co-prescription of clarithromycin versus azithromycin was associated with a modest but statistically significant increase in the 30-day absolute risk of adverse outcomes. PMID:25534598

  2. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    PubMed

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  3. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  4. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  5. AP-11B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  6. Synthesis of heparan sulfate with cyclophilin B-binding properties is determined by cell type-specific expression of sulfotransferases.

    PubMed

    Deligny, Audrey; Denys, Agnès; Marcant, Adeline; Melchior, Aurélie; Mazurier, Joël; van Kuppevelt, Toin H; Allain, Fabrice

    2010-01-15

    Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells.

  7. Synthesis of Heparan Sulfate with Cyclophilin B-binding Properties Is Determined by Cell Type-specific Expression of Sulfotransferases*

    PubMed Central

    Deligny, Audrey; Denys, Agnès; Marcant, Adeline; Melchior, Aurélie; Mazurier, Joël; van Kuppevelt, Toin H.; Allain, Fabrice

    2010-01-01

    Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells. PMID:19940140

  8. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    PubMed

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells

    PubMed Central

    Perfecto, Antonio; Elgy, Christine; Valsami-Jones, Eugenia; Sharp, Paul; Hilty, Florentine; Fairweather-Tait, Susan

    2017-01-01

    Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastrointestinal (GI) digestion. Supernatant iron concentrations increased inversely with pH, and iron uptake into Caco-2 cells was 23 fold higher when NP-FePO4 was digested at pH 1 compared to pH 2. The size and distribution of NP-FePO4 particles during GI digestion was examined using transmission electron microscopy. The d50 of the particle distribution was 413 nm. Using disc centrifugal sedimentation, a high degree of agglomeration in NP-FePO4 following simulated GI digestion was observed, with only 20% of the particles ≤1000 nm. In Caco-2 cells, divalent metal transporter-1 (DMT1) and endocytosis inhibitors demonstrated that NP-FePO4 was mainly absorbed via DMT1. Small particles may be absorbed by clathrin-mediated endocytosis and micropinocytosis. These findings should be considered when assessing the potential of iron nanoparticles for food fortification. PMID:28375175

  10. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.

    PubMed

    Takimiya, Kazuo; Osaka, Itaru; Mori, Takamichi; Nakano, Masahiro

    2014-05-20

    The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic

  11. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  12. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    PubMed

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  13. Physiochemical properties of alkylaminium sulfates: hygroscopicity, thermostability, and density.

    PubMed

    Qiu, Chong; Zhang, Renyi

    2012-04-17

    Although heterogeneous interaction of amines has been recently shown to play an important role in the formation and growth of atmospheric aerosols, little information is available on the physicochemical properties of aminium sulfates. In this study, the hygroscopicity, thermostability, and density of alkylaminium sulfates (AASs) have been measured by an integrated aerosol analytical system including a tandem differential mobility analyzer and an aerosol particle mass analyzer. AAS aerosols exhibit monotonic size growth at increasing RH without a well-defined deliquescence point. Mixing of ammonium sulfate (AS) with AASs lowers the deliquescence point corresponding to AS. Particles with AASs show comparable or higher thermostability than that of AS. The density of AASs is determined to be 1.2-1.5 g cm(-3), and an empirical model is developed to predict the density of AASs on the basis of the mole ratio of alkyl carbons to total sulfate. Our results reveal that the heterogeneous uptake of amines on sulfate particles may considerably alter the aerosol properties. In particular, the displacement reaction of alkylamines with ammonium sulfate aerosols leads to a transition from the crystalline to an amorphorous phase and an improved water uptake, considerably enhancing their direct and indirect climate forcing.

  14. Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology.

    PubMed

    Loza, Kateryna; Föhring, Isabell; Bünger, Jürgen; Westphal, Götz A; Köller, Manfred; Epple, Matthias; Sengstock, Christina

    2016-12-01

    The inhalation of particles and their exposure to the bronchi and alveoli constitute a major public health risk. Chemical as well as particle-related properties are important factors for the biological response but are difficult to separate from each other. Barium sulfate is a completely inert chemical compound, therefore it is ideally suited to separate these two factors. The biological response of rat alveolar macrophages (NR8383) was analyzed after exposure to barium sulfate particles with three different diameters (40 nm, 270 nm, and 1.3 μm, respectively) for 24 h in vitro (particle concentrations from 12.5 to 200 μg mL - 1 ). The particles were colloidally stabilized as well as fluorescently-labeled by carboxymethylcellulose, conjugated with 6-aminofluorescein. All kinds of barium sulfate particles were efficiently taken up by NR8383 cells and found inside endo-lysosomes, but never in the cell nucleus. Neither an inflammatory nor a cytotoxic response was detected by the ability of dHL-60 and NR8383 cells to migrate towards a chemotactic gradient (conditioned media of NR8383 cells) and by the release of inflammatory mediators (CCL2, TNF-α, IL-6). The particles neither caused apoptosis (up to 200 μg mL - 1 ) nor necrosis (up to 100 μg mL - 1 ). As only adverse reaction, necrosis was found at a concentration of 200 μg mL - 1 of the largest barium sulfate particles (1.3 μm). Barium sulfate particles are ideally suited as bioinert control to study size-dependent effects such as uptake mechanisms of intracellular distributions of pure particles, especially in nanotoxicology.

  15. Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J., E-mail: ljouffret@nd.edu; Wylie, Ernest M.; Burns, Peter C.

    2013-01-15

    Two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3), were synthesized and their crystal structures determined. NDUS2 was obtained in highly acidic media heat-treated at 373 K and subsequently maintained at 278 K until crystals formed after two months. NDUS3 results from the degradation of NDUS2 over the course of a few days. NDUS2 and NDUS3 crystallize in the monoclinic space group P2{sub 1}/n, a=10.9075(4) A, b=10.4513(4) A, c=17.7881(7) A, {beta}=97.908(2) Degree-Sign , V=2008.52(13) A{sup 3}, Z=4, at 140 K and a=8.8570(4) A,more » b=7.3299(3) A, c=20.4260(9) A, {beta}=95.140(2) Degree-Sign , V=1320.74(10) A{sup 3}, Z=4, at 140 K, respectively. The compounds contain interlayer 1,4-n-butyldiammonium cations that charge-balance the anionic structural units. - Graphical abstract: Amine templating effect absent in uranyl sulfates synthesized with 1,4-diaminobutane, as shown by the synthesis of two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3). Highlights: Black-Right-Pointing-Pointer Two layered uranyl sulfates were synthesized. Black-Right-Pointing-Pointer Amine molecules are located in the interlayers of the compounds. Black-Right-Pointing-Pointer No templating effect of the amine was observed. Black-Right-Pointing-Pointer Amine molecules are only charge balancing cations in the structures.« less

  16. 4-Isopropyl-2,6-bis(1-phenylethyl)aniline 1, an Analogue of KTH-13 Isolated from Cordyceps bassiana, Inhibits the NF-κB-Mediated Inflammatory Response

    PubMed Central

    Yang, Woo Seok; Ratan, Zubair Ahmed; Kim, Gihyeon; Lee, Yunmi; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    The Cordyceps species has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated from Cordyceps bassiana and created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop. PMID:26819495

  17. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.

    PubMed Central

    Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B

    1997-01-01

    CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281

  18. CsNIP2;1 is a Plasma Membrane Transporter from Cucumis sativus that Facilitates Urea Uptake When Expressed in Saccharomyces cerevisiae and Arabidopsis thaliana.

    PubMed

    Zhang, Lu; Yan, Jiapei; Vatamaniuk, Olena K; Du, Xiangge

    2016-03-01

    Urea is an important source of nitrogen (N) for the growth and development of plants. It occurs naturally in soils, is the major N source in agricultural fertilizers and is an important N metabolite in plants. Therefore, the identification and characterization of urea transporters in higher plants is important for the fundamental understanding of urea-based N nutrition in plants and for designing novel strategies for improving the N-use efficiency of urea based-fertilizers. Progress in this area, however, is hampered due to scarce knowledge of plant urea transporters. From what is known, urea uptake from the soil into plant roots is mediated by two types of transporters: the major intrinsic proteins (MIPs) and the DUR3 orthologs, mediating low- and high-affinity urea transport, respectively. Here we characterized a MIP family member from Cucumis sativus, CsNIP2;1, with regard to its contribution to urea transport. We show that CsNIP2;1 is a plasma membrane transporter that mediates pH-dependent urea uptake when expressed in yeast. We also found that ectopic expression of CsNIP2;1 improves growth of wild-type Arabidopsis thaliana and rescues growth and development of the atdur3-3 mutant on medium with urea as the sole N source. In addition, CsNIP2;1 is transcriptionally up-regulated by N deficiency, urea and NO3 (-). These data and results from the analyses of the pattern of CsNIP2;1 expression in A. thaliana and cucumber suggest that CsNIP2;1 might be involved in multiple steps of urea-based N nutrition, including urea uptake and internal transport during N remobilization throughout seed germination and N delivery to developing tissues. © Crown copyright 2016.

  19. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  20. Effect of Agmatine Sulfate on Modulation of Matrix Metalloproteinases via PI3K/Akt-1 in HT1080 Cells.

    PubMed

    Kim, Hyejeong; Kim, Moon-Moo

    2017-11-01

    The purpose of this study was to investigate the mechanism by which agmatine sulfate induces an anti-metastatic effect in human HT1080 fibrosarcoma cells, by affecting matrix metalloproteinases (MMPs). For the experiments, we used a non-toxic concentration of agmatine, below 512 μM, that was determined using an MTT assay. The effect of agmatine sulfate on metastasis was gelatin zymography, western blot, immunofluorescence staining and cell invasion assay. Agmatine sulfate inhibited MMP-2 activity stimulated by phenazine methosulfate (PMS). Furthermore, the expression level of MMP-2 stimulated by PMS, was decreased, but the expression level of TIMP-1 was increased in the presence of agmatine sulfate. Moreover, it was observed that the expression levels of ERK and p38 were increased, but those of PI3K and Akt-1 associated with the modulation of MMP-2 were decreased in this study. Furthermore, agmatine sulfate decreased the invasion level of human fibrosarcoma cells stimulated by VEGF. These results suggest that agmatine sulfate could inhibit metastasis through inhibition of MMP-2 via the PI3K/Akt-1 signaling pathway. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    PubMed Central

    Hamdi, M M; Mutungi, G

    2011-01-01

    Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113

  2. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B.

    PubMed

    Lennemann, Nicholas J; Coyne, Carolyn B

    2017-02-01

    The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.

  3. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted formore » western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.« less

  4. The flounder organic anion transporter fOat has sequence, function, and substrate specificity similarity to both mammalian Oat1 and Oat3

    PubMed Central

    Aslamkhan, Amy G.; Thompson, Deborah M.; Perry, Jennifer L.; Bleasby, Kelly; Wolff, Natascha A.; Barros, Scott; Miller, David S.; Pritchard, John B.

    2007-01-01

    The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat Km values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC50 values for inhibition of cellular fluorescein accumulation was similar to that for the Km values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes. PMID:16857889

  5. Bcl11b, a novel GATA3-interacting protein, suppresses Th1 while limiting Th2 cell differentiation.

    PubMed

    Fang, Difeng; Cui, Kairong; Hu, Gangqing; Gurram, Rama Krishna; Zhong, Chao; Oler, Andrew J; Yagi, Ryoji; Zhao, Ming; Sharma, Suveena; Liu, Pentao; Sun, Bing; Zhao, Keji; Zhu, Jinfang

    2018-05-07

    GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we show that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein-protein interaction, and they colocalize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5, and IL-13, is up-regulated in Bcl11b -deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3 dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated genes (from RNA sequencing), cobinding patterns (from chromatin immunoprecipitation sequencing), and Bcl11b-modulated epigenetic modification and gene accessibility suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  6. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling.

