Sample records for obese insulin-resistant mice

  1. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  2. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  3. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  4. The role of dietary fat in obesity-induced insulin resistance.

    PubMed

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  5. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2012-06-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

  6. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

    PubMed Central

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2012-01-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D. PMID:22916045

  7. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F

    2000-10-01

    To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.

  8. The efficacy and tolerability of azilsartan in obese insulin-resistant mice with left ventricular pressure overload.

    PubMed

    Tarikuz Zaman, A K M; McLean, Danielle L; Sobel, Burton E

    2013-10-01

    Angiotensin II receptor blockers (ARBs) are used widely for the treatment of heart failure. However, their use in obese and insulin-resistant patients remains controversial. To clarify their potential efficacy in these conditions, we administered azilsartan medoxomil (azilsartan), a prodrug of an angiotensin II receptor blocker to mice fed a high-fat diet (HFD) with left ventricular (LV) pressure overload (aortic banding). LV fibrosis (hydroxyproline), cardiac plasminogen activator inhibitor-1 (PAI-1; a marker of profibrosis), and creatine kinase (a marker of myocardial viability and energetics) were assessed. LV wall thickness and cardiac function were assessed echocardiographically. Mice given a HFD were obese and insulin resistant. Their LV hypertrophy was accompanied by greater LV PAI-1 and reduced LV creatine kinase compared with normal diet controls. Drug treatment reduced LV wall thickness, hypertrophy, and PAI-1 and increased cardiac output after aortic banding compared with results in HFD vehicle controls. Thus, azilsartan exerted favorable biological effects on the hearts of obese insulin-resistant mice subjected to LV pressure overload consistent with its potential utility in patients with analogous conditions.

  9. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  10. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism.

    PubMed

    Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle

    2018-04-01

    Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.

  11. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  12. CREG1 heterozygous mice are susceptible to high fat diet-induced obesity and insulin resistance.

    PubMed

    Tian, Xiaoxiang; Yan, Chenghui; Liu, Meili; Zhang, Quanyu; Liu, Dan; Liu, Yanxia; Li, Shaohua; Han, Yaling

    2017-01-01

    Cellular repressor of E1A-stimulated genes 1 (CREG1) is a small glycoprotein whose physiological function is unknown. In cell culture studies, CREG1 promotes cellular differentiation and maturation. To elucidate its physiological functions, we deleted the Creg1 gene in mice and found that loss of CREG1 leads to early embryonic death, suggesting that it is essential for early development. In the analysis of Creg1 heterozygous mice, we unexpectedly observed that they developed obesity as they get older. In this study, we further studied this phenotype by feeding wild type (WT) and Creg1 heterozygote (Creg1+/-) mice a high fat diet (HFD) for 16 weeks. Our data showed that Creg1+/- mice exhibited a more prominent obesity phenotype with no change in food intake compared with WT controls when challenged with HFD. Creg1 haploinsufficiency also exacerbated HFD-induced liver steatosis, dyslipidemia and insulin resistance. In addition, HFD markedly increased pro-inflammatory cytokines in plasma and epididymal adipose tissue in Creg1+/- mice as compared with WT controls. The activation level of NF-κB, a major regulator of inflammatory response, in epididymal adipose tissue was also elevated in parallel with the cytokines in Creg1+/- mice. These pro-inflammatory responses elicited by CREG1 reduction were confirmed in 3T3-L1-derived adipocytes with CREG1 depletion by siRNA transfection. Given that adipose tissue inflammation has been shown to play a key role in obesity-induced insulin resistance and metabolic syndrome, our results suggest that Creg1 haploinsufficiency confers increased susceptibility of adipose tissue to inflammation, leading to aggravated obesity and insulin resistance when challenged with HFD. This study uncovered a novel function of CREG1 in metabolic disorders.

  13. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  14. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  15. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    PubMed

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  16. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  17. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    PubMed Central

    Lopez, Pablo HH; Aja, Susan; Aoki, Kazuhiro; Seldin, Marcus M; Lei, Xia; Ronnett, Gabriele V; Wong, G William; Schnaar, Ronald L

    2017-01-01

    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity. PMID:27683310

  18. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  19. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  20. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4.

    PubMed

    Cavallari, Joseph F; Fullerton, Morgan D; Duggan, Brittany M; Foley, Kevin P; Denou, Emmanuel; Smith, Brennan K; Desjardins, Eric M; Henriksbo, Brandyn D; Kim, Kalvin J; Tuinema, Brian R; Stearns, Jennifer C; Prescott, David; Rosenstiel, Philip; Coombes, Brian K; Steinberg, Gregory R; Schertzer, Jonathan D

    2017-05-02

    Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  3. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  4. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  5. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice.

    PubMed

    Ussher, John R; Keung, Wendy; Fillmore, Natasha; Koves, Timothy R; Mori, Jun; Zhang, Liyan; Lopaschuk, David G; Ilkayeva, Olga R; Wagg, Cory S; Jaswal, Jagdip S; Muoio, Deborah M; Lopaschuk, Gary D

    2014-06-01

    There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits fatty acid oxidation in the heart secondary to inhibition of 3-ketoacyl-CoA thiolase (3-KAT), may have off-target effects on glycemic control in obesity. We fed C57BL/6NCrl mice a high-fat diet (HFD) for 10 weeks before a 22-day treatment with the 3-KAT inhibitor trimetazidine (15 mg/kg per day). Insulin resistance was assessed via glucose/insulin tolerance testing, and lipid metabolite content was assessed in gastrocnemius muscle. Trimetazidine-treatment led to a mild shift in substrate preference toward carbohydrates as an oxidative fuel source in obese mice, evidenced by an increase in the respiratory exchange ratio. This shift in metabolism was accompanied by an accumulation of long-chain acyl-CoA and a trend to an increase in triacylglycerol content in gastrocnemius muscle, but did not exacerbate HFD-induced insulin resistance compared with control-treated mice. It is noteworthy that trimetazidine treatment reduced palmitate oxidation rates in the isolated working mouse heart and neonatal cardiomyocytes but not C2C12 skeletal myotubes. Our findings demonstrate that trimetazidine therapy does not adversely affect HFD-induced insulin resistance, suggesting that treatment with trimetazidine would not worsen glycemic control in obese patients with angina.

  6. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  7. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    PubMed

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less

  9. Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mice

    PubMed Central

    Smart, James L.; Tolle, Virginie; Low, Malcolm J.

    2006-01-01

    Null mutations of the proopiomelanocortin gene (Pomc–/–) cause obesity in humans and rodents, but the contributions of central versus pituitary POMC deficiency are not fully established. To elucidate these roles, we introduced a POMC transgene (Tg) that selectively restored peripheral melanocortin and corticosterone secretion in Pomc–/– mice. Rather than improving energy balance, the genetic replacement of pituitary POMC in Pomc–/–Tg+ mice aggravated their metabolic syndrome with increased caloric intake and feed efficiency, reduced oxygen consumption, increased subcutaneous, visceral, and hepatic fat, and severe insulin resistance. Pair-feeding of Pomc–/–Tg+ mice to the daily intake of lean controls normalized their rate of weight gain but did not abolish obesity, indicating that hyperphagia is a major but not sole determinant of the phenotype. Replacement of corticosterone in the drinking water of Pomc–/– mice recapitulated the hyperphagia, excess weight gain and fat accumulation, and hyperleptinemia characteristic of genetically rescued Pomc–/–Tg+ mice. These data demonstrate that CNS POMC peptides play a critical role in energy homeostasis that is not substituted by peripheral POMC. Restoration of pituitary POMC expression to create a de facto neuronal POMC deficiency exacerbated the development of obesity, largely via glucocorticoid modulation of appetite, metabolism, and energy partitioning. PMID:16440060

  10. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  11. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice.

    PubMed

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2011-02-01

    Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

  12. Leptin Rapidly Improves Glucose Homeostasis in Obese Mice by Increasing Hypothalamic Insulin Sensitivity

    PubMed Central

    Koch, Christiane; Augustine, Rachael A.; Steger, Juliane; Ganjam, Goutham K.; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W.; Shepherd, Peter R.; Anderson, Greg M.; Grattan, David R.; Tups, Alexander

    2013-01-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lepob/ob mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes. PMID:21123564

  13. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    PubMed

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  14. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    PubMed

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  15. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance.

    PubMed

    Palanivel, R; Fullerton, M D; Galic, S; Honeyman, J; Hewitt, K A; Jorgensen, S B; Steinberg, G R

    2012-11-01

    Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.

  16. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice.

    PubMed

    Fang, Penghua; Yu, Mei; Min, Wen; Han, Shiyu; Shi, Mingyi; Zhang, Zhenwen; Bo, Ping

    2018-05-01

    Although baicalin has been shown to increase glucose uptake and insulin sensitivity in skeletal muscle of mice, there is no literature available about the effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. In the present study, diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and 3T3-L1 cells were treated with 100, 200, 400 μM baicalin for 3 h. Then insulin resistance indexes and insulin signal protein levels were examined to elucidate whether baicalin increased glucose uptake and GLUT4 translocation in adipocytes of diet-induced obese mice. The present findings showed that administration of baicalin decreased food intake, body weight, HOMA-IR and p-p38 MAPK and pERK levels, but enhanced pAKT and PGC-1α contents, as well as GLUT4 mRNA, PGC-1α mRNA expression in adipocytes, and reversed high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Moreover, baicalin treatment increased GLUT4 concentration in plasma membranes of adipocytes. These data demonstrated that baicalin accelerated GLUT4 translocation from intracellular membrane compartments to plasma membranes in adipocytes. Baicalin plays a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  18. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    PubMed

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  19. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  20. Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice

    PubMed Central

    Soufi, Nisreen; Chambers, Kari T.; Chen, Zhouji; Schweitzer, George G.; McCommis, Kyle S.; Erion, Derek M.; Graham, Mark J.; Su, Xiong; Finck, Brian N.

    2014-01-01

    Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling. PMID:24595352

  1. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity

    PubMed Central

    Law, Ivy K.M.; Xu, Aimin; Lam, Karen S.L.; Berger, Thorsten; Mak, Tak W.; Vanhoutte, Paul M.; Liu, Jacky T.C.; Sweeney, Gary; Zhou, Mingyan; Yang, Bo; Wang, Yu

    2010-01-01

    OBJECTIVE The proinflammatory cytokines/adipokines produced from adipose tissue act in an autocrine and/or endocrine manner to perpetuate local inflammation and to induce peripheral insulin resistance. The present study investigates whether lipocalin-2 deficiency or replenishment with this adipokine has any impact on systemic insulin sensitivity and the underlying mechanisms. METHODS AND RESULTS Under conditions of aging or dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO) mice show significantly decreased fasting glucose and insulin levels and improved insulin sensitivity compared with their wild-type littermates. Despite enlarged fat mass, inflammation and the accumulation of lipid peroxidation products are significantly attenuated in the adipose tissues of Lcn2-KO mice. Adipose fatty acid composition of these mice varies significantly from that in wild-type animals. The amounts of arachidonic acid (C20:4 n6) are elevated by aging and obesity and are paradoxically further increased in adipose tissue, but not skeletal muscle and liver of Lcn2-KO mice. On the other hand, the expression and activity of 12-lipoxygenase, an enzyme responsible for metabolizing arachidonic acid, and the production of tumor necrosis factor-α (TNF-α), a critical insulin resistance–inducing factor, are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimulates the expression and activity of 12-lipoxygenase and TNF-α production in fat tissues. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), an arachidonate lipoxygenase inhibitor, prevents TNF-α expression induced by lipocalin-2. Moreover, treatment with TNF-α neutralization antibody or CDC significantly attenuated the differences of insulin sensitivity between wild-type and Lcn2-KO mice. CONCLUSIONS Lipocalin-2 deficiency protects mice from developing aging- and obesity-induced insulin resistance largely by modulating 12-lipoxygenase and TNF-α levels in adipose tissue. PMID:20068130

  2. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

    PubMed Central

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2011-01-01

    Background Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Conclusion Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested. PMID:21494375

  3. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with (1-/sup 14/C)2-deoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of (1-/sup 14/C)2-deoxyglucose 6-phosphate and blood disappearance rate of (1-/sup 14/C)2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was themore » most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice.« less

  4. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance

    PubMed Central

    Palanivel, R.; Fullerton, M. D.; Galic, S.; Honeyman, J.; Hewitt, K. A.; Jorgensen, S. B.; Steinberg, G. R.

    2017-01-01

    Aims/hypothesis Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. Methods We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. Results The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic–euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). Conclusions/interpretation These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity. PMID:22872213

  5. Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance

    PubMed Central

    Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.

    2011-01-01

    OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175

  6. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  7. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    PubMed

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

  8. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    PubMed Central

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  9. Glycerol-3-Phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic Steatosis but Does Not Protect Against Insulin Resistance or Obesity

    PubMed Central

    Wendel, Angela A.; Li, Lei O.; Li, Yue; Cline, Gary W.; Shulman, Gerald I.; Coleman, Rosalind A.

    2010-01-01

    OBJECTIVE Hepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis. We asked whether ob/ob mice lacking Gpat1 would have reduced hepatic steatosis and improved insulin sensitivity. RESEARCH DESIGN AND METHODS Hepatic lipids, insulin sensitivity, and hepatic insulin signaling were compared in lean (Lep+/?), lean-Gpat1−/−, ob/ob (Lepob/ob), and ob/ob-Gpat1−/− mice. RESULTS Compared with ob/ob mice, the lack of Gpat1 in ob/ob mice reduced hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content 59 and 74%, respectively, but increased acyl-CoA levels. Despite the reduction in hepatic lipids, fasting glucose and insulin concentrations did not improve, and insulin tolerance remained impaired. In both ob/ob and ob/ob-Gpat1−/− mice, insulin resistance was accompanied by elevated hepatic protein kinase C-ε activation and blunted insulin-stimulated Akt activation. CONCLUSIONS These results suggest that decreasing hepatic steatosis alone does not improve insulin resistance, and that factors other than increased hepatic DAG and TAG contribute to hepatic insulin resistance in this genetically obese model. They also show that the SREBP1-mediated induction of hepatic steatosis in ob/ob mice requires Gpat1. PMID:20200319

  10. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

    PubMed

    Kim, Jong Hun; Lee, Eunjung; Friedline, Randall H; Suk, Sujin; Jung, Dae Young; Dagdeviren, Sezin; Hu, Xiaodi; Inashima, Kunikazu; Noh, Hye Lim; Kwon, Jung Yeon; Nambu, Aya; Huh, Jun R; Han, Myoung Sook; Davis, Roger J; Lee, Amy S; Lee, Ki Won; Kim, Jason K

    2018-04-01

    Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78 -/- ) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78 -/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78 -/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78 -/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

  11. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity

    PubMed Central

    Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop

    2017-01-01

    Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496

  12. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity.

    PubMed

    Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop

    2017-03-01

    Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.

  13. Loss of prion protein is associated with the development of insulin resistance and obesity.

    PubMed

    de Brito, Giovanna; Lupinacci, Fernanda C; Beraldo, Flávio H; Santos, Tiago G; Roffé, Martín; Lopes, Marilene H; de Lima, Vladmir C; Martins, Vilma R; Hajj, Glaucia N

    2017-08-17

    Prion protein (PrP C ) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrP C in the response to insulin and obesity development. Two independent PrP C knockout (KO) and one PrP C overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrP C KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrP C KO mice and increased in TG20 animals. PrP C KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrP C reflects susceptibility to the development of insulin resistance and metabolic syndrome. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  15. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  16. Dietary intervention, but not losartan, completely reverses non-alcoholic steatohepatitis in obese and insulin resistant mice.

    PubMed

    Verbeek, Jef; Spincemaille, Pieter; Vanhorebeek, Ilse; Van den Berghe, Greet; Vander Elst, Ingrid; Windmolders, Petra; van Pelt, Jos; van der Merwe, Schalk; Bedossa, Pierre; Nevens, Frederik; Cammue, Bruno; Thevissen, Karin; Cassiman, David

    2017-02-23

    Dietary intervention is the cornerstone of non-alcoholic steatohepatitis (NASH) treatment. However, histological evidence of its efficacy is limited and its impact on hepatic pathways involved in NASH is underreported. The efficacy of the angiotensin receptor type 1 blocker losartan is controversial because of varying results in a few animal and human studies. We evaluated the effect of dietary intervention versus losartan on NASH and associated systemic metabolic features in a representative mouse model. Male C57BL/6 J mice with high fat-high sucrose diet (HF-HSD) induced NASH, obesity, insulin resistance and hypercholesterolemia were subjected to dietary intervention (switch from HF-HSD to normal chow diet (NCD)) (n = 9), continuation HF-HSD together with losartan (30 mg/kg/day) (n = 9) or continuation HF-HSD only (n = 9) for 8 weeks. 9 mice received NCD during the entire experiment (20 weeks). We assessed the systemic metabolic effects and performed a detailed hepatic histological and molecular profiling. A P-value of < 0.05, using the group with continuation of HF-HSD only as control, was considered as statistically significant. Dietary intervention normalized obesity, insulin resistance, and hypercholesterolemia (for all P < 0.001), and remarkably, completely reversed all histological features of pre-existent NASH (for all P < 0.001), including fibrosis measured by quantification of collagen proportional area (P < 0.01). At the hepatic molecular level, dietary intervention targeted fibrogenesis with a normalization of collagen type I alpha 1, transforming growth factor β1, tissue inhibitor of metalloproteinase 1 mRNA levels (for all P < 0.01), lipid metabolism with a normalization of fatty acid translocase/CD36, fatty acid transport protein 5, fatty acid synthase mRNA levels (P < 0.05) and markers related to mitochondrial function with a normalization of hepatic ATP content (P < 0.05) together with sirtuin1 and

  17. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance

    PubMed Central

    Khan, Ilvira M.; Dai Perrard, Xiao-Yuan; Brunner, Gerd; Lui, Hua; Sparks, Lauren M.; Smith, Steven R.; Wang, Xukui; Shi, Zheng-Zheng; Lewis, Dorothy E.; Wu, Huaizhu; Ballantyne, Christie M.

    2015-01-01

    Background/Objectives Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. Subjects/Methods T cells and macrophage markers were examined in SM of obese humans by RT-PCR. Mice were fed high-fat diet (HFD) for 2–24 weeks, and time course of macrophage and T cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-CT, and correlation to T cell number in SM was examined. CD11a−/− mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T cell accumulation in SM. To investigate the involvement JAK/STAT, the major pathway for T helper I (TH1) cytokine IFNγ? in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. Results Macrophage and T cells markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. Conclusions Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM

  18. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  19. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice.

    PubMed

    Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A

    2012-11-01

    The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.

  20. Inflammasome is a central player in the induction of obesity and insulin resistance

    PubMed Central

    Stienstra, Rinke; van Diepen, Janna A.; Tack, Cees J.; Zaki, Md. Hasan; van de Veerdonk, Frank L.; Perera, Deshani; Neale, Geoffrey A.; Hooiveld, Guido J.; Hijmans, Anneke; Vroegrijk, Irene; van den Berg, Sjoerd; Romijn, Johannes; Rensen, Patrick C. N.; Joosten, Leo A. B.; Netea, Mihai G.; Kanneganti, Thirumala-Devi

    2011-01-01

    Inflammation plays a key role in the pathogenesis of obesity. Chronic overfeeding leads to macrophage infiltration in the adipose tissue, resulting in proinflammatory cytokine production. Both microbial and endogenous danger signals trigger assembly of the intracellular innate immune sensor Nlrp3, resulting in caspase-1 activation and production of proinflammatory cytokines IL-1β and IL-18. Here, we showed that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance. Furthermore, hepatic triglyceride content, adipocyte size, and macrophage infiltration in adipose tissue were all reduced in mice deficient in inflammasome components. Monocyte chemoattractant protein (MCP)-1 is a key molecule that mediates macrophage infiltration. Indeed, defective inflammasome activation was associated with reduced MCP-1 production in adipose tissue. Furthermore, plasma leptin and resistin that affect energy use and insulin sensitivity were also changed by inflammasome-deficiency. Detailed metabolic and molecular phenotyping demonstrated that the inflammasome controls energy expenditure and adipogenic gene expression during chronic overfeeding. These findings reveal a critical function of the inflammasome in obesity and insulin resistance, and suggest inhibition of the inflammasome as a potential therapeutic strategy. PMID:21876127

  1. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    PubMed

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  2. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  3. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp; Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp; Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage ofmore » insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.« less

  4. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  5. Evaluating the evidence for macrophage presence in skeletal muscle and its relation to insulin resistance in obese mice and humans: a systematic review protocol.

    PubMed

    Bhatt, Meha; Rudrapatna, Srikesh; Banfield, Laura; Bierbrier, Rachel; Wang, Pei-Wen; Wang, Kuan-Wen; Thabane, Lehana; Samaan, M Constantine

    2017-08-08

    The current global rates of obesity and type 2 diabetes are staggering. In order to implement effective management strategies, it is imperative to understand the mechanisms of obesity-induced insulin resistance and diabetes. Macrophage infiltration and inflammation of the adipose tissue in obesity is a well-established paradigm, yet the role of macrophages in muscle inflammation, insulin resistance and diabetes is not adequately studied. In this systematic review, we will examine the evidence for the presence of macrophages in skeletal muscle of obese humans and mice, and will assess the association between muscle macrophages and insulin resistance. We will identify published studies that address muscle macrophage content and phenotype, and its association with insulin resistance. We will search MEDLINE/PubMed, EMBASE, and Web of Science for eligible studies. Grey literature will be searched in ProQuest. Quality assessment will be conducted using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias Tool for animal studies. The findings of this systematic review will shed light on immune-metabolic crosstalk in obesity, and allow the consideration of targeted therapies to modulate muscle macrophages in the treatment and prevention of diabetes. The review will be published in a peer-reviewed journal and presented at conferences.

  6. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    PubMed

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  7. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. miRNA Signatures of Insulin Resistance in Obesity.

    PubMed

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  9. 45Obesity, Insulin Resistance and Free Fatty Acids

    PubMed Central

    Boden, Guenther

    2011-01-01

    Purpose of Review to describe the role of FFA as a cause for insulin resistance in obese people. Recent Findings elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including T2DM, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanism by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL1β, IL6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Summary increased plasma FFA levels are an important cause of obesity associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels. PMID:21297467

  10. Obesity, insulin resistance, and type 1 diabetes mellitus.

    PubMed

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  11. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  12. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  14. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet.

    PubMed

    Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc

    2015-03-01

    This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative

  15. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  16. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors.

    PubMed

    Sutton, Gregory M; Trevaskis, James L; Hulver, Matthew W; McMillan, Ryan P; Markward, Nathan J; Babin, M Josephine; Meyer, Emily A; Butler, Andrew A

    2006-05-01

    Loss of brain melanocortin receptors (Mc3rKO and Mc4rKO) causes increased adiposity and exacerbates diet-induced obesity (DIO). Little is known about how Mc3r or Mc4r genotype, diet, and obesity affect insulin sensitivity. Insulin resistance, assessed by insulin and glucose tolerance tests, Ser(307) phosphorylation of insulin receptor substrate 1, and activation of protein kinase B, was examined in control and DIO wild-type (WT), Mc3rKO and Mc4rKO C57BL/6J mice. Mc4rKO mice were hyperphagic and had increased metabolic efficiency (weight gain per kilojoule consumed) relative to WT; both parameters increased further on high-fat diet. Obesity of Mc3rKO was more dependent on fat intake, involving increased metabolic efficiency. Fat mass of DIO Mc3rKO and Mc4rKO was similar, although Mc4rKO gained weight more rapidly. Mc4rKO develop hepatic insulin resistance and severe hepatic steatosis with obesity, independent of diet. DIO caused further deterioration of insulin action in Mc4rKO of either sex and, in male Mc3rKO, compared with controls, associated with increased fasting insulin, severe glucose intolerance, and reduced insulin signaling in muscle and adipose tissue. DIO female Mc3rKO exhibited very modest perturbations in glucose metabolism and insulin sensitivity. Consistent with previous data suggesting impaired fat oxidation, both Mc3rKO and Mc4rKO had reduced muscle oxidative metabolism, a risk factor for weight gain and insulin resistance. Energy expenditure was, however, increased in Mc4rKO compared with Mc3rKO and controls, perhaps due to hyperphagia and metabolic costs associated with rapid growth. In summary, DIO affects insulin sensitivity more severely in Mc4rKO compared with Mc3rKO, perhaps due to a more positive energy balance.

  17. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  18. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  19. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    PubMed Central

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  20. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  1. Skeletal muscle inflammation and insulin resistance in obesity.

    PubMed

    Wu, Huaizhu; Ballantyne, Christie M

    2017-01-03

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.

  2. Skeletal muscle inflammation and insulin resistance in obesity

    PubMed Central

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  3. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    PubMed

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Treatment with constitutive androstane receptor ligand during pregnancy prevents insulin resistance in offspring from high-fat diet-induced obese pregnant mice.

    PubMed

    Masuyama, Hisashi; Hiramatsu, Yuji

    2012-07-15

    The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance even during pregnancy, while exposure to a high-fat diet (HFD) in utero in mice can induce a type 2 diabetes phenotype that can be transmitted to the progeny. Therefore, we examined whether treatment with a CAR ligand during pregnancy could prevent hypertension, insulin resistance, and hyperlipidemia in the offspring from HFD-induced obese pregnant mice (OH mice). We employed four groups of offspring from HFD-fed and control diet-fed pregnant mice with or without treatment with a CAR ligand. Treatment with a CAR ligand during pregnancy improved glucose tolerance and the levels of triglyceride and adipocytokine and restored the changes induced by HFD with amelioration of hypertension in the adult OH mice. This treatment also increased adiponectin mRNA expression, suppressed leptin expression in adipose tissues of OH mice, and abolished the effect of HFD on the epigenetic modifications of the genes encoding adiponectin and leptin in the offspring during immaturity and adulthood. Our data suggest that CAR might be a potential therapeutic target to prevent metabolic syndrome in adulthood of offspring exposed to an HFD in utero.

  5. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    PubMed

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  6. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    PubMed

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  7. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  9. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  10. Role of intestinal inflammation as an early event in obesity and insulin resistance

    PubMed Central

    Ding, Shengli; Lund, Pauline K.

    2013-01-01

    Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067

  11. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  12. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.

    PubMed

    Wang, Zhiyong; Shah, O Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.

  13. The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models

    PubMed Central

    Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932

  14. Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice

    PubMed Central

    Ma, Yongjie; Gao, Mingming

    2015-01-01

    Purpose Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. Methods Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. Results CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfa, Mcp-1 and Ccr2 encoding inflammatory proteins. Conclusion Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet. PMID:25248334

  15. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2015-04-01

    Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression of Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfα, Mcp-1 and Ccr2 encoding inflammatory proteins. Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet.

  16. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    PubMed Central

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J.; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitored in a metabolic chamber. Mitochondrial function was investigated in brown adipocytes and skeletal muscle in the mice. RESULTS On the high-fat diet, supplementation of butyrate prevented development of insulin resistance and obesity in C57BL/6 mice. Fasting blood glucose, fasting insulin, and insulin tolerance were all preserved in the treated mice. Body fat content was maintained at 10% without a reduction in food intake. Adaptive thermogenesis and fatty acid oxidation were enhanced. An increase in mitochondrial function and biogenesis was observed in skeletal muscle and brown fat. The type I fiber was enriched in skeletal muscle. Peroxisome proliferator–activated receptor-γ coactivator-1α expression was elevated at mRNA and protein levels. AMP kinase and p38 activities were elevated. In the obese mice, supplementation of butyrate led to an increase in insulin sensitivity and a reduction in adiposity. CONCLUSIONS Dietary supplementation of butyrate can prevent and treat diet-induced insulin resistance in mouse. The mechanism of butyrate action is related to promotion of energy expenditure and induction of mitochondria function. PMID:19366864

  17. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    PubMed

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  18. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  19. Sunflower Oil Supplementation Has Proinflammatory Effects and Does Not Reverse Insulin Resistance in Obesity Induced by High-Fat Diet in C57BL/6 Mice

    PubMed Central

    Masi, Laureane Nunes; Martins, Amanda Roque; Neto, José César Rosa; do Amaral, Cátia Lira; Crisma, Amanda Rabello; Vinolo, Marco Aurélio Ramirez; de Lima Júnior, Edson Alves; Hirabara, Sandro Massao; Curi, Rui

    2012-01-01

    High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole and muscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues and macrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/6 mice. PMID:22988427

  20. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model.

    PubMed

    Ouchfoun, Meriem; Eid, Hoda M; Musallam, Lina; Brault, Antoine; Li, Shilin; Vallerand, Diane; Arnason, John T; Haddad, Pierre S

    2016-04-01

    Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/β) and a decrease in the hepatic content of SREBP-1 (39 %). Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.

  1. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Lili; Li, Jinmei

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gainmore » and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. - Highlights: • Curcumin decreases biosynthesis of cholesterol and fatty acid in vitro. • Curcumin as a SREBP inhibitor ameliorates HFD-induced obesity. • Curcumin as a SREBP inhibitor improves insulin resistance.« less

  2. GPER Deficiency in Male Mice Results in Insulin Resistance, Dyslipidemia, and a Proinflammatory State

    PubMed Central

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L.; Zhu, Gang; Hathaway, Helen J.

    2013-01-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes. PMID:23970785

  3. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state.

    PubMed

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L; Zhu, Gang; Hathaway, Helen J; Prossnitz, Eric R

    2013-11-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.

  4. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  5. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance

    PubMed Central

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-01-01

    Background: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. Methods: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Results: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Conclusions: Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to

  6. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    PubMed

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  7. Platelet activity in Chinese obese adolescents with and without insulin resistance.

    PubMed

    Lu, Huimin; Lei, Shundong; Zhao, Jiuming; Chen, Ni

    2014-01-01

    To investigate the platelet activity in Chinese obese adolescents with and without insulin resistance. A cross-sectional study was performed in 159 obese Chinese adolescents to investigate their platelet activity using anthropometrics and biochemical parameters, oral glucose tolerance test and platelet testing. An index of insulin sensitivity, homeostasis model assessment of insulin resistance (HOMA-IR), and plasma fibrinogen, prothrombin fragment 1.2 (PT 1.2), fibrinopeptide A (FPA) and the levels of aggregation to collagen 1 μg/ml, adenosine diphosphate (ADP) 10 μmol/L and arachidonic acid (AA) 0.5 mmol/L were measured. Obese adolescents with insulin resistance had significantly higher HOMA-IR, glucose response curve (AUC), insulin AUC, PT 1.2, FPA and fibrinogen and aggregation (to collagen 1 μg/ml, ADP 10 μmol/L and AA 0.5 mmol/L) comparison with obese adolescents without insulin resistance (P < 0.05). Moreover, a positive correlation was found between both aggregation (to collagen, ADP and AA) and HOMA-IR (ρ = 0.716; P < 0.01, ρ = 0.682; P < 0.01 and ρ = 0.699; P < 0.01, respectively), glucose AUC (ρ = 0.479; P < 0.01, ρ = 0.416; P < 0.01 and ρ = 0.458; P < 0.01, respectively) and insulin AUC (ρ = 0.585; P < 0.01, ρ = 0.511; P < 0.01 and ρ = 0.576; P < 0.01, respectively) in obese adolescents with insulin resistance. Insulin resistance is a major determinant of platelet activation in Chinese obese adolescents.

  8. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  9. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  10. Insulin response to a spontaneously ingested standard meal during the development of obesity in GTG-injected mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1996-04-01

    (1) To determine glucose and insulin levels in response to ingestion of a standard meal during the development of gold-thioglucose (GTG)-induced obesity. (2) To examine whether the pancreatic beta-cells of GTG-injected mice possess sufficient insulin secretory capacity to compensate for the increasing tissue insulin resistance that occurs with the development of this obesity. The insulin secretory response to a standard meal of chow was examined in chronically catheterised conscious mice 2, 5 and 10 weeks after induction of obesity by a single injection of GTG. At 2 weeks after administration of GTG both the basal insulinaemia and the incremental area under the curve (iAUC) of insulin release after a chow meal were increased compared with age-matched lean control mice (2 week control: 1004 +/- 316 min/microU/ml; 2 week GTG: 1968 +/- 300 min/microU/ml; P < 0.05). By 5 weeks, the GTG-injected mice were approximately 42% heavier than their lean controls and showed a marked glucose intolerance. This was accompanied by hyperinsulinaemia in both the basal state and also in response to ingestion of the chow meal as indicated by the increase in the iAUC of insulin (5 week control: 1113 +/- 331 min/microU/ml; 5 week GTG: 2682 +/- 295 min/microU/ml; P < 0.05). At 10 weeks after GTG administration body weight was further increased, as was the degree of glucose intolerance. Plasma insulin levels, in both the basal state and in response to the ingestion of chow, were also further elevated by 10 weeks following GTG injection (10 week control: 1234 +/- 311 min/microU/ml; 10 week GTG: 6640 +/- 1198 min/microU/ml; P < 0.05). It is apparent that the secretion of insulin in response to a standard chow meal increases progressively with the development of obesity. This finding, in conjunction with an earlier study showing that the insulin secretory response to intravenously administered glucose becomes impaired in the latter stages of the development of obesity in GTG-injected mice

  11. Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity

    PubMed Central

    Lan, Hong; Cheng, Cliff C.; Kowalski, Timothy J.; Pang, Ling; Shan, Lixin; Chuang, Cheng-Chi; Jackson, James; Rojas-Triana, Alberto; Bober, Loretta; Liu, Li; Voigt, Johannes; Orth, Peter; Yang, Xianshu; Shipps, Gerald W.; Hedrick, Joseph A.

    2011-01-01

    Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lepob/Lepob (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1–3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice. PMID:21296956

  12. Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity.

    PubMed

    Lan, Hong; Cheng, Cliff C; Kowalski, Timothy J; Pang, Ling; Shan, Lixin; Chuang, Cheng-Chi; Jackson, James; Rojas-Triana, Alberto; Bober, Loretta; Liu, Li; Voigt, Johannes; Orth, Peter; Yang, Xianshu; Shipps, Gerald W; Hedrick, Joseph A

    2011-04-01

    Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice.

  13. Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet

    PubMed Central

    Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.

    2016-01-01

    Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998

  14. Insulin Resistance, Metabolic Syndrome, and Polycystic Ovary Syndrome in Obese Youth.

    PubMed

    Platt, Adrienne M

    2015-07-01

    School nurses are well aware of the childhood obesity epidemic in the United States, as one in three youth are overweight or obese. Co-morbidities found in overweight or obese adults were not commonly found in youth three decades ago but are now increasingly "normal" as the obesity epidemic continues to evolve. This article is the second of six related articles discussing the co-morbidities of childhood obesity and discusses the complex association between obesity and insulin resistance, metabolic syndrome, and polycystic ovary syndrome. Insulin resistance increases up to 50% during puberty, which may help to explain why youth are more likely to develop co-morbidities as teens. Treatment of these disorders is focused on changing lifestyle habits, as a child cannot change his or her pubertal progression, ethnicity, or family history. School nurses and other personnel can assist youth with insulin resistance, metabolic syndrome, and polycystic ovary syndrome by supporting their efforts to make changes, reinforcing that insulin resistance is not necessarily type 2 diabetes even if the child is taking medication, and intervening with negative peer pressure. © 2015 The Author(s).

