Sample records for obese insulin-resistant rat

  1. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  2. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    PubMed

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  3. Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats.

    PubMed

    Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels

    2010-02-01

    The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.

  4. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    PubMed

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  5. Defective calcium inactivation causes long QT in obese insulin-resistant rat.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Castranova, Vincent; Frisbee, Jefferson C; Yu, Han-Gang

    2012-02-15

    The majority of diabetic patients who are overweight or obese die of heart disease. We suspect that the obesity-induced insulin resistance may lead to abnormal cardiac electrophysiology. We tested this hypothesis by studying an obese insulin-resistant rat model, the obese Zucker rat (OZR). Compared with the age-matched control, lean Zucker rat (LZR), OZR of 16-17 wk old exhibited an increase in QTc interval, action potential duration, and cell capacitance. Furthermore, the L-type calcium current (I(CaL)) in OZR exhibited defective inactivation and lost the complete inactivation back to the closed state, leading to increased Ca(2+) influx. The current density of I(CaL) was reduced in OZR, whereas the threshold activation and the current-voltage relationship of I(CaL) were not significantly altered. L-type Ba(2+) current (I(BaL)) in OZR also exhibited defective inactivation, and steady-state inactivation was not significantly altered. However, the current-voltage relationship and activation threshold of I(BaL) in OZR exhibited a depolarized shift compared with LZR. The total and membrane protein expression levels of Cav1.2 [pore-forming subunit of L-type calcium channels (LTCC)], but not the insulin receptors, were decreased in OZR. The insulin receptor was found to be associated with the Cav1.2, which was weakened in OZR. The total protein expression of calmodulin was reduced, but that of Cavβ2 subunit was not altered in OZR. Together, these results suggested that the 16- to 17-wk-old OZR has 1) developed cardiac hypertrophy, 2) exhibited altered electrophysiology manifested by the prolonged QTc interval, 3) increased duration of action potential in isolated ventricular myocytes, 4) defective inactivation of I(CaL) and I(BaL), 5) weakened the association of LTCC with the insulin receptor, and 6) decreased protein expression of Cav1.2 and calmodulin. These results also provided mechanistic insights into a remodeled cardiac electrophysiology under the condition of

  6. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  7. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    PubMed

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to

  9. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  10. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    PubMed

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  11. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  12. Combined Vildagliptin and Metformin Exert Better Cardioprotection than Monotherapy against Ischemia-Reperfusion Injury in Obese-Insulin Resistant Rats

    PubMed Central

    Apaijai, Nattayaporn; Chinda, Kroekkiat; Palee, Siripong; Chattipakorn, Siriporn; Chattipakorn, Nipon

    2014-01-01

    Background Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats. Methodology Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats. Conclusion Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate. PMID:25036861

  13. The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats

    PubMed Central

    Li, Ping-Ping; Shan, Song; Chen, Yue-Teng; Ning, Zhi-Qiang; Sun, Su-Juan; Liu, Quan; Lu, Xian-Ping; Xie, Ming-Zhi; Shen, Zhu-Fang

    2006-01-01

    The aim of this study was to investigate the capacity of chiglitazar to improve insulin resistance and dyslipidemia in monosodium L-glutamate (MSG) obese rats and to determine whether its lipid-lowering effect is mediated through its activation of PPARα. Chiglitazar is a PPARα/γ dual agonist. The compound improved impaired insulin and glucose tolerance; decreased plasma insulin level and increased the insulin sensitivity index and decreased HOMA index. Euglycemic hyperinsulinemic clamp studies showed chiglitazar increased the glucose infusion rate in MSG obese rats. Chiglitazar inhibited alanine gluconeogenesis, lowered the hepatic glycogen level in MSG obese rats. Like rosiglitazone, chiglitazar promoted the differentiation of adipocytes and decreased the maximal diameter of adipocytes. In addition, chiglitazar decreased the fibrosis and lipid accumulation in the islets and increased the size of islets. Chiglitazar reduced plasma triglyceride, total cholesterol (TCHO), nonesterified fatty acids (NEFA) and low density lipoprotein-cholesterol levels; lowered hepatic triglyceride and TCHO contents; decreased muscular NEFA level. Unlike rosiglitazone, chiglitazar showed significant increase of mRNA expression of PPARα, CPT1, BIFEZ, ACO and CYP4A10 in the liver of MSG obese rats. These data suggest that PPARα/γ coagonist, such as chiglitazar, affect lipid homeostasis with different mechanisms from rosiglitazone, chiglitazar may have better effects on lipid homeostasis in diabetic patients than selective PPARγ agonists. PMID:16751799

  14. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  15. Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats.