    PubMed

    Cao, Qiong; Karthikeyan, Aparna; Dheen, S Thameem; Kaur, Charanjit; Ling, Eng-Ang

    2017-01-01

    Microglia activation and associated inflammatory response are involved in the pathogenesis of different neurodegenerative diseases. We have reported that Notch-1 and NF-κB/p65 signalling pathways operate in synergy in regulating the production of proinflammatory mediators in activated microglia. In the latter, there is also evidence by others that glycogen synthase kinase 3β (GSK-3β) mediates the release of proinflammatory cytokines but the interrelationships between the three signalling pathways have not been fully clarified. This is an important issue as activated microglia are potential therapeutic target for amelioration of microglia mediated neuroinflammation. Here we show that blocking of Notch-1 with N-[(3,5-Difluorophenyl) acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT) in LPS activated BV-2 microglia not only suppressed Notch intracellular domain (NICD) and Hes-1 protein expression, but also that of GSK-3β. Conversely, blocking of the latter with lithium chloride (LiCl) decreased NICD expression in a dose-dependent manner; moreover, Hes-1 immunofluorescence was attenuated. Along with this, the protein expression level of p-GSK-3β and p-AKT protein expression was significantly increased. Furthermore, DAPT and LiCl decreased production of IL-1β, TNF-α, IL-6, iNOS, Cox2 and MCP-1; however, IL-10 expression was increased notably in LiCl treated cells. The effects of DAPT and LiCl on changes of the above-mentioned biomarkers were confirmed by immunofluorescence in both BV-2 and primary microglia. Additionally, NF-κB/p65 immunofluorescence was attenuated by DAPT and LiCl; as opposed to this, IκBα protein expression was increased. Taken together, it is suggested that Notch-1, NF-κB/p65 and GSK-3β operate in synergy to inhibit microglia activation. This may be effected via increased expression of phospho-GSK-3β (p-GSK-3β), phospho-protein kinase B (PKB) (p-AKT) and IκBα. It is concluded that the three signalling pathways are

  7. The crystal chemistry of four thorium sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Amanda J.; Sigmon, Ginger E.; Moore-Shay, Laura

    2011-07-15

    Four thorium sulfate compounds have been synthesized and characterized. [Th(SO{sub 4}){sub 2}(H{sub 2}O){sub 7}].2H{sub 2}O (ThS1) crystallizes in space group P2{sub 1}/m, a=7.2488(4), b=12.1798(7), c=8.0625(5) A, {beta}=98.245(1){sup o}; Na{sub 10}[Th{sub 2}(SO{sub 4}){sub 9}(H{sub 2}O){sub 2}].3H{sub 2}O (ThS2), Pna2{sub 1}, a=17.842(2), b=6.9317(8), c=27.550(3) A; Na{sub 2}[Th{sub 2}(SO{sub 4}){sub 5}(H{sub 2}O){sub 3}].H{sub 2}O (ThS3), C2/c, a=16.639(2), b=9.081(1), c=25.078(3) A, {beta}= 95.322(2){sup o}; [Th{sub 4}(SO{sub 4}){sub 7}(OH){sub 2}(H{sub 2}O){sub 6}].2H{sub 2}O (ThS4), Pnma, a=18.2127(9), b=11.1669(5), c=14.4705(7) A. In all cases the Th cations are coordinated by nine O atoms corresponding to SO{sub 4} tetrahedra, OH groups, and H{sub 2}O groups. The structural unitmore » of ThS1 is an isolated cluster consisting of a single Th polyhedron with two monodentate SO{sub 4} tetrahedra and seven H{sub 2}O groups. A double-wide Th sulfate chain is the basis of ThS2. The structures of ThS3 and ThS4 are frameworks of Th polyhedra and sulfate tetrahedra, and each contains channels that extend through the framework. One of the Th cations in ThS3 is coordinated by a bidentate SO{sub 4} tetrahedron, and ThS4 is unusual in the presence of a pair of Th cations that share a polyhedral face. - Graphical abstract: The structures of four hydrous thorium sulfates are reported that have structural units consisting of finite clusters, chains, and frameworks. Highlights: > Four hydrous thorium sulfates have structural units consisting of finite clusters, chains, and frameworks. > In each the Th cations are coordinated by nine O atoms from SO{sub 4} tetrahedra, OH groups, and H{sub 2}O groups. > The details of the linkages of ThO{sub 9} polyhedra and sulfate tetrahedra vary considerably in these structures.« less

  8. MACC1 regulates Fas mediated apoptosis through STAT1/3 - Mcl-1 signaling in solid cancers.

    PubMed

    Radhakrishnan, Harikrishnan; Ilm, Katharina; Walther, Wolfgang; Shirasawa, Senji; Sasazuki, Takehiko; Daniel, Peter T; Gillissen, Bernhard; Stein, Ulrike

    2017-09-10

    MACC1 was identified as a novel player in cancer progression and metastasis, but its role in death receptor-mediated apoptosis is still unexplored. We show that MACC1 knockdown sensitizes cancer cells to death receptor-mediated apoptosis. For the first time, we provide evidence for STAT signaling as a MACC1 target. MACC1 knockdown drastically reduced STAT1/3 activating phosphorylation, thereby regulating the expression of its apoptosis targets Mcl-1 and Fas. STAT signaling inhibition by the JAK1/2 inhibitor ruxolitinib mimicked MACC1 knockdown-mediated molecular signatures and apoptosis sensitization to Fas activation. Despite the increased Fas expression, the reduced Mcl-1 expression was instrumental in apoptosis sensitization. This reduced Mcl-1-mediated apoptosis sensitization was Bax and Bak dependent. MACC1 knockdown also increased TRAIL-induced apoptosis. MACC1 overexpression enhanced STAT1/3 phosphorylation and increased Mcl-1 expression, which was abrogated by ruxolitinib. The central role of Mcl-1 was strengthened by the resistance of Mcl-1 overexpressing cells to apoptosis induction. The clinical relevance of Mcl-1 regulation by MACC1 was supported by their positive expression correlation in patient-derived tumors. Altogether, we reveal a novel death receptor-mediated apoptosis regulatory mechanism by MACC1 in solid cancers through modulation of the STAT1/3-Mcl-1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. PI3K and MEK1/2 molecular pathways are involved in the erythropoietin-mediated regulation of the central respiratory command.

    PubMed

    Caravagna, Céline; Soliz, Jorge

    2015-01-15

    Erythropoietin stimulation modulates the central respiratory command in newborn mice. Specifically, the central respiratory depression induced by hypoxia is attenuated by acute (1h) or abolished by chronic erythropoietin stimulation. However, the underlying mechanisms remain unknown. As MEK and PI3K pathways are commonly involved in Epo-mediated effects of neuroprotection and erythropoiesis, we investigated here the implication of PI3K and MEK1/2 in the Epo-mediated regulation of the central respiratory command. To this end, in vitro brainstem-spinal cord preparations from 3 days old transgenic (Tg21; constitutively overexpressing erythropoietin in the brain specifically) and control mice were used. Our results show that blockade of PI3K or MEK1/2 stimulates normoxic bursts frequency in Tg21 preparations and abolish hypoxia-induced frequency depression in control preparations. These results show that MEK1/2 and PI3K pathways are involved in the Epo-mediated regulation of the central respiratory command. Moreover, this is the first demonstration that MEK1/2 and PI3K are involved in the brainstem central respiratory command. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 75 FR 22508 - Airworthiness Directives; Eurocopter France Model AS350B, BA, B1, B2, B3, C, D, and D1; AS 355E...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Airworthiness Directives; Eurocopter France Model AS350B, BA, B1, B2, B3, C, D, and D1; AS 355E, F, F1, F2, N... (b) None. Applicability (c) This AD applies to Model AS350B, BA, B1, B2, B3, C, D and D1; and AS 355E..., both dated November 16, 2005, is approved by the Director of the Federal Register as of May 14, 2010...

  11. The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development

    PubMed Central

    Maillard, Ivan; Nakamura, Makoto; Pear, Warren S.; Griffin, James D.

    2007-01-01

    Signaling mediated by various Notch receptors and their ligands regulates diverse biological processes, including lymphoid cell fate decisions. Notch1 is required during T-cell development, while Notch2 and the Notch ligand Delta-like1 control marginal zone B (MZB) cell development. We previously determined that Mastermind-like (MAML) transcriptional coactivators are required for Notchinduced transcription by forming ternary nuclear complexes with Notch and the transcription factor CSL. The 3 MAML family members (MAML1-MAML3) are collectively essential for Notch activity in vivo, but whether individual MAMLs contribute to the specificity of Notch functions is unknown. Here, we addressed this question by studying lymphopoiesis in the absence of the Maml1 gene. Since Maml1−/− mice suffered perinatal lethality, hematopoietic chimeras were generated with Maml1−/−, Maml1+/−, or wild-type fetal liver progenitors. Maml1 deficiency minimally affected T-cell development, but was required for the development of MZB cells, similar to the phenotype of Notch2 deficiency. Moreover, the number of MZB cells correlated with Maml1 gene dosage. Since all 3 Maml genes were expressed in MZB cells and their precursors, these results suggest that Maml1 is specifically required for Notch2 signaling in MZB cells. PMID:17699740

  12. Conversion of estrone to estradiol in male fathead minnows: Implications for assessing risk

    EPA Science Inventory

    Estrogens are frequently observed in aquatic environments associated with anthropogenic influence, such as agricultural runoff and wastewater treatment effluent. While 17â-estradiol (E2) is the most potent naturally-occurring estrogen, estrone (E1) is often found at higher ...

  13. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor.

    PubMed

    Nagayama, Susumu; Ogawara, Ken-ichi; Minato, Keiko; Fukuoka, Yoshiko; Takakura, Yoshinobu; Hashida, Mitsuru; Higaki, Kazutaka; Kimura, Toshikiro

    2007-02-01

    We tried to evaluate the possible involvement of fetuin in the scavenger receptors (SRs)-mediated hepatic uptake of polystyrene nanospheres with the size of 50 nm (NS-50), which has surface negative charge (zeta potential=-21.8+/-2.3 mV). The liver perfusion studies in rats revealed that the hepatic uptake of NS-50 pre-coated with fetuin (NS-50-fetuin) was significantly inhibited by poly inosinic acid (poly I), a typical inhibitor of SRs, whereas that of plain NS-50 or NS-50 pre-coated with BSA (NS-50-BSA) was not. The uptake of NS-50-fetuin by cultured Kupffer cells was also significantly inhibited by poly I, and anti-class A scavenger receptors (SR-A) antibody, suggesting that fetuin on NS-50 mediated the recognition and internalization of NS-50 by Kupffer cells and at least SR-A would be responsible for the uptake. Taken that Western blot analysis confirmed that fetuin certainly adsorbed on the surface of NS-50 after the incubation of NS-50 with serum, the results obtained in the present study indicate that fetuin would be one of the serum proteins that were substantially involved in the hepatic uptake of NS-50 via SRs.

  14. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Synthesis and molecular crystal of 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one

    NASA Astrophysics Data System (ADS)

    Tittal, Ram Kumar

    2018-03-01

    CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.

  16. Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle.

    PubMed

    Alshudukhi, Abdullah A; Zhu, Jing; Huang, Dengtong; Jama, Abdulrahman; Smith, Jeffrey D; Wang, Qing Jun; Esser, Karyn A; Ren, Hongmei

    2018-06-25

    Autophagy of mitochondria (mitophagy) is essential for maintaining muscle mass and healthy skeletal muscle. Patients with heritable phosphatidic acid phosphatase lipin-1-null mutations present with severe rhabdomyolysis and muscle atrophy in glycolytic muscle fibers, which are accompanied with mitochondrial aggregates and reduced mitochondrial cytochrome c oxidase activity. However, the underlying mechanisms leading to muscle atrophy as a result of lipin-1 deficiency are still not clear. In this study, we found that lipin-1 deficiency in mice is associated with a marked accumulation of abnormal mitochondria and autophagic vacuoles in glycolytic muscle fibers. Our studies using lipin-1-deficient myoblasts suggest that lipin-1 participates in B-cell leukemia (BCL)-2 adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3)-regulated mitophagy by interacting with microtubule-associated protein 1A/1B-light chain (LC)3, which is an important step in the recruitment of mitochondria to nascent autophagosomes. The requirement of lipin-1 for Bnip3-mediated mitophagy was further verified in vivo in lipin-1-deficient green fluorescent protein-LC3 transgenic mice (lipin-1 -/- -GFP-LC3). Finally, we showed that lipin-1 deficiency in mice resulted in defective mitochondrial adaptation to starvation-induced metabolic stress and impaired contractile muscle force in glycolytic muscle fibers. In summary, our study suggests that deregulated mitophagy arising from lipin-1 deficiency is associated with impaired muscle function and may contribute to muscle rhabdomyolysis in humans.-Alshudukhi, A. A., Zhu, J., Huang, D., Jama, A., Smith, J. D., Wang, Q. J., Esser, K. A., Ren, H. Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle.