  15. Partial Reversal of Obesity-Induced Insulin Resistance Owing to Anti-Inflammatory Immunomodulatory Potential of Flaxseed Oil.

    PubMed

    Bashir, Samina; Ali, Shakir; Khan, Farah

    2015-01-01

    The present study was designed to assess the potential of supplementation of diet with Flaxseed (Linum usitatissimum, L.) oil (FXO), on obesity-related inflammation and reversal of obesity-induced insulin resistance. Swiss Albino mice, C57bl/6 mice and co-culture of 3T3-L1 adipocytes - RAW 264.7 macrophages to mimick obese adipose tissue environment were used for the study. Oral gavage of FXO at concentrations of 4, 8 or 16 mg/kg body weight (bwt) for 4 weeks or high-fat diet (HFD, 60% energy as fat) supplemented with dietary FXO (4, 8 or 16 mg/kg bwt) was given to the mice. FXO was characterised using gas chromatography - mass spectrometry. FXO supplemented HFD-fed mice (4 mg/kg bwt exhibited reduced adiposity index, serum glucose levels and triglycerides (8 and 16 mg/kg bwt) and improvement in insulin sensitisation (4, 8 and 16 mg/kg bwt) when compared with HFD mice. The co-culture showed a dose-dependent shift in cytokines towards anti-inflammatory (IL-4) state, with a decrease in pro-inflammatory TNF-α (p < 0.05). For immunomodulatory studies a dose-dependent increase (p < 0.05) was observed in antigen-specific levels of Th2 (IL-4) cytokine, serum anti-ova IgG1 and IgE levels. Suppression in anti-ova IgG2a, IgG2b, and IgG3 and antigen-specific Th1 cytokines like TNF-α and IFN-γ significantly (p < 0.05) was observed at 16 mg/kg bwt dosage. The results indicate that FXO exhibits an anti-inflammatory immunomodulatory potential and may partially relieve symptoms of obesity-associated insulin resistance.

  16. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  17. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  18. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  19. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  20. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  1. Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice.

    PubMed

    Rancoule, C; Attané, C; Grès, S; Fournel, A; Dusaulcy, R; Bertrand, C; Vinel, C; Tréguer, K; Prentki, M; Valet, P; Saulnier-Blache, J S

    2013-06-01

    Lysophosphatidic acid (LPA) is a lipid mediator produced by adipocytes that acts via specific G-protein-coupled receptors; its synthesis is modulated in obesity. We previously reported that reducing adipocyte LPA production in high-fat diet (HFD)-fed obese mice is associated with improved glucose tolerance, suggesting a negative impact of LPA on glucose homeostasis. Here, our aim was to test this hypothesis. First, glucose tolerance and plasma insulin were assessed after acute (30 min) injection of LPA (50 mg/kg) or of the LPA1/LPA3 receptor antagonist Ki16425 (5 mg kg(-1) day(-1), i.p.) in non-obese mice fed a normal diet (ND) and in obese/prediabetic (defined as glucose-intolerant) HFD mice. Glucose and insulin tolerance, pancreas morphology, glycogen storage, glucose oxidation and glucose transport were then studied after chronic treatment (3 weeks) of HFD mice with Ki16425. In ND and HFD mice, LPA acutely impaired glucose tolerance by inhibiting glucose-induced insulin secretion. These effects were blocked by pre-injection of Ki16425 (5 mg/kg, i.p.). Inhibition of glucose-induced insulin secretion by LPA also occurred in isolated mouse islets. Plasma LPA was higher in HFD mice than in ND mice and Ki16425 transiently improved glucose tolerance. The beneficial effect of Ki16425 became permanent after chronic treatment and was associated with increased pancreatic islet mass and higher fasting insulinaemia. Chronic treatment with Ki16425 also improved insulin tolerance and increased liver glycogen storage and basal glucose use in skeletal muscle. Exogenous and endogenous LPA exerts a deleterious effect on glucose disposal through a reduction of plasma insulin; pharmacological blockade of LPA receptors improves glucose homeostasis in obese/prediabetic mice.

  2. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  3. Effect of FTO rs9939609 variant on insulin resistance in obese female adolescents.

    PubMed

    Iskandar, Kristy; Patria, Suryono Yudha; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina; Susilowati, Rina

    2018-05-15

    FTO rs9939609 variant has been shown to be associated with insulin resistance in Caucasian children. However, studies in Asia show inconsistent findings. We investigated the association between FTO rs9939609 polymorphisms and insulin resistance in obese female adolescents in Indonesia, a genetically distinct group within Asia. A total of 78 obese female adolescents participated in this study. The risk allele (A) frequency of FTO rs9939609 variant in Indonesian obese female adolescence was 44.2%. The frequency of insulin resistance was higher in the subjects with AA (54.6%) or AT (59.6%) than the subject with TT genotype (50%), but did not statistically different (p = 0.81 and p = 0.47, respectively). The insulin resistance rate was also higher in the risk allele (A) than the non-risk allele (T) subjects (0.58 vs. 0.55), but did not statistically different (p = 0.75). There was no association between FTO rs9939609 variant and body mass index, fasting glucose level, fasting insulin level, homeostatic model assessment of insulin resistance, and waist circumference (p > 0.05). In conclusion, FTO rs9939609 variant may not be associated with insulin resistance in Indonesian obese female adolescents. A multicenter study with a larger sample size is needed to clarify these findings.

  4. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  6. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  7. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  8. Postnatal PPARdelta activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice.

    PubMed

    Bernardo, Barbara L; Wachtmann, Timothy S; Cosgrove, Patricia G; Kuhn, Max; Opsahl, Alan C; Judkins, Kyle M; Freeman, Thomas B; Hadcock, John R; LeBrasseur, Nathan K

    2010-06-25

    Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.

  9. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  10. Chardonnay grape seed flour ameliorates hepatic steatosis and insulin resistance via altered hepatic gene expression for oxidative stress, inflammation, and lipid and ceramide synthesis in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    Diet-induced obese (DIO) mice were fed high-fat (HF) diets containing either partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd) or microcrystalline cellulose (MCC, control) for 5 weeks in order to determine whether ChrSd improved insulin resistance and the pathogenesis of hepatic ...

  11. Insulin Resistance and Hunger in Childhood Obesity: A Patient and Physician's Perspective.

    PubMed

    Scinta, Wendy; Bayes, Harold; Smith, Nicole

    2017-10-01

    This article is co-authored by the mother of a child with obesity and insulin resistance, who gives her perspective. It is also co-authored by the treating Obesity Medicine clinician and an investigator in obesity clinical research (both certified in Obesity Medicine), who give their perspectives. The discussion focuses upon the potential clinical use of metformin in managing young patients with obesity and insulin resistance. The article integrates what is scientifically known about the mechanisms of actions of metformin and how these mechanisms are reflected in the clinical response of young patients.

  12. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice.

    PubMed

    Evers-van Gogh, Inkie J A; Oteng, Antwi-Boasiako; Alex, Sheril; Hamers, Nicole; Catoire, Milene; Stienstra, Rinke; Kalkhoven, Eric; Kersten, Sander

    2016-03-01

    Obesity is associated with a state of chronic low-grade inflammation that is believed to contribute to the development of skeletal muscle insulin resistance. However, the extent to which local and systemic elevation of cytokines, such as monocyte chemoattractant protein 1 (MCP-1), interferes with the action of insulin and promotes insulin resistance and glucose intolerance in muscle remains unclear. Here, we aim to investigate the effect of muscle-specific overexpression of MCP-1 on insulin sensitivity and glucose tolerance in lean and obese mice. We used Mck-Mcp-1 transgenic (Tg) mice characterised by muscle-specific overexpression of Mcp-1 (also known as Ccl2) and elevated plasma MCP-1 levels. Mice were fed either chow or high-fat diet for 10 weeks. Numerous metabolic variables were measured, including glucose and insulin tolerance tests, muscle insulin signalling and plasma NEFA, triacylglycerol, cholesterol, glucose and insulin. Despite clearly promoting skeletal muscle inflammation, muscle-specific overexpression of Mcp-1 did not influence glucose tolerance or insulin sensitivity in either lean chow-fed or diet-induced obese mice. In addition, plasma NEFA, triacylglycerol, cholesterol, glucose and insulin were not affected by MCP-1 overexpression. Finally, in vivo insulin-induced Akt phosphorylation in skeletal muscle did not differ between Mcp-1-Tg and wild-type mice. We show that increased MCP-1 production in skeletal muscle and concomitant elevated MCP-1 levels in plasma promote inflammation in skeletal muscle but do not influence insulin signalling and have no effect on insulin resistance and glucose tolerance in lean and obese mice. Overall, our data argue against MCP-1 promoting insulin resistance in skeletal muscle and raise questions about the impact of inflammation on insulin sensitivity in muscle.

  14. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    PubMed

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  15. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-05

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  18. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  19. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  20. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-02-26

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.

  1. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  2. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  3. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    PubMed

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  5. Long-term ingestion of monosodium L-glutamate did not induce obesity, dyslipidemia or insulin resistance: a two-generation study in mice.

    PubMed

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Smriga, Miro; Sakai, Ryosei

    2013-01-01

    The use of monosodium glutamate (MSG) as a flavor enhancer spans more than 100 y and there are many studies indicating the safety of general use of MSG. Recently, however, Collison et al. (2010) reported a two-generation study with a low dose of MSG that caused abdominal obesity, insulin resistance and dyslipidemia in mice. Due to public health concerns over metabolic syndrome, their report merits careful analysis. The present study attempted to repeat the Collison et al. findings. Groups of male or female C57BL/6J mice were fed a control diet or one supplemented with high-fructose corn syrup (HFCS) at a level of 20%. Drinking water control was provided or treatment groups were given 0.064% MSG solution (w/v). Diets and MSG administration continued throughout mating and during gestation and lactation periods. To further investigate the effects of ingestion of MSG, the offspring were continued on the same dosing conditions until they reached 32 wk of age. MSG administration in mice fed a normal or a HFCS diet throughout gestation and for 32 wk after birth, did not affect growth, girth size, abdominal fat weight or body composition. This study reports that MSG did not trigger insulin resistance, dyslipidemia or hepatic steatosis, regardless of the diet, not reproducing the results of the above-mentioned study (Collison et al., 2010).

  6. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  7. Effect of android to gynoid fat ratio on insulin resistance in obese youth.

    PubMed

    Aucouturier, Julien; Meyer, Martine; Thivel, David; Taillardat, Michel; Duché, Pascale

    2009-09-01

    Upper body fat distribution is associated with the early development of insulin resistance in obese children and adolescents. To determine if an android to gynoid fat ratio is associated with the severity of insulin resistance in obese children and adolescents, whereas peripheral subcutaneous fat may have a protective effect against insulin resistance. The pediatric department of University Hospital, Clermont-Ferrand, France. A retrospective analysis using data from medical consultations between January 2005 and January 2007. Data from 66 obese children and adolescents coming to the hospital for medical consultation were used in this study. Subjects were stratified into tertiles of android to gynoid fat ratio determined by dual-energy x-ray absorptiometry. Insulin resistance was assessed by the homeostasis model of insulin resistance (HOMA-IR) index. There were no differences in weight, body mass index, and body fat percentage between tertiles. Values of HOMA-IR were significantly increased in the 2 higher tertiles (mean [SD], tertile 2, 2.73 [1.41]; tertile 3, 2.89 [1.28]) compared with the lower tertile (tertile 1, 1.67 [1.24]) of android to gynoid fat ratio (P < .001). The HOMA-IR value was significantly associated with android to gynoid fat ratio (r = 0.35; P < .01). Android fat distribution is associated with an increased insulin resistance in obese children and adolescents. An android to gynoid fat ratio based on dual-energy x-ray absorptiometry measurements is a useful and simple technique to assess distribution of body fat associated with an increased risk of insulin resistance.

  8. Adipocyte-specific DKO of Lkb1 and mTOR protects mice against HFD-induced obesity, but results in insulin resistance.

    PubMed

    Xiong, Yan; Xu, Ziye; Wang, Yizhen; Kuang, Shihuan; Shan, Tizhong

    2018-06-01

    Liver kinase B1 (Lkb1) and mammalian target of rapamycin (mTOR) are key regulators of energy metabolism and cell growth. We have previously reported that adipocyte-specific KO of Lkb1 or mTOR in mice results in distinct developmental and metabolic phenotypes. Here, we aimed to assess how genetic KO of both Lkb1 and mTOR affects adipose tissue development and function in energy homeostasis. We used Adiponectin-Cre to drive adipocyte-specific double KO (DKO) of Lkb1 and mTOR in mice. We performed indirect calorimetry, glucose and insulin tolerance tests, and gene expression assays on the DKO and WT mice. We found that DKO of Lkb1 and mTOR results in reductions of brown adipose tissue and inguinal white adipose tissue mass, but in increases of liver mass. Notably, the DKO mice developed fatty liver and insulin resistance, but displayed improved glucose tolerance after high-fat diet (HFD)-feeding. Interestingly, the DKO mice were protected from HFD-induced obesity due to their higher energy expenditure and lower expression levels of adipogenic genes (CCAAT/enhancer binding protein α and PPARγ) compared with WT mice. These results together indicate that, compared with Lkb1 or mTOR single KOs, Lkb1/mTOR DKO in adipocytes results in overlapping and distinct metabolic phenotypes, and mTOR KO largely overrides the effect of Lkb1 KO. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. High-fat diet-induced obesity and insulin resistance were ameliorated via enhanced fecal bile acid excretion in tumor necrosis factor-alpha receptor knockout mice.

    PubMed

    Yamato, Mayumi; Shiba, Takeshi; Ide, Tomomi; Seri, Naoko; Kudo, Wataru; Ando, Makoto; Yamada, Ken-ichi; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is one of the main mediators of inflammatory response activated by fatty acids in obesity, and this signaling through TNF-α receptor (TNFR) is responsible for obesity-associated insulin resistance. Recently, TNF-α has shown to affect lipid metabolism including the regulation of lipase activity and bile acid synthesis. However, there is scanty in vivo evidence for the involvement of TNF-α in this process, and the mechanistic role of TNFR remains unclear. In this study, TNFR2 knockout mice (R2KO) and wild-type (WT) mice were fed commercial normal diet (ND) or high-fat diet (HFD) for 8 weeks. In R2KO/HFD mice, the increase in body weight and the accumulation of fat were significantly ameliorated compared with WT/HFD mice in association with the decrease in plasma total cholesterol (137.7±3.1 vs. 98.6±3.1 mg/dL, P<0.005), glucose (221.9±14.7 vs. 167.3±8.1 mg/dL, P<0.01), and insulin (5.1±0.3 vs. 3.4±0.3 ng/mL, P<0.05). Fecal excretion of lipid contents was significantly increased in R2KO mice. In R2KO/HFD mice, the decrease in hepatic cholesterol-7a-hydroxylase activity, the rate-limiting enzyme in bile acid synthesis, was inhibited (1.7±0.2 vs. 8.1±1.0 pmol/min/mg protein, P<0.01). These results suggested that HFD-induced obesity with metabolic derangements could be ameliorated in mice lacking TNF-α receptor 2 via increasing fecal bile acid and lipid content excretion. Therefore, TNF-α signaling through TNFR2 is essentially involved in the bile acid synthesis and excretion of lipids, resulting in its beneficial effects.

  10. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  11. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  12. Zingiber mioga reduces weight gain, insulin resistance and hepatic gluconeogenesis in diet-induced obese mice

    PubMed Central

    LEE, DA-HYE; AHN, JIYUN; JANG, YOUNG JIN; HA, TAE-YOUL; JUNG, CHANG HWA

    2016-01-01

    Zingiber mioga is a perennial herb belonging to the ginger family (Zingiberaceae) that is used medicinally to treat cough and rheumatism in China and consumed throughout Japan. The aim of the present study was to investigate the anti-obesity effects of Z. mioga following extraction with distilled water or 70% ethanol. In 3T3-L1 preadipocyte cells, Z. mioga water extract (ZMW) markedly inhibited adipogenesis, whereas the ethanol extract had no effect. In addition, we conducted ZMW feeding experiments (0.25 or 0.5% ZMW) in high-fat diet (HFD)-fed mice to examine the anti-obesity effects of Z. mioga in vivo. Body weight and serum triglyceride and cholesterol levels significantly decreased in the HFD + ZMW 0.5% group. Notably, ZMW decreased liver weight but not adipose tissue weight. Furthermore, insulin resistance and hepatic mRNA expression of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and G6Pase, were improved in the HFD + ZMW 0.5% group. Furthermore, ZMW treatment decreased hepatic lipogenic gene expression; however, it did not alter adipogenesis in fat tissue, suggesting that ZMW inhibits hepatosteatosis through the suppression of lipogenesis. ZMW improved HFD-induced hepatic inflammation. Collectively, the present findings suggest that ZMW may serve as a new and promising strategy for the treatment of hepatosteatosis. PMID:27347064

  13. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    PubMed

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    PubMed

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  16. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  17. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    PubMed

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0

  18. Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88.

    PubMed

    Castoldi, Angela; Andrade-Oliveira, Vinicius; Aguiar, Cristhiane Favero; Amano, Mariane Tami; Lee, Jennifer; Miyagi, Marcelli Terumi; Latância, Marcela Teatin; Braga, Tarcio Teodoro; da Silva, Marina Burgos; Ignácio, Aline; Carola Correia Lima, Joanna Darck; Loures, Flavio V; Albuquerque, José Antonio T; Macêdo, Marina Barguil; Almeida, Rafael Ribeiro; Gaiarsa, Jonas W; Luévano-Martínez, Luis A; Belchior, Thiago; Hiyane, Meire Ioshie; Brown, Gordon D; Mori, Marcelo A; Hoffmann, Christian; Seelaender, Marília; Festuccia, Willian T; Moraes-Vieira, Pedro Manoel; Câmara, Niels Olsen Saraiva

    2017-06-13

    The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)-fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow- and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have therapeutic implications as a biomarker for metabolic dysregulation in humans. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women

    PubMed Central

    Zaki, Moushira; Basha, Walaa; Reyad, Hanaa; Mohamed, Ramy; Hassan, Naglaa; Kholousi, Shams

    2018-01-01

    BACKGROUND: Myeloperoxidase (MPO) is an enzyme involved in the pathogenesis of several diseases. AIM: The current study aimed to investigate serum MPO levels in obese Egyptian women and assess its relation with insulin resistance (IR) and other biochemical risk parameters. METHODS: The study included 80 obese women and 50 age-and-sex-matched healthy controls. Insulin resistance (IR) was evaluated by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Serum MPO, fasting glucose, insulin and blood lipids and anthropometry were measured. Obese cases were divided into three groups based on MPO tertiles. ROC analysis was performed to obtain the optimal cut-off values of MPO to predicate IR in obese women. RESULTS: The mean serum MPO was significantly higher in obese cases than controls. Cases in the highest MPO tertile had higher HOMA-IR, blood lipids and pressure levels compared with those in the lower tertile. The cutoff point of MPO was > 87.8 (ng/mL) and area under curves was 0.82 (p < 0.01) for diagnosis of IR. MPO levels were higher in obese Egyptian women than healthy controls. CONCLUSION: Elevation of MPO was associated with abnormal metabolic parameters. MPO might be used as an earlier biomarker for IR and metabolic disturbance in obese women. PMID:29731928

  20. Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease.

    PubMed

    Yang, Hye Ran; Chang, Eun Jae

    2016-01-01

    The aim of this study was to evaluate the influence of body composition, especially distribution of body fat, and insulin resistance on nonalcoholic fatty liver disease (NAFLD) in obese children. One hundred obese children (66 boys, 34 girls) with (n=60) and without NAFLD (n=40) were assessed. Anthropometry, laboratory tests, abdominal ultrasonography, and dual energy x-ray absorption metry (DXA) were evaluated in all subjects. Subject age and measurements of liver enzymes, γ- glutamyl transpeptidase (γGT), uric acid, high-density lipoprotein cholesterol, and insulin resistance were significantly different between the non-NAFLD group and NAFLD group. Body fat and trunk fat percentage were significantly different between the two groups (p<0.001 and p=0.003), whereas extremity fat percentage was not (p=0.683). Insulin resistance correlated significantly with body fat and trunk fat percentages, age, liver enzymes, γGT, and uric acid in obese children. Multiple logistic regression analysis indicated that insulin resistance and trunk fat percentage significantly affected the development of NAFLD in obese children. Body fat, especially abdominal fat, influences the development of insulin resistance and subsequent NAFLD in obese children. Therefore, body composition measurement using DXA, in conjunction with biochemical tests, may be beneficial in evaluating obese children with NAFLD.

  1. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  2. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver

    PubMed Central

    Li, Yu; Xu, Shanqin; Giles, Amber; Nakamura, Kazuto; Lee, Jong Woo; Hou, Xiuyun; Donmez, Gizem; Li, Ji; Luo, Zhijun; Walsh, Kenneth; Guarente, Leonard; Zang, Mengwei

    2011-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of human type 2 diabetes (T2DM). Although SIRT1 has a therapeutic effect on metabolic deterioration in T2DM, the precise mechanisms by which SIRT1 improves insulin resistance remain unclear. Here, we demonstrate that adenovirus-mediated overexpression of SIRT1 in the liver of diet-induced insulin-resistant low-density lipoprotein receptor-deficient mice and of genetically obese ob/ob mice attenuates hepatic steatosis and ameliorates systemic insulin resistance. These beneficial effects were associated with decreased mammalian target of rapamycin complex 1 (mTORC1) activity, inhibited the unfolded protein response (UPR), and enhanced insulin receptor signaling in the liver, leading to decreased hepatic gluconeogenesis and improved glucose tolerance. The tunicamycin-induced splicing of X-box binding protein-1 and expression of GRP78 and CHOP were reduced by resveratrol in cultured cells in a SIRT1-dependent manner. Conversely, SIRT1-deficient mouse embryonic fibroblasts challenged with tunicamycin exhibited markedly increased mTORC1 activity and impaired ER homeostasi and insulin signaling. These effects were abolished by mTORC1 inhibition by rapamycin in human HepG2 cells. These studies indicate that SIRT1 serves as a negative regulator of UPR signaling in T2DM and that SIRT1 attenuates hepatic steatosis, ameliorates insulin resistance, and restores glucose homeostasis, largely through the inhibition of mTORC1 and ER stress.—Li, Y., Xu, S., Giles, A., Nakamura, K., Lee, J. W., Hou, X., Donmez, G., Li, J., Luo, Z., Walsh, K., Guarente, L., Zang, M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. PMID:21321189

  3. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction.

    PubMed

    Hua, Xu; Cao, Xin-Yuan; Wang, Xiao-Li; Sun, Peng; Chen, Ling

    2017-11-01

    Exposure to triclosan (TCS), an antibacterial agent, during pregnancy is associated with hypothyroxinemia and decreases in placental glucose transporter expression and activity. The objective of this study was to investigate the influence of TCS on glucose homeostasis and insulin sensitivity in gestational mice (G-mice) and nongestational female mice (Ng-mice) as a control. Herein, we show that the exposure of G-mice to TCS (8 mg/kg) from gestational day (GD) 5 to GD17 significantly increased their levels of fasting plasma glucose and serum insulin, and insulin content in pancreatic β-cells with reduced homeostasis model assessment (HOMA)-β index and increased HOMA-IR index. Area under curve (AUC) of glucose and insulin tolerance tests in TCS (8 mg/kg)-treated G-mice were markedly larger than controls. When compared with controls, TCS (8 mg/kg)-treated G-mice showed a significant decrease in the levels of thyroxine and triiodothyroninelevels, PPARγ and glucose transporter 4 (GLUT4) expression, and Akt phosphorylation in adipose tissue and muscle. Replacement of L-thyroxine in TCS (8 mg/kg)-treated G-mice corrected their insulin resistance and recovered the levels of insulin, PPARγ and GLUT4 expression, and Akt phosphorylation. Activation of PPARγ by administration of rosiglitazone recovered the decrease in Akt phosphorylation, but not GLUT4 expression. Although exposure to TCS (8 mg/kg) in Ng-mice reduced thyroid hormones levels, it did not cause the insulin resistance or affect PPARγ and GLUT4 expression, and Akt phosphorylation. The findings indicate that the exposure of gestational mice to TCS (≥8 mg/kg) results in insulin resistance via thyroid hormones reduction. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance.

    PubMed

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2016-05-24

    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  5. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice.

    PubMed

    Jung, Un Ju; Cho, Yun-Young; Choi, Myung-Sook

    2016-05-19

    Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver.

  6. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    PubMed

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Obesity-related insulin resistance in adolescents: a systematic review and meta-analysis of observational studies.

    PubMed

    Thota, P; Perez-Lopez, F R; Benites-Zapata, V A; Pasupuleti, V; Hernandez, A V

    2017-03-01

    Insulin resistance is common among obese adolescents; however, the extent of this problem is not clear. We conducted a systematic review of PubMed-Medline, CINAHL, The Web of Science, EMBASE and Scopus for observational studies evaluating components defining insulin resistance (insulin, C-peptide and homeostatic model assessment-insulin resistance [HOMA-IR]) in obese adolescents (12-18 years) versus non-obese adolescents. Our systematic review and meta-analysis followed the PRISMA guidelines. Data were combined using a random-effects model and summary statistics were calculated using the mean differences (MDs). 31 studies were included (n = 8655). In 26 studies, fasting insulin levels were higher in obese adolescents when compared to non-obese adolescents (MD = 64.11 pmol/L, 95%CI 49.48-78.75, p < 0.00001). In three studies, fasting C-peptide levels were higher in obese adolescents when compared to non-obese adolescents (MD = 0.29 nmol/L, 95%CI 0.22-0.36, p < 0.00001). In 24 studies, HOMA-IR values were higher in obese adolescents when compared to non-obese adolescents (MD = 2.22, 95%CI 1.78-2.67, p < 0.00001). Heterogeneity of effects among studies was moderate to high. Subgroup analyses showed similar results to the main analyses. Circulating insulin and C-peptide levels and HOMA-IR values were significantly higher in obese adolescents compared to those non-obese.

  8. Chromium (D-phenylalanine)3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice.

    PubMed

    Dong, Feng; Kandadi, Machender Reddy; Ren, Jun; Sreejayan, Nair

    2008-10-01

    Chromium has gained popularity as a nutritional supplement for diabetic and insulin-resistant subjects. This study was designed to evaluate the effect of chronic administration of a novel chromium complex of d-phenylalanine [Cr(D-phe)(3)] in insulin-resistant, sucrose-fed mice. Whole-body insulin resistance was generated in FVB mice by 9 wk of sucrose feeding, following which they were randomly assigned to be unsupplemented (S group) or to receive oral Cr(D-phe)(3) in drinking water (SCr group) at a dose of 45 mug.kg(-1).d(-1) ( approximately 3.8 mug of elemental chromium.kg(-1).d(-1)). A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received Cr(D-phe)(3), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving Cr(D-phe)(3). Chromium supplementation significantly enhanced insulin-stimulated Akt phosphorylation and membrane-associated glucose transporter-4 in skeletal muscles of sucrose-fed mice. In cultured adipocytes rendered insulin resistant by chronic exposure to high concentrations of glucose and insulin, Cr(D-phe)(3) augmented Akt phosphorylation and glucose uptake. These results indicate that dietary supplementation with Cr(D-phe)(3) may have potential beneficial effects in insulin-resistant, prediabetic conditions.

  9. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  10. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea.

  11. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  12. Sexual dimorphism in interleukin 17A and adipocytokines and their association with insulin resistance among obese adolescents in Yogyakarta, Indonesia.

    PubMed

    Susilowati, Rina; Sulistyoningrum, Dian Caturini; Witari, Ni Putu Diah; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina

    2016-12-01

    Pro-inflammatory cytokines interleukin 17A (IL-17), leptin, and adiponectin have been associated with obesity and insulin resistance. Moreover, differences in sex and ethnicity as well as plasma concentration of adipocytokines and cytokines have been associated with the risk of insulin resistance. This study was conducted to elucidate whether sex differences exist in the risk of insulin resistance in Indonesian adolescents and to determine how plasma leptin, adiponectin, and IL-17 predict insulin resistance. The study participants were 69 obese-overweight boys, 53 obese-overweight girls, 59 non-obese boys, and 50 non-obese girls aged 15-18 years. Insulin resistance was determined using the homeostatic model assessment of insulin resistance index. Plasma IL-17, leptin, and adiponectin were measured using ELISA. Data were analysed using one-way ANOVA and linear regression analysis. Odd ratios [ORs; 95% confidence intervals (CIs)] were analysed to estimate the risk of insulin resistance; the significance level was set at 95%. The OR (95% CI) for insulin resistance was higher in obese-overweight boys than in obese-overweight girls. The plasma IL-17 was higher in boys, whereas plasma adiponectin and leptin were significantly higher in girls. In all participants, obesity status and plasma leptin were the most efficient predictors of insulin resistance, whereas the IL-17 could not significantly predict insulin resistance. Sexual dimorphism exists in IL17 as well as leptin and adiponectin in adolescents. Plasma IL-17 cannot be used to predict insulin resistance in adolescents of both sex.

  13. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain.

    PubMed

    Jornayvaz, François R; Jurczak, Michael J; Lee, Hui-Young; Birkenfeld, Andreas L; Frederick, David W; Zhang, Dongyang; Zhang, Xian-Man; Samuel, Varman T; Shulman, Gerald I

    2010-11-01

    Low-carbohydrate, high-fat ketogenic diets (KD) have been suggested to be more effective in promoting weight loss than conventional caloric restriction, whereas their effect on hepatic glucose and lipid metabolism and the mechanisms by which they may promote weight loss remain controversial. The aim of this study was to explore the role of KD on liver and muscle insulin sensitivity, hepatic lipid metabolism, energy expenditure, and food intake. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in mice fed a KD or regular chow (RC). Body composition was assessed by ¹H magnetic resonance spectroscopy. Despite being 15% lighter (P < 0.001) than RC-fed mice because of a 17% increase in energy expenditure (P < 0.001), KD-fed mice manifested severe hepatic insulin resistance, as reflected by decreased suppression (0% vs. 100% in RC-fed mice, P < 0.01) of endogenous glucose production during the clamp. Hepatic insulin resistance could be attributed to a 350% increase in hepatic diacylglycerol content (P < 0.001), resulting in increased activation of PKCε (P < 0.05) and decreased insulin receptor substrate-2 tyrosine phosphorylation (P < 0.01). Food intake was 56% (P < 0.001) lower in KD-fed mice, despite similar caloric intake, and could partly be attributed to a more than threefold increase (P < 0.05) in plasma N-acylphosphatidylethanolamine concentrations. In conclusion, despite preventing weight gain in mice, KD induces hepatic insulin resistance secondary to increased hepatic diacylglycerol content. Given the key role of nonalcoholic fatty liver disease in the development of type 2 diabetes and the widespread use of KD for the treatment of obesity, these results may have potentially important clinical implications.

  14. Flavonoid-Rich Extract of Paulownia fortunei Flowers Attenuates Diet-Induced Hyperlipidemia, Hepatic Steatosis and Insulin Resistance in Obesity Mice by AMPK Pathway.

    PubMed

    Liu, Chanmin; Ma, Jieqiong; Sun, Jianmei; Cheng, Chao; Feng, Zhaojun; Jiang, Hong; Yang, Wei

    2017-08-30

    The flavonoid-rich extract from Paulownia fortunei flowers (EPF) has been reported to prevent obesity and other lipid metabolism disease. However, the mechanism of its protective effects is not yet clear. The objective of this study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of EPF in obese mice fed a high-fat diet (HFD). Male h ICR (Institute of Cancer Research) mice were fed a HFD containing or not containing the EPF (50 or 100 mg/kg) for eight weeks. EPF reduced body weight gain, lipid accumulation in livers and levels of lipid, glucose and insulin in plasma as well as reduced insulin resistance as compared with the HFD group. EPF significantly decreased serum aminotransferase activity of the HFD group. We observed that EPF administration significantly increased the level of AMP-activated kinase (AMPK) phosphorylation and prevented fat deposits in livers and HepG2 cells, but these effects were blocked by compound C (an AMPK inhibitor). The protective effects of EPF were probably associated with the decrease in HMGCR, SREBP-1c and FAS expressions and the increase in CPT1 and phosphor-IRS-1 expressions. Our results suggest that EPF might be a potential natural candidate for the treatment and/or prevention of overweight and hepatic and metabolic-related alterations induced by HFD.

  15. Flavonoid-Rich Extract of Paulownia fortunei Flowers Attenuates Diet-Induced Hyperlipidemia, Hepatic Steatosis and Insulin Resistance in Obesity Mice by AMPK Pathway

    PubMed Central

    Ma, Jieqiong; Sun, Jianmei; Cheng, Chao; Feng, Zhaojun; Jiang, Hong; Yang, Wei

    2017-01-01

    The flavonoid-rich extract from Paulownia fortunei flowers (EPF) has been reported to prevent obesity and other lipid metabolism disease. However, the mechanism of its protective effects is not yet clear. The objective of this study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of EPF in obese mice fed a high-fat diet (HFD). Male h ICR (Institute of Cancer Research) mice were fed a HFD containing or not containing the EPF (50 or 100 mg/kg) for eight weeks. EPF reduced body weight gain, lipid accumulation in livers and levels of lipid, glucose and insulin in plasma as well as reduced insulin resistance as compared with the HFD group. EPF significantly decreased serum aminotransferase activity of the HFD group. We observed that EPF administration significantly increased the level of AMP-activated kinase (AMPK) phosphorylation and prevented fat deposits in livers and HepG2 cells, but these effects were blocked by compound C (an AMPK inhibitor). The protective effects of EPF were probably associated with the decrease in HMGCR, SREBP-1c and FAS expressions and the increase in CPT1 and phosphor-IRS-1 expressions. Our results suggest that EPF might be a potential natural candidate for the treatment and/or prevention of overweight and hepatic and metabolic-related alterations induced by HFD. PMID:28867797

  16. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    PubMed

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  17. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents.

    PubMed

    Juárez-López, Carlos; Klünder-Klünder, Miguel; Medina-Bravo, Patricia; Madrigal-Azcárate, Adrián; Mass-Díaz, Eliezer; Flores-Huerta, Samuel

    2010-06-07

    Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated. Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors. Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.

  18. Long-term fermented soybean paste improves metabolic parameters associated with non-alcoholic fatty liver disease and insulin resistance in high-fat diet-induced obese mice.