    PubMed

    Smith, Wayne; Norton, Gavin R; Woodiwiss, Angela J; Lochner, Amanda; du Toit, Eugene F

    2016-07-01

    Clinical data advocating an adverse effect of obesity on left ventricular (LV) systolic function independent of comorbidities is controversial. We hypothesized that in obesity with prediabetic insulin resistance, circulating fatty acids (FAs) become a valuable fuel source in the maintenance of normal systolic function. Male Wistar rats were fed a high caloric diet for 32 weeks to induce obesity. Myocardial LV systolic function was assessed using echocardiography and isolated heart preparations. Aortic output was reduced in obese rat hearts over a range of filling pressures (for example: 15 cmH2O, obese: 32.6 ± 1.2 ml/min vs control: 46.2 ± 0.9 ml/min, P < .05) when perfused with glucose alone. Similarly, the slope of the LV end-systolic pressure-volume relationship decreased, and there was a right shift in the LV end-systolic stress-strain relationship as determined in Langendorff perfused, isovolumic rat heart preparations in the presence of isoproterenol (10(-8)M) (LV systolic stress-strain relationship and a reduced load-independent intrinsic systolic myocardial function, obese: 791 ± 62 g/cm(2) vs control: 1186 ± 74 g/cm(2), P < .01). The addition of insulin to the perfusion buffer improved aortic output, whereas the addition of FAs completely normalized aortic output. LV function was maintained in obese animals in vivo during an inotropic challenge. Elevated circulating FA levels may be important to maintain myocardial systolic function in the initial stages of obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Shrimp oil extracted from the shrimp processing waste reduces the development of insulin resistance and metabolic phenotypes in diet-induced obese rats.

    PubMed

    Nair, Sandhya; Gagnon, Jacques; Pelletier, Claude; Tchoukanova, Nadia; Zhang, Junzeng; Ewart, H Stephen; Ewart, K Vanya; Jiao, Guangling; Wang, Yanwen

    2017-08-01

    Diet-induced obesity, insulin resistance, impaired glucose tolerance, chronic inflammation, and oxidative stress represent the main features of type 2 diabetes mellitus. The present study was conducted to examine the efficacy and mechanisms of shrimp oil on glucose homeostasis in obese rats. Male CD rats fed a high-fat diet (52 kcal% fat) and 20% fructose drinking water were divided into 4 groups and treated with the dietary replacement of 0%, 10%, 15%, or 20% of lard with shrimp oil for 10 weeks. Age-matched rats fed a low-fat diet (10 kcal% fat) were used as the normal control. Rats on the high-fat diet showed impaired (p < 0.05) glucose tolerance and insulin resistance compared with rats fed the low-fat diet. Shrimp oil improved (p < 0.05) oral glucose tolerance, insulin response, and homeostatic model assessment-estimated insulin resistance index; decreased serum insulin, leptin, hemoglobin A1c, and free fatty acids; and increased adiponectin. Shrimp oil also increased (p < 0.05) antioxidant capacity and reduced oxidative stress and chronic inflammation. The results demonstrated that shrimp oil dose-dependently improved glycemic control in obese rats through multiple mechanisms.

  17. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    PubMed

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  18. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y

    PubMed Central

    Brown, Michael; Bing, Chen; King, Peter; Pickavance, Lucy; Heal, David; Wilding, John

    2001-01-01

    We studied the effects of the novel noradrenaline and serotonin (5-HT) reuptake inhibitor sibutramine on feeding and body weight in a rat model of dietary obesity, and whether it interacts with hypothalamic neuropeptide Y (NPY) neurones.Chow-fed and dietary-obese (DIO) male Wistar rats were given sibutramine (3 mg kg−1 day−1 p.o.) or deionized water for 21 days.Sibutramine decreased food intake throughout the treatment period in both dietary-obese rats (P<0.0001) and lean rats (P<0.0001). Weight gain was reduced so that final body weight was 10% lower in dietary-obese (P<0.005) and 8% lower in lean (P<0.05) rats versus their untreated controls. Plasma leptin concentration was lower in sibutramine-treated dietary-obese rats (P<0.05), and in treated lean rats (P<0.05). Using the homeostasis model assessment (HOMA) as a measure of insulin resistance, untreated DIO rats were significantly more insulin resistant than controls (P<0.005), and this was corrected by sibutramine treatment (P<0.05). Neither hypothalamic NPY mRNA nor NPY peptide levels in a number of hypothalamic nuclei were significantly altered by sibutramine compared to untreated controls.The hypophagic and anti-obesity effects of sibutramine in dietary-obese Wistar rats appear not to be mediated by inhibition of ARC NPY neurones. PMID:11309262

  20. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats.