  17. Genetics or environment in drug transport: the case of organic anion transporting polypeptides and adverse drug reactions.

    PubMed

    Clarke, John D; Cherrington, Nathan J

    2012-03-01

    Organic anion transporting polypeptide (OATP) uptake transporters are important for the disposition of many drugs and perturbed OATP activity can contribute to adverse drug reactions (ADRs). It is well documented that both genetic and environmental factors can alter OATP expression and activity. Genetic factors include single nucleotide polymorphisms (SNPs) that change OATP activity and epigenetic regulation that modify OATP expression levels. SNPs in OATPs contribute to ADRs. Environmental factors include the pharmacological context of drug-drug interactions and the physiological context of liver diseases. Liver diseases such as non-alcoholic fatty liver disease, cholestasis and hepatocellular carcinoma change the expression of multiple OATP isoforms. The role of liver diseases in the occurrence of ADRs is unknown. This article covers the roles OATPs play in ADRs when considered in the context of genetic or environmental factors. The reader will gain a greater appreciation for the current evidence regarding the salience and importance of each factor in OATP-mediated ADRs. A SNP in a single OATP transporter can cause changes in drug pharmacokinetics and contribute to ADRs but, because of overlap in substrate specificities, there is potential for compensatory transport by other OATP isoforms. By contrast, the expression of multiple OATP isoforms is decreased in liver diseases, reducing compensatory transport and thereby increasing the probability of ADRs. To date, most research has focused on the genetic factors in OATP-mediated ADRs while the impact of environmental factors has largely been ignored.

  18. Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3.

    PubMed

    Beneš, Vojtěch; Hložková, Kateřina; Matěnová, Michaela; Borovička, Jan; Kotrba, Pavel

    2016-04-01

    Macrofungi can accumulate in their sporocarps remarkably high concentrations of Cu and Ag. We have previously demonstrated that the non-essential Ag is in the ectomycorrhizal, Ag-hyperaccumulating Amanita strobiliformis sequestered by 3.4-kDa metallothioneins (MTs) produced as AsMT1a, 1b and 1c isoforms. Here, we describe two populations of wild-grown A. strobiliformis sporocarps, which showed certain correlation between the concentrations of accumulated Ag (284 ± 64 and 67 ± 15 mg kg(-1)) and Cu (76 ± 13 and 30 ± 12 mg kg(-1)), suggesting that an overlap may exist in the cell biology of Ag and Cu in this species. Metal speciation analysis revealed that the intracellular Cu in the sporocarps of both populations was, like Ag, associated with the 3.4-kDa MTs. A search of A. strobiliformis transcriptome for sequences encoding proteins of the Cu transporter (CTR) family identified four AsCTR cDNAs, which were, like AsMT1s, confirmed in both populations. The predicted AsCTR proteins showed homology to vacuolar (AsCTR1 and AsCTR4) and plasma membrane (AsCTR2 and AsCTR3) CTRs. Heterologous expression of AsCTR2, AsCTR3 and their translational fusions with green fluorescent protein (GFP) in Cu uptake-deficient S. cerevisiae indicated that both AsCTRs are functional Cu and Ag uptake transporters: recombinant genes complemented growth defects and increased Cu and Ag uptake rates in yeasts and the GFP-tagged protein localized to the cell periphery. Site directed mutagenesis revealed the importance of the conserved-among-CTRs M-X3-M motif for the AsCTR2- and AsCTR3-mediated transport of both Cu and Ag. These results provide the first evidence that fungal CTRs can recognize Ag for transport.

  19. 75 FR 65222 - Airworthiness Directives; Eurocopter France Model AS 350 B, BA, B1, B2, B3, and D, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Airworthiness Directives; Eurocopter France Model AS 350 B, BA, B1, B2, B3, and D, and Model AS355 E, F, F1, F2... adopting a new airworthiness directive (AD) for the Eurocopter France Model AS 350 B, BA, B1, B2, B3, and D... 14 CFR part 39 to include an AD that would apply to the Eurocopter France Model AS 350 B, BA, B1, B2...

  20. (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one ameliorates the collagen-arthritis via blocking ERK/JNK and NF-κB signaling pathway.

    PubMed

    Li, Xiuxia; Peng, Fei; Xie, Caifeng; Wu, Wenshuang; Han, Xiaolei; Chen, Lijuan

    2013-12-01

    Our previous report has shown a natural pyranochalcones-derived compound, (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one (5b), that exerted protection against carrageenan-induced hind paw edema and adjuvant-induced arthritis. In this study, collagen-induced arthritis (CIA) model was used to further examine the anti-arthritic effects of 5b in vivo; the underlying molecular mechanisms of action were also investigated using a murine monocytic cell line, RAW264.7 cells. Here we showed that oral administration of 5b (20mg/kg) significantly suppressed the progression of arthritis. Improvement in disease severity was accompanied by inhibition of CD68-positive cells in knee joint and reduced pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in serum. In vitro, 5b suppressed expressions of iNOS, cyclooxygenase-2 (COX-2), TNF-α, IL-6 and IL-1β as well as productions of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-treated macrophages. This compound also significantly suppressed LPS-induced NF-κB activation, including phosphorylation of I-κB, degradation of I-κB, and nuclear translocation of p65 and p50. Treatment with 5b also blocked LPS-induced expression of TLR4 remarkably, suppressed degradation of IRAKs and phosphorylations of JNK and ERK, but had little effect to p38 kinase activation. These findings indicated that 5b might be a therapeutic agent for rheumatoid arthritis, and exerted an anti-inflammatory effect mainly through mediating TLR4, NF-κB and ERK/JNK signaling pathways in monocytes. © 2013.

  1. Protein tyrosine phosphatase 1B is a mediator of cyclic ADP ribose-induced Ca2+ signaling in ventricular myocytes.

    PubMed

    Park, Seon-Ah; Hong, Bing-Zhe; Ha, Ki-Chan; Kim, Uh-Hyun; Han, Myung-Kwan; Kwak, Yong-Geun

    2017-06-02

    Cyclic ADP-ribose (cADPR) releases Ca 2+ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca 2+ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca 2+ ([Ca 2+ ] i ) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca 2+ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca 2+ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.

  2. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

    PubMed

    Goralski, Kerry B; Lou, Ganlu; Prowse, Matthew T; Gorboulev, Valentin; Volk, Christopher; Koepsell, Hermann; Sitar, Daniel S

    2002-12-01

    In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 in Xenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopus oocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine(863), choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.

  3. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. [Weight loss in a patient with morbid obesity under treatment with oleoyl-estrone].

    PubMed

    Alemany, Marià; Fernández-López, José Antonio; Petrobelli, Angelo; Granada, Marisa; Foz, Màrius; Remesar, Xavier

    2003-10-18

    Oleoyl-estrone administration in rats results in loss of body fat and sparing protein via decreasing food intake and maintaining energy expenditure. Oleoyl-estrone also decreases insulin resistance and hyperlipidemia and has no direct estrogenic effects. Our objective was to determine whether oral oleoyl-estrone was effective in the treatment of morbid obesity in a voluntary patient. Oleoyl-estrone (150-300 mol/d) was given to a morbid obese man (BMI: 51.9) over 10 consecutive 21-day trial periods of oral drug intake followed by at least two months of recovery. This treatment was given without additional dietary restrictions. Plasma metabolites, hormones and enzymes were measured before treatment, during active administration and at recovery periods. Oleoyl-estrone decreased the body weight (38.5 kg in 27 months, final BMI: 40.5). No rebound trends were observed. No significant changes in blood parameters, plasma metabolites, hormones or enzymes were observed as a consequence of the treatment. Oleoyl-estrone decreased body weight in this subject without affecting metabolites or hormones, similarly to its effects in animal models. This means that oleoyl-estrone could have a marked potential as an anti-obesity drug.

  5. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  6. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units.

    PubMed

    Bedini, Emiliano; De Castro, Cristina; De Rosa, Mario; Di Nola, Annalida; Restaino, Odile F; Schiraldi, Chiara; Parrilli, Michelangelo

    2012-02-13

    The extraction from natural sources of Chondroitin sulfate (CS), a polysaccharide used for management of osteoarthritis, leads to very complex mixtures. The synthesis of CS by chemical modification of other polysaccharides has seldom been reported due to the intrinsic complexity that arises from fine chemical modifications of the polysaccharide structure. In view of the growing interest in expanding the application of CS to pharmacological fields other than osteoarthritis treatment, we launched a program to find new sources of known or even unprecedented CS polysaccharides. As part of this program, we report herein on an investigation of the use of a cyclic orthoester group to selectively protect the 4,6-diol of N-acetyl-galactosamine residues in chondroitin (obtained from a microbial source), thereby facilitating its transformation into CSs. In particular, three CS polysaccharides were obtained and demonstrated to possess rare or hitherto unprecedented sulfation patterns by 2D NMR spectroscopy characterization. Two of them contained disaccharide subunits characterized by glucuronic acid residues selectively sulfated at position 3 (GlcA(3S)), the biological functions of which are known but have yet to be fully investigated. This first semi-synthetic access to GlcA(3S)-containing CS could greatly expedite such studies, since it can easily furnish considerable amounts of these polysaccharides, which are usually isolated with difficulty and in very low quantity from natural sources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and characterization of thorium(IV) sulfates.

    PubMed

    Knope, Karah E; Wilson, Richard E; Skanthakumar, S; Soderholm, L

    2011-09-05

    Three Th(IV) sulfates, two new and one previously reported, have been synthesized from aqueous solution. In all of the compounds, the sulfate anions coordinate the Th(4+) metal center(s) in a monodentate manner with Th-S distances of 3.7-3.8 Å. Th(SO(4))(2)(H(2)O)(7)·2(H(2)O) (1; P2(1)/m, a = 7.224(1) Å, b = 12.151(1) Å, c = 7.989(1) Å, ss =98.289(2)°) and Th(4)(SO(4))(7)(H(2)O)(7)(OH)(2)·H(2)O (2; Pnma, a = 18.139(2) Å, b = 11.173(1) Å, c = 14.391(2) Å) each contain 9-coordinate monomeric (1,2) and dimeric (2) Th(IV) cations in monocapped square antiprism geometry. Alternatively, Th(OH)(2)SO(4) (3; Pnma, a = 11.684(1) Å, b = 6.047(1) Å, c = 7.047(1) Å) is built from chains of hydroxo-bridged, 8-coordinate Th(4+) centers. Whereas 1 adopts a molecular structure, 2 and 3 both exhibit 3D architectures. Differences in the dimensionality and the topology of 1-3 are manifested in the local coordination environment about the Th(IV) centers, the formation of oligomeric Th(4+) species, and the extended connectivity of the sulfate ligands. Herein, we report the syntheses and characterization of 1-3 as well as the atomic correlations of 1 in solution, as determined by high-energy X-ray scattering (HEXS).

  8. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2012-09-01

    To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  10. Fish multigeneration test with preliminary short-term reproduction assay for estrone using Japanese medaka (Oryzias latipes).

    PubMed

    Nakamura, Ataru; Tamura, Ikumi; Takanobu, Hitomi; Yamamuro, Masumi; Iguchi, Taisen; Tatarazako, Norihisa

    2015-01-01

    The most potent chemicals potentially causing adverse effects on fish species are estrogens in human waste.Sewage is a source of these estrogens and it is difficult to reduce. In particular, although the bioactivity of estrone is estimated to be about half of that of estradiol, multiple studies report that more than 100 ng l(–1) of estrone can be detected in urban rivers, including discharges from sewage treatment works; approximately two times as high as estradiol. Few studies have been conducted to investigate the long-term effects of estrone on wildlife; therefore, we conducted fish multigeneration test using Japanese medaka (Oryzias latipes). Medaka were exposed to estrone for 27 weeks across three generations in environmentally relevant concentrations, being 5.74, 11.4, 24.0, 47.1 and 91.4 ng l(–1). No effects on reproduction were observed in the first generation; however, a decline in egg production and fertility was observed in the second generation exposed to 91.4 ng l(–1) estrone, which is lower than some known environmental concentrations in urban environments. Furthermore, histopathological abnormalities were observed in the third generation exposed to both 47.1 and 91.4 ng l(–1), suggesting that estrone possibly exerts severe effects on the third or later generations. However, appearances of testis–ova were observed in the second and third generation they were not consistent with actual effects on reproduction, notwithstanding the testis-ovais regarded as the key evidence for endocrine disruption. Accordingly, we consider that qualitative measurement of abnormalities using histopathological observations is required for appropriate evaluation of endocrine disruption.