    PubMed

    Kim, Min-Seok; Kim, Bobae; Park, Haryung; Ji, Yosep; Holzapfel, Wilhelm; Kim, Do-Young; Hyun, Chang-Kee

    2018-01-08

    Recently, Korean traditional fermented soybean paste, called Doenjang, has attracted attention for its protective effect against diet-related chronic diseases such as obesity and type 2 diabetes. Long-term fermented soybean pastes (LFSPs) are made by fermentation with naturally-occurring microorganisms for several months, whereas short-term fermented soybean pastes (SFSPs) are produced by shorter-time fermentation inoculated with a starter culture. Here, we demonstrate that administration of LFSP, but not SFSP, protects high-fat diet (HFD)-fed obese mice against non-alcohol fatty liver disease (NAFLD) and insulin resistance. LFSP suppressed body weight gain in parallel with reduction in fat accumulation in mesenteric adipose tissue (MAT) and the liver via modulation of MAT lipolysis and hepatic lipid uptake. LFSP-treated mice also had improved glucose tolerance and increased adiponectin levels concomitantly with enhanced AMPK activation in skeletal muscle and suppressed expression of pro-inflammatory cytokines in skeletal muscle and the liver. LFSP also attenuated HFD-induced gut permeability and lowered serum lipopolysaccharide level, providing an evidence for its probiotic effects, which was supported by the observation that treatment of a probiotic mixture of LFSP-originated Bacillus strains protected mice against HFD-induced adiposity and glucose intolerance. Our findings suggest that the intake of LFSP, but not SFSP, offers protection against NAFLD and insulin resistance, which is an effect of long-term fermentation resulting in elevated contents of active ingredients (especially flavonoids) and higher diversity and richness of Bacillus probiotic strains compared to SFSP. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    PubMed

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  20. Obese adolescent girls with polycystic ovary syndrome (PCOS) have more severe insulin resistance measured by HOMA-IR score than obese girls without PCOS.

    PubMed

    Sawathiparnich, Pairunyar; Weerakulwattana, Linda; Santiprabhob, Jeerunda; Likitmaskul, Supawadee

    2005-11-01

    The prevalence of obesity in Thai children is increasing. These individuals are at increased risks of metabolic syndrome that includes insulin resistance, type 2 diabetes mellitus (T2DM), polycystic ovary syndrome (PCOS), dyslipidemia and hypertension. PCOS has been known to be associated with insulin resistance. To compare the insulin sensitivity between obese adolescent girls with PCOS and those without PCOS. We reviewed demographic and hormonal data of 6 obese adolescent girls with PCOS and compared with 6 age, weight and BMI-matched non-PCOS controls. Each subject underwent an oral glucose tolerance test. Homeostasis model assessment of insulin resistance score (HOMA-IR score) in obese adolescent girls with PCOS was significantly higher than in girls without PCOS with median and range as follows (16.5 [3.8, 21.8] vs. 4.1 [3.3, 6.9], p = 0.04). Our study demonstrates that obese adolescent girls with PCOS have more severe insulin resistance measured by HOMA-IR score than girls without PCOS independent of the degree of obesity. Since insulin resistance is a metabolic precursor of future cardiovascular diseases, obese adolescent girls with PCOS might be at greater risk of developing cardiovascular disease in later adulthood than their non-PCOS counterparts.

  1. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  2. Effects of losartan on whole-body, skeletal muscle, and vascular insulin responses in obesity/insulin resistance without hypertension

    PubMed Central

    Lteif, AA; Chisholm, RL; Gilbert, K; Considine, RV; Mather, KJ

    2011-01-01

    Aims Renin-angiotensin system antagonists have been found to improve glucose metabolism in obese hypertensive and type 2 diabetic subjects. The mechanism of these effects is not well understood. We hypothesized that the angiotensin receptor antagonist losartan would improve insulin-mediated vasodilation, and thereby improve insulin-stimulated glucose uptake in skeletal muscle of insulin resistant subjects. Materials and Methods We studied subjects with obesity and insulin resistance but without hypertension, hypercholesterolemia or dysglycemia (age 39.0±9.6 yrs [mean±SD], BMI 33.2±5.9 kg/m2, BP 115.8±12.2/70.9±7.2 mmHg, LDL 2.1±0.5 mmol/L). Subjects were randomized to 12 weeks’ double-blind treatment with losartan 100 mg once daily (n=9) or matching placebo (n=8). Before and after treatment, under hyperinsulinemic euglycemic clamp conditions we measured whole-body insulin stimulated glucose disposal, insulin-mediated vasodilation, and insulin-stimulated leg glucose uptake by the limb balance technique. Results Whole-body insulin-stimulated glucose disposal was not significantly increased by losartan. Insulin-mediated vasodilation was augmented following both treatments (increase in leg vascular conductance: pre-treatment 0.7±0.3 L*min−1*mmHg−1[losartan, mean ±SEM] and 0.9±0.3 [placebo], post-treatment 1.0±0.4 [losartan] and 1.3±0.6 [placebo]) but not different between treatment groups (p=0.53). Insulin’s action to augment NO production and to augment endothelium-dependent vasodilation were also not improved. Leg glucose uptake was not significantly changed by treatments, and not different between groups (p=0.11). Conclusions These findings argue against the hypothesis that losartan might improve skeletal muscle glucose metabolism by improving insulin-mediated vasodilation in normotensive insulin resistant obese subjects. The metabolic benefits of angiotensin receptor blockers may require the presence of hypertension in addition to obesity

  3. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  5. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    PubMed

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  6. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.

    PubMed

    Abdulnour, Joseph; Yasari, Siham; Rabasa-Lhoret, Rémi; Faraj, May; Petrosino, Stefania; Piscitelli, Fabiana; Prud' Homme, Denis; Di Marzo, Vincenzo

    2014-01-01

    To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05). This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. © 2013 The Obesity Society.

  7. [Mechanism of BVT.2733 and pioglitazone in the improvement of insulin resistance].

    PubMed

    Xie, Yu; Zhu, Ting; Zhong, Yi; Liu, Juan; Yu, Jing; Zha, Juan-ming; DI, Wen-juan; Ding, Guo-xian

    2008-11-01

    To investigate the mechanism of BVT.2733 on insulin resistance, by using diet-induced obese (DIO) mice model. After having been balanced for 3 days, the C57BL/6J mice were randomly divided into a normal diet group and a high-fat diet (HFD) group. After 20 weeks, the obese mice were further randomly divided into an obese control group, a BVT.2733 group and a pioglitazone (PGZ) group and they were orally administered with placebo, BVT.2733 and PGZ separately for two weeks. Adiponectin and leptin mRNA expression levels from adipose tissue were analyzed with real-time quantitative PCR. The levels of plasma glucose, serum insulin and adiponectin were measured with biochemical technology, radioimmunoassay and ELISA. Adipocyte sizes were observed with immunohistochemistry. The body weight, plasma glucose and serum insulin levels raised (P < 0.05) in the HFD group and the adipocyte sizes were bigger. Serum insulin levels significantly reduced (P < 0.05) and adipocyte sizes reduced, while plasma adiponectin level raised (P < 0.01) in the two treatment groups as compared with those in obese controls. Both the mRNA expressions of adiponectin and leptin upregulated (P < 0.05) in the PGZ group, but their expressions in the BVT.2733 group did not alter significantly. The body weight of the mice reduced significantly in the BVT.2733 group. BVT.2733 can reduce body weight significantly and improve insulin resistance, but cannot influence the expression of adipocytokines.

  8. Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice

    PubMed Central

    Seo, Kun-Ho; Bartley, Glenn E.; Tam, Christina; Kim, Hong-Seok; Kim, Dong-Hyeon; Chon, Jung-Whan; Yokoyama, Wallace

    2016-01-01

    To identify differentially expressed hepatic genes contributing to the improvement of high-fat (HF) diet-induced hepatic steatosis and insulin resistance following supplementation of partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd), diet-induced obese (DIO) mice were fed HF diets containing either ChrSd or microcrystalline cellulose (MCC, control) for 5 weeks. The 2-h insulin area under the curve was significantly lowered by ChrSd, indicating that ChrSd improved insulin sensitivity. ChrSd intake also significantly reduced body weight gain, liver and adipose tissue weight, hepatic lipid content, and plasma low-density lipoprotein (LDL)-cholesterol, despite a significant increase in food intake. Exon microarray analysis of hepatic gene expression revealed down-regulation of genes related to triglyceride and ceramide synthesis, immune response, oxidative stress, and inflammation and upregulation of genes related to fatty acid oxidation, cholesterol, and bile acid synthesis. In conclusion, the effects of ChrSd supplementation in a HF diet on weight gain, insulin resistance, and progression of hepatic steatosis in DIO mice were associated with modulation of hepatic genes related to oxidative stress, inflammation, ceramide synthesis, and lipid and cholesterol metabolism. PMID:27977712

  9. Vitamin D deficiency and insulin resistance as risk factors for dyslipidemia in obese children.

    PubMed

    Erol, Meltem; Bostan Gayret, Özlem; Hamilçıkan, Şahin; Can, Emrah; Yiğit, Özgu L

    2017-04-01

    Dyslipidemia is one of the major complications of obesity; vitamin D deficiency and insulin resistance are attending metabolic complications in dyslipidemic obese children. Objective. To determine if vitamin D deficiency and insulin resistance are risk factors for dyslipidemia in obese children. This study was conducted in the Department of Pediatrics at Bagcilar Training and Research Hospital in Istanbul, Turkey between 2014 and 2015. Obese patients whose age range was 8-14 were included in the study. The serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol, fasting glucose, insulin, alanine aminotransferase, vitamin D levels were measured; a liver ultrasonography was performed. Homeostatic model assessment (HOMA-IR), was used to calculate insulin resistance. 108 obese children were included; 39 (36.11%) had dyslipidemia. The average fasting blood glucose (88.74 ± 7.58 vs. 95.31 ± 6.82; p= 0.0001), insulin level (14.71 ± 12.44 vs. 24.39 ± 15.02; p= 0.0001) and alanine aminotransferase level (23.45 ± 11.18 vs. 30.4 ± 18.95; p= 0.018) were significantly higher in the children with dyslipidemia. In the dyslipidemic obese children, the average hepatosteatosis rate and HOMA-IR level were higher; 28 (71.9%) had hepatosteatosis, 37 (94.87%) had insulin resistance; the vitamin D levels were <20 ng/ml in 69.3%. Vitamin D deficiency was significantly more common (p= 0.033). The multivariate regression analysis confirmed that the increase in the HOMA-IR level (p= 0.015) and the low vitamin D level (p= 0.04) were important risk factors for dyslipidemia. Obese children in our region exhibit low vitamin D and increased HOMA-IR levels, which are efficient risk factors of dyslipidemia.

  10. Defective calcium inactivation causes long QT in obese insulin-resistant rat.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Castranova, Vincent; Frisbee, Jefferson C; Yu, Han-Gang

    2012-02-15

    The majority of diabetic patients who are overweight or obese die of heart disease. We suspect that the obesity-induced insulin resistance may lead to abnormal cardiac electrophysiology. We tested this hypothesis by studying an obese insulin-resistant rat model, the obese Zucker rat (OZR). Compared with the age-matched control, lean Zucker rat (LZR), OZR of 16-17 wk old exhibited an increase in QTc interval, action potential duration, and cell capacitance. Furthermore, the L-type calcium current (I(CaL)) in OZR exhibited defective inactivation and lost the complete inactivation back to the closed state, leading to increased Ca(2+) influx. The current density of I(CaL) was reduced in OZR, whereas the threshold activation and the current-voltage relationship of I(CaL) were not significantly altered. L-type Ba(2+) current (I(BaL)) in OZR also exhibited defective inactivation, and steady-state inactivation was not significantly altered. However, the current-voltage relationship and activation threshold of I(BaL) in OZR exhibited a depolarized shift compared with LZR. The total and membrane protein expression levels of Cav1.2 [pore-forming subunit of L-type calcium channels (LTCC)], but not the insulin receptors, were decreased in OZR. The insulin receptor was found to be associated with the Cav1.2, which was weakened in OZR. The total protein expression of calmodulin was reduced, but that of Cavβ2 subunit was not altered in OZR. Together, these results suggested that the 16- to 17-wk-old OZR has 1) developed cardiac hypertrophy, 2) exhibited altered electrophysiology manifested by the prolonged QTc interval, 3) increased duration of action potential in isolated ventricular myocytes, 4) defective inactivation of I(CaL) and I(BaL), 5) weakened the association of LTCC with the insulin receptor, and 6) decreased protein expression of Cav1.2 and calmodulin. These results also provided mechanistic insights into a remodeled cardiac electrophysiology under the condition of

  11. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats☆

    PubMed Central

    Castro, Gisele; C. Areias, Maria Fernanda; Weissmann, Lais; Quaresma, Paula G.F.; Katashima, Carlos K.; Saad, Mario J.A.; Prada, Patricia O.

    2013-01-01

    Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala. PMID:24251109

  12. The early origins of obesity and insulin resistance: timing, programming and mechanisms.

    PubMed

    Nicholas, L M; Morrison, J L; Rattanatray, L; Zhang, S; Ozanne, S E; McMillen, I C

    2016-02-01

    Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.

  13. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    PubMed Central

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-01-01

    Background and Objectives: High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. Subjects/Methods: We investigated the metabolic consequences of mice fed a (a) regular diet, (b) ‘Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80+CD11c+ macrophages and anti-inflammatory F4/80+CD11c− macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. Results: We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing ‘Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to ‘Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Conclusion: Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose

  14. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance.

    PubMed

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-12-23

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. We investigated the metabolic consequences of mice fed a (a) regular diet, (b) 'Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80(+)CD11c(+) macrophages and anti-inflammatory F4/80(+)CD11c(-) macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing 'Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to 'Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose inflammation and insulin resistance, suggesting that GHS

  15. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  16. Association between insulin resistance and preeclampsia in obese non-diabetic women receiving metformin.

    PubMed

    Balani, Jyoti; Hyer, Steve; Syngelaki, Argyro; Akolekar, Ranjit; Nicolaides, Kypros H; Johnson, Antoinette; Shehata, Hassan

    2017-12-01

    To examine whether the reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is mediated by changes in insulin resistance. This was a secondary analysis of obese pregnant women in a randomised trial (MOP trial). Fasting plasma glucose and insulin were measured in 384 of the 400 women who participated in the MOP trial. Homeostasis model assessment of insulin resistance (HOMA-IR) was compared in the metformin and placebo groups and in those that developed preeclampsia versus those that did not develop preeclampsia. At 28 weeks, median HOMA-IR was significantly lower in the metformin group. Logistic regression analysis demonstrated that there was a significant contribution in the prediction of preeclampsia from maternal history of chronic hypertension and gestational weight gain, but not HOMA-IR either at randomisation ( p  = 0.514) or at 28 weeks ( p  = 0.643). Reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is unlikely to be due to changes in insulin resistance.

  17. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance.

    PubMed

    Nawrocki, Andrea R; Rodriguez, Carlos G; Toolan, Dawn M; Price, Olga; Henry, Melanie; Forrest, Gail; Szeto, Daphne; Keohane, Carol Ann; Pan, Yie; Smith, Karen M; Raheem, Izzat T; Cox, Christopher D; Hwa, Joyce; Renger, John J; Smith, Sean M

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.

  18. Fatty liver disease, glucose tolerance and insulin resistance in obese adolescents.

    PubMed

    Slyper, A H; Rosenberg, H; Kabra, A; Huang, W-M; Blech, B; Matsumura, M M

    2015-12-01

    Adult studies suggest that intra-hepatic fat predicts 2-h blood glucose levels and type 2 diabetes, and may have a role in the development of insulin resistance. Our study objective was to explore relationships between intra-hepatic fat and (i) blood glucose levels and (ii) insulin resistance determined by homeostasis model assessment (HOMA) in a group of obese adolescents. Subjects were 61 obese non-diabetic male and female volunteers aged 12-18 years inclusive with a body mass index >95th percentile for age and 2-h blood glucose <200 mg dL(-1) . Each subject underwent 2-h glucose tolerance testing and measurement of haemoglobin A1c, ultrasensitive C-reactive protein and fasting insulin. Visceral, subcutaneous abdominal and intra-hepatic fat were determined by magnetic resonance imaging. Intra-hepatic fat was measured by gradient echo chemical shift imaging. Alanine aminotransferase levels and hepatic phase difference were not significant correlates of fasting or 2-h glucose. In a multiple regression model including hepatic phase difference and visceral fat volume, visceral fat volume was the sole predictor of HOMA. This study provides no support to the notion that intra-hepatic fat has a role in the regulation of fasting blood glucose, 2-h postprandial blood glucose or systemic insulin resistance. © 2014 World Obesity.

  19. Obesity is the main determinant of insulin resistance more than the circulating pro-inflammatory cytokines levels in rheumatoid arthritis patients.

    PubMed

    Castillo-Hernandez, Jesus; Maldonado-Cervantes, Martha Imelda; Reyes, Juan Pablo; Patiño-Marin, Nuria; Maldonado-Cervantes, Enrique; Solorzano-Rodriguez, Claudia; de la Cruz Mendoza, Esperanza; Alvarado-Sanchez, Brenda

    Systemic blockade of TNF-α in Rheumatoid arthritis with insulin resistance seems to produce more improvement in insulin sensitivity in normal weight patients with Rheumatoid arthritis than in obese patients with Rheumatoid arthritis, suggesting that systemic-inflammation and obesity are independent risk factors for insulin resistance in Rheumatoid arthritis patients. To evaluate the insulin resistance in: normal weight patients with Rheumatoid arthritis, overweight patients with Rheumatoid arthritis, obese Rheumatoid arthritis patients, and matched control subjects with normal weight and obesity; and its association with major cytokines involved in the pathogenesis of the disease. Assessments included: body mass index, insulin resistance by Homeostasis Model Assessment, ELISA method, and enzymatic colorimetric assay. Outstanding results from these studies include: (1) In Rheumatoid arthritis patients, insulin resistance was well correlated with body mass index, but not with levels of serum cytokines. In fact, levels of cytokines were similar in all Rheumatoid arthritis patients, regardless of being obese, overweight or normal weight (2) Insulin resistance was significantly higher in Rheumatoid arthritis with normal weight than in normal weight (3) No significant difference was observed between insulin resistances of Rheumatoid arthritis with obesity and obesity (4) As expected, levels of circulating cytokines were significantly higher in Rheumatoid arthritis patients than in obesity. Obesity appears to be a dominant condition above inflammation to produce IR in RA patients. The dissociation of the inflammation and obesity components to produce IR suggests the need of an independent therapeutic strategy in obese patients with RA. Copyright © 2017. Published by Elsevier Editora Ltda.

  20. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  1. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    PubMed Central

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P.; De Geest, Bart

    2017-01-01

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001) was decreased, interstitial fibrosis was 1.88-fold (p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy. PMID:28718833

  2. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    PubMed

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density ( p < 0.001) was decreased, interstitial fibrosis was 1.88-fold ( p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  3. [Studies of diet management and insulin resistance in obese pregnant women].

    PubMed

    Takeda, S; Saitoh, M; Kinoshita, K; Sakamoto, S

    1992-02-01

    In an attempt to determine the principles of diet management in obese pregnant women, the association between maternal weight gain during pregnancy (Group I; weight reduction, Group II; +0-4 kg, Group III; +5-9 kg, Group IV; +10 kg-) and the incidence of the complications was investigated in 151 obese pregnant women. Studies on glucose tolerance and insulin binding to erythrocytes were also undertaken. 1) In Group I, the incidences of C/S, forceps delivery, prolonged labor and complication of PIH were lower than those of other groups. There were no heavy-for-dates and light-for-dates babies in Group I, differing from the other three groups. 2) Plasma levels of glucose and insulin were high in obese pregnant women on 75 g OGTT in the second trimester. The binding sites of insulin to erythrocytes were significantly decreased in obese pregnant women. In conclusion, the risks of pregnancy complicated by obesity were high. Insulin resistance was a characteristic of obese pregnant women. The results of this study suggested that the nutritional requirements for very obese pregnant women should be restricted to maintaining the same weight or losing weight during the course of pregnancy to minimize maternal and perinatal risks.

  4. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration.

    PubMed

    Spielman, Lindsay J; Little, Jonathan P; Klegeris, Andis

    2014-08-15

    Obesity is a growing epidemic that contributes to several brain disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Obesity could promote these diseases through several different mechanisms. Here we review evidence supporting the involvement of two recently recognized factors linking obesity with neurodegeneration: the induction of pro-inflammatory cytokines and onset of insulin and insulin-like growth factor 1 (IGF-1) resistance. Excess peripheral pro-inflammatory mediators, some of which can cross the blood brain barrier, may trigger neuroinflammation, which subsequently exacerbates neurodegeneration. Insulin and IGF-1 resistance leads to weakening of neuroprotective signaling by these molecules and can contribute to onset of neurodegenerative diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  6. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    PubMed

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.

    PubMed

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-11-25

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4(+) and CD8(+) T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH.

  8. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E

    PubMed Central

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4+ and CD8+ T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. PMID:26603489

  9. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  10. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    PubMed

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  11. Protective Effects of 2-Dodecyl-6-Methoxycyclohexa-2,5 -Diene-1,4-Dione Isolated from Averrhoa Carambola L. (Oxalidaceae) Roots on High-Fat Diet-Induced Obesity and Insulin Resistance in Mice.

    PubMed

    Li, Juman; Wei, Xiaojie; Xie, Qiuqiao; Hoa Pham, Thi Thai; Wei, Jinbin; He, Ping; Jiao, Yang; Xu, Xiaohui; Giang Nguyen, Thi Huong; Wen, Qingwei; Huang, Renbin

    2016-01-01

    The roots of Averrhoa carambola L. (Oxalidaceae) have long been used as a traditional Chinese medicine for the treatment of diabetes and diabetes-related diseases. 2-dodecyl-6-methoxycycyclohexa-2,5-1,4-dione (DMDD) has been isolated from A. carambola L. roots, and this study was carried out to investigate the potential beneficial effects of DMDD on obesity and insulin resistance induced by a high-fat diet (HFD) in mice. C57BL/6J mice were fed a HFD for 16 weeks and orally administered DMDD (12.5, 25, or 50 mg/kg of body weight per day) and metformin (280 mg/kg of body weight per day) for the last 4 weeks. The body weights and adipose tissue weights as well as the serum levels of blood glucose, total cholesterol, triglycerides, free fatty acids, insulin, interleukin-6, and tumor necrosis factor-α were significantly decreased by DMDD, and the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor (Myd88) in the epididymal adipose tissue was downregulated by DMDD. In contrast, insulin sensitivity was enhanced. The results of the glucose tolerance tests, insulin tolerance tests, and insulin release tests indicated that there was a marked improvement in insulin secretion, and the areas under the curve corresponding to the three tests were also significantly decreased by DMDD. The activities of superoxide dismutase and glutathione peroxidase were simultaneously enhanced, whereas the content of malondialdehyde was decreased by DMDD in the liver homogenates of the C57BL/6J mice. In addition, hepatic steatosis and adipocyte hypertrophy, as assessed by H&E staining of liver and adipose tissues, were significantly improved by DMDD. These data suggest that MDD has potential benefits for the treatment of HFD-induced obesity and insulin resistance, and its effects may be associated with improvements in lipid metabolism and inhibition of the expression of TLR4 in adipose tissues. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  13. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  14. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  15. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  16. Greater physical activity levels during pregnancy are associated with lower inflammation and insulin resistance in obese women

    USDA-ARS?s Scientific Manuscript database

    Compared to lean pregnant women, obese women develop greater insulin resistance and systemic inflammation during pregnancy. Identifying lifestyle factors that can reduce the metabolic effect of obesity during pregnancy is critical to protect both the mother and the fetus from insulin resistance and ...

  17. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  18. Dietary fiber, plasma insulin, and obesity.

    PubMed

    Albrink, M J

    1978-10-01

    The relationship between obesity, insulin resistance, and hyperinsulinemia is briefly reviewed. The possibility is considered that excess insulin secretion is the cause rather than the result of insulin resistance and obesity. Glucose administration is one of the most frequently studied of those factors known to stimulate insulin secretion. Much less well documented is the fact that meals of equal protein, fat, and carbohydrate content may cause different responses of plasma glucose and insulin. An experiment is reported in which the effects of a high-carbohydrate, high-fiber meal administered to seven healthy young adults were compared with the effects of a meal equally high in carbohydrate but composed largely of glucose in liquid formula form. The high-fiber meal caused an insulin rise less than half that caused by the liquid formula meal although the plasma glucose response to the two meals was not significantly different. The hypothesis is proposed that a high-carbohydrate, fiber-depleted diet, high in simple sugars, by repeatedly stimulating an excessive insulin response, may lead to insulin resistance and obesity in susceptible individuals and may play a role in the common occurrence of obesity in industrialized societies.

  19. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.

    PubMed

    Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2017-03-03

    Chronic exposure to fine ambient particulate matter (PM 2.5 ) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM 2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM 2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2 -/- mice were subjected to exposure to concentrated ambient PM 2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM 2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM 2.5 -exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM 2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM 2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.

  20. Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice.

    PubMed

    Poekes, Laurence; Legry, Vanessa; Schakman, Olivier; Detrembleur, Christine; Bol, Anne; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2017-02-01

    Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD). © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Expression of the central obesity and Type 2 Diabetes mellitus genes is associated with insulin resistance in young obese children.

    PubMed

    Skoczen, S; Wojcik, M; Fijorek, K; Siedlar, M; Starzyk, J B

    2015-04-01

    The assessment of the health consequences associated with obesity in young children is challenging. The aims of this study were: (1) to compare insulin resistance indices derived from OGTT in obese patients and healthy control (2) to analyze central obesity and Type 2 Diabetes genes expression in obese children, with special attention to the youngest group (< 10 years old). The study included 49 children with obesity (median age 13.5 years old), and 25 healthy peers. Biochemical blood tests and expression of 11 central obesity and 33 Type 2 Diabetes genes was assessed. A significant difference in insulin resistance between obese and non-obese adolescents was observed in all studied indices (mean values of the insulin levels: 24.9 vs. 9.71 mIU/L in T0, 128 vs. 54.7 mIU/L in T60 and 98.7 vs. 41.1 mIU/L in T120 respectively; AUC: 217 vs. 77.2 ng/ml*h, mean values of B% (state beta cell function), S% (insulin sensitivity), and IR were 255 (±97) vs. 135 (±37.8), 46.6 (±37.3) vs. 84.2 (±29.6) and 3 (±1.55) vs. 1.36 (±0,56); HIS, WBIS and ISIBel median 3.89, 44.7, 0.73 vs. 8.57, 110, 2.25. All comparisons differed significantly p<0.001). Moreover, insulin sensitivity was significantly better in the older obese group (>10 years old): median AUC 239 vs. 104 ng/ml*h, and HIS, WBIS and ISIBel 3.57, 38, 0.67 vs. 6.23, 75.6, 1.87 respectively in the obese older compared to the obese younger subgroup, p<0.05. The expression of 64% of the central obesity genes and 70% of Type 2 Diabetes genes was higher in the obese compared to control groups. The differences were more pronounced in the younger obese group. Insulin resistance may develop in early stage of childhood obesity and in very young children may be associated with higher expression of the central obesity and Type 2 Diabetes genes. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review.

    PubMed

    Rheinheimer, Jakeline; de Souza, Bianca M; Cardoso, Natali S; Bauer, Andrea C; Crispim, Daisy

    2017-09-01

    NLRP3 inflammasome activation seems to be a culprit behind the chronic inflammation characteristic of obesity and insulin resistance (IR). Nutrient excess generates danger-associated molecules that activate NLRP3 inflammasome-caspase 1, leading to maturation of IL-1β and IL-18, which are proinflammatory cytokines released by immune cells infiltrating the adipose tissue (AT) from obese subjects. Although several studies have reported an association of the NLRP3 inflammasome with obesity and/or IR; contradictory results were also reported by other studies. Therefore, we conducted a systematic review to summarize results of studies that evaluated the association of the NLRP3 with obesity and IR. Nineteen studies were included in the review. These studies focused on NLRP3 expression/polymorphism analyses in AT. Overall, human studies indicate that obesity and IR are associated with increased NLRP3 expression in AT. Studies in obese mice corroborate this association. Moreover, high fat diet (HFD) increases Nlrp3 expression in murine AT while calorie-restricted diet decreases its expression. Hence, Nlrp3 blockade in mice protects against HFD-induced obesity and IR. NLRP3 rs10754558 polymorphism is associated with risk for T2DM in Chinese Han populations. In conclusion, available studies strongly points for an association between NLRP3 inflammasome and obesity/IR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Treatment with Parkinsonia aculeata combats insulin resistance-induced oxidative stress through the increase in PPARγ/CuZn-SOD axis expression in diet-induced obesity mice.

    PubMed

    Araújo, Tiago Gomes; Oliveira, Alexandre Gabarra; Vecina, Juliana Falcato; Marin, Rodrigo Miguel; Franco, Eryvelton Souza; Abdalla Saad, Mario J; de Sousa Maia, Maria Bernadete

    2016-08-01

    Parkinsonia aculeata L. (Caesalpiniaceae) is a traditional ethnomedicine and has been used for the empiric treatment of hyperglycemia, without scientific background. Mechanistic analyses at molecular level from the antioxidant mechanism observed by P. aculeata are required. Herein the effects of the treatment by hydroethanolic extract partitioned with ethyl acetate of P. aculeata aerial parts (HEPa/EtOAc) in mice fed a high-fat diet that share many obesity phenotypes with humans were evaluated. The animals were treated orally with HEPa/EtOAc (125 and 250 mg/kg/day) and pioglitazone (5 mg/kg/day), for 16 days. After the treatment, HEPa/EtOAc reduced fasting serum glucose and insulin levels, as well as homeostasis model assessment for insulin resistance. In addition, an improvement in glucose intolerance was also observed. Indeed, a reduction in the circulating levels of TNF-α and IL-6 was also observed. Furthermore, at molecular level, it was demonstrated that the HEPa/EtOAc treatment was able to improve these physiological parameters, through the activation of peroxisome proliferator-activated receptor γ (PPARγ) per si, as well as the enhancement of antioxidant mechanism by an increase in PPARγ/Cu(2+), Zn(2+)-superoxide dismutase (CuZn-SOD) axis expression in liver and adipose tissue. In sum, P. aculeata is effective to improve insulin resistance in a mouse model of obesity and this effect seems to involve the antioxidant and anti-inflammatory mechanisms through the increase in PPARγ/CuZn-SOD axis expression.

  4. Association between gamma glutamyl transferase and insulin resistance markers in healthy obese children.

    PubMed

    Kaushik, Girdhar Gopal; Sharm, Sonali; Sharma, Reenu; Mittal, Prerna

    2009-10-01

    To study the relationship of gamma glutamyl transferase (GGT) with insulin resistance markers [fasting insulin and Homeostasis Model Assessment of-insulin resistance (HOMA-IR)] and to assess the role of GGT as a determinant of insulin resistance in healthy obese children. Fifty healthy obese children (boys and girls with mean age 9.2 +/- 0.73 and 8.8 +/- 0.74 years) born to diabetic mothers were studied. In all the subjects, anthropometric measurements viz, BMI and body weight were studied. The biochemical parameters analysed in fasting samples of subjects were plasma glucose, plasma insulin, serum GGT and calculation of HOMA-IR. The fifty studied subjects belonged to age group 8 to12 years. The difference in mean age of boys and girls was not significant (p = 0.09). Body weight values in all subjects ranged from 20 to 78 kgs and BMI values ranged from 14.5 to 42.1 Kg/m2. No significant difference was observed between body weight and BMI values when compared between boys and girls. A similar trend was observed in the values of biochemical parameters viz, fasting glucose, fasting insulin and HOMA-IR levels when compared between boys and girls (p = 0.72, p = 0.80, p = 0.59). Serum GGT correlated significantly with age, body weight, BMI, fasting insulin and HOMA-IR levels. HOMA-IR values also showed significant correlation with body weight, BMI, fasting glucose and fasting insulin levels. The association of GGT with fasting insulin and HOMA-IR levels was considerably significant compared to its association with other variables. The serum activity of GGT remained correlated with HOMA-IR even after removing the effect of BMI, weight and age on GGT values. The results showed that GGT is a determinant of HOMA-IR independently of age, BMI and weight. A correlation exists between GGT and insulin resistance markers. The observed correlation indicates that monitoring GGT and fasting insulin levels in obese children might serve to help prevent the development of diabetes in

  5. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  6. A nude mouse model of obesity to study the mechanisms of resistance to aromatase inhibitors.

    PubMed

    Schech, Amanda; Yu, Stephen; Goloubeva, Olga; McLenithan, John; Sabnis, Gauri

    2015-08-01

    Obesity is a risk factor for breast cancer progression. Breast cancer patients who are overweight or obese or have excess abdominal fat have an increased risk of local or distant recurrence and cancer-related death. Hormone depletion therapies can also cause weight gain, exacerbating the risk for these patients. To understand the effect of obesity on hormone-dependent human breast cancer tumors, we fed ovariectomized athymic nude mice a diet containing 45% kcal fat and 17% kcal sucrose (high fat sucrose diet (HFSD)), 10% kcal fat (low fat diet (LFD)), or a standard chow diet (chow). The mice fed the HFSD developed metabolic abnormalities consistent with the development of obesity such as weight gain, high fasting blood glucose, and impaired glucose tolerance. These mice also developed hyperinsulinemia and insulin resistance. The obese mice also had a higher tumor growth rate compared to the lean mice. Furthermore, the obese mice showed a significantly reduced responsiveness to letrozole. To understand the role of obesity in this reduced responsiveness, we examined the effect of insulin on the growth of MCF-7Ca cells in response to estrogen or letrozole. The presence of insulin rendered MCF-7Ca cells less responsive to estrogen and letrozole. Exogenous insulin treatment of MCF-7Ca cells also resulted in increased p-Akt as well as ligand-independent phosphorylation of ERα. These findings suggest that diet-induced obesity may result in reduced responsiveness of tumors to letrozole due to the development of hyperinsulinemia. We conclude that obesity influences the response and resistance of breast cancer tumors to aromatase inhibitor treatment. © 2015 Society for Endocrinology.

  7. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  8. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  9. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

    PubMed Central

    D’Apolito, Maria; Du, Xueliang; Zong, Haihong; Catucci, Alessandra; Maiuri, Luigi; Trivisano, Tiziana; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Raia, Valeria; Pessin, Jeffrey E.; Brownlee, Michael; Giardino, Ida

    2009-01-01

    Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease. PMID:19955654

  10. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1.

    PubMed

    Guo, Honghui; Xia, Min; Zou, Tangbin; Ling, Wenhua; Zhong, Ruimin; Zhang, Weiguo

    2012-04-01

    Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance.