    PubMed

    Vincent, Mylène; Philippe, Erwann; Everard, Amandine; Kassis, Nadim; Rouch, Claude; Denom, Jessica; Takeda, Yorihiko; Uchiyama, Shoji; Delzenne, Nathalie M; Cani, Patrice D; Migrenne, Stéphanie; Magnan, Christophe

    2013-03-01

    Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system. Copyright © 2012 The Obesity Society.

  1. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  2. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats.

    PubMed

    Lee, Yoon Hee; Jin, Bora; Lee, Sung Hyun; Song, MiKyung; Bae, HyeonHui; Min, Byung Jae; Park, Juyeon; Lee, Donghun; Kim, Hocheol

    2016-10-25

    It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD), high-fat diet (HFD), high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat), high-fat diet with 0.2% HT048 ( w / w ; HFD + 0.2% HT048), and high-fat diet with 0.6% HT048 ( w / w ; HFD + 0.6% HT048). It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  3. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    PubMed Central

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P < 0.05) and insulin sensitivity (hyperinsulinemic euglycemic clamp; OP, 6.8 ± 0.9 mg/kg · min; OR, 22.2 ± 1.2 mg/kg · min; CON, 17.7 ± 0.8 mg/kg · min; P < 0.05), which were well correlated (r2 = 0.49; P < 0.01). In OP rats, rosiglitazone dose-dependently improved (P < 0.05) insulin sensitivity (12.8 ± 0.6 mg/kg · min at 3 mg/kg; 16.0 ± 1.5 mg/kg · min at 6 mg/kg) and BRG (3.8 ± 0.4 bpm/mm Hg at 3 mg/kg; 5.3 ± 0.7 bpm/mm Hg at 6 mg/kg). However, 6 mg/kg rosiglitazone also increased BRG in OR rats without increasing insulin sensitivity, disrupted the correlation between BRG and insulin sensitivity (r2 = 0.08), and, in OP and OR rats, elevated BRG relative to insulin sensitivity (analysis of covariance; P < 0.05). Moreover, in OP rats, stimulation of the aortic depressor nerve, to activate central baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  4. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats.

    PubMed

    Belobrajdic, Damien P; King, Roger A; Christophersen, Claus T; Bird, Anthony R

    2012-10-25

    Animal studies show that diets containing resistant starch (RS) at levels not achievable in the human diet result in lower body weight and/or adiposity in rodents. We aimed to determine whether RS dose-dependently reduces adiposity in obesity-prone (OP) and obesity-resistant (OR) rats. Male Sprague-Dawley rats (n=120) were fed a moderate-fat, high-energy diet for 4 wk. Rats that gained the most weight (40%) were classified as obesity-prone (OP) and obesity-resistant (OR) rats were the 40% that gained the least weight. OP and OR rats were randomly allocated to one of six groups (n=8 for each phenotype). One group was killed for baseline measurements, the other five groups were allocated to AIN-93 based diets that contained 0, 4, 8, 12 and 16% RS (as high amylose maize starch) for 4 wk. These diets were matched for total carbohydrate content. At 0, 4 and 7 wk from the start of the study insulin sensitivity was calculated by homeostasis model assessment of insulin resistance (HOMA-IR) and adiposity was determined by dual-energy X-ray absorptiometry (DXA). At 8 wk, rats were euthanized and fat pad weights, intestinal digesta short chain fatty acid (SCFA) pools and plasma gut hormone levels were determined. Obesity prone rats gained less weight with 4, 12 and 16% RS compared to 0% RS, but the effect in OR animals was significant only at 16% RS. Irrespective of phenotype, diets containing ≥8% RS reduced adiposity compared to 0% RS. Energy intake decreased by 9.8 kJ/d for every 4% increase in RS. All diets containing RS increased total SCFA pools in the caecum and lowered plasma GIP concentrations compared to the 0% RS, whereas plasma GLP-1 and PYY were increased when the diet contained at least 8% RS. Insulin sensitivity was not affected by RS. RS in amounts that could be potentially consumed by humans were effective in reducing adiposity and weight gain in OP and OR rats, due in part to a reduction in energy intake, and changes in gut hormones and large bowel

  5. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    PubMed Central

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  6. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats☆

    PubMed Central

    Castro, Gisele; C. Areias, Maria Fernanda; Weissmann, Lais; Quaresma, Paula G.F.; Katashima, Carlos K.; Saad, Mario J.A.; Prada, Patricia O.