  11. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  12. UPTAKE AND PHOTODEGRADATION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN SORBED TO GRASS FOLIAGE

    EPA Science Inventory

    Plant uptake rates were determined for airborne 2,3,7,8-TCDD using grass foliage. he primary elimination mechanisms for 2,3,7,8-TCDD from grass, photodegradation and volatility, were measured in natural sunlight, filtered sunlight which reduced UV-B radiation, and in the dark. ap...

  13. Characterization of iron uptake from transferrin by murine endothelial cells.

    PubMed

    Hallmann, R; Savigni, D L; Morgan, E H; Baker, E

    2000-01-01

    Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB.

  14. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  15. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice

    PubMed Central

    Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F.; Vasselli, Joseph R.; Sclafani, Anthony

    2015-01-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. PMID:26157055

  16. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    PubMed

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  17. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    PubMed

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  18. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  19. The Influence of MDR1 G2677T/a genetic polymorphisms on the pharmacokinetics of repaglinide in healthy Chinese volunteers.

    PubMed

    Xiang, Qian; Cui, Yi Min; Zhao, Xia; Yan, Liang; Zhou, Ying

    2012-01-01

    The aim of this study was to evaluate the pharmacogenetic variability in the disposition of repaglinide in healthy Chinese subjects. A single dose of 2 mg repaglinide was orally administered to 24 healthy Chinese subjects. The serum concentrations of repaglinide were measured by using liquid chromatography/tandem mass spectrometry. We determined the polymorphic alleles of MDR1 C1236T, MDR1 G2677T/A, MDR1 C3435T, CYP3A4*18, OATP1B1 G388A, and OATP1B1 T521C in each subject. The area under the plasma concentration-time curve from time 0 to infinity (AUC((0-inf))) of repaglinide was significantly higher in subjects possessing the MDR1 2677GT and 2677TT alleles than in those with the MDR1 2677GG and 2677TA alleles (p = 0.007). The mean AUCs and peak plasma concentration were higher in subjects with the 521TC allele than in those with the OATP1B1 521TT allele, and the OATP1B1 388A allele is associated with a reduced trend of pharmacokinetic exposure; however, these trends were not statistically significant. The pharmacokinetics of repaglinide was not associated with MDR1 C1236T, MDR1 C3435T, and CYP3A4*18. This study shows that the genetic polymorphisms of MDR1 G2677T/A might explain the variability in the pharmacokinetics of repaglinide in the Chinese population. Copyright © 2012 S. Karger AG, Basel.

  20. (1)H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Kärkkäinen, Johanna; Wik, Tiia-Riikka; Niemelä, Matti; Lappalainen, Katja; Joensuu, Päivi; Lajunen, Marja

    2016-01-20

    The use of natural resources in a development of products and materials is currently increasing. Starch is one of the investigated resources due to its bioavailability, biodegradability, safety and affordability. In this study, native barley starch was sulfated using a SO3-pyridine complex. The reaction was carried out for the first time using 1-allyl-3-methylimidazolium chloride ionic liquid, an excellent solvent for the starch modification. Reaction conditions (temperature, time and amount of the reagent) were studied using an experimental design. Starch sulfates with the degree of substitution (DS) 1.37 were obtained when the reaction was carried out at 40 °C for 75 min with 4:1 molar ratio of SO3-pyridine complex:anhydroglucose unit. The determination of DS was based on (1)H NMR instead of elemental analysis, which showed overestimated DS values in this study. Starch sulfates were analyzed with FTIR and HPLC, which showed that products contained small and large sulfated molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain.

    PubMed

    Shewry, Peter R; Van Schaik, Frank; Ravel, Catherine; Charmet, Gilles; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2011-10-12

    The total contents of thiamine (vitamin B1), riboflavin (B2), and pyridoxine (B6) and the bioavailable forms of niacin (B3) were determined on wholemeal flours of 24 winter wheat varieties grown on four sites (United Kingdom, Poland, France, and Hungary) in 2007 and of two spring varieties grown on the same sites with the exception of Poland. The contents of vitamins B1 (5.53-13.55 μg/g dw), B2 (0.77-1.40 μg/g dw), and B6 (1.27-2.97 μg/g dw) were within the ranges reported previously, while the content of bioavailable vitamin B3 (0.16-1.74 μg/g dw) was about 10-15% of the total contents of vitamin B3 reported in previous studies. Strong correlations were observed between the contents of vitamins B1, B3, and B6, and partitioning of the variance in the contents of these three B vitamins showed that between 48 and 70% was accounted for by the environment. By contrast, the content of vitamin B2 was not correlated with the contents of other B vitamins, and 73% of the variance was ascribed to the error term, which suggests that this trait may be influenced by genotype × environment interactions. Whereas the contents of vitamins B1, B3, and B6 were correlated positively with the mean temperature from heading to harvest (r > 0.8), the content of vitamin B2 was positively correlated with precipitation during the 3 months prior to heading. These results are discussed in relation to the development of new wheat varieties with enhanced health benefits.

  2. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold)more » and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.« less

  3. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize.

    PubMed

    Wang, Xin-Xin; Hoffland, Ellis; Feng, Gu; Kuyper, Thomas W

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two maize ( Zea mays L.) cultivars, non-inoculated or inoculated with the arbuscular mycorrhizal fungi Funneliformis mosseae or Claroideoglomus etunicatum , were grown for 45 days in two-compartment rhizoboxes, containing a root compartment and a hyphal compartment. The soil in the hyphal compartment was supplemented with 20, 100, and 200 mg P kg -1 soil as calcium phytate. We measured activity of phytase and acid phosphatase in the hyphal compartment, hyphal length density, P uptake, and plant biomass. Our results showed: (1) phytate addition increased phytase and acid phosphatase activity, and resulted in larger P uptake and plant biomass; (2) increases in P uptake and biomass were correlated with phytase activity but not with acid phosphatase activity; (3) lower phytate addition rate increased, but higher addition rate decreased hyphal length density. We conclude that P from phytate can be taken up by arbuscular mycorrhizal plants and that phytase plays a more important role in mineralizing phytate than acid phosphatase.

  5. PPARδ activation protects H9c2 cardiomyoblasts from LPS‑induced apoptosis through the heme oxygenase‑1mediated suppression of NF‑κB activation.

    PubMed

    Shi, Yao; Jiang, Hong; Yang, Xiaobo

    2017-06-01

    The aim of the present study was to investigate the protective effect of the selective peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 (GW) on lipopolysaccharide (LPS)‑induced apoptosis in the rat cardiomyoblast cell line H9c2, and to investigate the possible underlying mechanisms. Cell viability was estimated using the MTT assay. Apoptosis was estimated by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide staining and caspase‑3 activity assay. The protein level of heme oxygenase‑1 (HO‑1), cleaved caspase‑3 (CC3), apoptosis regulator Bcl‑2 (bcl‑2), apoptosis regulator BAX (bax) and nuclear factor‑κB (NF‑κB) p65 was measured by western blot analysis. The results demonstrated that pretreatment with GW inhibited the LPS‑induced increase in the rate of apoptosis. Pretreatment with GW also increased the bcl‑2/bax ratio, and decreased CC3 protein expression as well as caspase‑3 activity, in LPS‑stimulated H9c2 cells. Further studies demonstrated that GW inhibited LPS‑induced NF‑κB nuclear translocation in a dose‑dependent manner. In addition, GW induced HO‑1 protein expression in a dose‑dependent manner. ZnPP‑IX, an inhibitor of HO‑1, reversed the inhibitory effect of GW on LPS‑induced NF‑κB activation, leading to the attenuation of PPARδ‑mediated apoptosis resistance. In conclusion, these results suggest that PPARδ activation exerts an anti‑apoptotic effect in LPS‑stimulated H9c2 cardiomyoblasts, potentially through heme oxygenase‑1mediated suppression of NF‑κB activation. PPARδ appears to be a promising therapeutic target for the treatment of sepsis‑associated cardiac dysfunction.

  6. Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marzioni, Daniela; Castellucci, Mario; Sanguinetti, Maurizio; D'lppolito, Silvia; Caruso, Alessandro

    2009-02-01

    The adipocytokine resistin impairs glucose tolerance and insulin sensitivity. Here, we examine the effect of resistin on glucose uptake in human trophoblast cells and we demonstrate that transplacental glucose transport is mediated by glucose transporter (GLUT)-1. Furthermore, we evaluate the type of signal transduction induced by resistin in GLUT-1 regulation. BeWo choriocarcinoma cells and primary cytotrophoblast cells were cultured with increasing resistin concentrations for 24 hrs. The main outcome measures include glucose transport assay using [(3)H]-2-deoxy glucose, GLUT-1 protein expression by Western blot analysis and GLUT-1 mRNA detection by quantitative real-time RT-PCR. Quantitative determination of phospho(p)-ERK1/2 in cell lysates was performed by an Enzyme Immunometric Assay and Western blot analysis. Our data demonstrate a direct effect of resistin on normal cytotrophoblastic and on BeWo cells: resistin modulates glucose uptake, GLUT-1 messenger ribonucleic acid (mRNA) and protein expression in placental cells. We suggest that ERK1/2 phosphorylation is involved in the GLUT-1 regulation induced by resistin. In conclusion, resistin causes activation of both the ERK1 and 2 pathway in trophoblast cells. ERK1 and 2 activation stimulated GLUT-1 synthesis and resulted in increase of placental glucose uptake. High resistin levels (50-100 ng/ml) seem able to affect glucose-uptake, presumably by decreasing the cell surface glucose transporter.

  7. Multiphase oxidation of SO2 by NO2 on CaCO3 particles

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Song, Xiaojuan; Zhu, Tong; Zhang, Zefeng; Liu, Yingjun; Shang, Jing

    2018-02-01

    Heterogeneous/multiphase oxidation of SO2 by NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, in order to assess the importance of the direct oxidation of SO2 by NO2 we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy. In the SO2 / NO2 / H2O / N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10-8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase and is not as important as other aqueous-phase pathways, such as the reactions of SO2 with H2O2, O3, and O2, with or without transition metals.

  8. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  10. Mechanism of Aluminum Inhibition of Net 45Ca2+ Uptake by Amaranthus Protoplasts 1

    PubMed Central

    Rengel, Zdenko; Elliott, Daphne C.

    1992-01-01

    Calcium ions serve as a second messenger in signal transduction and metabolic regulation. Effects of Al on calcium homeostasis remain to be elucidated. Short-term net 45Ca2+ uptake by Amaranthus tricolor protoplasts was monitored from uptake media prepared to test the influence of pH, Al, and various inhibitors. Accumulation of 45Ca2+ increased during the first 3 to 6 minutes and then leveled off or declined. Al and Ca2+ channel blockers (verapamil and bepridil) decreased net 45Ca2+ uptake. This decrease was more pronounced when Al and bepridil were both present in uptake media, but Al did not aggravate verapamil-induced reduction of net 45Ca2+ uptake. Erythrosin B and calmidazolium each increased net 45Ca2+ uptake, probably by interfering with Ca2+ efflux. This effect was undetectable in the presence of Al. Mycophenolic acid decreased net 45Ca2+ uptake; guanosine alleviated this effect. Al-induced reduction of net 45Ca2+ uptake was not aggravated by mycophenolic acid. Net 45Ca2+ uptake was generally less at pH 4.5 than at 5.5 for all treatments. It is concluded that Al ions affect net 45Ca2+ uptake by binding to the verapamil-specific channel site that is different from the bepridil-specific one, as well as by interfering with the action of guanosine 5′-triphosphate-binding proteins. PMID:16668688