    PubMed

    García-Cardona, M C; Huang, F; García-Vivas, J M; López-Camarillo, C; Del Río Navarro, B E; Navarro Olivos, E; Hong-Chong, E; Bolaños-Jiménez, F; Marchat, L A

    2014-11-01

    Epigenetic alterations have been suggested to be associated with obesity and related metabolic disorders. Here we examined the correlation between obesity and insulin resistance with the methylation frequency of the leptin (LEP) and adiponectin (ADIPOQ) promoters in obese adolescents with the aim to identify epigenetic markers that might be used as tools to predict and follow up the physiological alterations associated with the development of the metabolic syndrome. One hundred and six adolescents were recruited and classified according to body mass index and homeostasis model of assessment-insulin resistance index. The circulating concentrations of leptin, adiponectin and of several metabolic markers of obesity and insulin resistance were determined by standard methods. The methylation frequency of the LEP and ADIPOQ promoters was determined by methylation-specific PCR (MS-PCR) in DNA obtained from peripheral blood samples. Obese adolescents without insulin resistance showed higher and lower circulating levels of, respectively, leptin and adiponectin along with increased plasmatic concentrations of insulin and triglycerides. They also exhibited the same methylation frequency than lean subjects of the CpG sites located at -51 and -31 nt relative to the transcription start site of the LEP gene. However, the methylation frequency of these nucleotides dropped markedly in obese adolescents with insulin resistance. We found the same inverse relationship between the combined presence of obesity and insulin resistance and the methylation frequency of the CpG site located at -283 nt relative to the start site of the ADIPOQ promoter. These observations sustain the hypothesis that epigenetic modifications might underpin the development of obesity and related metabolic disorders. They also validate the use of blood leukocytes and MS-PCR as a reliable and affordable methodology for the identification of epigenetic modifications that could be used as molecular markers to

  12. IL-34 is associated with obesity, chronic inflammation, and insulin resistance.

    PubMed

    Chang, Eun-Ju; Lee, Seul Ki; Song, Young Sook; Jang, Yeon Jin; Park, Hye Soon; Hong, Joon Pio; Ko, A Ra; Kim, Dae Yeon; Kim, Jong-Hyeok; Lee, Yeon Ji; Heo, Yoon-Suk

    2014-07-01

    IL-34 is a recently identified alternative ligand for colony-stimulating factor-1 (CSF-1) receptor. IL-34 and CSF-1 are regulators of differentiation, proliferation, and survival in mononuclear phagocytes. Here, we investigated the IL-34 serum concentration and expression in human adipose tissues and any associations with insulin resistance. We recruited 19 nondiabetic obese women, 9 type 2 diabetic women, and 27 normal-weight women. Metabolic parameters, abdominal fat distribution, serum IL-34 concentration, and IL-34 mRNA expression were measured in abdominal sc adipose tissue (SAT) and visceral adipose tissue (VAT). In addition, the expression/secretion and putative effects of IL-34 were assessed in human differentiated adipocytes. Serum IL-34 concentration was measured before and 5 to 9 months after laparoscopic Roux-en-Y gastric bypass surgery was performed on the 20 obese patients. Regardless of diabetes status, obese patients demonstrated significantly higher serum IL-34 concentrations than controls. Serum IL-34 was significantly and positively correlated with insulin resistance-related metabolic parameters. IL-34 mRNA was significantly higher in VAT than SAT. IL-34 was expressed in adipocytes as well as nonadipocytes, and expression was significantly higher during adipogenesis. In differentiated adipocytes, the expression/secretion of IL-34 was enhanced by TNFα and IL-1β. In addition, IL-34 augmented fat accumulation and inhibited the stimulatory effects of insulin on glucose transport. Moreover, serum IL-34 was significantly decreased after Roux-en-Y gastric bypass-induced weight loss. The present study demonstrates, for the first time, that IL-34 is expressed in human adipose tissues and the circulating concentration is significantly elevated in obese patients. This suggests that IL-34 is associated with insulin resistance.

  13. Immunity as a link between obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Type-2 diabetes mellitus (T2DM) is a major health problem in the United States and worldwide. Obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and T2DM. A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesit...

  14. Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice.

    PubMed

    Silva, Gabriela; Ferraresi, Cleber; de Almeida, Rodrigo Teixeira; Motta, Mariana Lopes; Paixão, Thiago; Ottone, Vinicius Oliveira; Fonseca, Ivana Alice; Oliveira, Murilo Xavier; Rocha-Vieira, Etel; Dias-Peixoto, Marco Fabrício; Esteves, Elizabethe Adriana; Coimbra, Cândido Celso; Amorim, Fabiano Trigueiro; de Castro Magalhães, Flávio

    2018-04-01

    Obesity represents a continuously growing global epidemic and is associated with the development of type 2 diabetes mellitus. The etiology of type 2 diabetes is related to the resistance of insulin-sensitive tissues to its action leading to impaired blood glucose regulation. Photobiomodulation (PBM) therapy might be a non-pharmacological, non-invasive strategy to improve insulin resistance. It has been reported that PBM therapy in combination with physical exercise reduces insulin resistance. Therefore, the aim of this study was to investigate the effects of PBM therapy on insulin resistance in obese mice. Male Swiss albino mice received low-fat control diet (n = 16, LFC) or high-fat diet (n = 18, HFD) for 12 weeks. From 9th to 12th week, the mice received PBM therapy (LASER) or Sham (light off) treatment and were allocated into four groups: LFC Sham (n = 8), LFC PBM (n = 8), HFD Sham (n = 9), and HFD PBM (n = 9). The PBM therapy was applied in five locations: to the left and right quadriceps muscle, upper limbs and center of the abdomen, during 40 s at each point, once a day, 5 days a week, for 4 weeks (780 nm, 250 mW/cm 2 , 10 J/cm 2 , 0.4 J per site; 2 J total dose per day). Insulin signaling pathway was evaluated in the epididymal adipose tissue. PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice.

  15. Adipose Tissue Insulin Resistance in Gestational Diabetes.

    PubMed

    Tumurbaatar, Batbayar; Poole, Aaron T; Olson, Gayle; Makhlouf, Michel; Sallam, Hanaa S; Thukuntla, Shwetha; Kankanala, Sucharitha; Ekhaese, Obos; Gomez, Guillermo; Chandalia, Manisha; Abate, Nicola

    2017-03-01

    Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance (IR) and altered glucose-lipid metabolism. We propose that ectonucleotide pyrophosphate phosphodiesterase-1 (ENPP1), a protein known to induce adipocyte IR, is a determinant of GDM. Our objective was to study ENPP1 expression in adipose tissue (AT) of obese pregnant women with or without GDM, as well as glucose tolerance in pregnant transgenic (Tg) mice with AT-specific overexpression of human ENPP1. AT biopsies and blood were collected from body mass index-matched obese pregnant women non-GDM (n = 6), GDM (n = 7), and nonpregnant controls (n = 6) undergoing cesarian section or elective surgeries, respectively. We measured the following: (1) Expression of key molecules involved in insulin signaling and glucose-lipid metabolism in AT; (2) Plasma glucose and insulin levels and calculation of homeostasis model assessment of IR (HOMA-IR); (3) Intraperitoneal glucose tolerance test in AtENPP1 Tg pregnant mice. We found that: (1) Obese GDM patients have higher AT ENPP1 expression than obese non-GDM patients, or controls (P = 0.01-ANOVA). (2) ENPP1 expression level correlated negatively with glucose transporter 4 (GLUT4) and positively with insulin receptor substrate-1 (IRS-1) serine phosphorylation, and to other adipocyte functional proteins involved in glucose and lipid metabolism (P < 0.05 each), (3) AT ENPP1 expression levels were positively correlated with HOMA-IR (P = 0.01-ANOVA). (4) Pregnant AT ENPP1 Tg mice showed higher plasma glucose than wild type animals (P = 0.046-t test on area under curve [AUC] glucose ). Our results provide evidence of a causative link between ENPP1 and alterations in insulin signaling, glucose uptake, and lipid metabolism in subcutaneous abdominal AT of GDM, which may mediate IR and hyperglycemia in GDM.

  16. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  17. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    PubMed

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  18. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  19. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet

    PubMed Central

    Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071

  20. Relation of insulin resistance to neurocognitive function and electroencephalography in obese children.

    PubMed

    Akın, Onur; Eker, İbrahim; Arslan, Mutluay; Yavuz, Süleyman Tolga; Akman, Sevil; Taşçılar, Mehmet Emre; Ünay, Bülent

    2017-10-26

    Childhood obesity may lead to neuronal impairment in both the peripheral and the central nervous system. This study aimed to investigate the impact of obesity and insulin resistance (IR) on the central nervous system and neurocognitive functions in children. Seventy-three obese children (38 male and 35 female) and 42 healthy children (21 male and 21 female) were recruited. Standard biochemical indices and IR were evaluated. The Wechsler Intelligence Scale for Children-Revised (WISC-R) and electroencephalography (EEG) were administered to all participants. The obese participants were divided into two groups based on the presence or absence of IR, and the data were compared between the subgroups. Only verbal scores on the WISC-R in the IR+ group were significantly lower than those of the control and IR- groups. There were no differences between the groups with respect to other parameters of the WISC-R or the EEG. Verbal scores of the WISC-R were negatively correlated with obesity duration and homeostatic model assessment-insulin resistance (HOMA-IR) values. EEGs showed significantly more frequent 'slowing during hyperventilation' (SDHs) in obese children than non-obese children. Neurocognitive functions, particularly verbal abilities, were impaired in obese children with IR. An early examination of cognitive functions may help identify and correct such abnormalities in obese children.

  1. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    PubMed

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  2. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    PubMed

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P < 0.001), and obese PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are

  3. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    PubMed Central

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  4. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    PubMed

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  5. Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats.

    PubMed

    Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels

    2010-02-01

    The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.

  6. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus.

    PubMed

    Hamada, Daisuke; Maynard, Robert; Schott, Eric; Drinkwater, Christopher J; Ketz, John P; Kates, Stephen L; Jonason, Jennifer H; Hilton, Matthew J; Zuscik, Michael J; Mooney, Robert A

    2016-06-01

    Obesity is a state of chronic inflammation that is associated with insulin resistance and type 2 diabetes mellitus (DM), as well as an increased risk of osteoarthritis (OA). This study was undertaken to define the links between obesity-associated inflammation, insulin resistance, and OA, by testing the hypotheses that 1) tumor necrosis factor (TNF) is critical in mediating these pathologic changes in OA, and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. The effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLS) isolated from human OA synovium. Synovial TNF expression and OA progression were examined in 2 mouse models, high-fat (HF) diet-fed obese mice with type 2 DM and TNF-knockout mice. Insulin resistance was investigated in synovium from patients with type 2 DM. Insulin receptors (IRs) were abundant in both mouse and human synovial membranes. Human OA FLS were insulin responsive, as indicated by the dose-dependent phosphorylation of IRs and Akt. In cultures of human OA FLS with exogenous TNF, the expression and release of MMP1, MMP13, and ADAMTS4 by FLS were markedly increased, whereas after treatment with insulin, these effects were selectively inhibited by >50%. The expression of TNF and its abundance in the synovium were elevated in samples from obese mice with type 2 DM. In TNF-knockout mice, increases in osteophyte formation and synovial hyperplasia associated with the HF diet were blunted. The synovium from OA patients with type 2 DM contained markedly more macrophages and showed elevated TNF levels as compared to the synovium from OA patients without diabetes. Moreover, insulin-dependent phosphorylation of IRs and Akt was blunted in cultures of OA FLS from patients with type 2 DM. TNF appears to be involved in mediating the advanced progression of OA seen in type 2 DM. While insulin plays a protective, antiinflammatory role in the synovium, insulin

  8. The Roles of IL-6, IL-10, and IL-1RA in Obesity and Insulin Resistance in African-Americans

    PubMed Central

    Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale

    2011-01-01

    Objective: The aim of the study was to investigate the associations between IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, measures of obesity, and insulin resistance in African-Americans. Research Design and Methods: Nondiabetic participants (n = 1025) of the Howard University Family Study were investigated for associations between serum IL (IL-1RA, IL-6, IL-10), measures of obesity, and insulin resistance, with adjustment for age and sex. Measures of obesity included body mass index, waist circumference, hip circumference, waist-to-hip ratio, and percent fat mass. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Data were analyzed with R statistical software using linear regression and likelihood ratio tests. Results: IL-1RA and IL-6 were associated with measures of obesity and insulin resistance, explaining 4–12.7% of the variance observed (P values < 0.001). IL-1RA was bimodally distributed and therefore was analyzed based on grouping those with low vs. high IL-1RA levels. High IL-1RA explained up to 20 and 12% of the variance in measures of obesity and HOMA-IR, respectively. Among the IL, only high IL-1RA improved the fit of models regressing HOMA-IR on measures of obesity. In contrast, all measures of obesity improved the fit of models regressing HOMA-IR on IL. IL-10 was not associated with obesity measures or HOMA-IR. Conclusions: High IL-1RA levels and obesity measures are associated with HOMA-IR in this population-based sample of African-Americans. The results suggest that obesity and increased levels of IL-1RA both contribute to the development of insulin resistance. PMID:21956416

  9. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    PubMed

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  10. Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary schoolchildren. The healthy growth study.

    PubMed

    Moschonis, George; Androutsos, Odysseas; Hulshof, Toine; Dracopoulou, Maria; Chrousos, George P; Manios, Yannis

    2018-04-02

    To explore the associations of vitamin D status and obesity with insulin resistance (IR) in children. A sample of 2282 schoolchildren (9-13 years old) in Greece was examined. Sociodemographic, anthropometric (weight, height), biochemical (fasting plasma glucose, serum insulin and 25(OH)D), pubertal status and physical activity data were collected, using standard methods. The "Vitamin D Standardization Program" protocol was applied to standardize serum 25(OH)D values. The prevalence of vitamin D insufficiency (serum 25(OH)D < 50 nmol/L) was higher in obese children compared to their over- and normal-weight counterparts (60.5% vs 51.6% and 51%, P = .017). Furthermore, children with IR (both obese and non-obese) had higher prevalence of vitamin D insufficiency compared to non-obese, non-insulin resistant children (66% and 59.2% vs 49.8%, P < .05), possibly indicating that IR is associated with vitamin D insufficiency, independently of obesity. In line with the above, the results from logistic regression analyses controlled for several potential confounders, showed a 1.48 (95% C.I: 1.2-1.84) higher likelihood for vitamin D insufficiency for insulin resistant children compared to the non-insulin resistant ones, while no significant association was observed with obesity. The present study revealed a high prevalence of vitamin D insufficiency among schoolchildren in Greece, particularly among obese and insulin resistant ones. In addition, it highlighted that the significant association of vitamin D insufficiency with IR is possibly independent of obesity. Further clinical trials are needed to confirm this possible independent association but also explore the potential beneficial effect of vitamin D supplementation on IR and possibly on weight management too. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Yan, Fujie; Yang, Yunyun; Han, Wen; Zheng, Xiaodong

    2016-08-01

    Growing evidence indicates that gut microbiota contributes to obesity and its related metabolic disorders. Betacyanins possess free radical scavenging and antioxidant activities, suggesting its potential beneficial effects on metabolic diseases. The present study aimed to investigate the metabolic effect of red pitaya (Hylocereus polyrhizus) fruit betacyanins (HPBN) on high-fat diet-fed mice and determine whether the beneficial effects of HPBN are associated with the modulation of gut microbiota. Thirty-six male C57BL/6J mice were divided into three groups and fed low-fat diet (LFD), high-fat diet (HFD), or high-fat diet plus HPBN of 200 mg/kg for 14 weeks. Sixteen seconds rRNA sequencing was used to analyze the composition of gut microbiota. Our results indicated that administration of HPBN reduced HFD-induced body weight gain and visceral obesity and improved hepatic steatosis, adipose hypertrophy, and insulin resistance in mice. Sixteen seconds rRNA sequencing performed on the MiSeq Illumina platform (Illumina, Inc., San Diego, CA, USA) showed that HPBN supplement not only decreased the proportion of Firmicutes and increased the proportion of Bacteroidetes at the phylum level but also induced a dramatic increase in the relative abundance of Akkermansia at the genus level. Red pitaya betacyanins protect from diet-induced obesity and its related metabolic disorders, which is associated with improved inflammatory status and modulation of gut microbiota, especially its ability to decrease the ratio of Firmicutes and Bacteroidetes and increase the relative abundance of Akkermansia. The study suggested a clinical implication of HPBN in the management of obesity, non-alcoholic fatty liver disease, and type 2 diabetes. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  12. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  13. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

    PubMed

    Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M

    2008-01-01

    Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.

  14. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    PubMed Central

    Sanghez, Valentina; Cubuk, Cankut; Sebastián-Leon, Patricia; Carobbio, Stefania; Dopazo, Joaquin; Vidal-Puig, Antonio; Bartolomucci, Alessandro

    2016-01-01

    Abstract Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus. PMID:26946982

  15. [Diagnosis of insulin resistance by indirect methods in obese school children].

    PubMed

    Angulo, Nerkis; de Szarvas, Sobeida Barbella; Mathison, Yaira; Hadad, Erika; González, Dora; Hernández, Ana; Guevara, Harold

    2013-06-01

    Obesity leads to a deterioration of glucose tolerance and the action of insulin. The purpose of this study was to determine insulin resistance (IR) by indirect methods, and its correlation with clinical, anthropometric and biochemical variables in obese normoglycemic school children. This was a descriptive-correlational study of 72 school prepubescent children, who attended the ambulatory "El Concejo" of the University of Carabobo (UC) and at the Gastroenterology and Pediatric Nutrition service of the city hospital "Enrique Tejera" (CHET), in Valencia, Venezuela, between January-April 2011. exogenous obesity. We assessed personal and family history, presence of Acanthosis Nigricans and nutritional and biochemical status. We found a higher percentage of IR, through the use of the QUICKI method (66.7%), followed by the HOMA (55.6%) and basal insulin (45.9%). The mean (chi) indexes of body mass and waist circumference were significantly greater (p < 0.05) in patients with IR, by HOMA and QUICKI techniques. The QUICKI method detected significant differences (p < 0.05) in the values of glycemia, basal insulin and postprandial insulin, among patients with diminished and normal insulin sensitivities. While HOMA, detected these differences (p < 0.05) in the values of glycemia and basal insulin. A statistically significant relationship was observed (p < 0.05), between the presence of Acanthosis Nigricans and IR, by the HOMA, QUICKI and basal insulin methods. In conclusion, the evaluated techniques, QUICKI, HOMA and basal insulin indexes, were most effective for detecting the IR.

  16. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods.

    PubMed

    Kurtoğlu, Selim; Hatipoğlu, Nihal; Mazıcıoğlu, Mümtaz; Kendirici, Mustafa; Keskin, Mehmet; Kondolot, Meda

    2010-01-01

    Childhood obesity is associated with an increased risk for insulin resistance. The underlying mechanism for the physiological increase in insulin levels in puberty is not clearly understood. The aim of the present study was to determine the cut-off values for homeostasis model assessment for insulin resistance (HOMA-IR) in obese children and adolescents according to gender and pubertal status. Two hundred and eight obese children and adolescents (141 girls, 127 boys) aged between 5 and 18 years were included in the study. The children were divided into prepubertal and pubertal groups. A standard oral glucose tolerance test (OGTT) was carried out in all children. A total insulin level exceeding 300 μU/mL in the blood samples, collected during the test period, was taken as the insulin resistance criterion. Cut-off values for HOMA-IR were calculated by receiver operating characteristic (ROC) analysis. In the prepubertal period, the rate of insulin resistance was found to be 37% in boys and 27.8% in girls,while in the pubertal period, this rate was 61.7% in boys and 66.7% in girls. HOMA-IR cut-off values for insulin resistance in the prepubertal period were calculated to be 2.67 (sensitivity 88.2%, specificity 65.5%) in boys and 2.22 (sensitivity 100%, specificity 42.3%) in girls, and in the pubertal period, they were 5.22 (sensitivity 56%, specificity 93.3%) in boys and 3.82 (sensitivity 77.1%, specificity 71.4%) in girls. Since gender, obesity and pubertal status are factors affecting insulin resistance, cut-off values which depend on gender and pubertal status, should be used in evaluation of insulin resistance.

  17. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    PubMed

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-09

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. Copyright © 2016. Published by Elsevier Inc.

  18. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  19. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  20. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation

    PubMed Central

    Pearce, Laura R.; Atanassova, Neli; Banton, Matthew C.; Bottomley, Bill; van der Klaauw, Agatha A.; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M.; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G.; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C.; Shield, Julian P.H.; Crowne, Elizabeth; Barford, David; Wareham, Nick J.; O’Rahilly, Stephen; Murphy, Michael P.; Powell, David R.; Barroso, Ines; Farooqi, I. Sadaf

    2013-01-01

    Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick PMID:24209692

  1. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance

    PubMed Central

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T.; Lagakos, William S.; Oh, Dayoung; Watkins, Steven M.

    2015-01-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9–39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation. PMID:26058862

  2. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Estrogen Receptors

    PubMed Central

    Meyer, Matthias R.; Clegg, Deborah J.; Prossnitz, Eric R.; Barton, Matthias

    2010-01-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension, and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of estrogens are classically mediated by the two nuclear estrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G protein-coupled estrogen receptor, GPER, originally designated as GPR30, also mediates some of the actions attributed to estrogens. Estrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women, but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and estrogen receptors in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in females and males. PMID:21281456

  3. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study.

    PubMed

    Liu, Jia; Wang, Ying; Hu, Yanjin; Leng, Song; Wang, Guang

    2016-07-01

    To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A guanidine-rich regulatory oligodeoxynucleotide improves type-2 diabetes in obese mice by blocking T-cell differentiation

    PubMed Central

    Cheng, Xiang; Wang, Jing; Xia, Ni; Yan, Xin-Xin; Tang, Ting-Ting; Chen, Han; Zhang, Hong-Jian; Liu, Juan; Kong, Wen; Sjöberg, Sara; Folco, Eduardo; Libby, Peter; Liao, Yu-Hua; Shi, Guo-Ping

    2012-01-01

    T lymphocytes exhibit pro-inflammatory or anti-inflammatory activities in obesity and diabetes, depending on their subtypes. Guanidine-rich immunosuppressive oligodeoxynucleotides (ODNs) effectively control Th1/Th2-cell counterbalance. This study reveals a non-toxic regulatory ODN (ODNR01) that inhibits Th1- and Th17-cell polarization by binding to STAT1/3/4 and blocking their phosphorylation without affecting Th2 and regulatory T cells. ODNR01 improves glucose tolerance and insulin sensitivity in both diet-induced obese (DIO) and genetically generated obese (ob/ob) mice. Mechanistic studies show that ODNR01 suppresses Th1- and Th17-cell differentiation in white adipose tissue, thereby reducing macrophage accumulation and M1 macrophage inflammatory molecule expression without affecting M2 macrophages. While ODNR01 shows no effect on diabetes in lymphocyte-free Rag1-deficient DIO mice, it enhances glucose tolerance and insulin sensitivity in CD4+ T-cell-reconstituted Rag1-deficient DIO mice, suggesting its beneficial effect on insulin resistance is T-cell-dependent. Therefore, regulatory ODNR01 reduces obesity-associated insulin resistance through modulation of T-cell differentiation. PMID:23027613

  5. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  6. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle

    PubMed Central

    Ye, Ji-Ming; Tid-Ang, Jennifer; Turner, Nigel; Zeng, Xiao-Yi; Li, Hai-Yan; Cooney, Gregory J; Wulff, Erik Max; Sauerberg, Per; Kraegen, Edward W

    2011-01-01

    BACKGROUND AND PURPOSE The peroxisome proliferator-activated receptor (PPAR)δ has been considered a therapeutic target for diabetes and obesity through enhancement of fatty acid oxidation. The present study aimed to characterize the effects of PPARδ agonists during insulin resistance of the whole body, muscle and liver. EXPERIMENTAL APPROACH Wistar rats and C57BL/J6 mice were fed a high fat diet (HF) and then treated with PPARδ agonists NNC61-5920 and GW501516. The effects on insulin resistance were evaluated by hyperinsulinaemic clamp or glucose tolerance tests combined with glucose tracers. KEY RESULTS In HF rats, 3 weeks of treatment with NNC61-5920 reduced the glucose infusion rate (by 14%, P < 0.05) and glucose disposal into muscle (by 20–30%, P < 0.01) during hyperinsulinaemic clamp. Despite increased mRNA expression of carnitine palmitoyltransferase-1, pyruvate dehydrogenase kinase 4 and uncoupling protein 3 in muscle, plasma and muscle triglyceride levels were raised (P < 0.01). Similar metabolic effects were observed after extended treatment with NNC61-5920 and GW501516 to 6 weeks. However, HF mice treated with NNC61-5920 improved their plasma lipid profile, glucose tolerance and insulin action in muscle. In both HF rats and mice, NNC61-5920 treatment attenuated hepatic insulin resistance and decreased expression of stearoyl-CoA desaturase 1, fatty acid translocase protein CD36 and lipoprotein lipase in liver. CONCLUSIONS AND IMPLICATIONS PPARδ agonists exacerbated insulin resistance in HF rats in contrast to their beneficial effects on metabolic syndrome in HF mice. These opposing metabolic consequences result from their different effects on lipid metabolism and insulin sensitivity in skeletal muscle of these two species. PMID:21265823

  7. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle.

    PubMed

    Ye, Ji-Ming; Tid-Ang, Jennifer; Turner, Nigel; Zeng, Xiao-Yi; Li, Hai-Yan; Cooney, Gregory J; Wulff, Erik Max; Sauerberg, Per; Kraegen, Edward W

    2011-06-01

    The peroxisome proliferator-activated receptor (PPAR)δ has been considered a therapeutic target for diabetes and obesity through enhancement of fatty acid oxidation. The present study aimed to characterize the effects of PPARδ agonists during insulin resistance of the whole body, muscle and liver. Wistar rats and C57BL/J6 mice were fed a high fat diet (HF) and then treated with PPARδ agonists NNC61-5920 and GW501516. The effects on insulin resistance were evaluated by hyperinsulinaemic clamp or glucose tolerance tests combined with glucose tracers. In HF rats, 3 weeks of treatment with NNC61-5920 reduced the glucose infusion rate (by 14%, P < 0.05) and glucose disposal into muscle (by 20-30%, P < 0.01) during hyperinsulinaemic clamp. Despite increased mRNA expression of carnitine palmitoyltransferase-1, pyruvate dehydrogenase kinase 4 and uncoupling protein 3 in muscle, plasma and muscle triglyceride levels were raised (P < 0.01). Similar metabolic effects were observed after extended treatment with NNC61-5920 and GW501516 to 6 weeks. However, HF mice treated with NNC61-5920 improved their plasma lipid profile, glucose tolerance and insulin action in muscle. In both HF rats and mice, NNC61-5920 treatment attenuated hepatic insulin resistance and decreased expression of stearoyl-CoA desaturase 1, fatty acid translocase protein CD36 and lipoprotein lipase in liver. PPARδ agonists exacerbated insulin resistance in HF rats in contrast to their beneficial effects on metabolic syndrome in HF mice. These opposing metabolic consequences result from their different effects on lipid metabolism and insulin sensitivity in skeletal muscle of these two species. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges.

    PubMed

    Jeanes, Yvonne M; Reeves, Sue

    2017-06-01

    Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.

  9. Physical Training Improves Insulin Resistance Syndrome Markers in Obese Adolescents.

    ERIC Educational Resources Information Center

    Kang, Hyun-Sik; Gutin, Bernard; Barbeau, Paule; Owens, Scott; Lemmon, Christian R.; Allison, Jerry; Litaker, Mark S.; Le, Ngoc-Anh

    2002-01-01

    Tested the hypothesis that physical training (PT), especially high-intensity PT, would favorably affect components of the insulin resistance syndrome (IRS) in obese adolescents. Data on teens randomized into lifestyle education (LSE) alone, LSE plus moderate -intensity PT, and LSE plus high-intensity PT indicated that PT, especially high-intensity…

  10. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    PubMed

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    PubMed

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    PubMed

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia.

  13. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  14. Relationship of obesity and insulin resistance with the cerebrovascular reactivity: a case control study

    PubMed Central

    2014-01-01

    Background Obesity is associated with increased risk for stroke. The breath-holding index (BHI) is a measure of vasomotor reactivity of the brain which can be measured with the transcranial Doppler (TCD). We aim to evaluate obesity as an independent factor for altered cerebrovascular reactivity. Methods Cerebrovascular hemodynamics (mean flow velocities MFV, pulsatility index, PI, resistance index, RI, and BHI) was determined in 85 non-obese (Body Mass Index, BMI ≤27 kg/m2) and 85 obese subjects (BMI ≥35 kg/m2) without diabetes mellitus and hypertension. Anthropometric and metabolic variables, and scores to detect risk for obstructive sleep apnea (OSA) were analyzed for their association with the cerebrovascular reactivity. Results The BHI was significantly lower in subjects with obesity according to BMI and in subjects with abdominal obesity, but the PI and RI were not different between groups. There was a linear association between the BMI, the HOMA-IR, the Matsuda index, the waist circumference, and the neck circumference, with the cerebrovascular reactivity. After adjusting for insulin resistance, neck circumference, and abdominal circumference, obesity according to BMI was negatively correlated with the cerebrovascular reactivity. Conclusions We found a diminished vasomotor reactivity in individuals with obesity which was not explained by the presence of insulin resistance. PMID:24383894

  15. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    PubMed

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  16. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.

  17. Glucose alteration and insulin resistance in asymptomatic obese children and adolescents.

    PubMed

    Assunção, Silvana Neves Ferraz de; Boa Sorte, Ney Christian Amaral; Alves, Crésio de Aragão Dantas; Mendes, Patricia S Almeida; Alves, Carlos Roberto Brites; Silva, Luciana Rodrigues

    Obesity is associated with the abnormal glucose metabolism preceding type 2 diabetes mellitus. Thus, further investigation on the prediction of this lethal outcome must be sought. The objective was the profile glycemic assessment of asymptomatic obese children and adolescents from Salvador, Brazil. A fasting venous blood sample was obtained from 90 consecutive obese individuals aged 8-18 years, of both sexes, for laboratory determinations of glycated hemoglobin, basal insulin, and the Homeostasis Model Assessment Insulin Resistance index. The clinical evaluation included weight, height, waist circumference, assessment of pubertal development, and acanthosis nigricans research. The body mass index/age indicator was used for the severity of overweight assessment. Glycemic alterations were evidenced clinically and biochemically, although these individuals had no complaints or symptoms related to blood sugar levels. Quantitative and qualitative variables were respectively expressed measures of central tendency/dispersion and simple/relative frequency, using the SPSS, version 20.0. A p-value <0.05 was considered significant. Notably, this study found a high prevalence of glucose and insulin disorders in asymptomatic obese children and adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  19. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    PubMed

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8±2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7±2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Results: Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. Conclusions: In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance. Conflict of interest:None declared. PMID:23367495

  1. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease.

    PubMed

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8 ± 2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7 ± 2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance.

  2. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones

    PubMed Central

    Norris, Andrew W.; Chen, Lihong; Fisher, Simon J.; Szanto, Ildiko; Ristow, Michael; Jozsi, Alison C.; Hirshman, Michael F.; Rosen, Evan D.; Goodyear, Laurie J.; Gonzalez, Frank J.; Spiegelman, Bruce M.; Kahn, C. Ronald

    2003-01-01

    Activation of peroxisome proliferator-activated receptor γ (PPARγ) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARγ knockout (MuPPARγKO) using Cre/loxP recombination. Interestingly, MuPPARγKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARγKO mice had whole-body insulin resistance with a 36% reduction (P < 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARγKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat–induced defects in MuPPARγKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARγKO mice. Thus, muscle PPARγ is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle. PMID:12925701

  3. Laparoscopic sleeve gastrectomy improves body composition and alleviates insulin resistance in obesity related acanthosis nigricans.

    PubMed

    Zhang, Yi; Zhu, Cuiling; Wen, Xin; Wang, Xingchun; Li, Liang; Rampersad, Sharvan; Lu, Liesheng; Zhou, Donglei; Qian, Chunhua; Cui, Ran; Zhang, Manna; Yang, Peng; Qu, Shen; Bu, Le

    2017-11-07

    Acanthosis nigricans (AN) has a close relationship with obesity. It is believed that obesity and AN have the common pathophysiological basis such as hyperinsulinism. This study is aimed to observe the effect of laparoscopic sleeve gastrectomy (LSG) on body composition and insulin resistance in Chinese obese patients with acanthosis nigricans. A total of 37 obese patients who underwent LSG in our hospital were selected for analysis. They were divided into simple obesity (OB n = 14) and obesity with acanthosis nigricans (AN n = 23) group respectively. Body composition was measured by dual-energy X-ray absorptiometry (DEXA). Anthropometric measurements and glucolipid metabolism before and 3 months post LSG were collected for analysis. Patients with AN got noticeable improvement in skin condition and their AN score was significantly decreased (3.52 ± 0.79 vs. 1.48 ± 0.73, P < 0.001).Alleviated insulin resistance and more trunk fat loss than limbs' were observed in both groups (P value < 0.01). In AN group, preoperative android fat mass (FM) was positively correlated with fasting insulin and natural logarithm of HOMA-IR (LNIR) (r = 0.622, 0.608, respectively; all P < 0.01). Besides, changes in android FM and visceral adipose tissue (VAT) also showed significantly positive correlation with changes in LNIR (r = 0.588, r = 0.598, respectively; all P < 0.01). LSG had a positive impact on body composition and skin condition in Chinese obese patients with AN. Loss of android FM and VAT might result in the alleviation of insulin resistance in AN patients. Android fat distribution seems to be a potential indicator of postoperative metabolic benefits for obese patients with AN.

  4. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors.

    PubMed

    Meyer, M R; Clegg, D J; Prossnitz, E R; Barton, M

    2011-09-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of oestrogens are classically mediated by the two nuclear oestrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G-protein-coupled oestrogen receptor (GPER) originally designated as GPR30 also mediates some of the actions attributed to oestrogens. Oestrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and ERs in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in women and men. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  5. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice.

    PubMed

    Asai, Akihiro; Chou, Pauline M; Bu, Heng-Fu; Wang, Xiao; Rao, M Sambasiva; Jiang, Anthony; DiDonato, Christine J; Tan, Xiao-Di

    2014-03-01

    Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.

  6. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    PubMed

    Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore

    2013-01-01

    In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.

  7. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  8. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    PubMed

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  9. [Effect of Jinlida on DGAT1 in Skeletal Muscle in Fat-Induced Insulin Resistance ApoE -/- Mice].

    PubMed

    Jin, Xin; Zhang, Hui-xin; Cui, Wen-wen

    2015-06-01

    To investigate the effect of Jinlida on DGAT1 in skeletal muscle in fat-induced insulin resistance ApoE-/- mice. Eight male C57BL/6J mice were used as normal group. 40 male ApoE -/- mice were fed high-fat diet for 16 weeks and divided into five groups: control group, rosiglitazone group, and Jinlida low, middle and high dose groups. Then corresponding drugs were administrated intragastrically for eight weeks. TG content in skeletal muscle was measured by enzymic enzymatic, Glucose tolerance test (OGTT) was used to evaluate the degree of insulin resistance in mice. The mRNA and protein expression of insulin receptor substrate (IRS-1) and diacylglycerol acyltransferase 1 (DGAT1) in skeletal muscle were measured by real-time quantitative reverse transcription PCR (RT-PCR)and Western blot. Jinlida particles reduced fasting blood glucose (FBG) cholesterol (TC), triglyceride (TG), free fatty acid (FFA)and fasting insulin (FIns) levels, raised insulin sensitive index (ISI), improved glucose tolerance, and reduced skeletal muscle lipid deposition in ApoE -/- mice significantly. Jinlida particles increased the expression of IRS-1 mRNA and protein, and reduced DGAT1. Jinlida can alleviate the expression of DGAT in skeletal muscle in fat-induced insulin resistance ApoE-/- mice.

  10. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    PubMed

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  11. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation.