    2013-01-01

    Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala. PMID:24251109

  7. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats.

    PubMed

    Zhao, M; Li, Y; Wang, J; Ebihara, K; Rong, X; Hosoda, K; Tomita, T; Nakao, K

    2011-12-01

    Hypertension often coexists with insulin resistance. However, most metabolic effects of the antihypertensive agents have been investigated in nomotensive animals, in which different conclusions may arise. We investigated the metabolic effects of the new angiotensin II type 1 receptor blocker azilsartan using the obese Koletsky rats superimposed on the background of the spontaneously hypertensive rats. Male Koletsky rats were treated with azilsartan (2 mg/kg/day) over 3 weeks. Blood pressure was measured by tail-cuff. Blood biochemical and hormonal parameters were determined by enzymatic or ELISA methods. Gene expression was assessed by RT-PCR. In Koletsky rats, azilsartan treatment lowered blood pressure, basal plasma insulin concentration and the homeostasis model assessment of insulin resistance index, and inhibited over-increase of plasma glucose and insulin concentrations during oral glucose tolerance test. These effects were accompanied by decreases in both food intake and body weight (BW) increase. Although two treatments showed the same effect on BW gain, insulin sensitivity was higher after azilsartan treatment than pair-feeding. Azilsartan neither affected plasma concentrations of triglyceride and free fatty acids, nor increased adipose mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and its target genes such as adiponectin, aP2. In addition, azilsartan downregulated 11β-hydroxysteroid dehydrogenase type 1 expression. These results show the insulin-sensitizing effect of azilsartan in obese Koletsky rats. This effect is independent of decreases in food intake and BW increase or of the activation of adipose PPARγ. Our findings indicate the possible usefulness of azilsartan in the treatment of metabolic syndrome. © 2011 Blackwell Publishing Ltd.

  8. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats

    PubMed Central

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-01-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling. PMID:22234336

  9. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  10. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  11. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity].

    PubMed

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Klimashevskyĭ, V M; Hula, N M

    2014-01-01

    We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  12. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    PubMed Central

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  13. N-stearoylethanolamine restores pancreas lipid composition in obesity-induced insulin resistant rats.

    PubMed

    Onopchenko, Oleksandra V; Kosiakova, Galina V; Oz, Murat; Klimashevsky, Vitaliy M; Gula, Nadiya M

    2015-01-01

    This study investigates the protective effect of N-stearoylethanolamine (NSE), a bioactive N-acylethanolamine , on the lipid profile distribution in the pancreas of obesity-induced insulin resistant (IR) rats fed with prolonged high fat diet (58% of fat for 6 months). The phospholipid composition was determined using 2D thin-layer chromatography. The level of individual phospholipids was estimated by measuring inorganic phosphorus content. The fatty acid (FA) composition and cholesterol level were investigated by gas-liquid chromatography. Compared to controls, plasma levels of triglycerides and insulin were significantly increased in IR rats. The pancreas lipid composition indicated a significant reduction of the free cholesterol level and some phospholipids such as phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) compared to controls. Moreover, the FA composition of pancreas showed a significant redistribution of the main FA (18:1n-9, 18:2n-6, 18:3n-6 and 20:4n-6) levels between phospholipid, free FA, triglyceride fractions under IR conditions that was accompanied by a change in the estimated activities of Δ9-, Δ6-, Δ5-desaturase. Administration of N-stearoylethanolamine (NSE, 50 mg/kg daily per os for 2 weeks) IR rats triggered an increase in the content of free cholesterol, PtdCho and normalization of PtdEtn, PtdSer level. Furthermore, the NSE modulated the activity of desaturases, thus influenced FA composition and restored the FA ratios in the lipid fractions. These NSE-induced changes were associated with a normalization of plasma triglyceride content, considerable decrease of insulin and index HOMA-IR level in rats under IR conditions.

  14. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  15. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    PubMed

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-09

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. Copyright © 2016. Published by Elsevier Inc.

  16. miRNA Signatures of Insulin Resistance in Obesity.

    PubMed

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  17. 45Obesity, Insulin Resistance and Free Fatty Acids

    PubMed Central

    Boden, Guenther

    2011-01-01

    Purpose of Review to describe the role of FFA as a cause for insulin resistance in obese people. Recent Findings elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including T2DM, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanism by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL1β, IL6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Summary increased plasma FFA levels are an important cause of obesity associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels. PMID:21297467

  18. Obesity, insulin resistance, and type 1 diabetes mellitus.

    PubMed

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  19. Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

    PubMed Central

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Introduction. Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle. PMID:23320128

  20. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    PubMed

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  1. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  2. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  3. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  4. The role of dietary fat in obesity-induced insulin resistance.