  11. Metabolism of 1-Fluro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, H.; Jones, J.P.; Anders, M.W.

    1995-03-01

    1-Fluoro-1,1,2-trichloroethane (HCFC-131a), 1,2-dichloro-1,1-difluoroethane (HCFC-132b), and 1,1,1-trifluoro-2-chloroethane (HCFC-133a) were chosen as models for comparative metabolism studies on 1,1,1,2-tetrahaloethanes, which are under consideration as replacements for ozone-depleting chlorofluorocarbons (CFCs). Male Fischer 344 rats were given 10 mmol/kg ip HCFC-131a or HCFC-132b or exposed by inhalation to 1% HCFC-133a for 2 h. Urine collected in the first 24 h after exposure was analyzed by {sup 19}F NMR and GC/MS and with a fluoride-selective ion electrode for the formation of fluorine-containing metabolites. Metabolites of HCFC-131a included 2,2-dichloro-2-fluoroethyl glucuronide, 2,2-dichloro-2-fluorethyl sulfate, dichlorofluoroacetic acid, and inorganic fluoride. Metabolites of HCFC-132b were characterized as 2-chloro-2,2-difluoroethyl glucuronide, 2-chloro-2,2-difluoroethylmore » sulfate, chlorodifluoroacetic acid, chlorodifluoroacetaldehyde hydrate, chlorodifluoroacetaldehyde-urea adduct, inorganic fluoride, and a minor, unidentified metabolite. With HCFC-131a and HCFC-132b, glucuronide conjugates of 2,2,2-trihaloethanols were the major urinary metabolites, whereas with HCFC-133a, a trifluroacetaldehyde-urea adduct was the major urinary metabolite. Analysis of metabolite distribution in vivo indicated that aldehydic metabolites increased as fluorine substitution increased in the order HCFC-131a < HCFC-132b < HCFC-133a. With NADPH-fortified rat liver microsomes, HCFC-133a and HCFC-133a and HCFC-132b were biotransformed to trifluoroacetaldehyde and chlorodifluoroacetaldehyde, respectively, whereas HCFC-131a was converted to dichlorofluoroacetic acid. No covalently bound metabolites of HCFC-131a and HCFC-133a metabolites were detected by {sup 19}F NMR spectroscopy. 18 refs., 2 figs., 3 tabs.« less

  12. Synthesis and Cytotoxic Evaluation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones.

    PubMed

    Chipoline, Ingrid C; Alves, Evelyne; Branco, Paola; Costa-Lotufo, Leticia V; Ferreira, Vitor F; Silva, Fernando C DA

    2018-01-01

    The 1,2-naphthoquinone compound was previously considered active against solid tumors. Moreover, glycosidase inhibitors such as 1,2,3-1H triazoles has been pointed out as efficient compounds in anticancer activity studies. Thus, a series of eleven 1,2-naphthoquinones tethered in C2 to 1,2,3-1H-triazoles 9a-k were designed, synthesized and their cytotoxic activity evaluated using HCT-116 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma) and RPE (human nontumor cell line from retinal epithelium). The chemical synthesis was performed from C-3 allylation of lawsone followed by iodocyclization with subsequent nucleophilic displacement with sodium azide and, finally, the 1,3-dipolar cycloaddition catalyzed by Cu(I) with terminal alkynes led to the formation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones in good yields. Compounds containing aromatic group linked to 1,2,3-triazole ring (9c, 9d, 9e, 9i) presented superior cytotoxic activity against cancer cell lines with IC50 in the range of 0.74 to 4.4 µM indicating that the presence of aromatic rings substituents in the 1,2,3-1H-triazole moiety is probably responsible for the improved cytotoxic activity.

  13. N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway.

    PubMed

    Guo, Ling; Zhang, Hui; Li, Wangyang; Zhan, Danting; Wang, Min

    2018-06-06

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic activity. Lipopolysaccharide (LPS) has been shown to regulate the expression of potent inflammatory factors, including TNF-α and IL-6. Currently, effective therapeutic treatments for bacteria-caused bone destruction are limited. N-acetyl cysteine (NAC) is an antioxidant small molecule that possibly modulates osteoblastic differentiation. However, whether NAC can affect the LPS-mediated reduction of IL-6 synthesis in MC3T3-E1 cells is still unknown. The aim of this study was to investigate the role of NAC in the LPS -mediated reduction of IL-6 synthesis by MC3T3-E1 cells and to explore the underlying molecular mechanisms. In addition, we aimed to determine the involvement of the NF-kB pathway in any changes in IL-6 expression observed in response to LPS and NAC. MC3T3-E1 cells (ATCC, CRL-2593) were cultured in α-minimum essential medium. Cells were stimulated using NAC or LPS at various concentrations. Cell proliferation was observed at multiple time points using a cell counting kit 8 (CCK-8). IL-6 mRNA expression and protein synthesis were determined using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses. NF-kB mRNA expression and protein synthesis was determined using qPCR and Western blots analyses. The results demonstrate that LPS induced IL-6 and NF-kB mRNA expression and protein synthesis in the cultured MC3T3-E1 cells. However, these effects were abolished following pre-treatment with NAC. Pretreatment with NAC (1 mmol/l) or BAY11-7082 (10 μmol/l) both significantly inhibited the NF-kB activity induced by LPS. NAC inhibits the LPS-mediated induction of IL-6 synthesis in MC3T3-E1 cells through the NF-kB pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via

  15. 40 CFR 721.9662 - Thieno[3,4-b]-1,4-dioxin, 2,3-dihydro- (9CI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Thieno[3,4-b]-1,4-dioxin, 2,3-dihydro... Specific Chemical Substances § 721.9662 Thieno[3,4-b]-1,4-dioxin, 2,3-dihydro- (9CI). (a) Chemical...-b]-1,4-dioxin, 2,3-dihydro- (9CI) (PMN P-95-1825; CAS No. 126213-50-1) is subject to reporting under...

  16. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  17. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  18. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  19. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  20. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  1. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    USGS Publications Warehouse

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  2. Conversion of estrone to estradiol in male fathead minnows ...

    EPA Pesticide Factsheets

    Estrogens are frequently observed in aquatic environments associated with anthropogenic influence, such as agricultural runoff and wastewater treatment effluent. While 17â-estradiol (E2) is the most potent naturally-occurring estrogen, estrone (E1) is often found at higher environmental concentrations. However, exogenous sources of E1 could potentially be converted to the more potent E2 through the action of endogenous 17â-hydroxysteroid dehydrogenase activity, specifically, the 17â-hydroxysteroid dehydrogenase type 1 isoform (HSD17B1). Observation of increased plasma E2 concentrations without measureable changes in aromatase (cytochrome P45019a) expression in male fish caged in ambient waters containing elevated concentrations of E1, but low or non-detectable concentrations of E2, suggested this may be occurring in the field. If so, exogenous E1 may have a greater impact on reproductive function in aquatic vertebrates than previously assumed. The present study was conducted to evaluate this hypothesis. Male fathead minnows (Pimephales promelas) exposed to aqueous concentrations of 16.7, 50, and 150 ng E1/L in the laboratory exhibit significantly (p<0.05) elevated plasma E2 concentrations relative to control. Plasma testosterone (T) was elevated at a low E1 exposure concentration (1.8 ng E1/L) and depressed at the highest level of exposure (150 ng E1/L). Additionally, vitellogenin (VTG) mRNA expression was significantly elevated at concentrations of 50 and 10

  3. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    PubMed Central

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured

  4. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  5. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ping, E-mail: lping@sdu.edu.cn; Kong, Feng; Wang, Jue

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVACmore » proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS

  6. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4.

    PubMed

    Loukhovitskaya, Ekaterina E; Talukdar, Ranajit K; Ravishankara, A R

    2013-06-13

    The uptake of HNO3 on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H2SO4 coating of the TC-1 soot surface on HNO3 uptake was also investigated. Only reversible uptake of HNO3 was observed. HONO and NO2, potential products of reactive uptake of HNO3, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO3 and did not lead to displacement of H2SO4 from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO3 uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO3 loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO3 is not converted to either NO2 or HONO upon its uptake on soot in the atmosphere.

  7. Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion in 3T3-L1 adipose cells.

    PubMed

    Roffey, Benjamin; Atwal, Avtar; Kubow, Stan

    2006-08-01

    The effects of three concentrations (0.2, 0.3, and 0.4 mg/mL) of a cinnamon extract (CE) (Cinnamomum zeylanicum) on glucose uptake and adiponectin secretion in 3T3-L1 adipocytes were examined in the presence and absence of 0.5 nM and 50 nM insulin. In the absence of insulin, adipocytes exposed to 0.2 mg/mL CE showed an approximate two-fold increase in glucose uptake relative to controls although glucose uptake was unaffected by the two higher concentrations of CE. No effect of CE on glucose uptake was noted in the presence of 0.5 nM insulin whereas the two highest concentrations (0.3 and 0.4 mg/mL) of CE showed a significant dose-dependent decrease in glucose uptake in the presence of 50 nM insulin. Treatment of the adipocytes with 50 nM wortmannin, an irreversible inhibitor of the p110 isoform of phosphoinositide 3'-kinase, was associated with complete inhibition of the stimulated glucose uptake induced by 0.2 mg/mL CE. Treatment of the adipocytes with 0.2 mg/mL CE was associated with an inhibition of adiponectin secretion to levels that were nondetectable. The present study indicates that although 0.2 mg/mL CE has insulin-mimetic action in 3T3-adipocytes in terms of glucose uptake, secretion of the antidiabetic hormone adiponectin is adversely affected.

  8. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells.

    PubMed

    Mohankumar, Kumaravel; Lee, Jehoon; Wu, Chia Shan; Sun, Yuxiang; Safe, Stephen

    2018-05-01

    Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.

  9. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids

    PubMed Central

    Revest, J-M; Le Roux, A; Roullot-Lacarrière, V; Kaouane, N; Vallée, M; Kasanetz, F; Rougé-Pont, F; Tronche, F; Desmedt, A; Piazza, P V

    2014-01-01

    Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2MAPK signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GRNesCre). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2MAPK responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2MAPK signaling pathways as one of the core effectors of stress-related effects of GC. PMID:24126929

  10. Relation of uptake and metabolism of (1,2,6,7-3H)testosterone to individual differences in sexual behavior in male guinea pigs.

    PubMed

    Harding, C F; Feder, H H

    1976-03-19

    Male guinea pigs were given 3 tests for sexual behavior. Animals that never ejaculated were classified as low activity (LA), animals that ejaculated on one test were classified as medium activity (MA), and animals that ejaculated on two or more tests were classified as high activity (HA). Subsequently, animals from each group were castrated and given an s.c. injection of 43 muCi of [1,2,6,7-3H]testosterone and were killed 0.5, 1, or 4 h after injection. There were no significant differences in uptake or metabolism of radioactive testosterone among LA, MA, and HA males in homogenates of anterior and posterior hypothalamus, cerebral cortex, midbrain, or seminal vesicle. Thus, differences in sexual behavior could not be attributed to differences in testosterone uptake in tissue homogenates. At the 1 h time interval (time of peak plasma radioactivity), radioactivity in the seminal vesicles of all males was primarily in the form of steroids with the chromatographic mobility of dihydrotestosterone. In all males, anterior and posterior hypothalamus contained a higher proportion of steroids with the mobility of testosterone than did midbrain, and midbrain contained more testosterone zone radioactivity than cerebral cortex at 1 h. The highest proportion of dihydrotestosterone zone radioactivity in neural tissues was found in anterior hypothalamus. These results are discussed in terms of androgenic mediation of sex behavior by the anterior hypothalamus in guinea pigs.

  11. Carbamylated low-density lipoprotein attenuates glucose uptake via a nitric oxide-mediated pathway in rat L6 skeletal muscle cells.

    PubMed

    Choi, Hye-Jung; Lee, Kyoung Jae; Hwang, Eun Ah; Mun, Kyo-Cheol; Ha, Eunyoung

    2015-07-01

    Carbamylation is a cyanate-mediated posttranslational modification. We previously reported that carbamylated low-density lipoprotein (cLDL) increases reactive oxygen species and apoptosis via a lectin-like oxidized LDL receptor mediated pathway in human umbilical vein endothelial cells. A recent study reported an association between cLDL and type 2 diabetes mellitus (T2DM). In the current study, the effects of cLDL on glucose transport were explored in skeletal muscle cells. The effect of cLDL on glucose uptake, glucose transporter 4 (GLUT4) translocation, and signaling pathway were examined in cultured rat L6 muscle cells using 2-deoxyglucose uptake, immunofluorescence staining and western blot analysis. The quantity of nitric oxide (NO) was evaluated by the Griess reaction. The effect of native LDL (nLDL) from patients with chronic renal failure (CRF-nLDL) on glucose uptake was also determined. It was observed that cLDL significantly attenuated glucose uptake and GLUT4 translocation to the membrane, which was mediated via the increase in inducible nitric oxide synthase (iNOS)-induced NO production. Tyrosine nitration of the insulin receptor substrate-1 (IRS‑1) was increased. It was demonstrated that CRF-nLDL markedly reduced glucose uptake compared with nLDL from healthy subjects. Collectively, these findings indicate that cLDL, alone, attenuates glucose uptake via NO-mediated tyrosine nitration of IRS‑1 in L6 rat muscle cells and suggests the possibility that cLDL is involved in the pathogenesis of T2DM.