    PubMed

    Melo, Arine M; Benatti, Rafaela O; Ignacio-Souza, Leticia M; Okino, Caroline; Torsoni, Adriana S; Milanski, Marciane; Velloso, Licio A; Torsoni, Marcio Alberto

    2014-05-01

    The goal of this study was to determine the presence early of markers of endoplasmic reticulum stress (ERS) and insulin resistance in the offspring from dams fed HFD (HFD-O) or standard chow diet (SC-O) during pregnancy and lactation. To address this question, we evaluated the hypothalamic and hepatic tissues in recently weaned mice (d28) and the hypothalamus of newborn mice (d0) from dams fed HFD or SC during pregnancy and lactation. Body weight, adipose tissue mass, and food intake were more accentuated in HFD-O mice than in SC-O mice. In addition, intolerance to glucose and insulin was higher in HFD-O mice than in SC-O mice. Compared with SC-O mice, levels of hypothalamic IL1-β mRNA, NFκB protein, and p-JNK were increased in HFD-O mice. Furthermore, compared with SC-O mice, hypothalamic AKT phosphorylation after insulin challenge was reduced, while markers of ERS (p-PERK, p-eIF2α, XBP1s, GRP78, and GRP94) and p-AMPK were increased in the hypothalamic tissue of HFD-O at d28 but not at d0. These damages to hypothalamic signaling were accompanied by increased triglyceride deposits, activation of NFκB, p-JNK, p-PERK and p-eIF2α. These point out lactation period as maternal trigger for metabolic changes in the offspring. These changes may occur early and quietly contribute to obesity and associated pathologies in adulthood. Although in rodents the establishment of ARC neuronal projections occurs during the lactation period, in humans it occurs during the third trimester. Gestational diabetes and obesity in this period may contribute to impairment of energy homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Sterculic Oil, a Natural SCD1 Inhibitor, Improves Glucose Tolerance in Obese ob/ob Mice

    PubMed Central

    Ortinau, Laura C.; Pickering, R. Taylor; Nickelson, Karen J.; Stromsdorfer, Kelly L.; Naik, Chaitasi Y.; Haynes, Rebecca A.; Bauman, Dale E.; Rector, R. Scott; Fritsche, Kevin L.; Perfield, James W.

    2012-01-01

    Obesity and its metabolic complications are associated with increased expression/activity of stearoyl-CoA desaturase-1 (SCD1), a major regulator of lipid metabolism. Reduction or ablation of this enzyme is associated with an improved metabolic profile and has gained attention as a target for pharmaceutical development. Sterculic oil (SO) is a known inhibitor of SCD1 and may provide a natural approach for treating obesity and/or insulin resistance. The purpose of this study was to evaluate the effects of SO consumption in leptin-deficient ob/ob mice, a model of obesity and insulin resistance. Five-week-old male mice received either an AIN-93G (control) or an AIN-93G diet containing 0.5% SO. After 9 weeks, SO supplementation did not alter food intake or body weight; however, the desaturase indices, a proxy of SCD1 activity, were reduced in liver and adipose tissue of SO-supplemented animals. This reduction was associated with improved glucose and insulin tolerance and attenuated hepatic inflammation in obese ob/ob mice, while no appreciable changes were observed in lean control mice receiving SO. Future studies are needed to better understand the mechanism(s) by which SO is functioning to improve glucose metabolism and to further explore the nutraceutical potential and health implications of SO supplementation. PMID:23209931

  13. Targeted delivery of HGF to the skeletal muscle improves glucose homeostasis in diet-induced obese mice.

    PubMed

    Sanchez-Encinales, Viviana; Cozar-Castellano, Irene; Garcia-Ocaña, Adolfo; Perdomo, Germán

    2015-12-01

    Hepatocyte growth factor (HGF) is a cytokine that increases glucose transport ex vivo in skeletal muscle. The aim of this work was to decipher the impact of whether conditional overexpression of HGF in vivo could improve glucose homeostasis and insulin sensitivity in mouse skeletal muscle. Following tetracyclin administration, muscle HGF levels were augmented threefold in transgenic mice (SK-HGF) compared to control mice without altering plasma HGF levels. In conditions of normal diet, SK-HGF mice showed no differences in body weight, plasma triglycerides, blood glucose, plasma insulin and glucose tolerance compared to control mice. Importantly, obese SK-HGF mice exhibited improved whole-body glucose tolerance independently of changes in body weight or plasma triglyceride levels compared to control mice. This effect on glucose homeostasis was associated with significantly higher (∼80%) levels of phosphorylated protein kinase B in muscles from SK-HGF mice compared to control mice. In conclusion, muscle expression of HGF counteracts obesity-mediated muscle insulin resistance and improves glucose tolerance in mice.

  14. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    PubMed

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  15. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  16. RBP4 activates antigen-presenting cells leading to adipose tissue inflammation and systemic insulin resistance

    PubMed Central

    Moraes-Vieira, Pedro M.; Yore, Mark M.; Dwyer, Peter M.; Syed, Ismail; Aryal, Pratik; Kahn, Barbara B.

    2014-01-01

    Insulin resistance is a major cause of diabetes and is highly associated with adipose tissue (AT) inflammation in obesity. RBP4, a retinol-transporter, is elevated in insulin resistance and contributes to increased diabetes risk. We aimed to determine the mechanisms for RBP4-induced insulin resistance. Here we show that RBP4 elevation causes AT inflammation by activating innate immunity which elicits an adaptive immune-response. RBP4-overexpressing mice (RBP4-Ox) are insulin-resistant and glucose-intolerant and have increased AT macrophage and CD4 T-cell infiltration. In RBP4-Ox, AT CD206+ macrophages express pro-inflammatory markers and activate CD4 T-cells while maintaining alternatively-activated macrophage markers. These effects result from direct activation of AT antigen-presenting cells (APCs) by RBP4 through a JNK-dependent pathway. Transfer of RBP4-activated APCs into normal mice is sufficient to induce AT inflammation, insulin resistance and glucose intolerance. Thus, RBP4 causes insulin resistance, at least partly, by activating AT APCs which induce CD4 T-cell Th1 polarization and AT inflammation. PMID:24606904

  17. Food fried in extra-virgin olive oil improves postprandial insulin response in obese, insulin-resistant women.

    PubMed

    Farnetti, Sara; Malandrino, Noemi; Luciani, Davide; Gasbarrini, Giovanni; Capristo, Esmeralda

    2011-03-01

    The benefits of low glycemic load (GL) diets on clinical outcome in several metabolic and cardiovascular diseases have extensively been demonstrated. The GL of a meal can be affected by modulating the bioavailability of carbohydrates or by changing food preparation. We investigated the effect on plasma glucose and insulin response in lean and obese women of adding raw or fried extra-virgin olive oil to a carbohydrate-containing meal. After an overnight fast, 12 obese insulin-resistant women (body mass index [BMI], 32.8 ± 2.2 kg/m(2)) and five lean subjects (BMI, 22.2 ± 1.2 kg/m(2)) were randomly assigned to receive two different meals (designated A and B). Meal A was composed of 60 g of pasta made from wheat flour and 150 g of grilled courgettes with 25 g of uncooked oil. Meal B included 15 g of oil in the 150 g of deep-fried courgettes and 10 g of oil in the 60 g of stir-fried pasta. Both meals included 150 g of apple. Blood samples were collected at baseline and every 30 minutes over a 3-hour post-meal period and were tested for levels of glucose, insulin, C-peptide, and triglycerides. The area under the curve (AUC) values were calculated. In obese women the AUCs for C-peptide were significantly higher after meal A than after meal B at 120 minutes (W [Wilcoxon sign rank test] = 27.5, P = .0020), 150 minutes (W = 26.5, P = .0039), and 180 minutes (W = 26.5, P = .0039). No differences were found in lean subjects. This study demonstrated that in obese, insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal.

  18. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  19. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  20. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Glucocorticoid deprivation alters in vivo glucose uptake by muscle and adipose tissues of GTG-obese mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1995-11-01

    The effect of 1 wk of glucocorticoid deprivation by surgical adrenalectomy (ADX) on tissue 2-deoxy(-)[U-14C]glucose (2-DG) uptake and hepatic glucose production (HGP) was assessed in conscious, catheterized mice 5 wk after the induction of obesity with gold thioglucose (GTG). Despite the prevailing hyperglycemia and hyperinsulinemia, glucose uptake by heart, quadriceps muscle, and interscapular brown adipose tissue (BAT) of GTG-obese mice was unchanged compared with controls, suggesting that the hyperglycemia of GTG-obese mice is able to compensate for the insulin resistance of these tissues. In contrast, epididymal white adipose tissue (WAT) of GTG-obese mice showed increased glucose uptake with hyperglycemia and hyperinsulinemia. ADX decreased the hyperglycemia and lowered the elevated glycogen content of the liver of GTG-obese mice. ADX reduced glucose uptake by heart and WAT of control and GTG-obese mice, consistent with the concomitant decrease in insulinemia. Glucose uptake by muscle of control and GTG-obese mice was not significantly decreased after ADX despite the decrease in insulin, and ADX increased glucose uptake by BAT of GTG-obese mice, suggesting increased sympathetically mediated thermogenesis in this tissue. HGP was increased in GTG-obese mice compared with controls, and ADX significantly reduced HGP in both GTG-obese and control mice. These results suggest that the improved glucose tolerance of ADX GTG-obese mice and ADX control mice is due to a decrease in HGP rather than an increase in peripheral glucose uptake.

  2. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues

    PubMed Central

    Dong, Yanlan; Chen, Fang; Mitch, William E.; Zhang, Liping

    2015-01-01

    Background/Objective In mice, a high fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. Subjects/Methods C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using ShRNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their reponses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or Irisin. Isolated peritoneal macrophages were treated with myostatin or Irisin to determine if myostatin or Irisin induce inflammatory mechanisms. Results In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In mice fed the HFD, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue (BAT) while stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by Irisin. Myostatin inhibition increased PGC-1α expression and Irisin production in muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. Concusion these results uncover a metabolic pathway from an increase in myostatin that suppresses Irisin leading to activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well as the shortage of brown

  3. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  4. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  5. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  6. Serum resistin correlates with central obesity but weakly with insulin resistance in Chinese children and adolescents.

    PubMed

    Li, M; Fisette, A; Zhao, X-Y; Deng, J-Y; Mi, J; Cianflone, K

    2009-04-01

    Resistin has been linked with obesity and hypothesized as a potential marker of insulin resistance in addition to being linked with acute inflammation. However, these links are still highly controversial in humans. Our goal was to examine resistin levels in relation to obesity, insulin resistance and inflammation markers in a large population of Asian children and adolescents. Children and adolescents (n=3472) aged 6-18 years, boys (n=1765) and girls (n=1707), were assessed for body size parameters, pubertal development, blood lipids, glucose, insulin, resistin, C-reactive protein (CRP), adiponectin and complement C3 (C3) levels. Resistin increased with central obesity in both genders but not with simple adiposity in boys. Several markers associated with central obesity correlated in a gender-specific fashion with plasma resistin. Waist circumference, fat-mass percentage, waist-to-height ratio and body mass index (BMI) positively correlated with resistin in both genders. Blood lipids such as triglycerides, nonesterified fatty acids (NEFA) and low-density lipoprotein cholesterol, diastolic and systolic blood pressure correlated positively with resistin in boys. NEFA, high-density lipoprotein cholesterol (negatively) and inflammation markers, such as CRP and C3, positively correlated with resistin in girls. There was no correlation between resistin and adiponectin, and no association of adiponectin with resistin quintiles in either boys or girls. In both boys and girls, resistin tended to decrease with age, with girls having higher levels than boys. Few indices of insulin resistance were linked with plasma resistin in either gender. In this population, plasma resistin levels are a weak biochemical marker of metabolic dysfunction defined by central obesity, adiposity and inflammation and does not predict insulin resistance. Only a small proportion of resistin variation can be explained by factors related to metabolic syndrome, suggesting that resistin is not strongly

  7. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.

    PubMed

    Holland, William L; Adams, Andrew C; Brozinick, Joseph T; Bui, Hai H; Miyauchi, Yukiko; Kusminski, Christine M; Bauer, Steven M; Wade, Mark; Singhal, Esha; Cheng, Christine C; Volk, Katherine; Kuo, Ming-Shang; Gordillo, Ruth; Kharitonenkov, Alexei; Scherer, Philipp E

    2013-05-07

    FGF21, a member of the fibroblast growth factor (FGF) superfamily, has recently emerged as a regulator of metabolism and energy utilization. However, the exact mechanism(s) whereby FGF21 mediates its actions have not been elucidated. There is considerable evidence that insulin resistance may arise from aberrant accumulation of intracellular lipids in insulin-responsive tissues due to lipotoxicity. In particular, the sphingolipid ceramide has been implicated in this process. Here, we show that FGF21 rapidly and robustly stimulates adiponectin secretion in rodents while diminishing accumulation of ceramides in obese animals. Importantly, adiponectin-knockout mice are refractory to changes in energy expenditure and ceramide-lowering effects evoked by FGF21 administration. Moreover, FGF21 lowers blood glucose levels and enhances insulin sensitivity in diabetic Lep(ob/ob) mice and diet-induced obese (DIO) mice only when adiponectin is functionally present. Collectively, these data suggest that FGF21 is a potent regulator of adiponectin secretion and that FGF21 critically depends on adiponectin to exert its glycemic and insulin sensitizing effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    PubMed

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  9. A review of obesity, insulin resistance, and the role of exercise in breast cancer patients.

    PubMed

    Ghose, Abhimanyu; Kundu, Ria; Toumeh, Anis; Hornbeck, Catherine; Mohamed, Iman

    2015-01-01

    Breast cancer, the most common female malignancy in the world, has a strong association with obesity and insulin resistance. The importance of these risk factors goes up significantly in patients already affected by this cancer as they negatively affect the prognosis, recurrence rate, and survival by various mechanisms. The literature on the role of physical activity and aerobic exercise on modifying the above risks is debatable with data both for and against it. In this article, we have reviewed the risks of obesity and insulin resistance in breast cancer patients and the controversy associated with the impact of exercise. Ultimately, we have concluded that a randomized control trial is necessary with an individualized aerobic exercise program for a minimum duration of 20 wk on breast cancer patients, who are undergoing or recently completed chemotherapy, to study its effects on insulin resistance, weight, and clinical outcome.

  10. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice

    PubMed Central

    Reynolds, Thomas H.; Soriano, Rachelle A.; Obadi, Obadi A.; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin

  11. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice.

    PubMed

    Reynolds, Thomas H; Soriano, Rachelle A; Obadi, Obadi A; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin

  12. Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity.

    PubMed

    Fernandez-Twinn, Denise S; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L; Alfaradhi, Maria Z; Loche, Elena; Sferruzzi-Perri, Amanda N; Fowden, Abigail L; Ozanne, Susan E

    2017-03-14

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.

  13. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  14. SEX DIFFERENCES IN THE ASSOCIATION BETWEEN DIETARY RESTRAINT, INSULIN RESISTANCE AND OBESITY

    PubMed Central

    Jastreboff, Ania M.; Gaiser, Edward C.; Gu, Peihua; Sinha, Rajita

    2014-01-01

    Background & Aims Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. Methods In this cross-sectional, observational study, we studied 487 individuals from the community (men N=222, women N=265), who ranged from lean (body mass index 18.5–24.9kg/m2, N=173), overweight (body mass index 25–29.9kg/m2, N=159) and obese (body mass index >30kg/m2, N=155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. Results In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p<0.0001). Furthermore, homeostatic model assessment of insulin resistance levels were significantly higher in men who were high-versus low-restrained eaters (p=0.0006). Conclusions This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restraint eating is associated with insulin resistance in men but not in women. PMID:24854820

  15. Abdominal obesity in older women: potential role for disrupted fatty acid reesterification in insulin resistance.

    PubMed

    Yeckel, Catherine W; Dziura, James; DiPietro, Loretta

    2008-04-01

    Excess abdominal adiposity is a primary factor for insulin resistance in older age. Our objectives were to examine the role of abdominal obesity on adipose tissue, hepatic, and peripheral insulin resistance in aging, and to examine impaired free fatty acid metabolism as a mechanism in these relations. This was a cross-sectional study. The study was performed at a General Clinical Research Center. Healthy, inactive older (>60 yr) women (n = 25) who were not on hormone replacement therapy or glucose-lowering medication were included in the study. Women with abdominal circumference values above the median (>97.5 cm) were considered abdominally obese. Whole-body peripheral glucose utilization, adipose tissue lipolysis, and hepatic glucose production were measured using in vivo techniques according to a priori hypotheses. In the simple analysis, glucose utilization at the 40 mU insulin dose (6.3 +/- 2.8 vs. 9.1 +/- 3.4; P < 0.05), the index of the insulin resistance of basal hepatic glucose production (23.6 +/- 13.0 vs. 15.1 +/- 6.0; P < 0.05), and insulin-stimulated suppression of lipolysis (35 vs. 54%; P < 0.05) were significantly different between women with and without abdominal obesity, respectively. Using the glycerol appearance rate to free fatty acid ratio as an index of fatty acid reesterification revealed markedly blunted reesterification in the women with abdominal adiposity under all conditions: basal (0.95 +/- 0.29 vs. 1.35 +/- 0.47; P < 0.02); low- (2.58 +/- 2.76 vs. 6.95 +/- 5.56; P < 0.02); and high-dose (4.46 +/- 3.70 vs. 12.22 +/- 7.13; P < 0.01) hyperinsulinemia. Importantly, fatty acid reesterification was significantly (P < 0.01) associated with abdominal circumference and hepatic and peripheral insulin resistance, regardless of total body fat. These findings support the premise of dysregulated fatty acid reesterification with abdominal obesity as a pathophysiological link to perturbed glucose metabolism across multiple tissues in aging.

  16. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty.

    PubMed

    Tobisch, B; Blatniczky, L; Barkai, L

    2015-02-01

    The prevalence of obesity with concomitant increasing risk for having cardiometabolic diseases is rising in the childhood population. Insulin resistance has a key role in metabolic changes in these children. Insulin levels elevate as puberty commences in every individual. Children with increased risk for cardiometabolic diseases show significant differences in insulin levels even before the onset of puberty compared with those without risks. The pattern of appearance of dyslipidaemia also varies in children with risk factors even in the pre-pubertal group from those without risk. Children with metabolic syndrome display considerably pronounced changes in their metabolic parameters before the onset of puberty, which become more pronounced as puberty passes. Insulin resistance (IR) has a key role in the metabolic changes in obese children. In commencing puberty, the insulin levels elevate. It is not clear, however, how insulin levels develop if the metabolic syndrome appears. Metabolic changes were assessed in obese children before, during and after puberty to analyse the relationship between IR and puberty in subjects with and without metabolic syndrome. Three hundred thirty-four obese children (5-19 years) attended the study. The criteria of the International Diabetes Federation were used to assess the presence of cardiometabolic risks (CMRs). Subjects with increased CMR were compared with those without risk (nCMR). Pubertal staging, lipid levels, plasma glucose and insulin levels during oral glucose tolerance test were determined in each participant. IR was expressed by homeostasis model assessment (HOMA-IR) and the ratio of glucose and insulin areas under the curve (AUC-IR). Significantly higher AUC-IR were found in pre-pubertal CMR children compared with nCMR subjects (11.84 ± 1.03 vs. 8.00 ± 0.69; P < 0.01), but no difference was discovered during and after puberty. HOMA-IR differs between CMR and nCMR only in post-puberty (6.03 ± 1.26 vs. 2

  17. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  18. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    PubMed Central

    Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O’Connor, Jason C.; Xu, Yong; Liu, Meilian; Dong, Lily Q.

    2017-01-01

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction. PMID:29087318

  19. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    PubMed

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  20. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody

    PubMed Central

    Weiss, Lola; Slavin, Shimon; Reich, Shoshana; Cohen, Patrizia; Shuster, Svetlana; Stern, Robert; Kaganovsky, Ella; Okon, Elimelech; Rubinstein, Ariel M.; Naor, David

    2000-01-01

    Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes. PMID:10618410

  1. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    PubMed

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  2. Sub-chronic administration of the 11beta-HSD1 inhibitor, carbenoxolone, improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.

    PubMed

    Taylor, Ashley; Irwin, Nigel; McKillop, Aine M; Flatt, Peter R; Gault, Victor A

    2008-04-01

    We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.

  3. Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation.

    PubMed

    Muñoz, Vitor R; Gaspar, Rafael C; Kuga, Gabriel K; Nakandakari, Susana C B R; Baptista, Igor L; Mekary, Rania A; da Silva, Adelino S R; de Moura, Leandro P; Ropelle, Eduardo R; Cintra, Dennys E; Pauli, José R

    2018-03-25

    The accumulation of fatty acids in the liver associated with obesity condition is also known as nonalcoholic fatty liver disease (NAFLD). The impaired fat oxidation in obesity condition leads to increased hepatic fat accumulation and increased metabolic syndrome risk. On the other hand, physical exercise has been demonstrated as a potent strategy in the prevention of NAFLD. Also, these beneficial effects of exercise occur through different mechanisms. Recently, the Cdc2-like kinase (CLK2) protein was associated with the suppression of fatty acid oxidation and hepatic ketogenesis. Thus, obese animals demonstrated elevated levels of hepatic CLK2 and decreased fat acid oxidation. Here, we explored the effects of chronic physical exercise in the hepatic metabolism of obese mice. Swiss mice were distributed in Lean, Obese (fed with high-fat diet during 16 weeks) and Trained Obese group (fed with high-fat diet during 16 weeks and exercised (at 60% exhaustion velocity during 1 h/5 days/week) during 8 weeks. In our results, the obese animals showed insulin resistance, increased hepatic CLK2 content and increased hepatic fat accumulation compared to the Lean group. Otherwise, the chronic physical exercise improved insulin resistance state, prevented the increased CLK2 in the liver and attenuated hepatic fat accumulation. In summary, these data reveal a new protein involved in the prevention of hepatic fat accumulation after chronic physical exercise. More studies can evidence the negative role of CLK2 in the control of liver metabolism, contributing to the improvement of insulin resistance, obesity, and type 2 diabetes. © 2018 Wiley Periodicals, Inc.

  4. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  5. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    PubMed Central

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  6. Consumption of a liquid high-fat meal increases triglycerides but decreases high-density lipoprotein cholesterol in abdominally obese subjects with high postprandial insulin resistance.

    PubMed

    Wang, Feng; Lu, Huixia; Liu, Fukang; Cai, Huizhen; Xia, Hui; Guo, Fei; Xie, Yulan; Huang, Guiling; Miao, Miao; Shu, Guofang; Sun, Guiju

    2017-07-01

    Abdominal obesity is associated with an increased risk of insulin resistance, which may be a potential contributor to dyslipidemia. However, the relationship between postprandial insulin resistance and lipid metabolism in abdominally obese subjects remains unknown. We hypothesized that postprandial dyslipidemia would be exaggerated in abdominally obese subjects with high postprandial insulin resistance. To test this hypothesis, serum glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and apolipoprotein B were measured at baseline and postprandial state at 0.5, 1, 2, 4, 6, and 8 hours after a liquid high-fat meal in non-abdominally obese controls (n=44) and abdominally obese subjects with low (AO-LPIR, n=40), middle (n=40), and high postprandial insulin resistance (AO-HPIR, n=40) based on the tertiles ratio of the insulin to glucose areas under the curve (AUC). Their serum adipokines were tested at baseline only. Fasting serum leptin was higher (P<.05) in AO-HPIR than that in AO-LPIR and controls. Postprandial triglycerides AUC was higher (P<.05), whereas high-density lipoprotein cholesterol AUC was lower (P<.05), in AO-HPIR than those in AO-LPIR and controls. Postprandial AUCs for total cholesterol and apolipoprotein B were similar in abdominally obese subjects with different degrees of postprandial insulin resistance and controls. The present study indicated that the higher degree of postprandial insulin resistance, the more adverse lipid profiles in abdominally obese subjects, which provides insight into opportunity for screening in health. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  8. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  9. Genetically obese (ob/ob) mice are resistant to the lethal effects of thioacetamide hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Young-Suk; Song, Ji-Won; Lim, Jong-Hwan

    Obesity increases the risk of chronic liver diseases, including viral hepatitis, alcohol-induced liver disease, and non-alcoholic steatohepatitis. In this study, we investigated the effects of obesity in acute hepatic failure using a murine model of thioacetamide (TA)-induced liver injury. Genetically obese ob/ob mice, together with non-obese ob/+ littermates, were subjected to a single intraperitoneal injection of TA, and examined for signs of hepatic injury. ob/ob mice showed a significantly higher survival rate, lower levels of serum alanine aminotransferase and aspartate aminotransferase, and less hepatic necrosis and apoptosis, compared with ob/+ mice. In addition, ob/ob mice exhibited significantly lower levels ofmore » malondialdehyde and significantly higher levels of glutathione and antioxidant enzyme activities compared with their ob/+ counterparts. Bioactivation analyses revealed reduced plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in ob/ob mice. Together, these data demonstrate that genetically obese mice are resistant to TA-induced acute liver injury through diminished bioactivation of TA and antioxidant effects. - Highlights: • ob/ob mice are resistant to lethal doses of thioacetamide, compared to ob/+ mice. • ob/ob mice show reduced oxidative stress and enhanced antioxidant enzyme activity. • ob/ob mice exhibit diminished bioactivation of thioacetamide.« less

  10. Effects of Capsaicin Coadministered with Eicosapentaenoic Acid on Obesity-Related Dysregulation in High-Fat-Fed Mice.

    PubMed

    Hirotani, Yoshihiko; Fukamachi, Junta; Ueyama, Rina; Urashima, Yoko; Ikeda, Kenji

    2017-01-01

    Obesity-induced inflammation contributes to the development of metabolic disorders such as insulin resistance, type 2 diabetes, fatty liver disease, and cardiovascular disease. In this study, we investigated whether the combination of eicosapentaenoic acid (EPA) and capsaicin could protect against high-fat diet (HFD)-induced obesity and related metabolic disorders. The experiments were performed using male C57BL/6J mice that were fed one of the following diets for 10 weeks: standard chow (5.3% fat content) (normal group), a HFD (32.0% fat content) (HFD group), or a HFD supplemented with either 4% (w/w) EPA (EPA group) or a combination of 4% (w/w) EPA and 0.01% (w/w) capsaicin (EPA+Cap group). Our results indicated that the body, fat and liver tissue weights and levels of serum glucose, insulin, total cholesterol, triglyceride, high-density lipoprotein-cholesterol, aspartate aminotransferase, and alanine aminotransferase were significantly higher in HFD group mice than in normal group mice (p<0.05 in all cases). However, the body and fat tissue weights and serum glucose levels and homeostasis model assessment of insulin resistance were significantly lower in EPA+Cap group mice group than in HFD and EPA group mice (p<0.05 in all cases). Thus, our study suggests that the combination of EPA and capsaicin might be beneficial for delaying the progression of obesity-related metabolic dysregulation and subsequent complications.

  11. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    PubMed

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to

  12. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

    PubMed

    Ittichaicharoen, Jitjiroj; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-04-01

    Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comprehensive assessment of insulin resistance in non-obese Asian Indian and Chinese men.

    PubMed

    Tan, Hong Chang; Yew, Tong Wei; Chacko, Shaji; Tai, E Shyong; Kovalik, Jean-Paul; Ching, Jianhong; Myo Thant, Sandi; Khoo, Chin Meng

    2018-03-27

    Indian individuals are more insulin resistant (IR) than Chinese individuals, even among those with a non-obese body mass index (BMI). However, BMI often underestimates body fat in Indian individuals, and it remains unclear whether Indians would remain more IR than Chinese individuals when both BMI and body fat are equally matched. Using the hyperinsulinemic-euglycemic clamp with stable-isotope infusion, we comprehensively assessed IR between 13 non-obese Indian men with 13 Chinese men matched for age, BMI and body fat. We further compared the differences in insulin metabolic clearance rate (MCR) between the two groups and its relationship with various metabolic parameters. The response of lipid and amino acid metabolism to insulin stimulation was also evaluated using metabolomic profiling. The rates of endogenous glucose production during fasting were similar, and endogenous glucose production was completely suppressed during insulin clamp for both ethnic groups. Glucose disappearance during insulin clamp was also similar between the two groups, even after accounting for differences in insulin concentration. Metabolomic profiles of amino acids and various acylcarnitines were similar during both fasting and insulin clamp. However, plasma insulin during clamp was significantly higher in Indian men, indicating that insulin MCR was lower. Insulin MCR correlated significantly with total adiposity and skeletal muscle insulin sensitivity. When equally matched for body fat, non-obese Indian men had similar skeletal muscle insulin sensitivity and endogenous glucose production to Chinese men. The effects of insulin on lipid and amino acid metabolism were also similar. Low insulin MCR is associated with greater adiposity and lower skeletal muscle insulin sensitivity. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  15. Dietary supplementation with branched-chain amino acids suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice.

    PubMed

    Iwasa, Junpei; Shimizu, Masahito; Shiraki, Makoto; Shirakami, Yohei; Sakai, Hiroyasu; Terakura, Yoichi; Takai, Koji; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka

    2010-02-01

    Obesity and related metabolic abnormalities, including insulin resistance, are risk factors for hepatocellular carcinoma in non-alcoholic steatohepatitis as well as in chronic viral hepatitis. Branched-chain amino acids (BCAA), which improve insulin resistance, inhibited obesity-related colon carcinogenesis in a rodent model, and also reduced the incidence of hepatocellular carcinoma in obese patients with liver cirrhosis. In the present study, we determined the effects of BCAA on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in obese C57BL/KsJ-db/db (db/db) mice with diabetes mellitus. Male db/db mice were given tap water containing 40 ppm DEN for an initial 2 weeks and thereafter they received a basal diet containing 3.0% of BCAA or casein, which served as a nitrogen content-matched control of BCAA, throughout the experiment. Supplementation with BCAA significantly reduced the total number of foci of cellular alteration, a premalignant lesion of the liver, and the expression of insulin-like growth factor (IGF)-1, IGF-2, and IGF-1 receptor in the liver when compared to the casein supplementation. BCAA supplementation for 34 weeks also significantly inhibited both the development of hepatocellular neoplasms and the proliferation of hepatocytes in comparison to the basal diet or casein-fed groups. Supplementation with BCAA improved liver steatosis and fibrosis and inhibited the expression of alpha-smooth muscle actin in the DEN-treated db/db mice. The serum levels of glucose and leptin decreased by dietary BCAA, whereas the value of the quantitative insulin sensitivity check index increased by this agent, indicating the improvement of insulin resistance and hyperleptinemia. In conclusion, oral BCAA supplementation improves insulin resistance and prevents the development of liver tumorigenesis in obese and diabetic mice.

  16. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.

    PubMed

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong; Xie, Zhonglin

    2012-11-15

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.

  17. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice

    PubMed Central

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong

    2012-01-01

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD+ levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity. PMID:22967499

  18. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway

    PubMed Central

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M.

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases. PMID:28598969

  19. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    PubMed

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  20. Alternate-day fasting diet improves fructose-induced insulin resistance in mice.

    PubMed

    Beigy, M; Vakili, S; Berijani, S; Aminizade, M; Ahmadi-Dastgerdi, M; Meshkani, R

    2013-12-01

    Increased fructose consumption is linked to insulin resistance, weight gain, hyperlipidemia and hypertension. Although the advantages of several dietary restriction regimens have been demonstrated, the effects of alternate-day fasting (ADF) on fructose-induced insulin resistance have not yet been studied. This study is based on a new modification on ADF by combining the fructose-rich solution (10% w/v) and regular mice diet. Mice were randomly allocated into four groups: ADF50% (50% restriction in chow food intake but ad libitum fructose drink), ADF100% (100% restriction for chow food but ad libitum fructose drink), control (ad libitum chow food intake plus tap water) and daily food and fructose (DFF) (had free access to both chow and fructose solution). Biweekly fasting blood sugar (FBS), glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted. All groups gained weight during the study (p < 0.05). Body weights of DFF and control groups did not differ from that of ADF groups, but ADF50% gained more (p < 0.01) weights than ADF100% through the study. Total calorie intake (feed + fast days) of ADF50% was higher than that of ADF100% (p < 0.001) and control (p < 0.03). In addition, ADF groups consumed more energy than the control and DFF groups in feed (ad libitum) days (p < 0.05). At the end of the study, the mean FBS levels in the control and ADF100% groups were similar and significantly lower in relation to that of DFF and ADF50% groups (p < 0.01). Measurements of area under the curve in GTT and ITT revealed that the ADF100% group was more insulin-sensitive than the DFF and ADF50% groups. In conclusion, these data suggest that the ADF100% improves fructose-induced insulin resistance in mice. © 2013 Blackwell Verlag GmbH.

  1. Evaluation of Mn-superoxide dismutase and catalase gene expression in childhood obesity: its association with insulin resistance.

    PubMed

    Mohseni, Roohollah; Arab Sadeghabadi, Zahra; Goodarzi, Mohammad Taghi; Teimouri, Maryam; Nourbakhsh, Mitra; Razzaghy Azar, Maryam

    2018-06-28

    Obesity is associated with oxidative stress. Superoxide dismutase (SOD) is the first line of defense against reactive oxygen species (ROS), eliminating the strong superoxide radical and producing H2O2, which can then be degraded by catalase (CAT). The main objective of this study was to evaluate the gene expression antioxidant enzymes (Mn-SOD and CAT) in peripheral blood mononuclear cells (PBMCs) of obese and normal-weight children, and its association with anthropometric and biochemical parameters. Thirty obese and 30 control subjects between the ages of 8 and 16 years were enrolled in this study. Serum insulin levels were measured using enzyme-linked immunosorbent assay (ELISA), and insulin resistance was calculated using the homeostasis model assessment of insulin resistance (HOMA-IR). Biochemical parameters were also measured. PBMCs of the subjects were separated and Mn-SOD and CAT gene expression was measured using real-time polymerase chain reaction (PCR). Mn-SOD and CAT gene expression was significantly lower in the obese group compared with the control group (p<0.01). Also, a positive correlation was observed between the gene expression of Mn-SOD and CAT and body mass index (BMI), fasting blood sugar, insulin resistance, low density lipoprotein-cholesterol (LDL-C) cholesterol, triglycerides (TG) and systolic blood pressure (SBP). Induction of antioxidants, especially Mn-SOD and CAT, can lead to reduction of oxidative stress and prevent the complications of obesity in children.

  2. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressionsmore » of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.« less

  3. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhi-Qin; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002; Liu, Ting

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro andmore » in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.« less

  5. Childhood and adolescent obesity and long-term cognitive consequences during aging.

    PubMed

    Wang, Jun; Freire, Daniel; Knable, Lindsay; Zhao, Wei; Gong, Bing; Mazzola, Paolo; Ho, Lap; Levine, Samara; Pasinetti, Giulio M

    2015-04-01

    The prevalence of childhood/adolescent obesity and insulin resistance has reached an epidemic level. Obesity's immediate clinical impacts have been extensively studied; however, current clinical evidence underscores the long-term implications. The current study explored the impacts of brief childhood/adolescent obesity and insulin resistance on cognitive function in later life. To mimic childhood/adolescent obesity and insulin resistance, we exposed 9-week-old C57BL/6J mice to a high-fat diet for 15 weeks, after which the mice exhibited diet-induced obesity and insulin resistance. We then put these mice back on a normal low-fat diet, after which the mice exhibited normal body weight and glucose tolerance. However, a spatial memory test in the forms of the Morris water maze (MWM) and contextual fear conditioning at 85 weeks of age showed that these mice had severe deficits in learning and long-term memory consolidation. Mechanistic investigations identified increased expression of histone deacetylases 5, accompanied by reduced expression of brain-derived neurotrophic factor, in the brains 61 weeks after the mice had been off the high-fat diet. Electrophysiology studies showed that hippocampal slices isolated from these mice are more susceptible to synaptic impairments compared with slices isolated from the control mice. We demonstrated that a 15-week occurrence of obesity and insulin resistance during childhood/adolescence induces irreversible epigenetic modifications in the brain that persist following restoration of normal metabolic homeostasis, leading to brain synaptic dysfunction during aging. Our study provides experimental evidence that limited early-life exposure to obesity and insulin resistance may have long-term deleterious consequences in the brain, contributing to the onset/progression of cognitive dysfunction during aging. © 2014 Wiley Periodicals, Inc.

  6. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b.

    PubMed

    Ouyang, Zijun; Li, Wanshuai; Meng, Qianqian; Zhang, Qi; Wang, Xingqi; Elgehama, Ahmed; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2017-05-01

    Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca 2+ -ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca 2+ -ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    PubMed Central

    McNabney, Sean M.

    2017-01-01

    Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance. PMID:29231905

  8. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons.

    PubMed

    Vogeser, Michael; König, Daniel; Frey, Ingrid; Predel, Hans-Georg; Parhofer, Klaus Georg; Berg, Aloys

    2007-09-01

    Lifestyle changes with increased physical activity and balanced energy intake are recognized as the principal interventions in obesity and insulin resistance. Only few prospective studies, however, have so far addressed the potential role of routine biochemical markers of insulin sensitivity in the monitoring of respective interventions. Fasting insulin and glucose was measured in 33 obese individuals undergoing a lifestyle modification program (MOBILIS) at baseline and after 1 year. The HOMA-IR index (homeostasis model of insulin resistance) was calculated as [fasting serum glucose*fasting serum insulin/22.5], with lower values indicating a higher degree of insulin sensitivity. While the median body mass index (BMI) and waist circumference decreased by 10% and 11%, respectively, the HOMA-IR index decreased in an over-proportional manner by 45% within 1 year (BMI baseline, median 35.7, interquartile range (IQR) 33.7-37.7; after 1 year, median 32.2, IQR 29.6-35.1. HOMA-IR baseline, median 2.9, IQR 1.5-4.6; after 1 year 1.6, IQR 0.9-2.7). In contrast to HOMA-IR and fasting serum insulin, no significant changes in fasting serum glucose were observed. Baseline and post-intervention HOMA-IR showed a high degree of inter-individual variation with eight individuals maintaining high HOMA-IR values despite weight loss after 1 year of intervention. Individual changes in the carbohydrate metabolism achieved by a lifestyle intervention program were displayed by fasting serum insulin concentrations and the HOMA-IR but not by fasting glucose measurement alone. Therefore, assessment of the HOMA-IR may help to individualize lifestyle interventions in obesity and to objectify improvements in insulin sensitivity after therapeutic lifestyle changes.

  9. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  10. Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice.

    PubMed

    Shamsi, Bilal Haider; Ma, Chaofeng; Naqvi, Saima; Xiao, Yanfeng

    2014-01-01

    Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice. Sixty C57B/L6 mice weighing 10-12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity. It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.

  11. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state.

    PubMed

    Adams, Sean H

    2011-11-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+).

  12. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  13. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  14. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    PubMed

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  15. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance.

    PubMed

    Pincelli, A I; Brunani, A; Scacchi, M; Dubini, A; Borsotti, R; Tibaldi, A; Pasqualinotto, L; Maestri, E; Cavagnini, F

    2001-01-01

    The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. These data indicate

  16. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents.

    PubMed

    McCormack, S E; Shaham, O; McCarthy, M A; Deik, A A; Wang, T J; Gerszten, R E; Clish, C B; Mootha, V K; Grinspoon, S K; Fleischman, A

    2013-02-01

    What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly

  17. Choline Supplementation Promotes Hepatic Insulin Resistance in Phosphatidylethanolamine N-Methyltransferase-deficient Mice via Increased Glucagon Action*

    PubMed Central

    Wu, Gengshu; Zhang, Liyan; Li, Tete; Zuniga, Azeret; Lopaschuk, Gary D.; Li, Liang; Jacobs, René L.; Vance, Dennis E.

    2013-01-01

    Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt+/+) and knock-out (Pemt−/−) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt−/− mice fed the HFHC diet, but not in their Pemt−/− littermates fed the HF diet. Plasma glucagon was elevated in Pemt−/− mice fed the HFHC diet compared with Pemt−/− mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt−/− mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt−/− mice through modulating plasma glucagon and its action in liver. PMID:23179947

  18. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis.

    PubMed

    Reinehr, Thomas; Elfers, Clinton; Lass, Nina; Roth, Christian L

    2015-05-01

    Irisin is a recently identified myokine affecting metabolic and glucose homeostasis. However, the role of irisin in obesity and its metabolic consequences are controversial, and data in children are scarce. To study the relationships between irisin, insulin resistance, and puberty before and after weight loss in obese children with and without impaired glucose tolerance. One-year follow-up study in obese children participating in a lifestyle intervention. Primary care. Forty obese children and 20 normal-weight children of similar age, gender, and pubertal stage. A 1-year outpatient intervention program based on exercise, behavior, and nutrition therapy. Fasting serum irisin, weight status (body mass index [BMI] SD score), and the following parameters of the metabolic syndrome: insulin resistance index (homeostasis model of assessment), blood pressure, and lipids. The irisin levels were the highest in obese children with impaired glucose tolerance, followed by obese children with normal glucose tolerance, and levels were lowest in normal-weight children (P < .001). In a multiple linear regression analysis, baseline irisin was significantly associated with pubertal stage, high-density lipoprotein-cholesterol, and homeostasis model of assessment, but not to age, gender, BMI, or any other parameter of the metabolic syndrome. The irisin concentrations were significantly (P = .010) lower in the prepubertal compared to the pubertal children. In longitudinal analyses, changes of irisin were significantly associated with entry into puberty, change of fasting glucose, and 2-hour glucose in an oral glucose tolerance test, but not with change of BMI or any other parameter. Irisin levels are related to pubertal stage and insulin resistance but not to weight status in childhood.

  19. Sex differences in the association between dietary restraint, insulin resistance and obesity.

    PubMed

    Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita

    2014-04-01

    Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

    PubMed Central

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-01-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat. PMID:20049731

  1. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC.

    PubMed

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-08-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat.

  2. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial

    PubMed Central

    van der Aa, M P; Elst, M A J; van de Garde, E M W; van Mil, E G A H; Knibbe, C A J; van der Vorst, M M J

    2016-01-01

    Background: As adolescents with obesity and insulin resistance may be refractory to lifestyle intervention therapy alone, additional off-label metformin therapy is often used. In this study, the long-term efficacy and safety of metformin versus placebo in adolescents with obesity and insulin resistance is studied. Methods: In a randomized placebo-controlled double-blinded trial, 62 adolescents with obesity aged 10–16 years old with insulin resistance received 2000 mg of metformin or placebo daily and physical training twice weekly over 18 months. Primary end points were change in body mass index (BMI) and insulin resistance measured by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). Secondary end points were safety and tolerability of metformin. Other end points were body fat percentage and HbA1c. Results: Forty-two participants completed the 18-month study (66% girls, median age 13 (12–15) years, BMI 30.0 (28.3 to 35.0) kg m−2 and HOMA-IR 4.08 (2.40 to 5.88)). Median ΔBMI was +0.2 (−2.9 to 1.3) kg m−2 (metformin) versus +1.2 (−0.3 to 2.4) kg m−2 (placebo) (P=0.015). No significant difference was observed for HOMA-IR. No serious adverse events were reported. Median change in fat percentage was −3.1 (−4.8 to 0.3) versus −0.8 (−3.2 to 1.6)% (P=0.150), in fat mass −0.2 (−5.2 to 2.1) versus +2.0 (1.2–6.4) kg (P=0.007), in fat-free mass +2.0 (−0.1 to 4.0) versus +4.5 (1.3 to 11.6) kg (P=0.047) and in ΔHbA1c +1.0 (−1.0 to 2.3) versus +3.0 (0.0 to 5.0) mmol mol−1 (P=0.020) (metformin versus placebo). Conclusions: Long-term treatment with metformin in adolescents with obesity and insulin resistance results in stabilization of BMI and improved body composition compared with placebo. Therefore, metformin may be useful as an additional therapy in combination with lifestyle intervention in adolescents with obesity and insulin resistance. PMID:27571249

  3. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial.

    PubMed

    van der Aa, M P; Elst, M A J; van de Garde, E M W; van Mil, E G A H; Knibbe, C A J; van der Vorst, M M J

    2016-08-29

    As adolescents with obesity and insulin resistance may be refractory to lifestyle intervention therapy alone, additional off-label metformin therapy is often used. In this study, the long-term efficacy and safety of metformin versus placebo in adolescents with obesity and insulin resistance is studied. In a randomized placebo-controlled double-blinded trial, 62 adolescents with obesity aged 10-16 years old with insulin resistance received 2000 mg of metformin or placebo daily and physical training twice weekly over 18 months. Primary end points were change in body mass index (BMI) and insulin resistance measured by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). Secondary end points were safety and tolerability of metformin. Other end points were body fat percentage and HbA1c. Forty-two participants completed the 18-month study (66% girls, median age 13 (12-15) years, BMI 30.0 (28.3 to 35.0) kg m(-2) and HOMA-IR 4.08 (2.40 to 5.88)). Median ΔBMI was +0.2 (-2.9 to 1.3) kg m(-2) (metformin) versus +1.2 (-0.3 to 2.4) kg m(-2) (placebo) (P=0.015). No significant difference was observed for HOMA-IR. No serious adverse events were reported. Median change in fat percentage was -3.1 (-4.8 to 0.3) versus -0.8 (-3.2 to 1.6)% (P=0.150), in fat mass -0.2 (-5.2 to 2.1) versus +2.0 (1.2-6.4) kg (P=0.007), in fat-free mass +2.0 (-0.1 to 4.0) versus +4.5 (1.3 to 11.6) kg (P=0.047) and in ΔHbA1c +1.0 (-1.0 to 2.3) versus +3.0 (0.0 to 5.0) mmol mol(-1) (P=0.020) (metformin versus placebo). Long-term treatment with metformin in adolescents with obesity and insulin resistance results in stabilization of BMI and improved body composition compared with placebo. Therefore, metformin may be useful as an additional therapy in combination with lifestyle intervention in adolescents with obesity and insulin resistance.

  4. Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism

    PubMed Central

    Dallaire, Patrice; Bellmann, Kerstin; Laplante, Mathieu; Gélinas, Stéphanie; Centeno-Baez, Carolina; Penfornis, Patrice; Peyot, Marie-Line; Latour, Martin G.; Lamontagne, Julien; Trujillo, Maria E.; Scherer, Philipp E.; Prentki, Marc; Deshaies, Yves; Marette, André

    2008-01-01

    OBJECTIVE—Synthetic ligands for peroxisome proliferator–activated receptor-γ (PPAR-γ) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS—iNOS−/− and iNOS+/+ were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS—Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS−/− and obese iNOS+/+ mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS−/− mice. PPAR-γ transcriptional activity was increased in adipose tissue of iNOS−/− mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-γ activity. CONCLUSIONS—Our results identify the iNOS/NO pathway as a critical modulator of PPAR-γ activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-γ agonism in an animal model of obesity and insulin resistance. PMID:18458147

  5. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  6. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance.

    PubMed

    Khound, Rituraj; Taher, Jennifer; Baker, Christopher; Adeli, Khosrow; Su, Qiaozhu

    2017-12-01

    Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism. © 2017 American Heart Association, Inc.

  7. Importance of Lean Muscle Maintenance to Improve Insulin Resistance by Body Weight Reduction in Female Patients with Obesity.

    PubMed

    Fukushima, Yaeko; Kurose, Satoshi; Shinno, Hiromi; Cao Thu, Ha; Takao, Nana; Tsutsumi, Hiromi; Kimura, Yutaka

    2016-04-01

    It has recently been suggested that skeletal muscle has an important role in insulin resistance in obesity, in addition to exercise tolerance and the fat index. The aim of this study was to identify body composition factors that contribute to improvement of insulin resistance in female patients with obesity who reduce body weight. We studied 92 female obese patients (age 40.9±10.4 years, body mass index 33.2±4.6 kg/m²) who reduced body weight by ≥5% after an intervention program including diet, exercise therapy, and cognitive behavioral therapy. Before and after the intervention, body composition was evaluated by dual-energy X-ray absorptiometry to examine changes in skeletal muscle mass. Homeostasis model assessment of insulin resistance (HOMA-IR) was measured as an index of insulin resistance. Cardiopulmonary exercise was also performed by all patients. There were significant improvements in body weight (-10.3%±4.5%), exercise tolerance (anaerobic threshold oxygen uptake 9.1%±18.4%, peak oxygen uptake 11.0%±14.2%), and HOMA-IR (-20.2%±38.3%). Regarding body composition, there were significant decreases in total body fat (-19.3%±9.6%), total fat-free mass (-2.7%±4.3%), and % body fat (-10.1%±7.5%), whereas % skeletal muscle significantly increased (8.9%±7.2%). In stepwise multiple linear regression analysis with change in HOMA-IR as the dependent variable, the change in % skeletal muscle was identified as an independent predictor (β=-0.280, R²=0.068, P<0.01). Improvement of insulin resistance in female obese patients requires maintenance of skeletal muscle mass.

  8. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    PubMed

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  9. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.

    PubMed

    Wimalawansa, Sunil J

    2018-01-01

    The aim of this study is to determine the relationships of vitamin D with diabetes, insulin resistance obesity, and metabolic syndrome. Intra cellular vitamin D receptors and the 1-α hydroxylase enzyme are distributed ubiquitously in all tissues suggesting a multitude of functions of vitamin D. It plays an indirect but an important role in carbohydrate and lipid metabolism as reflected by its association with type 2 diabetes (T2D), metabolic syndrome, insulin secretion, insulin resistance, polycystic ovarian syndrome, and obesity. Peer-reviewed papers, related to the topic were extracted using key words, from PubMed, Medline, and other research databases. Correlations of vitamin D with diabetes, insulin resistance and metabolic syndrome were examined for this evidence-based review. In addition to the well-studied musculoskeletal effects, vitamin D decreases the insulin resistance, severity of T2D, prediabetes, metabolic syndrome, inflammation, and autoimmunity. Vitamin D exerts autocrine and paracrine effects such as direct intra-cellular effects via its receptors and the local production of 1,25(OH) 2 D 3 , especially in muscle and pancreatic β-cells. It also regulates calcium homeostasis and calcium flux through cell membranes, and activation of a cascade of key enzymes and cofactors associated with metabolic pathways. Cross-sectional, observational, and ecological studies reported inverse correlations between vitamin D status with hyperglycemia and glycemic control in patients with T2D, decrease the rate of conversion of prediabetes to diabetes, and obesity. However, no firm conclusions can be drawn from current studies, because (A) studies were underpowered; (B) few were designed for glycemic outcomes, (C) the minimum (or median) serum 25(OH) D levels achieved are not measured or reported; (D) most did not report the use of diabetes medications; (E) some trials used too little (F) others used too large, unphysiological and infrequent doses of vitamin D; and

  10. Adipokines and Hepatic Insulin Resistance

    PubMed Central

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  11. Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels

    PubMed Central

    Binder, Elke; Bermúdez-Silva, Francisco J.; André, Caroline; Elie, Melissa; Romero-Zerbo, Silvana Y.; Leste-Lasserre, Thierry; Belluomo, llaria; Duchampt, Adeline; Clark, Samantha; Aubert, Agnes; Mezzullo, Marco; Fanelli, Flaminia; Pagotto, Uberto; Layé, Sophie; Mithieux, Gilles; Cota, Daniela

    2013-01-01

    Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in

  12. Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice

    PubMed Central

    Steiner, Nadia; Carneiro, Lionel; Favrod, Céline; Preitner, Frédéric; Thorens, Bernard; Stehle, Jean-Christophe; Dix, Laure; Pralong, François; Magistretti, Pierre J.; Pellerin, Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 +/− mice developed normally. However, when fed high fat diet (HFD), MCT1 +/− mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 +/+ mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 +/− mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 +/+ mice when fed HFD, were reduced in MCT1 +/− mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 +/+ mice under high fat diet was prevented in the liver of MCT1 +/− mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet. PMID:24367518

  13. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  14. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  15. Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice.

    PubMed

    Hernández-Bautista, René J; Alarcón-Aguilar, Francisco J; Del C Escobar-Villanueva, María; Almanza-Pérez, Julio C; Merino-Aguilar, Héctor; Fainstein, Mina Konigsberg; López-Diazguerrero, Norma E

    2014-06-27

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual's health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.

  16. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice

    PubMed Central

    Hernández-Bautista, René J.; Alarcón-Aguilar, Francisco J.; Escobar-Villanueva, María Del C.; Almanza-Pérez, Julio C.; Merino-Aguilar, Héctor; Konigsberg Fainstein, Mina; López-Diazguerrero, Norma E.

    2014-01-01

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline. PMID:24979131

  17. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy.

    PubMed

    Forbes, Shareen; Barr, Sarah M; Reynolds, Rebecca M; Semple, Scott; Gray, Calum; Andrew, Ruth; Denison, Fiona C; Walker, Brian R; Norman, Jane E

    2015-11-01

    Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case-control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic-euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6-9) and body fat distribution by MRI in late pregnancy (n = 10/group). Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy.

  18. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota.

    PubMed

    Alard, Jeanne; Lehrter, Véronique; Rhimi, Moez; Mangin, Irène; Peucelle, Véronique; Abraham, Anne-Laure; Mariadassou, Mahendra; Maguin, Emmanuelle; Waligora-Dupriet, Anne-Judith; Pot, Bruno; Wolowczuk, Isabelle; Grangette, Corinne

    2016-05-01

    Alterations in gut microbiota composition and diversity were suggested to play a role in the development of obesity, a chronic subclinical inflammatory condition. We here evaluated the impact of oral consumption of a monostrain or multi-strain probiotic preparation in high-fat diet-induced obese mice. We observed a strain-specific effect and reported dissociation between the capacity of probiotics to dampen adipose tissue inflammation and to limit body weight gain. A multi-strain mixture was able to improve adiposity, insulin resistance and dyslipidemia through adipose tissue immune cell-remodelling, mainly affecting macrophages. At the gut level, the mixture modified the uptake of fatty acids and restored the expression level of the short-chain fatty acid receptor GPR43. These beneficial effects were associated with changes in the microbiota composition, such as the restoration of the abundance of Akkermansia muciniphila and Rikenellaceae and the decrease of other taxa like Lactobacillaceae. Using an in vitro gut model, we further showed that the probiotic mixture favours the production of butyrate and propionate. Our findings provide crucial clues for the design and use of more efficient probiotic preparations in obesity management and may bring new insights into the mechanisms by which host-microbe interactions govern such protective effects. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Effect of fat loss on arterial elasticity in obese adolescents with clinical insulin resistance: RESIST study.

    PubMed

    Ho, Mandy; Gow, Megan; Baur, Louise A; Benitez-Aguirre, Paul Z; Tam, Charmaine S; Donaghue, Kim C; Craig, Maria E; Cowell, Chris T; Garnett, Sarah P

    2014-10-01

    Reduced arterial elasticity contributes to an obesity-related increase in cardiovascular risk in adults. To evaluate the effect of fat loss on arterial elasticity in obese adolescents at risk of type 2 diabetes. A secondary data analysis of the RESIST study was performed in two hospitals in Sydney, Australia. The study included 56 subjects (ages, 10 to 17 y; 25 males) with prediabetes and/or clinical features of insulin resistance. A 12-month lifestyle plus metformin intervention. Arterial elasticity and systemic vascular resistance were measured using radial tonometry pulse contour analysis, percentage body fat (%BF) was measured by dual-energy x-ray absorptiometry, and insulin sensitivity index was derived from an oral glucose tolerance test and lipids. Adolescents (n = 31) with decreased %BF (mean change [range], -4.4% [-18.3 to -0.01%]) after the intervention had significant increases in the mean large arterial elasticity index (mean change [95%CI], 5.1 [1.9 to 8.2] mL/mm Hg * 10; P = .003) and insulin sensitivity index (0.5 [0.1 to 0.9]; P = .010) and a decrease in systemic vascular resistance (-82 [-129 to -35] dyne * s * cm(-5); P = .001). There were no significant changes in these parameters in adolescents who increased their %BF. Nor was there any significant change in the mean small arterial elasticity index in either group. Long-term follow-up of these adolescents is warranted to assess whether the observed changes in vascular elasticity will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  20. Insulin resistance and self-perceived scholastic competence in inner-city, overweight and obese, African American children.

    PubMed

    Fyfe, Molly; Raman, Aarthi; Sharma, Sushma; Hudes, Mark L; Fleming, Sharon E

    2011-01-10

    scholastic competence is a predictor of future achievement, yet there is little research about health factors that influence the development of self-perceived scholastic competence (SPSC). This study examined the relationship of insulin resistance and body fatness with SPSC in low-income, overweight and obese, African American children. data were analyzed from a convenience sample of 9-10years old African American children (89 boys and 113 girls) enrolled in a type 2 diabetes prevention study. Health variables analyzed for their influence on SPSC (Harter scale) included insulin resistance (Homeostatic model-derived insulin sensitivity, HOMA-IR) and body fatness (% body fat). Adjustments were made for self-esteem (Global Self Worth). there was a significant gender by insulin resistance interaction effect on the child's SPSC, so separate regression models were developed for each gender. In boys, neither insulin resistance nor body fatness was related to SPSC. In girls, however, insulin resistance was negatively related to SPSC scores, and the significance of the relationship increased further after adjusting for body fatness. Body fatness alone was not significantly related to SPSC in girls, but after adjusting for insulin resistance, body fatness was positively related to SPSC. Thus, insulin resistance and body fatness mutually suppressed SPSC in girls. high SPSC was associated with lower insulin resistance and, with insulin resistance held constant, with higher body fatness in girls but not in boys. These relationships were not influenced by self-esteem in these children. 2010 Elsevier Inc. All rights reserved.

  1. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  2. Attenuation of obesity-induced inflammation in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    PubMed

    Hirose, Shouhei; Asano, Krisana; Nakane, Akio

    2017-03-11

    Obesity is associated with chronic inflammation of adipose tissue and causes development of type 2 diabetes. M1 macrophage population was increased in adipose tissue of obese mouse. M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in various mouse inflammatory diseases. In this study, we examined the effect of PG on type 2 diabetes using high-fat-diet (HFD) induced obese mouse model. Oral PG administration enhanced the population of small adipocytes (area less than 1000 μm 2 ) without body and tissue weight gain. In addition, PG administration suppressed mRNA expression of TNF-α, IL-6 and CXCL2 in adipose tissue. The proportion of M1 macrophages was decreased by PG administration. In addition, PG administration suppressed hyperglycemia after intraperitoneal glucose injection. Fasted serum insulin level was decreased in PG-administered mice. Moreover, insulin-stimulated phosphorylation of Akt was enhanced in the liver and gastrocnemius skeletal muscle of PG-administered mice. These data suggested that PG administration improves hyperglycemia and insulin sensitivity in obese mice by modulation of M1 macrophages which secrete proinflammatory cytokines in adipose tissue and activation of Akt in liver and skeletal muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of insulin resistance and adipocytokines on serum alanine aminotransferase in obese patients with type 2 diabetes mellitus.

    PubMed

    de Luis, D A; Aller, R; Izaola, O; Gonzalez Sagrado, M; Conde, R; de la Fuente, B

    2013-01-01

    The aim of our study was to study the association of insulin resistance expressed by HOMA and adipokines in obese type 2 diabetic patients with or without hyper-transaminasemia. A population of 72 obese patients with type 2 diabetes mellitus was analyzed. HOMA-IR was calculated as indicator of insulin-resistance. Adipocytokines blood levels were measured. Patients were classified as group I (n=37) when serum ALT activity was normal or group II (NAFLD patients: n=35) when serum ALT activity was greater than the median value of the group (≥ 28 UI/L). In NAFLD group, BMI, weight, fat mass, waist to hip ratio, waist circumference, triglycerides, HOMA and insulin levels were higher than control group. In the logistic regression analysis with a dependent variable (ALT) and the statistical univariant variables as independent variables, the HOMA-IR remained in the model, with an Odd's ratio of 1.21 (CI:95%: 1.11-1.35) to have a high ALT level with each 1 unit of HOMA-IR adjusted by age, sex, weight, and dietary intake. Some metabolic parameters are associated with elevated ALT in female obese patients. However, adjusted by other variables, only insulin resistance remained associated.

  4. Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man.

    PubMed

    Potier, Louis; Waeckel, Ludovic; Fumeron, Fréderic; Bodin, Sophie; Fysekidis, Marinos; Chollet, Catherine; Bellili, Naima; Bonnet, Fabrice; Gusto, Gaëlle; Velho, Gilberto; Marre, Michel; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine

    2014-05-01

    The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.

  5. Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats.

    PubMed

    Smith, Wayne; Norton, Gavin R; Woodiwiss, Angela J; Lochner, Amanda; du Toit, Eugene F

    2016-07-01

    Clinical data advocating an adverse effect of obesity on left ventricular (LV) systolic function independent of comorbidities is controversial. We hypothesized that in obesity with prediabetic insulin resistance, circulating fatty acids (FAs) become a valuable fuel source in the maintenance of normal systolic function. Male Wistar rats were fed a high caloric diet for 32 weeks to induce obesity. Myocardial LV systolic function was assessed using echocardiography and isolated heart preparations. Aortic output was reduced in obese rat hearts over a range of filling pressures (for example: 15 cmH2O, obese: 32.6 ± 1.2 ml/min vs control: 46.2 ± 0.9 ml/min, P < .05) when perfused with glucose alone. Similarly, the slope of the LV end-systolic pressure-volume relationship decreased, and there was a right shift in the LV end-systolic stress-strain relationship as determined in Langendorff perfused, isovolumic rat heart preparations in the presence of isoproterenol (10(-8)M) (LV systolic stress-strain relationship and a reduced load-independent intrinsic systolic myocardial function, obese: 791 ± 62 g/cm(2) vs control: 1186 ± 74 g/cm(2), P < .01). The addition of insulin to the perfusion buffer improved aortic output, whereas the addition of FAs completely normalized aortic output. LV function was maintained in obese animals in vivo during an inotropic challenge. Elevated circulating FA levels may be important to maintain myocardial systolic function in the initial stages of obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice.

    PubMed

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J; Wicks, Shawna; Stephens, Jacqueline M; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-06-01

    Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

    PubMed Central

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668

  8. JNK: bridging the insulin signaling and inflammatory pathway.

    PubMed

    Liu, Gang; Rondinone, Cristina M

    2005-10-01

    Obesity and insulin resistance are strongly associated with systemic markers of inflammation and endoplasmic reticulum stress. c-Jun N-terminal kinases (JNK) are activated by inflammatory cytokines and have a key role in beta-cell apoptosis and in negative regulation of insulin signaling. JNK1-deficient mice are protected from diet-induced obesity and insulin resistance, while genetically obese mice with targeted mutations in JNK1 are leaner and have reduced insulin and blood glucose levels. These studies validate JNK as a link between inflammation and metabolic diseases and as a promising drug target. This review highlights recent advances in small-molecule inhibitors of JNK that have also been targeted for other diseases with an inflammatory component such as stroke, rheumatoid arthritis, and Alzheimer's and Parkinson's diseases.

  9. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.

    PubMed

    Bagarolli, Renata A; Tobar, Natália; Oliveira, Alexandre G; Araújo, Tiago G; Carvalho, Bruno M; Rocha, Guilherme Z; Vecina, Juliana F; Calisto, Kelly; Guadagnini, Dioze; Prada, Patrícia O; Santos, Andrey; Saad, Sara T O; Saad, Mario J A

    2017-12-01

    Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity.

    PubMed

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Marreiro PhD, Dilina do Nascimento

    2017-03-01

    The aim of this review was to convey updated information on the role of microRNAs in adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Obesity is a chronic disease characterized by the presence of metabolic disorders (e.g., low-grade chronic inflammation), which contributes to the manifestation of insulin resistance. Diverse molecular mechanisms have been implicated in the development of these disorders, and microRNAs stand out as a contributing factor. They are a class of noncoding RNAs that regulate the expression of genes by inducing cleavage of mRNAs or via inhibition of protein translation. It is important to point out that obese individuals show alterations in the expression of microRNAs favoring manifestation of the metabolic disorders present in these patients, and these alterations may be reversed by the loss of weight. Therefore, microRNAs may be regarded as potential biomarkers of obesity-related disorders. Further studies on this topic may advance the understanding of the molecular basis of obesity, including the participation of microRNAs in the pathogenesis of this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism.

    PubMed

    Lanaspa, Miguel A; Kuwabara, Masanari; Andres-Hernando, Ana; Li, Nancy; Cicerchi, Christina; Jensen, Thomas; Orlicky, David J; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Nakagawa, Takahiko; Rodriguez-Iturbe, Bernardo; MacLean, Paul S; Johnson, Richard J

    2018-03-20

    Dietary guidelines for obesity typically focus on three food groups (carbohydrates, fat, and protein) and caloric restriction. Intake of noncaloric nutrients, such as salt, are rarely discussed. However, recently high salt intake has been reported to predict the development of obesity and insulin resistance. The mechanism for this effect is unknown. Here we show that high intake of salt activates the aldose reductase-fructokinase pathway in the liver and hypothalamus, leading to endogenous fructose production with the development of leptin resistance and hyperphagia that cause obesity, insulin resistance, and fatty liver. A high-salt diet was also found to predict the development of diabetes and nonalcoholic fatty liver disease in a healthy population. These studies provide insights into the pathogenesis of obesity and diabetes and raise the potential for reduction in salt intake as an additional interventional approach for reducing the risk for developing obesity and metabolic syndrome.

  12. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice.

    PubMed

    Ballak, Dov B; van Essen, Peter; van Diepen, Janna A; Jansen, Henry; Hijmans, Anneke; Matsuguchi, Tetsuya; Sparrer, Helmut; Tack, Cees J; Netea, Mihai G; Joosten, Leo A B; Stienstra, Rinke

    2014-01-01

    Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8). Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking MAP3K8 and WT mice on a high-fat diet (HFD) for 16 weeks. Individuals with a BMI >30 displayed a higher mRNA expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression levels of IL-1β, IL-6 and IL-8, but not TNF -α, in human adipose tissue were associated with higher expression of MAP3K8. Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1β, IL-6 and CXCL1 in adipose tissue in response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1β and its responsive cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.

  13. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    PubMed

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  14. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity

    PubMed Central

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B

    2014-01-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. PMID:24947364

  15. Combined Vildagliptin and Metformin Exert Better Cardioprotection than Monotherapy against Ischemia-Reperfusion Injury in Obese-Insulin Resistant Rats

    PubMed Central

    Apaijai, Nattayaporn; Chinda, Kroekkiat; Palee, Siripong; Chattipakorn, Siriporn; Chattipakorn, Nipon

    2014-01-01

    Background Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats. Methodology Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats. Conclusion Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate. PMID:25036861

  16. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.

    PubMed

    Frank, Nicholas; Elliott, Sarah B; Brandt, Laura E; Keisler, Duane H

    2006-05-01

    To compare obese horses with insulin resistance (IR) with nonobese horses and determine whether blood resting glucose, insulin, leptin, and lipid concentrations differed between groups and were correlated with combined glucose-insulin test (CGIT) results. 7 obese adult horses with IR (OB-IR group) and 5 nonobese mares. Physical measurements were taken, and blood samples were collected after horses had acclimated to the hospital for 3 days. Response to insulin was assessed by use of the CGIT, and maintenance of plasma glucose concentrations greater than the preinjection value for > or = 45 minutes was used to define IR. Area under the curve values for glucose (AUC(g)) and insulin (AUC(i)) concentrations were calculated. Morgan, Paso Fino, Quarter Horse, and Tennessee Walking Horse breeds were represented in the OB-IR group. Mean neck circumference and BCS differed significantly between groups and were positively correlated with AUC values. Resting insulin and leptin concentrations were 6 and 14 times as high, respectively, in the OB-IR group, compared with the nonobese group, and were significantly correlated with AUC(g) and AUC(i). Plasma nonesterified fatty acid, very low-density lipoprotein, and high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly higher (86%, 104%, and 29%, respectively) in OB-IR horses, and HDL-C concentrations were positively correlated with AUC values. Measurements of neck circumference and resting insulin and leptin concentrations can be used to screen obese horses for IR. Dyslipidemia is associated with IR in obese horses.

  17. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  18. Response of osteocalcin and insulin resistance after a hypocaloric diet in obese patients.

    PubMed

    de Luis, D A; Perez Castrillon, J L; Aller, R; Izaola, O; Bachiller, C

    2015-06-01

    Osteocalcin is a hormone with a complex cross-talk between adipose tissue and the skeleton. The aim of the present study was to explore the change of osteocalcin, insulin resistance, and adipocytokines after hypocaloric diet in obese patients. A population of 178 obese patients was analyzed. At basal time and 2 months after the dietary intervention, weight, fat mass, body mass index, basal glucose, insulin, insulin resistance (HOMA), total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, leptin, adiponectin, IL-6, TNF alpha and osteocalcin levels were measured. After dietary treatment, BMI, weight, fat mass, waist circumference, waist to hip ratio, systolic pressure, glucose, HOMA, triglycerides, total cholesterol, leptin and LDL cholesterol decreased significantly. Osteocalcin levels have a significant decrease after weight loss (Osteocalcin (ng/ml); 9.76 ± 5.3 vs 9.31 ± 4.1: p < 0.05). In correlation analysis, a negative association was detected among osteocalcin and age, BMI, fat mass, glucose, C reactive protein, interleukin-6. In the linear regression with age-, sex-, BMI, fat mass- and insulin- adjusted, only C reactive protein concentrations are related with osteocalcin levels -0.21 (CI 95%: -0.40 -0.009). Osteocalcin decreased after a weight loss treatment. Moreover, osteocalcin levels, before and after treatment, were related in a negative way with CRP fat mass, body mass index, age and glucose levels.

  19. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    PubMed Central

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  20. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    PubMed

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, iNKT cells, and ILCs.

    PubMed

    Bonamichi, Beatriz Dal Santo Francisco; Lee, Jongsoon

    2017-08-01

    The notion that obesity-induced inflammation mediates the development of insulin resistance in animal models and humans has been gaining strong support. It has also been shown that immune cells in local tissues, in particular in visceral adipose tissue, play a major role in the regulation of obesity-induced inflammation. Specifically, obesity increases the numbers and activation of proinflammatory immune cells, including M1 macrophages, neutrophils, Th1 CD4 T cells, and CD8 T cells, while simultaneously suppressing anti-inflammatory cells such as M2 macrophages, CD4 regulatory T cells, regulatory B cells, and eosinophils. Recently, however, new cell types have been shown to participate in the development of obesity-induced inflammation and insulin resistance. Some of these cell types also appear to regulate obesity. These cells are natural killer (NK) cells and innate lymphoid cells (ILCs), which are closely related, and invariant natural killer T (iNKT) cells. It should be noted that, although iNKT cells resemble NK cells in name, they are actually a completely different cell type in terms of their development and functions in immunity and metabolism. In this review, we will focus on the roles that these relatively new players in the metabolism field play in obesity-induced insulin resistance and the regulation of obesity. Copyright © 2017 Korean Diabetes Association.