  12. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat.

    PubMed

    Wang, Chong; Wang, Changyuan; Liu, Qi; Meng, Qiang; Cang, Jian; Sun, Huijun; Peng, Jinyong; Ma, Xiaochi; Huo, Xiaokui; Liu, Kexin

    2014-06-01

    This study aimed to evaluate the transporter-mediated renal excretion mechanism for cilostazol and to characterize the mechanism of drug-drug interaction (DDI) between cilostazol and aspirin or probenecid. Concentrations of cilostazol and its metabolites OPC-13015 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone] and OPC-13213 [3,4-dihydro-6-[4-[1-(trans-4-hydroxycyclohexyl)-1H-tetrazol-5-yl]butoxy]-2-(1H)-quinolinone] in rat biologic or cell samples were measured by liquid chromatography-tandem mass spectrometry. Coadministration with probenecid, benzylpenicillin, or aspirin decreased the cumulative urinary excretion of cilostazol and renal clearance. Concentrations of cilostazol and OPC-13213 in plasma decreased, and the concentration of OPC-13015 increased in the presence of probenecid. By contrast, rat plasma cilostazol, in combination with benzylpenicillin or aspirin, sharply increased, and concentrations of OPC-13015 and OPC-13213 did not change. In urine, OPC-13015 was below the level of detection. The cumulative urinary excretion of OPC-13213 decreased in the presence of probenecid, benzylpenicillin, or aspirin. Cilostazol was distributed in the kidney and liver, with tissue to plasma partition coefficient (Kp) values of 8.4 ml/g and 16.3 ml/g, respectively. Probenecid and aspirin reduced cilostazol distribution in the kidney. Probenecid did not affect cilostazol metabolism in the kidney but increased cilostazol metabolism in the liver, and aspirin had no effect on cilostazol metabolism. Benzylpenicillin, aspirin, and cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) reduced cilostazol uptake in kidney slices and human organic anion transporter 3 (hOAT3)-human embryonic kidney 293 (HEK293) cells, whereas p-aminohippuric acid did not. Compared with the vector, hOAT3-HEK293 cells accumulated more cilostazol, whereas hOAT1-HEK293 cells did not. OAT3 and Oat3 play a major role in cilostazol renal excretion, whereas OAT1 and Oat1 do not. Oat3 and Cyp

  13. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  14. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation*

    PubMed Central

    Kankipati, Harish Nag; Rubio-Texeira, Marta; Castermans, Dries; Diallinas, George; Thevelein, Johan M.

    2015-01-01

    Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. PMID:25724649

  15. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    PubMed

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  16. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer.

    PubMed

    Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Lu, Zhaohui; Mo, Yin-Yuan

    2014-11-26

    Exosomes are 30-100 nm membrane vesicles of endocytic origin, mediating diverse biological functions including tumor cell invasion, cell-cell communication and antigen presentation through transfer of proteins, mRNAs and microRNAs. Recent evidence suggests that microRNAs can be released through ceramide-dependent secretory machinery regulated by neutral sphingomyelinase 2 (nSMase2) enzyme encoded by the smpd3 gene that triggers exosome secretion. However, whether exosome-mediated microRNA transfer plays any role in cell invasion remains poorly understood. Thus, the aim of this study was to identify the exosomal microRNAs involved in breast cancer invasion. The expression level of endogenous and exosomal miRNAs were examined by real time PCR and the expression level of target proteins were detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study its uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-10b was estimated by invasion assay. In this study, we demonstrate that microRNA carrying exosomes can be transferred among different cell lines through direct uptake. miR-10b is highly expressed in metastatic breast cancer MDA-MB-231 cells as compared to non-metastatic breast cancer cells or non-malignant breast cells; it is actively secreted into medium via exosomes. In particular, nSMase2 or ceramide promotes the exosome-mediated miR-10b secretion whereas ceramide inhibitor suppresses this secretion. Moreover, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could induce the invasion ability of non-malignant HMLE cells. Together, our results suggest that a set of specific microRNAs may play an important role in modulating tumor microenvironment through

  17. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy.

    PubMed

    Bhashyam, Siva; Fields, Anjali V; Patterson, Brandy; Testani, Jeffrey M; Chen, Li; Shen, You-Tang; Shannon, Richard P

    2010-07-01

    We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown. Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine. GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.

  18. Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light[C][W][OA

    PubMed Central

    Huang, Xi; Ouyang, Xinhao; Yang, Panyu; Lau, On Sun; Li, Gang; Li, Jigang; Chen, Haodong; Deng, Xing Wang

    2012-01-01

    As sessile organisms, higher plants have evolved the capacity to sense and interpret diverse light signals to modulate their development. In Arabidopsis thaliana, low-intensity and long-wavelength UV-B light is perceived as an informational signal to mediate UV-B–induced photomorphogenesis. Here, we report that the multifunctional E3 ubiquitin ligase, CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1), a known key player in UV-B photomorphogenic responses, is also a UV-B–inducible gene. Two transcription factors, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and ELONGATED HYPOCOTYL5 (HY5), directly bind to distinct regulatory elements within the COP1 promoter, which are essential for the induction of the COP1 gene mediated by photomorphogenic UV-B signaling. Absence of FHY3 results in impaired UV-B–induced hypocotyl growth and reduced tolerance against damaging UV-B. Thus, FHY3 positively regulates UV-B–induced photomorphogenesis by directly activating COP1 transcription, while HY5 promotes COP1 expression via a positive feedback loop. Furthermore, FHY3 and HY5 physically interact with each other, and this interaction is diminished by UV-B. Together, our findings reveal that COP1 gene expression in response to photomorphogenic UV-B is controlled by a combinatorial regulation of FHY3 and HY5, and this UV-B–specific working mode of FHY3 and HY5 is distinct from that in far-red light and circadian conditions. PMID:23150635

  19. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-08

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

  20. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  1. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  3. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action?

    PubMed

    Pereira, Maria G; Benevides, Norma M B; Melo, Marcia R S; Valente, Ana Paula; Melo, Fábio R; Mourão, Paulo A S

    2005-09-05

    Marine red algae are an abundant source of sulfated galactans with potent anticoagulant activity. However, the specific structural motifs that confer biological activity remain to be elucidated. We have now isolated and purified a sulfated galactan from the marine red alga, Gellidium crinale. The structure of this polysaccharide was determined using NMR spectroscopy. It is composed of the repeating structure -4-alpha-Galp-(1-->3)-beta-Galp1--> but with a variable sulfation pattern. Clearly 15% of the total alpha-units are 2,3-di-sulfated and another 55% are 2-sulfated. No evidence for the occurrence of 3,6-anhydro alpha-galactose units was observed in the NMR spectra. We also compared the anticoagulant activity of this sulfated galactan with a polysaccharide from the species, Botryocladia occidentalis, with a similar saccharide chain but with higher amounts of 2,3-di-sulfated alpha-units. The sulfated galactan from G. crinale has a lower anticoagulant activity on a clotting assay when compared with the polysaccharide from B. occidentalis. When tested in assays using specific proteases and coagulation inhibitors, these two galactans showed significant differences in their activity. They do not differ in thrombin inhibition mediated by antithrombin, but in assays where heparin cofactor II replaces antithrombin, the sulfated galactan from G. crinale requires a significantly higher concentration to achieve the same inhibitory effect as the polysaccharide from B. occidentalis. In contrast, when factor Xa instead of thrombin is used as the target protease, the sulfated galactan from G. crinale is a more potent anticoagulant. These observations suggest that the proportion and/or the distribution of 2,3-di-sulfated alpha-units along the galactan chain may be a critical structural motif to promote the interaction of the protease with specific protease and coagulation inhibitors.

  4. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    PubMed Central

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  5. Immunohistochemical expression profiles of solute carrier transporters in alpha-fetoprotein-producing gastric cancer.

    PubMed

    Shimakata, Takaaki; Kamoshida, Shingo; Kawamura, Jumpei; Ogane, Naoki; Kameda, Yoichi; Yanagita, Emmy; Itoh, Tomoo; Takeda, Risa; Naka, Ayano; Sakamaki, Kuniko; Hayashi, Yurie; Kuwao, Sadahito

    2016-11-01

    Alpha-fetoprotein (AFP)-producing gastric cancer (GC) is an aggressive tumour with high rates of liver metastasis and poor prognosis, and for which a validated chemotherapy regimen has not been established. Drug uptake by solute carrier (SLC) transporters is proposed as one of the mechanisms involved in sensitivity to chemotherapy. In this study, we aimed to develop important insights into effective chemotherapeutic regimens for AFP-producing GC. We evaluated immunohistochemically the expression levels of a panel of SLC transporters in 20 AFP-producing GCs and 130 conventional GCs. SLC transporters examined were human equilibrative nucleoside transporter 1 (hENT1), organic anion transporter 2 (OAT2), organic cation transporter (OCT) 2, OCT6 and organic anion-transporting polypeptide 1B3 (OATP1B3). The rates of high expression levels of hENT1 (hENT1 high ) and OAT2 (OAT2 high ) were statistically higher in AFP-producing GC, compared with conventional GC. When analysing hENT1 and OAT2 in combination, hENT1 high /OAT2 high was the most particular expression profile for AFP-producing GC, with a greater significance than hENT1 or OAT2 alone. However, no significant differences in OCT2, OCT6 or OATP1B3 levels were detected between AFP-producing and conventional GCs. However, immunoreactivity for hENT1, OAT2 and OCT6 tended to be increased in GC tissues compared with non-neoplastic epithelia. Because hENT1 and OAT2 are crucial for the uptake of gemcitabine and 5-fluorouracil, respectively, our results suggest that patients with AFP-producing GC could potentially benefit from gemcitabine/fluoropyrimidine combination chemotherapy. Increased expression of hENT1, OAT2 and OCT6 may also be associated with the progression of GC. © 2016 John Wiley & Sons Ltd.

  6. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3)

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2017-01-01

    The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. PMID:29245974

  7. Age trends in estradiol and estrone levels measured using liquid chromatography tandem mass spectrometry in community-dwelling men of the Framingham Heart Study.

    PubMed

    Jasuja, Guneet Kaur; Travison, Thomas G; Davda, Maithili; Murabito, Joanne M; Basaria, Shehzad; Zhang, Anqi; Kushnir, Mark M; Rockwood, Alan L; Meikle, Wayne; Pencina, Michael J; Coviello, Andrea; Rose, Adam J; D'Agostino, Ralph; Vasan, Ramachandran S; Bhasin, Shalender

    2013-06-01

    Age trends in estradiol and estrone levels in men and how lifestyle factors, comorbid conditions, testosterone, and sex hormone-binding globulin affect these age trends remain poorly understood, and were examined in men of the Framingham Heart Study. Estrone and estradiol concentrations were measured in morning fasting samples using liquid chromatography tandem mass spectrometry in men of Framingham Offspring Generation. Free estradiol was calculated using a law of mass action equation. There were 1,461 eligible men (mean age [±SD] 61.1±9.5 years and body mass index [BMI] 28.8±4.5kg/m(2)). Total estradiol and estrone were positively associated with age, but free estradiol was negatively associated with age. Age-related increase in total estrone was greater than that in total estradiol. Estrone was positively associated with smoking, BMI, and testosterone, and total and free estradiol with diabetes, BMI, testosterone, and comorbid conditions; additionally, free estradiol was associated negatively with smoking. Collectively, age, BMI, testosterone, and other health and behavioral factors explained only 18% of variance in estradiol, and 9% of variance in estrone levels. Men in the highest quintile of estrone levels had significantly higher age and BMI, and a higher prevalence of smoking, diabetes, and cardiovascular disease than others, whereas those in the highest quintile of estradiol had higher BMI than others. Total estrone and estradiol levels in men, measured using liquid chromatography tandem mass spectrometry, revealed significant age-related increases that were only partially accounted for by cross-sectional differences in BMI, diabetes status, and other comorbidities and health behaviors. Longitudinal studies are needed to confirm these findings.