  2. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  3. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  4. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes

    PubMed Central

    Devedjian, Jean-Christophe; George, Monica; Casellas, Alba; Pujol, Anna; Visa, Joana; Pelegrín, Mireia; Gros, Laurent; Bosch, Fatima

    2000-01-01

    During embryonic development, insulin-like growth factor-II (IGF-II) participates in the regulation of islet growth and differentiation. We generated transgenic mice (C57BL6/SJL) expressing IGF-II in β cells under control of the rat Insulin I promoter in order to study the role of islet hyperplasia and hyperinsulinemia in the development of type 2 diabetes. In contrast to islets from control mice, islets from transgenic mice displayed high levels of IGF-II mRNA and protein. Pancreases from transgenic mice showed an increase in β-cell mass (about 3-fold) and in insulin mRNA levels. However, the organization of cells within transgenic islets was disrupted, with glucagon-producing cells randomly distributed throughout the core. We also observed enhanced glucose-stimulated insulin secretion and glucose utilization in islets from transgenic mice. These mice displayed hyperinsulinemia, mild hyperglycemia, and altered glucose and insulin tolerance tests, and about 30% of these animals developed overt diabetes when fed a high-fat diet. Furthermore, transgenic mice obtained from the N1 backcross to C57KsJ mice showed high islet hyperplasia and insulin resistance, but they also developed fatty liver and obesity. These results indicate that local overexpression of IGF-II in islets might lead to type 2 diabetes and that islet hyperplasia and hypersecretion of insulin might occur early in the pathogenesis of this disease. PMID:10727441

  5. Study of genetic variation in the STAT3 on obesity and insulin resistance in male adults.

    PubMed

    Gianotti, Tomas F; Sookoian, Silvia; Gemma, Carolina; Burgueño, Adriana L; González, Claudio D; Pirola, Carlos J

    2008-07-01

    Signal transducer and activator of transcription 3 (STAT3) plays an important role in hepatic glucose homeostasis and carbohydrate metabolism and has been implicated in the leptin-mediated energy homeostasis. We explored whether STAT3 gene variants are associated with obesity and insulin resistance in a well-characterized sample of 984 adult men (aged 34.4+/-8.6 years) of self-reported European ancestry from a population-based study. We analyzed three tagging single-nucleotide polymorphisms (tagSNPs), two intronic (rs2293152 and rs6503695) and one located in a noncoding region near the gene promoter (rs9891119). These variants were not associated with either obesity (in which 488 lean individuals were compared to 496 overweight/obese subjects) (P values: 0.68, 0.49, and 0.9 for rs2293152, rs6503695, and rs9891119, respectively) or BMI as a continuous trait (P values: 0.85, 0.73, and 0.58 for rs2293152, rs6503695, and rs9891119, respectively). We found no significant association between the three tagSNPs and fasting plasma glucose and insulin. Likewise, no association was observed between the homeostasis model assessment (HOMA) index and any of the tagSNPs. A significant association was observed with total cholesterol and rs6503695 (nominal P value 0.019), but after correcting for multiple testing by Bonferroni correction, the significance becomes marginal (P=0.057). In conclusion, although STAT3 is an excellent candidate gene for assessing obesity and insulin resistance susceptibility alleles, our results do not support a major role for STAT3 variants in BMI and insulin resistance in our male population.

  6. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain.

    PubMed

    Cheke, Lucy G; Bonnici, Heidi M; Clayton, Nicola S; Simons, Jon S

    2017-02-01

    Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity-related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What-Where-When episodic memory test (the "Treasure-Hunt Task") that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure-Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Hepatic Proteomic Analysis Revealed Altered Metabolic Pathways in Insulin Resistant Akt1+/-/Akt2-/-Mice

    PubMed Central

    Pedersen, Brian A; Wang, Weiwen; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Edwards, Robert A; Yazdi, Puya G; Wang, Ping H

    2015-01-01

    Objective The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. Methods Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1+/-/AKT2-/- mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway analysis was performed for the interpretation of the biological significance of the observed proteomic changes. Results 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1+/-/Akt2-/-) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. Conclusion Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance. PMID:26455965

  8. The influence of puberty on vitamin D status in obese children and the possible relation between vitamin D deficiency and insulin resistance.

    PubMed

    Gutiérrez Medina, Sonsoles; Gavela-Pérez, Teresa; Domínguez-Garrido, María Nieves; Gutiérrez-Moreno, Elisa; Rovira, Adela; Garcés, Carmen; Soriano-Guillén, Leandro

    2015-01-01

    Puberty can affect vitamin D levels. The goal of this study was to analyze the relation between vitamin D deficiency and puberty in obese Spanish children, along with the possible interrelation between vitamin D status and degree of insulin resistance. A cross-sectional study was carried out, in which clinical and biochemical data were gathered from 120 obese and 50 normal weight children between January 2011 and January 2013. Mean vitamin D levels were 19.5 and 31.6 ng/mL in obese pubertal and obese prepubertal children, respectively. About 75% of the obese pubertal subjects and 46% of the obese prepubertal subjects had vitamin D deficiency. Vitamin D levels were significantly lower in pubescent subjects compared with pre-pubescent subjects in summer, fall, and winter. There was no apparent relation between vitamin D levels and homeostasis model assessment index for insulin resistence (expressed in standard deviation score for sex and Tanner stage) in either puberty or pre-puberty. Puberty may be a risk factor for the vitamin D deficiency commonly found in the obese child population. This deficiency is not associated with higher insulin resistance in obese pubertal children compared with obese prepubertal children.

  9. Trans-Fatty Acids Aggravate Obesity, Insulin Resistance and Hepatic Steatosis in C57BL/6 Mice, Possibly by Suppressing the IRS1 Dependent Pathway.

    PubMed

    Zhao, Xiaona; Shen, Cheng; Zhu, Hong; Wang, Cong; Liu, Xiangwei; Sun, Xiaolei; Han, Shasha; Wang, Peng; Dong, Zhen; Ma, Xin; Hu, Kai; Sun, Aijun; Ge, Junbo

    2016-05-30

    Trans-fatty acid consumption has been reported as a risk factor for metabolic disorders and targeted organ damages. Nonetheless, little is known about the roles and mechanisms of trans-fatty acids in obesity, insulin resistance (IR) and hepatic steatosis. Adult C57BL/6 male mice were fed with four different diets for 20 weeks: normal diet (ND), high fat diet (HFD), low trans-fatty acids diet (LTD) and high trans-fatty acid diet (HTD). The diet-induced metabolic disorders were assessed by evaluating body weight, glucose tolerance test, hepatic steatosis and plasma lipid profiles post 20-week diet. Histological (H&E, Oil-Red-O) staining and western blot analysis were employed to assess liver steatosis and potential signaling pathways. After 20-weeks of diet, the body weights of the four groups were 29.61 ± 1.89 g (ND), 39.04 ± 4.27 g (HFD), 34.09 ± 2.62 g (LTD) and 43.78 ± 4.27 g (HTD) (p < 0.05), respectively. HFD intake significantly impaired glucose tolerance, which was impaired further in the mice consuming the HTD diet. The effect was further exacerbated by HTD diet. Moreover, the HTD group exhibited significantly more severe liver steatosis compared with HFD group possibly through regulating adipose triglyceride lipase. The group consuming the HTD also exhibited significantly reduced levels of IRS1, phosphor-PKC and phosphor-AKT. These results support our hypothesis that consumption of a diet high in trans-fatty acids induces higher rates of obesity, IR and hepatic steatosis in male C57BL/6 mice, possibly by suppressing the IRS1dependent pathway.

  10. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents.

    PubMed

    Vukovic, Rade; Milenkovic, Tatjana; Mitrovic, Katarina; Todorovic, Sladjana; Plavsic, Ljiljana; Vukovic, Ana; Zdravkovic, Dragan

    2015-12-01

    Available data on metabolically healthy obese (MHO) phenotype in children suggest that gender, puberty, waist circumference, insulin sensitivity, and other laboratory predictors have a role in distinguishing these children from metabolically unhealthy obese (MUO) youth. The goal of this study was to identify predictors of MHO phenotype and to analyze glucose and insulin metabolism during oral glucose tolerance test (OGTT) in MHO children. OGTT was performed in 244 obese children and adolescents aged 4.6-18.9 years. Subjects were classified as MHO in case of no fulfilled criterion of metabolic syndrome except anthropometry or as MUO (≥2 fulfilled criteria). Among the subjects, 21.7 % had MHO phenotype, and they were more likely to be female, younger, and in earlier stages of pubertal development, with lower degree of abdominal obesity. Insulin resistance was the only independent laboratory predictor of MUO phenotype (OR 1.59, CI 1.13-2.25), with 82 % sensitivity and 60 % specificity for diagnosing MUO using HOMA-IR cutoff point of ≥2.85. Although no significant differences were observed in glucose regulation, MUO children had higher insulin demand throughout OGTT, with 1.53 times higher total insulin secretion. Further research is needed to investigate the possibility of targeted treatment of insulin resistance to minimize pubertal cross-over to MUO in obese children. • Substantial proportion of the obese youth (21-68 %) displays a metabolically healthy (MHO) phenotype. • Gender, puberty, waist circumference, insulin sensitivity, and lower levels of uric acid and transaminases have a possible role in distinguishing MHO from metabolically unhealthy obese (MUO) children. • Insulin resistance was found to be the only significant laboratory predictor of MUO when adjusted for gender, puberty, and the degree of abdominal obesity. • Besides basal insulin resistance, MUO children were found to have a significantly higher insulin secretion throughout OGTT in

  11. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction.

    PubMed

    Karasawa, Hiroshi; Takaishi, Kiyosumi; Kumagae, Yoshihiro

    2011-03-01

    An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

  13. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.

    PubMed

    Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E

    2010-07-16

    Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.

  14. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  15. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  17. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jialin; Wang, Jing; Zhao, Xia; Wang, Sheng; Xue, Tingting; Xu, Jingwei; Zheng, Xiaohui; Zhai, Yonggong

    2017-11-01

    The nuclear receptor PPARγ is an effective pharmacological target for some types of metabolic syndrome, including obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. However, the current PPARγ-targeting thiazolidinedione drugs have undesirable side effects. Danshensu Bingpian Zhi (DBZ), also known as tanshinol borneol ester derived from Salvia miltiorrhiza, is a synthetic derivative of natural compounds used in traditional Chinese medicine for its anti-inflammatory activity. In vitro, investigations of DBZ using a luciferase reporter assay and molecular docking identified this compound as a novel promising PPARγ agonist. Ten-week-old C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD). The HFD-fed mice were gavaged daily with either vehicle or DBZ (50mg/kg or 100mg/kg) for 10weeks. The gut microbiota composition was assessed by analyzing the 16S rRNA gene V3+V4 regions via pyrosequencing. DBZ is an efficient natural PPARγ agonist that shows lower PPARγ-responsive luciferase reporter activity than thiazolidinediones, has excellent effects on the metabolic phenotype and exhibits no unwanted adverse effects in a HFD-induced obese mouse model. DBZ protects against HFD-induced body weight gain, insulin resistance, hepatic steatosis and inflammation in mice. DBZ not only stimulates brown adipose tissue (BAT) browning and maintains intestinal barrier integrity but also reverses HFD-induced intestinal microbiota dysbiosis. DBZ is a putative PPARγ agonist that prevents HFD-induced obesity-related metabolic syndrome and reverse gut dysbiosis. DBZ may be used as a beneficial probiotic agent to improve HFD-induced obesity-related metabolic syndrome in obese individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity.

    PubMed

    Ojo, Babajide; Simenson, Ashley J; O'Hara, Crystal; Wu, Lei; Gou, Xin; Peterson, Sandra K; Lin, Daniel; Smith, Brenda J; Lucas, Edralin A

    2017-08-01

    Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat-high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (-16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.

  19. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway.

    PubMed

    Zhu, Jing; Jin, Jie; Ding, Jiexia; Li, Siying; Cen, Panpan; Wang, Keyi; Wang, Hai; Xia, Junbo

    2018-06-25

    Obesity and its major co-morbidity, type 2 diabetes, have been an alarming epidemic prevalence without an effective treatment available. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. Therefore, inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Here, we identify a small molecule, Ganoderic Acid A (GAA), inhibits the SREBP expression and decreases the cellular levels of cholesterol and fatty acid in vitro. GAA also ameliorates body weight gain and fat accumulation in liver or adipose tissues, and improves serum lipid levels and insulin sensitivity in high fat diet (HFD)-induced obese mice. Consistently, GAA regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Taken together, GAA could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. Copyright © 2018. Published by Elsevier B.V.

  20. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    PubMed

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  1. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  2. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients.

    PubMed

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2-3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects.

  3. Oral Administration of Apple Procyanidins Ameliorates Insulin Resistance via Suppression of Pro-Inflammatory Cytokine Expression in Liver of Diabetic ob/ob Mice.

    PubMed

    Ogura, Kasane; Ogura, Masahito; Shoji, Toshihiko; Sato, Yuichi; Tahara, Yumiko; Yamano, Gen; Sato, Hiroki; Sugizaki, Kazu; Fujita, Naotaka; Tatsuoka, Hisato; Usui, Ryota; Mukai, Eri; Fujimoto, Shimpei; Inagaki, Nobuya; Nagashima, Kazuaki

    2016-11-23

    Procyanidins, the main ingredient of apple polyphenols, are known to possess antioxidative and anti-inflammatory effects associated closely with the pathophysiology of insulin resistance and type 2 diabetes. We investigated the effects of orally administered apple procyanidins (APCs) on glucose metabolism using diabetic ob/ob mice. We found no difference in body weight or body composition between mice treated with APCs and untreated mice. A 4 week oral administration of APCs containing water [0.5% (w/v)] ameliorated glucose tolerance, insulin resistance, and hepatic gluconeogenesis in ob/ob mice. APCs also suppressed the increase in the level of the pancreatic β-cell. Insulin-stimulated Akt phosphorylation was significantly enhanced; pro-inflammatory cytokine expression levels were significantly decreased, and c-Jun N-terminal kinase phosphorylation was downregulated in the liver of those mice treated with APCs. In conclusion, APCs ameliorate insulin resistance by improving hepatic insulin signaling through suppression of hepatic inflammation in ob/ob mice, which may be a mechanism with possible beneficial health effects of APCs in disturbed glucose metabolism.

  4. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    PubMed

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  5. Cardiovascular fitness, insulin resistance and metabolic syndrome in severely obese prepubertal Italian children.

    PubMed

    Brufani, Claudia; Grossi, Armando; Fintini, Danilo; Fiori, Rossana; Ubertini, Graziamaria; Colabianchi, Diego; Ciampalini, Paolo; Tozzi, Alberto; Barbetti, Fabrizio; Cappa, Marco

    2008-01-01

    To evaluate if insulin resistance (IR) and metabolic syndrome (MS) were associated with poor cardiovascular fitness in very obese prepubertal Italian subjects. Children referred to the Endocrinology and Diabetes Unit of Bambino Gesù Children's Hospital underwent an OGTT with glucose and insulin assays. QUICKI, ISI and HOMA-IR were calculated. Total and HDL cholesterol, triglycerides and percentage of body fat (DEXA) were determined. Cardiovascular fitness (maximal treadmill time) was evaluated using a treadmill protocol. The MS was defined as having 3 or more of following risk factors: obesity, impaired glucose tolerance, high blood pressure, low HDL-cholesterol, high triglycerides. Fifty-five very obese prepubertal Italian children were enrolled in the study. Unadjusted correlation revealed maximal treadmill time negatively related to fasting insulin (r = -0.53, p < 0.0001) and HOMA-IR (r = -0.57, p < 0.0001) and positively to QUICKI (r = 0.51, p < 0.0001) and ISI (r = 0.46, p = 0.0035). These relationships remained significant when in multivariate analysis age, gender, BMI SD and body composition were accounted for (all p < 0.01). The presence of the MS was independently associated with maximal treadmill time. Poorcardiovascular fitness, IR and MS were independently related, suggesting that the relationship between fitness and insulin action develops early in life. Copyright 2008 S. Karger AG, Basel.

  6. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic

  7. Expanded Normal Weight Obesity and Insulin Resistance in US Adults of the National Health and Nutrition Examination Survey

    PubMed Central

    Martinez, Keilah E.; Bailey, Bruce W.

    2017-01-01

    This study aims to expand the evaluation of normal weight obesity (NWO) and its association with insulin resistance using an NHANES (1999–2006) sample of US adults. A cross-sectional study including 5983 men and women (50.8%) was conducted. Body fat percentage (BF%) was assessed using dual-energy X-ray absorptiometry. Expanded normal weight obesity (eNWO) categories, pairings of BMI and body fat percentage classifications, were created using standard cut-points for BMI and sex-specific median for BF%. Homeostatic model assessment-insulin resistance (HOMA-IR) levels were used to index insulin resistance. Mean ± SE values were BMI: 27.9 ± 0.2 (women) and 27.8 ± 0.1 (men); body fat percentage: 40.5 ± 0.2 (women) and 27.8 ± 0.2 (men); and HOMA-IR: 2.04 ± 0.05 (women) and 2.47 ± 0.09 (men). HOMA-IR differed systematically and in a dose-response fashion across all levels of the eNWO categories (F = 291.3, P < 0.0001). As BMI levels increased, HOMA-IR increased significantly, and within each BMI category, higher levels of body fat were associated with higher levels of HOMA-IR. Both high BMI and high BF% were strongly related to insulin resistance. Insulin resistance appears to increase incrementally according to BMI levels primarily and body fat levels secondarily. Including a precise measure of body fat with BMI adds little to the utility of BMI in the prediction of insulin resistance. PMID:28812029

  8. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance

    PubMed Central

    Kooren, Joel A.; Parker, Sarah J.; Tucker, Kyle C.; Ravindran, Nandini; Ito, Bruce R.; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E.; Gottlieb, Roberta A.; Mentzer, Robert M.

    2016-01-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. PMID:27199111

  9. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    PubMed Central

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  10. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    PubMed Central

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  11. [Metabolic profile in obese patients with obstructive sleep apnea. A comparison between patients with insulin resistance and with insulin sensitivity].

    PubMed

    Dumitrache-Rujinski, Stefan; Dinu, Ioana; Călcăianu, George; Erhan, Ionela; Cocieru, Alexandru; Zaharia, Dragoş; Toma, Claudia Lucia; Bogdan, Miron Alexandru

    2014-01-01

    Obstructive sleep apnea syndrome (OSAS) may induce metabolic abnormalities through intermittent hypoxemia and simpathetic activation. It is difficult to demonstrate an independent role of OSAS in the occurrence of metabolic abnormalities, as obesity represents an important risk factor for both OSAS and metabolic abnormalities. to assess the relations between insulin resistance (IR), insulin sensitivity (IS), OSAS severity and nocturnal oxyhaemoglobin levels in obese, nondiabetic patients with daytime sleepiness. We evaluated 99 consecutive, obese, nondiabetic patients (fasting glycemia < 126 mg/dL, no hypoglycemic or hypolipemiant medication) diagnosed with OSAS (AHI > 5/hour and daytime sleepiness) by an ambulatory six channel cardio-respiratory polygraphy. Hight, weight serum triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) levels were evaluated. Correlations between Apneea Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), average and lowest oxyhaemoglobin saturation (SaO), body mass index (BMI) and insulin resistance or sensitivity were assesed. IR was defined as a TG/ HDL-Cratio > 3, and insulin sensitivity (IS) as a TG/HDL-C ratio < 2. 64 patients (out of 99) had lR and 18 IS. In the IR group (44 men and 20 women), the mean age was 52 +/- 10.6 years, mean BMI: 38.54 +/- 6.67 Kg/m2 (30-60), TG/HDL-C:5, 27 +/- 2.03 (3.02-11.1), mean AHI: 49.65 +/- 25.55/hour (7-110), mean ODI: 4769 +/- 24.95/hour (4-98), mean average SaO2 89.42 +/- 4.6 and mean lowest SaO2 68.4% +/- 13.8% (32-88%). 48 patients had severe, 7 moderate and 9 mild OSAS. In the IS group (10 men and 8 women), the mean age was 58.4 +/- 8.2years, mean BMI: 35.4 +/- 4.29 Kg/m2 (30-46), TG/ HDL-C: 1.64 +/- 0.29 (1.13-1.95), mean AHI: 45.8 +/- 30.3/hour (9-131), mean ODI: 39.9 +/- 32.2/hour (2-133), mean average SaO2 90.8 +/- 8.2 (81-95) and mean lowest SaO2: 74% +/- 10.8% (52-87%). 12 patients had severe, 3 moderate and 3 mild OSAS. Insulin sensitivity positively correlated with mean

  12. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    PubMed

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  14. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    PubMed

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  15. The incidence of metabolic syndrome in obese Czech children: the importance of early detection of insulin resistance using homeostatic indexes HOMA-IR and QUICKI.

    PubMed

    Pastucha, D; Filipčíková, R; Horáková, D; Radová, L; Marinov, Z; Malinčíková, J; Kocvrlich, M; Horák, S; Bezdičková, M; Dobiáš, M

    2013-01-01

    Common alimentary obesity frequently occurs on a polygenic basis as a typical lifestyle disorder in the developed countries. It is associated with characteristic complex metabolic changes, which are the cornerstones for future metabolic syndrome development. The aims of our study were 1) to determine the incidence of metabolic syndrome (based on the diagnostic criteria defined by the International Diabetes Federation for children and adolescents) in Czech obese children, 2) to evaluate the incidence of insulin resistance according to HOMA-IR and QUICKI homeostatic indexes in obese children with and without metabolic syndrome, and 3) to consider the diagnostic value of these indexes for the early detection of metabolic syndrome in obese children. We therefore performed anthropometric and laboratory examinations to determine the incidence of metabolic syndrome and insulin resistance in the group of 274 children with obesity (128 boys and 146 girls) aged 9-17 years. Metabolic syndrome was found in 102 subjects (37 %). On the other hand, the presence of insulin resistance according to QUICKI <0.357 was identified in 86 % and according to HOMA-IR >3.16 in 53 % of obese subjects. This HOMA-IR limit was exceeded by 70 % children in the MS(+) group, but only by 43 % children in the MS(-) group (p<0.0001). However, a relatively high incidence of insulin resistance in obese children without metabolic syndrome raises a question whether the existing diagnostic criteria do not falsely exclude some cases of metabolic syndrome. On the basis of our results we suggest to pay a preventive attention also to obese children with insulin resistance even if they do not fulfill the actual diagnostic criteria for metabolic syndrome.

  16. Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity.

    PubMed

    Chung, Heekyung; Chou, Winjet; Sears, Dorothy D; Patterson, Ruth E; Webster, Nicholas J G; Ellies, Lesley G

    2016-12-01

    Menopause is associated with significant hormonal changes that result in increased total body fat and abdominal fat, amplifying the risk for metabolic syndrome and diseases such as diabetes, cardiovascular disease and cancer in postmenopausal women. Intermittent fasting regimens hold significant health benefit promise for obese humans, however, regimens that include extreme daytime calorie restriction or daytime fasting are generally associated with hunger and irritability, hampering long-term compliance and adoption in the clinical setting. Time-restricted feeding (TRF), a regimen allowing eating only during a specific period in the normal circadian feeding cycle, without calorie restriction, may increase compliance and provide a more clinically viable method for reducing the detrimental metabolic consequences associated with obesity. We tested TRF as an intervention in a mouse model of postmenopausal obesity. Metabolic parameters were measured using Clinical Laboratory Animal Monitoring System (CLAMS) and we carried out glucose tolerance tests. We also stained liver sections with oil red O to examine steatosis and measured gene expression related to gluconeogenesis. Preexisting metabolic disease was significantly attenuated during 7 weeks of TRF. Despite having access to the same high fat diet (HFD) as ad libitum fed (ALF) mice, TRF mice experienced rapid weight loss followed by a delayed improvement in insulin resistance and a reduced severity of hepatic steatosis by having access to the HFD for only 8h during their normal nocturnal feeding period. The lower respiratory exchange ratio in the TRF group compared with the ALF group early in the dark phase suggested that fat was the predominant fuel source in the TRF group and correlated with gene expression analyses that suggested a switch from gluconeogenesis to ketogenesis. In addition, TRF mice were more physically active than ALF fed mice. Our data support further analysis of TRF as a clinically viable form of

  17. Insulin-sensitive obese children display a favorable metabolic profile.

    PubMed

    Vukovic, Rade; Mitrovic, Katarina; Milenkovic, Tatjana; Todorovic, Sladjana; Soldatovic, Ivan; Sipetic-Grujicic, Sandra; Zdravkovic, Dragan

    2013-02-01

    Most of what is known about the metabolically healthy obese phenomenon is derived from studies in the adult population and no standardized criteria to identify these individuals exist to date. The aim of this study was to determine if the preserved insulin sensitivity evaluated by homeostatic model assessment of insulin resistance (HOMA-IR) index is associated with favorable metabolic profile in the obese children. We studied a group of 248 children and adolescents (150 female, 98 male), aged 5.9-18.9 years with diet-induced obesity (BMI >95th percentile). The entire cohort was divided into quartiles based on levels of insulin resistance determined by HOMA-IR index. Subjects in the lower quartile of HOMA-IR were classified as insulin-sensitive group (ISG), whereas children in the upper quartile were categorized as insulin-resistant group (IRG). The ISG subjects had values of HOMA-IR ≤2.75 while the children from the IRG group had HOMA-IR ≥6.16. Subjects from ISG group had lower basal β-cell activity and were less likely to have impaired fasting glucose or impaired glucose tolerance. Concentrations of LDL and total cholesterol, triglycerides, and transaminases were lower and HDL cholesterol levels were higher in ISG subjects. Findings obtained by the use of Matsuda index correlated well with the findings obtained by the use of HOMA-IR. Lower HOMA-IR values were significantly associated with favorable metabolic profile in studied children, which correlates with findings in the adult population and emphasizes the need for further, longitudinal studies of insulin resistance development in childhood obesity.

  18. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKA{sup y} mice by bis(allixinato)oxovanadium(IV) complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Yusuke; Yoshikawa, Yutaka; Yoshida, Jiro

    Previously, we found that bis(allixinato)oxovanadium(IV) (VO(alx){sub 2}) exhibits a potent hypoglycemic activity in type 1-like diabetic mice. Since the enhancement of insulin sensitivity is involved in one of the mechanisms by which vanadium exerts its anti-diabetic effects, VO(alx){sub 2} was further tested in type 2 diabetes with low insulin sensitivity. The effect of oral administration of VO(alx){sub 2} was examined in obesity-linked type 2 diabetic KKA{sup y} mice. Treatment of VO(alx){sub 2} for 4 weeks normalized hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia and hypertension in KKA{sup y} mice; however, it had no effect on hypoadiponectinemia. VO(alx){sub 2} also improved hyperleptinemia, followingmore » attenuation of obesity in KKA{sup y} mice. This is the first example in which a vanadium compound improved leptin resistance in type 2 diabetes by oral administration. On the basis of these results, VO(alx){sub 2} is proposed to enhance not only insulin sensitivity but also leptin sensitivity, which in turn improves diabetes, obesity and hypertension in an obesity-linked type 2 diabetic animal.« less

  19. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth.

    PubMed

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  20. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    PubMed Central

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome. PMID:25763405

  1. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis.

    PubMed

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-10-01

    Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Endocrinology and Adolescence: aerobic exercise reduces insulin resistance markers in obese youth: a meta-analysis of randomized controlled trials.

    PubMed

    García-Hermoso, Antonio; Saavedra, Jose M; Escalante, Yolanda; Sánchez-López, Mairena; Martínez-Vizcaíno, Vicente

    2014-10-01

    The purpose of this meta-analysis was to examine the evidence for the effectiveness of aerobic exercise interventions on reducing insulin resistance markers in obese children and/or adolescents. A secondary outcome was change in percentage of body fat. A computerized search was made from seven databases: CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, ERIC, MEDLINE, PsycINFO, and Science Citation Index. The analysis was restricted to randomized controlled trials that examined the effect of aerobic exercise on insulin resistance markers in obese youth. Two independent reviewers screened studies and extracted data. Effect sizes (ES) and 95% confidence interval (CI) were calculated, and the heterogeneity of the studies was estimated using Cochran's Q-statistic. Nine studies were selected for meta-analysis as they fulfilled the inclusion criteria (n=367). Aerobic exercise interventions resulted in decreases in fasting glucose (ES=-0.39; low heterogeneity) and insulin (ES=-0.40; low heterogeneity) and in percentage of body fat (ES=-0.35; low heterogeneity). These improvements were specifically accentuated in adolescents (only in fasting insulin), or through programs lasting more than 12 weeks, three sessions per week, and over 60 min of aerobic exercise per session. This meta-analysis provides insights into the effectiveness of aerobic exercise interventions on insulin resistance markers in the obese youth population. © 2014 European Society of Endocrinology.

  3. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Sun, Qinghua; Yue, Peibin; Deiuliis, Jeffrey A.; Lumeng, Carey N.; Kampfrath, Thomas; Mikolaj, Michael B.; Cai, Ying; Ostrowski, Michael C.; Lu, Bo; Parthasarathy, Sampath; Brook, Robert D.; Moffatt-Bruce, Susan D.; Chen, Lung Chi; Rajagopalan, Sanjay

    2009-01-01

    Background There is a strong link between urbanization and type 2 diabetes mellitus. Although a multitude of mechanisms have been proposed, there are no studies evaluating the impact of ambient air pollutants and the propensity to develop type 2 diabetes mellitus. We hypothesized that exposure to ambient fine particulate matter (<2.5 μm; PM2.5) exaggerates diet-induced insulin resistance, adipose inflammation, and visceral adiposity. Methods and Results Male C57BL/6 mice were fed high-fat chow for 10 weeks and randomly assigned to concentrated ambient PM2.5 or filtered air (n=14 per group) for 24 weeks. PM2.5-exposed C57BL/6 mice exhibited marked whole-body insulin resistance, systemic inflammation, and an increase in visceral adiposity. PM2.5 exposure induced signaling abnormalities characteristic of insulin resistance, including decreased Akt and endothelial nitric oxide synthase phosphorylation in the endothelium and increased protein kinase C expression. These abnormalilties were associated with abnormalities in vascular relaxation to insulin and acetylcholine. PM2.5 increased adipose tissue macrophages (F4/80+ cells) in visceral fat expressing higher levels of tumor necrosis factor-α/interleukin-6 and lower interleukin-10/N-acetyl-galactosamine specific lectin 1. To test the impact of PM2.5 in eliciting direct monocyte infiltration into fat, we rendered FVBN mice expressing yellow fluorescent protein (YFP) under control of a monocyte-specific promoter (c-fms, c-fmsYFP) diabetic over 10 weeks and then exposed these mice to PM2.5 or saline intratracheally. PM2.5 induced YFP cell accumulation in visceral fat and potentiated YFP cell adhesion in the microcirculation. Conclusion PM2.5 exposure exaggerates insulin resistance and visceral inflammation/adiposity. These findings provide a new link between air pollution and type 2 diabetes mellitus. PMID:19153269

  4. A Prospective Observational Study of Obesity, Body Composition, and Insulin Resistance in 18 Women With Bipolar Disorder and 17 Matched Control Subjects

    PubMed Central

    Fleet-Michaliszyn, Sara B.; Soreca, Isabella; Otto, Amy D.; Jakicic, John M.; Fagiolini, Andrea; Kupfer, David J.; Goodpaster, Bret H.

    2012-01-01

    Objective Patients with bipolar disorder are at increased risk for diabetes and cardiovascular diseases, possibly because of more severe insulin resistance. The primary purpose of this study was to determine whether insulin resistance is characteristic of bipolar disorder. Method The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was performed in 18 women with DSM-IV bipolar I disorder, and results were compared to those of 17 matched controls. Other risk factors were compared, including blood pressure, blood lipids, and abdominal obesity by computed tomography (CT). Additionally, substrate utilization was measured by indirect calorimetry, and free-living energy expenditure was estimated using wearable activity monitors. All data were collected between February 2006 and December 2007. Results Patients with bipolar disorder were no more insulin resistant than controls after accounting for generalized obesity (mean ± SEM HOMA-IR = 2.7 ± 0.7 vs. 2.5 ± 0.7, for patients and controls, respectively; p = .79). Although blood lipid profiles were generally similar in patients and controls, obese patients had higher blood pressure than controls. Obese patients had more mean ± SEM total abdominal fat (718.1 ± 35.1 cm2 vs. 607.4 ± 33.6 cm2: p = .04), and tended (p = .06) to have more visceral abdominal fat. Patients oxidized 13% less fat during resting conditions, although their resting metabolic rate was similar to that of controls. Conclusion Women with bipolar I disorder were no more insulin resistant than matched controls after accounting for their level of obesity. However, they were more hypertensive, had higher amounts of abdominal obesity, and had reduced rates of fat oxidation. Therefore, women with bipolar I disorder may be at a heightened risk for future weight gain and concomitant risk for diabetes and cardiovascular disease. PMID:19026257

  5. White blood cells levels and PCOS: direct and indirect relationship with obesity and insulin resistance, but not with hyperandogenemia.

    PubMed

    Papalou, Olga; Livadas, Sarantis; Karachalios, Athanasios; Tolia, Nikoleta; Kokkoris, Panayiotis; Tripolitakis, Konstantinos; Diamanti-Kandarakis, Evanthia

    2015-01-01

    To study white blood cells count (WBC) in women suffering from PCOS and compare these results with age and BMI-matched healthy women. The specific aim of this study was to assess the possible correlations of WBC with the major components of PCOS, obesity, insulin resistance and hyperandrogenism. Anthropometrical, metabolic and hormonal data were analyzed from 203 women with PCOS (NIH criteria) and 76 age-matched controls. In the total population studied (N=279), WBC was significantly higher (P=0.003) in the PCOS group compared with age-matched healthy women and was positively correlated with BMI (r=0.461, p<0.001), total testosterone (r= 0.210, p<0.001), insulin (r=0.271, p<0.001), triglycerides (r=0.285, p<0.001), HOMA score (r=0.206, p=0.001), FAI (r=0.329, p<0.001) and negatively correlated with SHBG (r=-0.300, p<0.001) and HDL (r=-0.222, p<0.001). Due to the fact that WHR was only available in the group of PCOS women, the role of central adiposity is assessed only in this group. Multiple regression analysis in the PCOS group, including WHR, revealed BMI, SHBG and TGL as the main predicting factors of WBC. Multinomial logistic regression analysis was also conducted and overweight/obesity was the sole independent risk factor for elevated WBC (higher tertile) (OR:0.907 CI:0.85-0.96, p=0.002). After dividing the sample based on BMI in the lean subgroups, WBC did not differ significantly between PCOS and controls, while multiple regression analysis indicated SHBG as the main predicting factor of WBC. Finally, we picked out the group of overweight/obese (BMI ≥25 kg/m2) women with PCOS and conducted another classification based on HOMA score (HOMA-IR≤2: insulin-sensitive women, HOMA-IR>2: insulin-resistant women) in the group of overweight and obese women with PCOS separately. In overweight women with PCOS, WBC, although higher in the group of insulin-resistant, did not differ significantly between the two groups, while in the subcategory of overweight women WBC

  6. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  7. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance.