  8. SLCO1B1 variants and statin-induced myopathy--a genomewide study.

    PubMed

    Link, E; Parish, S; Armitage, J; Bowman, L; Heath, S; Matsuda, F; Gut, I; Lathrop, M; Collins, R

    2008-08-21

    Lowering low-density lipoprotein cholesterol with statin therapy results in substantial reductions in cardiovascular events, and larger reductions in cholesterol may produce larger benefits. In rare cases, myopathy occurs in association with statin therapy, especially when the statins are administered at higher doses and with certain other medications. We carried out a genomewide association study using approximately 300,000 markers (and additional fine-mapping) in 85 subjects with definite or incipient myopathy and 90 controls, all of whom were taking 80 mg of simvastatin daily as part of a trial involving 12,000 participants. Replication was tested in a trial of 40 mg of simvastatin daily involving 20,000 participants. The genomewide scan yielded a single strong association of myopathy with the rs4363657 single-nucleotide polymorphism (SNP) located within SLCO1B1 on chromosome 12 (P=4x10(-9)). SLCO1B1 encodes the organic anion-transporting polypeptide OATP1B1, which has been shown to regulate the hepatic uptake of statins. The noncoding rs4363657 SNP was in nearly complete linkage disequilibrium with the nonsynonymous rs4149056 SNP (r(2)=0.97), which has been linked to statin metabolism. The prevalence of the rs4149056 C allele in the population was 15%. The odds ratio for myopathy was 4.5 (95% confidence interval [CI], 2.6 to 7.7) per copy of the C allele, and 16.9 (95% CI, 4.7 to 61.1) in CC as compared with TT homozygotes. More than 60% of these myopathy cases could be attributed to the C variant. The association of rs4149056 with myopathy was replicated in the trial of 40 mg of simvastatin daily, which also showed an association between rs4149056 and the cholesterol-lowering effects of simvastatin. No SNPs in any other region were clearly associated with myopathy. We have identified common variants in SLCO1B1 that are strongly associated with an increased risk of statin-induced myopathy. Genotyping these variants may help to achieve the benefits of statin

  9. Resistant starch modulates in vivo colonic butyrate uptake and its oxidation in rats with dextran sulfate sodium-induced colitis.

    PubMed

    Moreau, Noëlle M; Champ, Martine M; Goupry, Stéphane M; Le Bizec, Bruno J; Krempf, Michel; Nguyen, Patrick G; Dumon, Henri J; Martin, Lucile J

    2004-03-01

    We previously demonstrated improvements of colonic lesions due to dextran sulfate sodium (DSS) in rats after 7 d of supplementation with resistant starch (RS) type 3, a substrate yielding high levels of butyrate (C(4)), a colonic cell fuel source. In the present study, we hypothesized that if inflammation is related to decreased C(4) utilization by the colonic mucosa, RS supplementation should restore C(4) use simultaneously with an increase in the amount of C(4) present in the digestive tract. Hence, we compared, in vivo, the cecocolonic uptake of C(4) and its oxidation into CO(2) and ketone bodies in control and DSS-treated rats fed a fiber-free basal diet (BD) or a RS-supplemented diet. Sprague-Dawley rats (n = 60) were used. DSS treatment was performed to induce acute colitis and then to maintain chronic colitis. After cecal infusion of [1-(13)C]-C(4) (20 micro mol in 1 h), concentrations and (13)C-enrichment of C(4), ketone bodies, and CO(2) were quantified in the abdominal aorta and portal vein. Portal blood flow was recorded. During acute colitis, (13)C(4) uptake and (13)CO(2) production were lower in DSS rats than in controls. During chronic colitis, DSS rats did not differ from controls. After 7 d of chronic colitis, RS-DSS rats exhibited the same C(4) uptake as BD-DSS rats in spite of higher C(4) cecocolonic disposal. After 14 d, C(4) uptake was higher in RS-DSS than in BD-DSS rats. Thus, the increased utilization of C(4) by the mucosa is subsequent to evidence of healing and appears to be a consequence rather than a cause of this RS healing effect.

  10. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  11. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury.

    PubMed

    Chen, Xiangrong; Chen, Chunnuan; Fan, Sining; Wu, Shukai; Yang, Fuxing; Fang, Zhongning; Fu, Huangde; Li, Yasong

    2018-04-20

    development of the neuroinflammatory response after TBI. The results of our study showed that ω-3 PUFA supplementation promoted a shift from the M1 microglial phenotype to the M2 microglial phenotype and inhibited microglial activation, thus reducing TBI-induced inflammatory factors. In addition, ω-3 PUFA-mediated downregulation of HMGB1 acetylation and its extracellular secretion was found to be likely due to increased SIRT1 activity. We also found that treatment with ω-3 PUFA inhibited HMGB1 acetylation and induced direct interactions between SIRT1 and HMGB1 by elevating SIRT1 activity following TBI. These events lead to inhibition of HMGB1 nucleocytoplasmic translocation/extracellular secretion and alleviated HMGB1-mediated activation of the NF-κB pathway following TBI-induced microglial activation, thus inhibiting the subsequent inflammatory response. The results of this study suggest that ω-3 PUFA supplementation attenuates the inflammatory response by modulating microglial polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway, leading to neuroprotective effects following experimental traumatic brain injury.

  12. Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles

    NASA Astrophysics Data System (ADS)

    Sauerwein, Meike; Keung Chan, Chak

    2017-05-01

    Heterogeneous uptake is one of the major mechanisms governing the amounts of short-chain alkylamines and ammonia (NH3) in atmospheric particles. Molar ratios of aminium to ammonium ions detected in ambient aerosols often exceed typical gas phase ratios. The present study investigated the simultaneous uptake of dimethylamine (DMA) and NH3 into sulfuric and oxalic acid particles at gaseous DMA / NH3 molar ratios of 0.1 and 0.5 at 10, 50 and 70 % relative humidity (RH). Single-gas uptake and co-uptake were conducted under identical conditions and compared. Results show that the particulate dimethyl-aminium/ammonium molar ratios (DMAH / NH4) changed substantially during the uptake process, which was severely influenced by the extent of neutralisation and the particle phase state. In general, DMA uptake and NH3 uptake into concentrated H2SO4 droplets were initially similarly efficient, yielding DMAH / NH4 ratios that were similar to DMA / NH3 ratios. As the co-uptake continued, the DMAH / NH4 gradually dropped due to a preferential uptake of NH3 into partially neutralised acidic droplets. At 50 % RH, once the sulfate droplets were neutralised, the stronger base DMA displaced some of the ammonium absorbed earlier, leading to DMAH / NH4 ratios up to four times higher than the corresponding gas phase ratios. However, at 10 % RH, crystallisation of partially neutralised sulfate particles prevented further DMA uptake, while NH3 uptake continued and displaced DMAH+, forming almost pure ammonium sulfate. Displacement of DMAH+ by NH3 has also been observed in neutralised, solid oxalate particles. The results can explain why DMAH / NH4 ratios in ambient liquid aerosols can be larger than DMA / NH3, despite an excess of NH3 in the gas phase. An uptake of DMA to aerosols consisting of crystalline ammonium salts, however, is unlikely, even at comparable DMA and NH3 gas phase concentrations.

  13. 21 CFR 522.1222b - Ketamine hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydrochloride and aminopentamide hydrogen sulfate injection. 522.1222b Section 522.1222b Food and Drugs FOOD AND... hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection. (a) Chemical name... hydrochloride, 10-[3-(dimethylamino) propyl] phenothiazine monohydrochloride, and aminopentamide hydrogen...

  14. 21 CFR 522.1222b - Ketamine hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrochloride and aminopentamide hydrogen sulfate injection. 522.1222b Section 522.1222b Food and Drugs FOOD AND... hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection. (a) Chemical name... hydrochloride, 10-[3-(dimethylamino) propyl] phenothiazine monohydrochloride, and aminopentamide hydrogen...

  15. 21 CFR 522.1222b - Ketamine hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrochloride and aminopentamide hydrogen sulfate injection. 522.1222b Section 522.1222b Food and Drugs FOOD AND... hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection. (a) Chemical name... hydrochloride, 10-[3-(dimethylamino) propyl] phenothiazine monohydrochloride, and aminopentamide hydrogen...

  16. 21 CFR 522.1222b - Ketamine hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrochloride and aminopentamide hydrogen sulfate injection. 522.1222b Section 522.1222b Food and Drugs FOOD AND... hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection. (a) Chemical name... hydrochloride, 10-[3-(dimethylamino) propyl] phenothiazine monohydrochloride, and aminopentamide hydrogen...

  17. Intestinal ischemia-reperfusion suppresses biliary excretion of hepatic organic anion transporting polypeptides substrate.

    PubMed

    Maruyama, Hajime; Ogura, Jiro; Fujikawa, Asuka; Terada, Yusuke; Tsujimoto, Takashi; Koizumi, Takahiro; Kuwayama, Kaori; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken

    2013-01-01

    Intestinal ischemia-reperfusion (I/R) causes gut dysfunction and promotes multi-organ failure. The liver and kidney can be affected by multi-organ failure after intestinal I/R. Organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) are recognized in a broad spectrum from endogenous compounds to xenobiotics, including clinically important drugs. Therefore, it is important for understanding the pharmacokinetics to obtain evidence of alterations in OATPs and OATs expression and transport activities. In the present study, we investigated the expression of rat Oatps and Oats after intestinal I/R. We used intestinal ischemia-reperfusion (I/R) model rats. Real-time PCR and Western blotting were used to assess mRNA and protein expression levels. Plasma concentration and biliary excretion of sulfobromophthalein (BSP), which is used as a model compound of organic anion drugs, were measured after intravenous administration in intestinal I/R rats. Although Oat1 and Oat3 mRNA levels were not altered in the kidney, Oatp1a1, Oatp1b2 and Oatp2b1 mRNA levels in the liver were significantly decreased at 1-6 h after intestinal I/R. Moreover, Oatp1a1 and Oatp2b1 protein expression levels were decreased at 1 h after intestinal I/R. Plasma concentration of BSP, which is a typical substrate of Oatps, in intestinal I/R rats reperfused 1 h was increased than that in sham-operated rats. Moreover, the area under the concentration-time curve (AUC₀₋₉₀) in intestinal I/R rats reperfused 1 h was significantly increased than that in sham-operated rats. The total clearance (CL(tot)) and the biliary clearance (CL(bile)) in intestinal I/R rats reperfused 1 h were significantly decreased than those in sham-operated rats. Oatp1a1 and Oatp2b1 expression levels are decreased by intestinal I/R. The decreases in these transporters cause alteration of pharmacokinetics of organic anion compound. The newly found influence of intestinal I/R on the expression and function

  18. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes.

    PubMed

    Yang, Dong; Zheng, Xinchuan; Wang, Ning; Fan, Shijun; Yang, Yongjun; Lu, Yongling; Chen, Qian; Liu, Xin; Zheng, Jiang

    2016-09-06

    Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.

  19. The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata.

    PubMed

    Gam, Le Thi Hong; Jensen, Frank Bo; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Bayley, Mark

    2018-03-01

    Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO 3 - /Cl - exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO 2 ), or combined hypercapnia (acclimated hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake of nitrite (evaluated as [NO 2 - ] + [NO 3 - ]) was significantly decreased in hypercapnia, in accordance with the hypothesis. Methemoglobin and nitrosylhemoglobin levels were similarly lower during hypercapnic compared to normocapnic nitrite exposure. The respiratory acidosis induced by hypercapnia was half-compensated by bicarbonate accumulation in 96 h, which was mainly chloride-mediated (i.e. reduced Cl - influx via the branchial HCO 3 - /Cl - exchanger). Plasma osmolality and main ions (Na + , Cl - ) were significantly decreased by hypercapnia and by nitrite exposure, consistent with inhibition of active transport. We conclude that hypercapnia induces a long-lasting, and mainly chloride-mediated acid-base regulation that reduces the uptake of nitrite across the gills. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  1. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    PubMed

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2018-02-01

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis.