    PubMed

    Gaggini, Melania; Carli, Fabrizia; Rosso, Chiara; Buzzigoli, Emma; Marietti, Milena; Della Latta, Veronica; Ciociaro, Demetrio; Abate, Maria Lorena; Gambino, Roberto; Cassader, Maurizio; Bugianesi, Elisabetta; Gastaldelli, Amalia

    2018-01-01

    Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort. Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism

  8. Nesfatin-1 in childhood and adolescent obesity and its association with food intake, body composition and insulin resistance.

    PubMed

    Anwar, Ghada M; Yamamah, Gamal; Ibrahim, Amani; El-Lebedy, Dalia; Farid, Tarek M; Mahmoud, Rasha

    2014-01-10

    Nesfatin-1 is an anorexigenic peptide that controls feeding behavior and glucose homeostasis. However, there is little data that exists regarding nesfatin-1 secretion in obese children and young adolescents. The aim of this study is to investigate serum nesfatin-1 in childhood and adolescent obesity and to study potential correlations with food intake, anthropometric indices, body composition and insulin resistance. Forty obese children and adolescents and 40 healthy control subjects were studied. Anthropometric measurements were assessed, dietary food intake was evaluated based on 3-days food record and body composition indices were evaluated using bioelectrical impedance analysis. Lipid profile, fasting blood sugar, fasting insulin and HOMA-IR were measured. Fasting serum nesfatin-1 was quantitatively assayed by ELISA. Serum nesfatin-1 was significantly higher in obese group (2.49±1.96 ng/ml) than in control group (0.70±0.81 ng/ml), P=0.001. Positive correlations with serum insulin (P=0.001), HOMA-IR (P=0.000), BMI-SDS (P=0.04), body fat % (P=0.000), fat mass (P=0.000), fat free mass (P=0.03), CHO % (P=0.000), and saturated fat % (P=0.01) were found. While significant negative correlation with protein % (P=0.000) was observed. In conclusion, our results denote that nesfatin-1 might have an important role in regulation of food intake and pathogenesis of insulin resistance in obese children and young adolescents. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr(-/-) mice.

    PubMed

    Silva, Jacqueline C; César, Fernanda A; de Oliveira, Edson M; Turato, Walter M; Tripodi, Gustavo L; Castilho, Gabriela; Machado-Lima, Adriana; de Las Heras, Beatriz; Boscá, Lisardo; Rabello, Marcelo M; Hernandes, Marcelo Z; Pitta, Marina G R; Pitta, Ivan R; Passarelli, Marisa; Rudnicki, Martina; Abdalla, Dulcineia S P

    2016-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  11. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds.

    PubMed

    Giannini, Cosimo; Santoro, Nicola; Caprio, Sonia; Kim, Grace; Lartaud, Derek; Shaw, Melissa; Pierpont, Bridget; Weiss, Ram

    2011-08-01

    We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798-12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity.

  12. Fibroblasts derived from long-lived insulin receptor substrate 1 null mice are not resistant to multiple forms of stress

    PubMed Central

    Page, Melissa M; Sinclair, Amy; Robb, Ellen L; Stuart, Jeffrey A; Withers, Dominic J; Selman, Colin

    2014-01-01

    Reduced signalling through the insulin/insulin-like growth factor-1 signalling (IIS) pathway is a highly conserved lifespan determinant in model organisms. The precise mechanism underlying the effects of the IIS on lifespan and health is currently unclear, although cellular stress resistance may be important. We have previously demonstrated that mice globally lacking insulin receptor substrate 1 (Irs1−/−) are long-lived and enjoy a greater period of their life free from age-related pathology compared with wild-type (WT) controls. In this study, we show that primary dermal fibroblasts and primary myoblasts derived from Irs1−/− mice are no more resistant to a range of oxidant and nonoxidant chemical stressors than cells derived from WT mice. PMID:25059507

  13. The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats

    PubMed Central

    Li, Ping-Ping; Shan, Song; Chen, Yue-Teng; Ning, Zhi-Qiang; Sun, Su-Juan; Liu, Quan; Lu, Xian-Ping; Xie, Ming-Zhi; Shen, Zhu-Fang

    2006-01-01

    The aim of this study was to investigate the capacity of chiglitazar to improve insulin resistance and dyslipidemia in monosodium L-glutamate (MSG) obese rats and to determine whether its lipid-lowering effect is mediated through its activation of PPARα. Chiglitazar is a PPARα/γ dual agonist. The compound improved impaired insulin and glucose tolerance; decreased plasma insulin level and increased the insulin sensitivity index and decreased HOMA index. Euglycemic hyperinsulinemic clamp studies showed chiglitazar increased the glucose infusion rate in MSG obese rats. Chiglitazar inhibited alanine gluconeogenesis, lowered the hepatic glycogen level in MSG obese rats. Like rosiglitazone, chiglitazar promoted the differentiation of adipocytes and decreased the maximal diameter of adipocytes. In addition, chiglitazar decreased the fibrosis and lipid accumulation in the islets and increased the size of islets. Chiglitazar reduced plasma triglyceride, total cholesterol (TCHO), nonesterified fatty acids (NEFA) and low density lipoprotein-cholesterol levels; lowered hepatic triglyceride and TCHO contents; decreased muscular NEFA level. Unlike rosiglitazone, chiglitazar showed significant increase of mRNA expression of PPARα, CPT1, BIFEZ, ACO and CYP4A10 in the liver of MSG obese rats. These data suggest that PPARα/γ coagonist, such as chiglitazar, affect lipid homeostasis with different mechanisms from rosiglitazone, chiglitazar may have better effects on lipid homeostasis in diabetic patients than selective PPARγ agonists. PMID:16751799

  14. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    PubMed Central

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  15. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation inmore » ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.« less

  16. Induction of miR-96 by Dietary Saturated Fatty Acids Exacerbates Hepatic Insulin Resistance through the Suppression of INSR and IRS-1

    PubMed Central

    Yang, Won-Mo; Min, Kyung-Ho

    2016-01-01

    Obesity is defined as the excessive accumulation of body fat that ultimately leads to chronic metabolic diseases. Diets rich in saturated fatty acids (SFA) exacerbate obesity and hepatic steatosis, which increase the risk of hepatic insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play an important role in a range of biological processes, the implications of SFA-induced miRNAs in metabolic dysregulation, particularly in the pathogenesis of hepatic insulin resistance, are not well understood. This study investigated the implications of miR-96, which is induced strongly by SFA, in the development of hepatic insulin resistance. The liver of HFD mice and the palmitate-treated hepatocytes exhibited an impairment of insulin signaling due to the significant decrease in INSR and IRS-1 expression. According to expression profiling and qRT-PCR analysis of the miRNAs, the expression level of miR-96 was higher in hepatocytes treated with palmitate. Moreover, miR-96 was also upregulated in the liver of HFD mice. Interestingly, miR-96 targeted the 3’UTRs of INSR and IRS-1 directly, and repressed the expression of INSR and IRS-1 at the post-transcriptional level. Accordingly, the overexpression of miR-96 was found to cause a significant decrease in INSR and IRS-1 expression, thereby leading to an impairment of insulin signaling and glycogen synthesis in hepatocytes. These results reveal a novel mechanism whereby miR-96 promotes the pathogenesis of hepatic insulin resistance resulted from SFA or obesity. PMID:28036389

  17. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction.

    PubMed

    Komiya, Chikara; Tsuchiya, Kyoichiro; Shiba, Kumiko; Miyachi, Yasutaka; Furuke, Shunsaku; Shimazu, Noriko; Yamaguchi, Shinobu; Kanno, Kazuo; Ogawa, Yoshihiro

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.

  18. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota.

    PubMed

    Chang, Chih-Jung; Lin, Chuan-Sheng; Lu, Chia-Chen; Martel, Jan; Ko, Yun-Fei; Ojcius, David M; Tseng, Shun-Fu; Wu, Tsung-Ru; Chen, Yi-Yuan Margaret; Young, John D; Lai, Hsin-Chih

    2015-06-23

    Obesity is associated with low-grade chronic inflammation and intestinal dysbiosis. Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative anti-diabetic effects. Here, we show that a water extract of Ganoderma lucidum mycelium (WEGL) reduces body weight, inflammation and insulin resistance in mice fed a high-fat diet (HFD). Our data indicate that WEGL not only reverses HFD-induced gut dysbiosis-as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels-but also maintains intestinal barrier integrity and reduces metabolic endotoxemia. The anti-obesity and microbiota-modulating effects are transmissible via horizontal faeces transfer from WEGL-treated mice to HFD-fed mice. We further show that high molecular weight polysaccharides (>300 kDa) isolated from the WEGL extract produce similar anti-obesity and microbiota-modulating effects. Our results indicate that G. lucidum and its high molecular weight polysaccharides may be used as prebiotic agents to prevent gut dysbiosis and obesity-related metabolic disorders in obese individuals.

  19. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  20. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance.

    PubMed

    Andres, Allen M; Kooren, Joel A; Parker, Sarah J; Tucker, Kyle C; Ravindran, Nandini; Ito, Bruce R; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E; Gottlieb, Roberta A; Mentzer, Robert M

    2016-07-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. Copyright © 2016 the American Physiological Society.

  1. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    PubMed

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80 + /CD11c + /CD206 - cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    PubMed Central

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  3. Hepatic Free Cholesterol Accumulates in Obese, Diabetic Mice and Causes Non-Alcoholic Steatohepatitis

    PubMed Central

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-01-01

    Background & Aims Type-2 diabetes and non-alcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to pathogenesis of NASH. Methods Alms1 mutant (foz/foz) and wild-type (WT) NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Results Hepatic cholesterol accumulation was attributed to up-regulation of low density lipoprotein receptor (LDLR) via activation of sterol regulatory element binding protein-2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and LDLR and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. Conclusions In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. PMID:21703998

  4. Shrimp oil extracted from the shrimp processing waste reduces the development of insulin resistance and metabolic phenotypes in diet-induced obese rats.

    PubMed

    Nair, Sandhya; Gagnon, Jacques; Pelletier, Claude; Tchoukanova, Nadia; Zhang, Junzeng; Ewart, H Stephen; Ewart, K Vanya; Jiao, Guangling; Wang, Yanwen

    2017-08-01

    Diet-induced obesity, insulin resistance, impaired glucose tolerance, chronic inflammation, and oxidative stress represent the main features of type 2 diabetes mellitus. The present study was conducted to examine the efficacy and mechanisms of shrimp oil on glucose homeostasis in obese rats. Male CD rats fed a high-fat diet (52 kcal% fat) and 20% fructose drinking water were divided into 4 groups and treated with the dietary replacement of 0%, 10%, 15%, or 20% of lard with shrimp oil for 10 weeks. Age-matched rats fed a low-fat diet (10 kcal% fat) were used as the normal control. Rats on the high-fat diet showed impaired (p < 0.05) glucose tolerance and insulin resistance compared with rats fed the low-fat diet. Shrimp oil improved (p < 0.05) oral glucose tolerance, insulin response, and homeostatic model assessment-estimated insulin resistance index; decreased serum insulin, leptin, hemoglobin A1c, and free fatty acids; and increased adiponectin. Shrimp oil also increased (p < 0.05) antioxidant capacity and reduced oxidative stress and chronic inflammation. The results demonstrated that shrimp oil dose-dependently improved glycemic control in obese rats through multiple mechanisms.

  5. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  6. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    PubMed

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  7. Astrocytic leptin-receptor knockout mice show partial rescue of leptin resistance in diet-induced obesity.

    PubMed

    Jayaram, Bhavaani; Pan, Weihong; Wang, Yuping; Hsuchou, Hung; Mace, Aurelien; Cornelissen-Guillaume, Germaine G; Mishra, Pramod K; Koza, Robert A; Kastin, Abba J

    2013-03-15

    To determine how astrocytic leptin signaling regulates the physiological response of mice to diet-induced obesity (DIO), we performed metabolic analyses and hypothalamic leptin signaling assays on astrocytic leptin-receptor knockout (ALKO) mice in which astrocytes lack functional leptin receptor (ObR) signaling. ALKO mice and wild-type (WT) littermate controls were studied at different stages of DIO with measurement of body wt, percent fat, metabolic activity, and biochemical parameters. When fed regular chow, the ALKO mice had similar body wt, percent fat, food intake, heat dissipation, respiratory exchange ratio, and activity as their WT littermates. There was no change in blood concentrations of triglyceride, soluble leptin receptor (sObR), mRNA for leptin and uncoupling protein 1 (UCP1) in adipose tissue, and insulin sensitivity. Unexpectedly, in response to a high-fat diet the ALKO mice had attenuated hyperleptinemia and sObR, a lower level of leptin mRNA in subcutaneous fat, and a paradoxical increase in UCP1 mRNA. Thus, ALKO mice did not show the worsening of obesity that occurs with normal WT mice and the neuronal ObR mutation that results in morbid obesity. The findings are consistent with a competing, counterregulatory model between neuronal and astrocytic leptin signaling.

  8. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  9. Neprilysin, obesity and the metabolic syndrome

    PubMed Central

    Standeven, Kristina F.; Hess, Katharina; Carter, Angela M.; Rice, Gillian I.; Cordell, Paul A.; Balmforth, Anthony J.; Lu, Bao; Scott, D. Julian; Turner, Anthony J.; Hooper, Nigel M.; Grant, Peter J.

    2010-01-01

    Objective Neprilysin (NEP), a zinc metallo-endopeptidase, has a role in blood pressure control and lipid metabolism. The present study tested the hypothesis that NEP is associated with insulin resistance and features of the metabolic syndrome (MetS) in a study of 318 healthy human subjects and in murine obesity and investigated NEP production by adipocytes in-vitro. Methods and Results In 318 white European males, plasma NEP was elevated in the MetS and increased progressively with increasing MetS components. Plasma NEP activity correlated with insulin, homeostasis model assessment and body mass index in all subjects (p<0.01). Quantitative RT-PCR and Western blotting showed that in human pre-adipocytes NEP expression is upregulated 25-30 fold during differentiation into adipocytes. Microarray analysis of mRNA from differentiated human adipocytes confirmed high NEP expression comparable to adiponectin and plasminogen activator inhibitor-1. In a murine model of diet-induced insulin resistance, plasma NEP levels were significantly higher in high fat diet (HFD)-fed compared with normal chow diet (NCD)-fed animals (1642±529 and 820±487 pg/μl, respectively; p<0.01). Tissue NEP was increased in mesenteric fat in HFD compared with NCD-fed mice (p<0.05). NEP knock out mice did not display any changes in insulin resistance, glucose tolerance or body and epididymal fat pad weight compared to wild type mice. Conclusions In humans, NEP activity correlated with body mass index and measures of insulin resistance with increasing levels in subjects with multiple cardiovascular risk factors. NEP protein production in human adipocytes increased during cell differentiation and plasma and adipose tissue levels of NEP were increased in obese insulin resistant mice. Our results indicate that NEP associates with cardio-metabolic risk in the presence of insulin resistance and increases in obesity. PMID:21042321

  10. Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing mTOR/SREBP-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle.

    PubMed

    Liu, Hung-Wen; Wei, Chu-Chun; Chen, Yen-Ju; Chen, Yun-An; Chang, Sue-Joan

    2016-10-01

    An elevated intracellular lipid contents resulted from lipid oversupply links obesity to insulin resistance. Flavanol-rich lychee fruit extract, oligonol, exhibited anti-obesity property in vitro and in vivo; however, the effects of oligonol on peripheral lipid metabolism and insulin sensitivity have not been fully investigated. We hypothesized that oligonol alleviated insulin resistance via decreasing intracellular lipid contents in peripheral tissues. Dietary oligonol supplementation (20 or 200 mg/kg bw) reduced glucose and insulin levels, improved oral glucose tolerance, and suppressed inflammatory markers, MCP-1 and IL-6, in High-Fat diet (HFD) induced obese mice. Marked decreases in subcutaneous and visceral fat area, adipocyte size, and adipocyte released hormones including leptin and resistin by high-dose oligonol treatment were associated with downregulation of PPARγ gene expression. Significantly reduced intrahepatocellular lipid contents and hepatic triglyceride levels by oligonol (both doses) were associated with downregulation of mTOR/SREBP-1-mediated de novo lipogenesis. In skeletal muscle, oligonol enhanced Sirtuin1 protein expression and AMPKα activation, consequently resulted in reductions of intramuscular lipid contents and triglyceride levels and restoration of IRS-1 and AS160 phosphorylation. Oligonol reduced intracellular lipid contents in liver and skeletal muscle and suppressed inflammatory markers, thereby alleviating HFD-induced insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Endogenous ω-3 Polyunsaturated Fatty Acid Production Confers Resistance to Obesity, Dyslipidemia, and Diabetes in Mice

    PubMed Central

    Li, Jie; Li, Fanghong R.; Wei, Dong; Jia, Wei; Kang, Jing X.; Stefanovic-Racic, Maja

    2014-01-01

    Despite the well-documented health benefits of ω-3 polyunsaturated fatty acids (PUFAs), their use in clinical management of hyperglycemia and obesity has shown little success. To better define the mechanisms of ω-3 PUFAs in regulating energy balance and insulin sensitivity, we deployed a transgenic mouse model capable of endogenously producing ω-3 PUFAs while reducing ω-6 PUFAs owing to the expression of a Caenorhabditis elegans fat-1 gene encoding an ω-3 fatty acid desaturase. When challenged with high-fat diets, fat-1 mice strongly resisted obesity, diabetes, hypercholesterolemia, and hepatic steatosis. Endogenous elevation of ω-3 PUFAs and reduction of ω-6 PUFAs did not alter the amount of food intake but led to increased energy expenditure in the fat-1 mice. The requirements for the levels of ω-3 PUFAs as well as the ω-6/ω-3 ratios in controlling blood glucose and obesity are much more stringent than those in lipid metabolism. These metabolic phenotypes were accompanied by attenuation of the inflammatory state because tissue levels of prostaglandin E2, leukotriene B4, monocyte chemoattractant protein-1, and TNF-α were significantly decreased. TNF-α–induced nuclear factor-κB signaling was almost completely abolished. Consistent with the reduction in chronic inflammation and a significant increase in peroxisome proliferator–activated receptor-γ activity in the fat-1 liver tissue, hepatic insulin signaling was sharply elevated. The activities of prolipogenic regulators, such as liver X receptor, stearoyl-CoA desaturase-1, and sterol regulatory element binding protein-1 were sharply decreased, whereas the activity of peroxisome proliferator–activated receptor-α, a nuclear receptor that facilitates lipid β-oxidation, was markedly increased. Thus, endogenous conversion of ω-6 to ω-3 PUFAs via fat-1 strongly protects against obesity, diabetes, inflammation, and dyslipidemia and may represent a novel therapeutic modality to treat these prevalent

  12. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance.

    PubMed

    Haus, Jacob M; Solomon, Thomas P J; Marchetti, Christine M; Edmison, John M; González, Frank; Kirwan, John P

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P < 0.05) and fat mass (P < 0.05). However, both lifestyle interventions reduced hepatic insulin resistance during basal (P = 0.005) and INS (P = 0.001) conditions, and insulin-mediated suppression of HGP during INS was equally improved in both groups (EU: -42 +/- 22%; HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.

  13. Free Fatty Acid-Induced Hepatic Insulin Resistance is Attenuated Following Lifestyle Intervention in Obese Individuals with Impaired Glucose Tolerance

    PubMed Central

    Haus, Jacob M.; Solomon, Thomas P. J.; Marchetti, Christine M.; Edmison, John M.; González, Frank; Kirwan, John P.

    2010-01-01

    Objective: The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Research Design and Methods: Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; ∼1800 kcal; n = 11) or hypocaloric (HYPO; ∼1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass−1 per minute−1) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m2 · min−1) euglycemic (5.0 mm) clamp with [3-3H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). Results: At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 ± 0.8, 2.0 ± 0.5, and 2.6 ± 0.4; HYPO, 3.8 ± 0.5, 1.2 ± 0.3, and 2.3 ± 0.4, respectively). After the intervention the HYPO group lost more body weight (P < 0.05) and fat mass (P < 0.05). However, both lifestyle interventions reduced hepatic insulin resistance during basal (P = 0.005) and INS (P = 0.001) conditions, and insulin-mediated suppression of HGP during INS was equally improved in both groups (EU: −42 ± 22%; HYPO: −50 ± 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: −15 ± 24% vs. HYPO: −58 ± 19%, P = 0.02). Conclusions: Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention. PMID:19906790

  14. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    PubMed

    Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko

    2013-01-01

    Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas

  15. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    PubMed Central

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  16. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  17. Insulin resistance in the control of body fat distribution: a new hypothesis.

    PubMed

    Ali, A T; Ferris, W F; Naran, N H; Crowther, N J

    2011-02-01

    Obesity causes insulin resistance, which is a prime etiological factor for type 2 diabetes, dyslipidemia, and cardiovascular disease. However, insulin resistance may be a normal physiological response to obesity that limits further fat deposition and which only has pathological effects at high levels. The current hypothesis suggests that in obesity the initial deposition of triglycerides occurs in subcutaneous adipose tissue and as this increases in size insulin resistance will rise and limit further subcutaneous lipid accumulation. Triglycerides will then be diverted to the visceral fat depot as well as to ectopic sites. This leads to a substantial rise in insulin resistance and the prevalence of its associated disorders. Evidence supporting this hypothesis includes studies showing that in lean subjects the prime determinant of insulin resistance is BMI, that is, subcutaneous fat whilst in overweight and obese subjects it is waist circumference and visceral adiposity. It has also been shown that the metabolic syndrome suddenly increases in prevalence at high levels of insulin resistance and we suggest that this is due to the diversion of lipids from the subcutaneous to the visceral depot. This system may have functioned in our evolutionary past to limit excessive adiposity by causing lipid deposition to occur at a site that has maximal effects on insulin resistance but involves minimal weight gain. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    PubMed

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  19. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice

    PubMed Central

    2016-01-01

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. PMID:27960282

  20. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  1. The origins and drivers of insulin resistance.

    PubMed

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-02-14

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country.

    PubMed

    Rahmadhani, Rayinda; Zaharan, Nur Lisa; Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004). VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin

  3. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country

    PubMed Central

    Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    Background The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. Aims This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Methods Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Result Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03–2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36–5.19, p = 0.004). Conclusion VDR BsmI polymorphism was significantly associated

  4. Insulin resistance influences weight loss in non-obese women who followed a home-based exercise program and slight caloric restriction.

    PubMed

    Mediano, Mauro Felippe Felix; Sichieri, Rosely

    2011-06-01

    This study aimed to evaluate the influence of insulin resistance status on weight changes in non-obese women who followed a home-based exercise program and slight caloric restriction over a period of 12 months. Middle-aged (25-45 year), non-obese (body mass index of 23-29.9 kg/m(2)) women were randomly assigned to control (CG) or home-based exercise group (HB). The HB group received a booklet explaining the physical exercises to be practiced at home at least three times per week (40 min/session). Both groups were required to follow a small energy restriction of 100-300 calories per day. For the analysis, women were stratified in two groups according to baseline insulin sensitivity: NIR (non-insulin resistant; n = 121) and IR (insulin resistant; n = 64). Women classified as IR at baseline had greater weight loss after 12 months of follow-up (-1.6 kg vs. -1.1 kg; p = 0.01), and HB exercise helped to reduce weight only among NIR women (-1.5 vs. -0.7; p = 0.04); no differences were observed between intervention groups for IR women (-1.5 vs. -1.7; p = 0.24). There were no differences between IR and NIR groups for lipid profile after adjustment for weight changes. Insulin resistance facilitated weight loss, and home-based exercise promoted greater weight loss only in non-insulin resistance women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis.

    PubMed

    Verkest, K R; Fleeman, L M; Morton, J M; Ishioka, K; Rand, J S

    2011-07-01

    The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  7. Familial and individual predictors of obesity and insulin resistance in urban Hispanic children.

    PubMed

    Santiago-Torres, M; Cui, Y; Adams, A K; Allen, D B; Carrel, A L; Guo, J Y; Delgado-Rendon, A; LaRowe, T L; Schoeller, D A

    2016-02-01

    High intake of sugar-sweetened beverages (SSB) has been suggested to contribute to the pediatric obesity epidemic, however, how the home food environment influence children's intake of SSB among Hispanic families is still poorly understood. To evaluate the relationships between the home food environment and Hispanic children's diet in relation to weight status and insulin resistance (IR). A food frequency questionnaire was administered to 187 Hispanic children (ages 10 to 14 years) and anthropometrics were measured. IR was estimated from fasting insulin and glucose levels using the homeostasis model assessment of insulin resistance (HOMAIR ). Parents reported on family demographics and the home food environment. A structural equation modelling approach was applied to examine the hypothesized relationships among variables. The prevalence of childhood overweight and obesity was 52.8% and it was positively associated with HOMAIR (β = 0.687, P < .0001). Children's SSB consumption was positively associated with children's body mass index z-score (β = 0.151, P < 0.05) and subsequently to HOMAIR . Children's SSB consumption was predicted by home availability (β = 0.191) and parental intake of SSB (β = 0.419) (P < 0.05). The model fit indices [χ(2)  = 45.821 (d.f. = 30, P > 0.01 and < 0.05), χ(2) /d.f. = 1.53, root mean square error of approximation = 0.053 (90% confidence interval = 0.016, 0.082), comparative fit index = 0.904] suggested a satisfactory goodness-of-fit. The home food environment and parental diet seem to play an important role in the children's access to and intake of SSB, which in turn predicted children's weight status. © 2015 World Obesity.

  8. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less

  9. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

    PubMed Central

    Wu, Lindsay E.; Samocha-Bonet, Dorit; Whitworth, P. Tess; Fazakerley, Daniel J.; Turner, Nigel; Biden, Trevor J.; James, David E.; Cantley, James

    2014-01-01

    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity. PMID:24944906

  10. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations.

    PubMed

    Mastrangelo, A; Martos-Moreno, G Á; García, A; Barrios, V; Rupérez, F J; Chowen, J A; Barbas, C; Argente, J

    2016-10-01

    Insulin resistance (IR) is usually the first metabolic alteration diagnosed in obese children and the key risk factor for development of comorbidities. The factors determining whether or not IR develops as a result of excess body mass index (BMI) are still not completely understood. This study aimed to elucidate the mechanisms underpinning the predisposition toward hyperinsulinemia-related complications in obese children by using a metabolomic strategy that allows a profound interpretation of metabolic profiles potentially affected by IR. Serum from 60 prepubertal obese children (30 girls/30 boys, 50% IR and 50% non-IR in each group, but with similar BMIs) were analyzed by using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry following an untargeted metabolomics approach. Validation was then performed on a group of 100 additional children with the same characteristics. When obese children with and without IR were compared, 47 metabolites out of 818 compounds (P<0.05) obtained after data pre-processing were found to be significantly different. Bile acids exhibit the greatest changes (that is, approximately a 90% increase in IR). The majority of metabolites differing between groups were lysophospholipids (15) and amino acids (17), indicating inflammation and central carbon metabolism as the most altered processes in impaired insulin signaling. Multivariate analysis (OPLS-DA models) showed subtle differences between groups that were magnified when females were analyzed alone. Inflammation and central carbon metabolism, together with the contribution of the gut microbiota, are the most altered processes in obese children with impaired insulin signaling in a sex-specific fashion despite their prepubertal status.

  11. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  12. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents.

    PubMed

    Habib, Salem A; Saad, Entsar A; Elsharkawy, Ashraf A; Attia, Zeinab R

    2015-09-01

    To investigate the inter-relationships between adipocytokines, oxidative stress, insulin, Zn and Cu and obesity among Egyptian obese non-diabetic children and adolescents. 72 obese children and adolescents of both sexes (5-17 years) were recruited for the study. 40 healthy normal non-obese persons of matched ages and sexes were used as control group. Lipid profile, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and leptin levels were measured. Malondialdehyde (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were estimated. Micronutrients (Zn and Cu) concentrations in addition to insulin and fasting blood sugar (FBS) levels were also evaluated. Estimation of insulin resistance (homeostatic model assessment (HOMA-IR)) was derived from FBS measurements. Significant elevations (P<0.001) in TNF-α, IL-6, leptin, MDA, Cu and FBS levels and significant decreases (P<0.001) in GSH, Zn levels and SOD activity were detected among obese individuals as compared with control group. Insulin and triglyceride levels were significantly increased in obese male children and HDL-cholesterol level was increased significantly in obese adolescent females compared to controls. However, total cholesterol and LDL-cholesterol levels were significantly high in all obese cases as compared with controls. Insulin resistance was detected in 100% of the patients. We concluded that obesity with pro-inflammatory adipocytokines and hypozincemia together by many mechanisms participate in excessive oxidative stress and are highly associated with inflammation and the development of obesity-related complications. Obesity represents a critical risk factor for development of insulin resistance status. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Mid-arm muscle circumference as a surrogate in predicting insulin resistance in non-obese elderly individuals

    PubMed Central

    Chao, Yuan-Ping; Lai, Yi-Fen; Kao, Tung-Wei; Peng, Tao-Chun; Lin, Yuan-Yung; Shih, Mu-Tsun; Chen, Wei-Liang; Wu, Li-Wei

    2017-01-01

    The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure the degree of insulin resistance (IR). Previous literature revealed that mid-arm muscle circumference (MAMC) is one of the anthropometric indicators for nutritional status and the relationship between MAMC and HOMA-IR remains uncertain in the obese and non-obese elderly individuals. The present study included 5,607 participants aged between 60 to 84 years old, using data from the 1999 to 2006 National Health and Nutrition Examination Survey (NHANES). To further explore the association between HOMA-IR and MAMC in the obese and non-obese elderly population using multivariate Cox regression analyses, we divided the participants into obese (BMI ≥ 30 kg/m2) group and non-obese (19 ≤ BMI < 30 kg/m2) group in this study; each group was then divided into quartiles based on their MAMC levels. A positive association was noted between the MAMC and HOMA-IR in all of the designed models initially. After adjusting for multiple covariates, a higher level of the MAMC was significantly associated with elevated HOMA-IR (P < 0.05) in the non-obesity group, which was not the case in the obesity group. Additionally, subjects in the higher quartiles of MAMC tended to have higher HOMA-IR with a significant association (P for trend = 0.003 in model 1; P for trend < 0.001 in model 2, 3, and 4). These results demonstrated that the MAMC can be an auxiliary indicator of HOMA-IR in non-obese elderly individuals and may have substantial additional value in screening for IR if well extrapolated. PMID:29108358

  14. Compliance with behavioral guidelines for diet, physical activity and sedentary behaviors is related to insulin resistance among overweight and obese youth.

    PubMed

    Huang, Jeannie S; Gottschalk, Michael; Norman, Gregory J; Calfas, Karen J; Sallis, James F; Patrick, Kevin

    2011-02-01

    Overweight and obesity are established risk factors for insulin resistance in youth. A number of behavioral recommendations have been publicized with the goal of improving glycemic control. However, there is limited information about whether meeting these behavioral recommendations actually reduces insulin resistance. 92 youths 11 - 16 years with BMI ≥ 85% underwent oral glucose tolerance testing. HOMA-IR and AUCInsulin/AUCGlucose were calculated as measures of insulin resistance. Dietary and physical activity (PA) measures were performed. Assessments included whether or not participants met recommended levels of diet, PA and sedentary behaviors.62% youths met criteria for insulin resistance. 82% (75/92) met at least one behavioral recommendation. Participants who met ≥ 1 dietary, sedentary, or PA recommendations had significantly reduced insulin resistance as compared with youth who did not. This relationship remained significant in multivariate modeling of insulin resistance adjusting for age, sex, and BMI. Even relatively minor behavior change may reduce insulin resistance in youth at risk for diabetes. Our findings support the relevance of current behavioral interventions for glycemic control. Clinical Trials #NCT00412165.

  15. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

  16. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    PubMed

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  17. Diet-induced obese mice retain endogenous leptin action.

    PubMed

    Ottaway, Nickki; Mahbod, Parinaz; Rivero, Belen; Norman, Lee Ann; Gertler, Arieh; D'Alessio, David A; Perez-Tilve, Diego

    2015-06-02

    Obesity is characterized by hyperleptinemia and decreased response to exogenous leptin. This has been widely attributed to the development of leptin resistance, a state of impaired leptin signaling proposed to contribute to the development and persistence of obesity. To directly determine endogenous leptin activity in obesity, we treated lean and obese mice with a leptin receptor antagonist. The antagonist increased feeding and body weight (BW) in lean mice, but not in obese models of leptin, leptin receptor, or melanocortin-4 receptor deficiency. In contrast, the antagonist increased feeding and BW comparably in lean and diet-induced obese (DIO) mice, an increase associated with decreased hypothalamic expression of Socs3, a primary target of leptin. These findings demonstrate that hyperleptinemic DIO mice retain leptin suppression of feeding comparable to lean mice and counter the view that resistance to endogenous leptin contributes to the persistence of DIO in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ordovas-Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baselin...

  19. Elevated circulating irisin is associated with lower risk of insulin resistance: association and path analyses of obese Chinese adults.

    PubMed

    Shi, Xiulin; Lin, Mingzhu; Liu, Changqin; Xiao, Fangsen; Liu, Yongwen; Huang, Peiying; Zeng, Xin; Yan, Bing; Liu, Suhuan; Li, Xiaoying; Yang, Shuyu; Li, Xuejun; Li, Zhibin

    2016-07-29

    Evidence on the role of irisin in insulin resistance is limited and controversial, and pathways between them remain unknown. We aimed to examine the independent effects of circulating irisin and different adiposity measurements, as well as their potential interactions, on insulin resistance. We also aimed to explore possible pathways among circulating irisin, adiposity, glucose and insulin levels and insulin resistance. A cross-sectional study of 1,115 community- living obese Chinese adults, with data collection on clinical characteristics, glucose and lipid metabolic parameters and circulating irisin levels. Among the 1,115 subjects, 667 (59.8 %) were identified as insulin-resistance, and showed significantly decreased serum irisin than their controls (log-transformed irisin: 1.19 ± 2.34 v.s. 1.46 ± 2.05 ng/ml, p = 0.042). With adjustment for potential confounders, elevated circulating irisin was significantly associated with reduced risk of insulin resistance, with adjusted odds ratio per standard deviation increase of irisin of 0.871 (0.765-0.991, p = 0.036). As for different adiposity measurements, body fat percentage, but neither BMI nor waist, was significantly associated with increased risk of insulin resistance (OR: 1.152 (1.041-1.275), p = 0.006). No significant interaction effect between serum irisin and adiposity on insulin resistance was found. A one pathway model about the relationship between serum irisin and insulin resistance fits well (χ (2) = 44.09, p < 0.001; CFI-0.994; TLI =0.986; and RMSEA = 0.067), and shows that elevated circulating irisin might improve insulin resistance indirectly through lowering fasting insulin levels (standardized path coefficient = -0.046, p = 0.032). Elevated circulating irisin is associated with lower risk of insulin resistance indirectly through lowering fasting insulin.

  20. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance.

    PubMed

    Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M

    2017-02-01

    Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.