    PubMed

    Rastegari, Banafsheh; Karbalaei-Heidari, Hamid Reza

    2016-10-01

    In the present work, we investigated the prodiginine family as secondary metabolite members. Bacterial strain S2B, with the ability to produce red pigment, was isolated from the Sarcheshmeh copper mine in Iran. 16S rDNA gene sequencing revealed that the strain was placed in the Serratia genus. Pigment production was optimized using low-cost culture medium and the effects of various physicochemical factors were studied via statistical approaches. Purification of the produced pigment by silica gel column chromatography showed a strong red pigment fraction and a weaker orange band. Mass spectrometry, FT-IR spectroscopy and (1)H NMR analysis revealed that the red pigment was prodigiosin and the orange band was a prodigiosin-like analog, with molecular weights of 323 and 317 Da, respectively. Genotoxicity and cytotoxicity studies confirmed their membership in the prodiginine family. Analysis of the production pattern of the pigments in the presence of different concentrations of ammonium salts revealed the role of sulfate as an important factor in regulation of the pigment biosynthesis pathway. Overall, the data showed that regulation of the pigment biosynthesis pathway in Serratia sp. strain S2B was affected by inorganic micronutrients, particularly the sulfate ions. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  4. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.

    PubMed

    Sun, Lingjun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Lin, Hong

    2011-12-01

    We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.

  5. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.

  6. L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells.

    PubMed

    Dewannieux, Marie; Heidmann, Thierry

    2005-06-03

    SINEs are short interspersed nucleotide elements with transpositional activity, present at a high copy number (up to a million) in mammalian genomes. They are 80-400 bp long, non-coding sequences which derive either from the 7SL RNA (e.g. human Alus, murine B1s) or tRNA (e.g. murine B2s) polymerase III-driven genes. We have previously demonstrated that Alus very efficiently divert the enzymatic machinery of the autonomous L1 LINE (long interspersed nucleotide element) retrotransposons to transpose at a high rate. Here we show, using an ex vivo assay for transposition, that both B1 and B2 SINEs can be mobilized by murine LINEs, with the hallmarks of a bona fide retrotransposition process, including target site duplications of varying lengths and integrations into A-rich sequences. Despite different phylogenetic origins, transposition of the tRNA-derived B2 sequences is as efficient as that of the human Alus, whereas that of B1s is 20-100-fold lower despite a similar high copy number of these elements in the mouse genome. We provide evidence, via an appropriate nucleotide substitution within the B1 sequence in a domain essential for its intracellular targeting, that the current B1 SINEs are not optimal for transposition, a feature most probably selected for the host sake in the course of evolution.

  7. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPAmore » with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.« less

  8. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    PubMed

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  9. Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility

    PubMed Central

    Nakata, Masaru; Ohme-Takagi, Masaru

    2013-01-01

    The jasmonate (JA) plant hormones regulate responses to biotic and abiotic stress and aspects of plant development, including male fertility in Arabidopsis thaliana. The bHLH-type transcription factor JA-ASSOCIATED MYC2-LIKE1 (JAM1) negatively regulates JA signaling and gain-of-function JAM1 transgenic plants have impaired JA-mediated male fertility. Here we report that JAM2 and JAM3, 2 bHLHs closely related to JAM1, also act as transcriptional repressors. Moreover, overexpression of JAM2 and JAM3 also results in reduced male fertility. These results suggest that JAM1, JAM2, and JAM3 act redundantly as negative regulators of JA-mediated male fertility. PMID:24056034

  10. Participation of S. Typhimurium cysJIH Operon in the H2S-mediated Ciprofloxacin Resistance in Presence of Sulfate as Sulfur Source

    PubMed Central

    Álvarez, Ricardo; Frávega, Jorge; Rodas, Paula I.; Fuentes, Juan A.; Paredes-Sabja, Daniel; Calderón, Iván L.; Gil, Fernando

    2015-01-01

    H2S production has been proposed as a mechanism to explain bacterial resistance to antibiotics. In this work, we present evidence for the role of the cysJIH operon in resistance to ciprofloxacin mediated by H2S production with different sulfate as the only sulfur source. We found that the products of the cysJIH operon are involved in ciprofloxacin resistance by increasing both, the levels of H2S and reduced thiols apparently counteracting antimicrobial-induced reactive oxygen species (ROS). This protective effect was observed only when bacteria were cultured in the presence of sulfate, but not with cysteine, as the sole sulfur source.

  11. Two patients with Hermansky Pudlak syndrome type 2 and novel mutations in AP3B1

    PubMed Central

    Wenham, Matt; Grieve, Samantha; Cummins, Michelle; Jones, Matthew L.; Booth, Sarah; Kilner, Rachel; Ancliff, Philip J.; Griffiths, Gillian M.; Mumford, Andrew D.

    2010-01-01

    Hermansky Pudlak syndrome type 2 (HPS2) is a rare disorder associated with mutations in the Adaptor Protein 3 (AP-3) complex, which is involved in sorting transmembrane proteins to lysosomes and related organelles. We now report 2 unrelated subjects with HPS2 who show a characteristic clinical phenotype of oculocutaneous albinism, platelet and T-lymphocyte dysfunction and neutropenia. The subjects were homozygous for different deletions within AP3B1 (g.del180242-180866, c.del153-156), which encodes the AP-3β3A subunit, resulting in frame shifts and introduction of nonsense substitutions (p.E693fsX13, p.E52fsX11). In the subject with p.E693fsX13, this resulted in expression of a truncated variant β3A protein. Cytotoxic T-lymphocyte (CTL) clones from both study subjects showed increased cell-surface expression of CD63 and reduced cytotoxicity. Platelets showed impaired aggregation and reduced uptake of 3H-serotonin. These findings are consistent with CTL granule and platelet dense granule defects, respectively. This report extends the clinical and laboratory description of HPS2. PMID:19679886

  12. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Two chalcones, 4-hydroxyderricin and xanthoangelol, stimulate GLUT4-dependent glucose uptake through the LKB1/AMP-activated protein kinase signaling pathway in 3T3-L1 adipocytes.

    PubMed

    Ohta, Mitsuhiro; Fujinami, Aya; Kobayashi, Norihiro; Amano, Akiko; Ishigami, Akihito; Tokuda, Harukuni; Suzuki, Nobutaka; Ito, Fumitake; Mori, Taisuke; Sawada, Morio; Iwasa, Koichi; Kitawaki, Jo; Ohnishi, Katsunori; Tsujikawa, Muneo; Obayashi, Hiroshi

    2015-07-01

    4-Hydroxyderricin (4HD) and xanthoangelol (XAG) are major components of n-hexane/ethyl acetate (5:1) extract of the yellow-colored stem juice of Angelica keiskei. 4-Hydroxyderricin and XAG have been reported to increase glucose transporter 4 (GLUT4)-dependent glucose uptake in 3T3-L1 adipocytes, but the detailed mechanism of this phenomenon remains unknown. This present study was aimed at clarifying the detailed mechanism by which 4HD and XAG increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes. Both 4HD and XAG increased glucose uptake and GLUT4 translocation to the plasma membrane. 4-Hydroxyderricin and XAG also stimulated the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) and its downstream target acetyl-CoA carboxylase. In addition, phosphorylation of liver kinase B1 (LKB1), which acts upstream of AMPK, was also increased by 4HD and XAG treatment. Small interfering RNA knockdown of LKB1 attenuated 4HD- and XAG-stimulated AMPK phosphorylation and suppressed glucose uptake. These findings demonstrate that 4HD and XAG can increase GLUT4-dependent glucose uptake through the LKB1/AMPK signaling pathway in 3T3-L1 adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Monocarboxylate Transporters Mediate Fluorescein Uptake in Corneal Epithelial Cells.

    PubMed

    Sun, Yi-Chen; Liou, Hau-Min; Yeh, Po-Ting; Chen, Wei-Li; Hu, Fung-Rong

    2017-07-01

    To determine the presence of monocarboxylate transporter (MCT) in human and rabbit corneal epithelium and its role in transcellular fluorescein transportation in the cornea. The presence of MCTs in human and rabbit corneal epithelium was determined by RT-PCR and immunohistochemistry. Intracellular fluorescein uptake experiment was performed using cultured human corneal epithelial cells (HCECs). The involvement of MCT in fluorescein uptake was determined by addition of MCT inhibitors to HCECs and acute dry eye model on New Zealand albino rabbits by spectrophotometry, corneal impression cytology, and external eye photographs. MCT-1 and MCT-4 were identified in both human and rabbit corneal epithelia. A longer treatment period and a lower pH value in culture medium increased fluorescein uptake in HCECs. Fluorescein uptake in HCECs was decreased following addition of MCT inhibitors in a concentration-dependent manner. Impression cytology under fluorescent microscopy showed intracellular fluorescein staining in the rabbit cornea with acute dry eye treatment that was decreased following topical treatment of MCT inhibitors. Fluorescein ingress in corneal epithelial cells is mediated by the MCT family. Further study of MCT-mediated transport on HCECs may potentially benefit differential diagnosis and contribute better understandings of ocular surface disorders.

  15. 75 FR 79988 - Airworthiness Directives; Eurocopter France Model AS350B, B1, B2, B3, BA, and EC130 B4 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... Model AS350B, B1, B2, B3, BA, and EC130 B4 Helicopters AGENCY: Federal Aviation Administration (FAA..., 2009, for the Model AS350 B, BA, BB, B1, B2, and B3 helicopters (ASB 80.00.07); and ASB No. 80A003... authority delegated to me by the Administrator, the FAA proposes to amend 14 CFR part 39 as follows: PART 39...

  16. Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer.

    PubMed

    Xu, Tong-Peng; Wang, Wen-Yu; Ma, Pei; Shuai, You; Zhao, Kun; Wang, Yan-Fen; Li, Wei; Xia, Rui; Chen, Wen-Ming; Zhang, Er-Bao; Shu, Yong-Qian

    2018-05-23

    Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.

  17. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    PubMed

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions

    PubMed Central

    Wang, Zhen Guang; Yu, Ming Ming; Han, Yu; Wu, Feng Yu; Yang, Guang Jie; Li, Da Cheng; Liu, Si Min

    2016-01-01

    Abstract The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions. Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with 18F-FDG uptake were assessed using Spearman's rank correlation test. The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ± 1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ± 0.96 and 2.82 ± 1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients. Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions. PMID:27902598

  20. Synergistic suppression of early phase of adipogenesis by microsomal PGE synthase-1 (PTGES1)-produced PGE2 and aldo-keto reductase 1B3-produced PGF2α.

    PubMed

    Fujimori, Ko; Yano, Mutsumi; Ueno, Toshiyuki

    2012-01-01

    We recently reported that aldo-keto reductase 1B3-produced prostaglandin (PG) F(2α) suppressed the early phase of adipogenesis. PGE(2) is also known to suppress adipogenesis. In this study, we found that microsomal PGE(2) synthase (PGES)-1 (mPGES-1; PTGES1) acted as the PGES in adipocytes and that PGE(2) and PGF(2α) synergistically suppressed the early phase of adipogenesis. PGE(2) production was detected in preadipocytes and transiently enhanced at 3 h after the initiation of adipogenesis of mouse adipocytic 3T3-L1 cells, followed by a quick decrease; and its production profile was similar to the expression of the cyclooxygenase-2 (PTGS2) gene. When 3T3-L1 cells were transfected with siRNAs for any one of the three major PTGESs, i.e., PTGES1, PTGES2 (mPGES-2), and PTGES3 (cytosolic PGES), only PTGES1 siRNA suppressed PGE(2) production and enhanced the expression of adipogenic genes. AE1-329, a PTGER4 (EP4) receptor agonist, increased the expression of the Ptgs2 gene with a peak at 1 h after the initiation of adipogenesis. PGE(2)-mediated enhancement of the PTGS2 expression was suppressed by the co-treatment with L-161982, a PTGER4 receptor antagonist. Moreover, AE1-329 enhanced the expression of the Ptgs2 gene by binding of the cyclic AMP response element (CRE)-binding protein to the CRE of the Ptgs2 promoter; and its binding was suppressed by co-treatment with L-161982, which was demonstrated by promoter luciferase and chromatin immunoprecipitation assays. Furthermore, when 3T3-L1 cells were caused to differentiate into adipocytes in medium containing both PGE(2) and PGF(2α), the expression of the adipogenic genes and the intracellular triglyceride level were decreased to a greater extent than in medium containing either of them, revealing that PGE(2) and PGF(2α) independently suppressed adipogenesis. These results indicate that PGE(2) was synthesized by PTGES1 in adipocytes and synergistically suppressed the early phase of adipogenesis of 3T3-L1 cells in