    PubMed

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  5. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  6. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Skeletal muscle inflammation and insulin resistance in obesity.

    PubMed

    Wu, Huaizhu; Ballantyne, Christie M

    2017-01-03

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.

  8. Skeletal muscle inflammation and insulin resistance in obesity

    PubMed Central

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  9. The effects of Jiao-Tai-Wan on sleep, inflammation and insulin resistance in obesity-resistant rats with chronic partial sleep deprivation.

    PubMed

    Zou, Xin; Huang, Wenya; Lu, Fuer; Fang, Ke; Wang, Dingkun; Zhao, Shuyong; Jia, Jiming; Xu, Lijun; Wang, Kaifu; Wang, Nan; Dong, Hui

    2017-03-23

    Jiao-Tai-Wan (JTW), composed of Rhizome Coptidis and Cortex Cinnamomi, is a classical traditional Chinese prescription for treating insomnia. Several in vivo studies have concluded that JTW could exert its therapeutical effect in insomnia rats. However, the specific mechanism is still unclear. The present study aimed to explore the effect of JTW on sleep in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD) and to clarify its possible mechanism. JTW was prepared and the main components contained in the granules were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The Male Sprague-Dawley (SD) rats underwent 4 h PSD by environmental noise and the treatment with low and high doses of JTW orally for 4 weeks, respectively. Then sleep structure was analyzed by electroencephalographic (EEG). Inflammation markers including high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were examined in the rat plasma. Meanwhile, metabolic parameters as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS) levels and insulin resistance index (HOMA-IR) were measured. The expressions of clock gene cryptochromes (Cry1 and Cry2) and inflammation gene nuclear factor-κB (NF-κB) in peripheral blood monocyte cells (PBMC) were also determined. The result showed that the administration of JTW significantly increased total sleep time and total slow wave sleep (SWS) time in OR rats with PSD. Furthermore, the treatment with JTW reversed the increase in the markers of systemic inflammation and insulin resistance caused by sleep loss. These changes were also associated with the up-regulation of Cry1 mRNA and Cry 2 mRNA and the down-regulation of NF-κB mRNA expression in PBMC. This study suggests that JTW has the beneficial effects of improving sleep, inflammation and insulin sensitivity. The mechanism appears to be related to the modulation of circadian clock and

  10. Lotus Leaf Aqueous Extract Reduces Visceral Fat Mass and Ameliorates Insulin Resistance in HFD-Induced Obese Rats by Regulating PPARγ2 Expression

    PubMed Central

    Yan, Kemin; Zhu, Huijuan; Xu, Jian; Pan, Hui; Li, Naishi; Wang, Linjie; Yang, Hongbo; Liu, Meijuan; Gong, FengYing

    2017-01-01

    Objectives: Lotus leaf is a kind of traditional Chinese medicine. We aimed to explore the effects of lotus leaf aqueous extract (LLAE) on peroxisome proliferative activated receptor γ2 (PPARγ2) expression in preadipocytes and adipocytes and further investigate its effects on high fat diet (HFD)-induced obese rats. Methods: pGL3-Enhancer-PPARγ2 (625 bp)-Luc plasmid, a luciferase reporter gene expression plasmid containing PPARγ2 promoter, was stably transfected into 3T3-L1 preadipocytes. PPARγ2 promoter activities were determined by assaying the luciferase activities. Then PPARγ2 promoter activities in preadipocytes and PPARγ2 mRNA levels in human subcutaneous adipocytes were measured after the administration with LLAE. Additionally, the effects of LLAE on body weight, fat mass, glucose and lipid metabolism and the expression of PPARγ2, insulin receptor substrate 1 and glucose transporter 4 (GLUT4) in visceral adipose tissue (VAT) were measured in HFD-induced obese rats treated with low or high dose [0.5 or 3.0 g crude drug/(kg.d)] LLAE for 6 weeks. Results: Ten μg/ml LLAE significantly increased the luciferase activities in 3T3-L1 cells and the stimulatory action reached 2.51 folds of controls when LLAE was 1000 μg/ml (P < 0.01). After treating 3T3-L1 cells with 100 μg/ml LLAE, the stimulatory role peaked at 32 h where it was 2.58 folds of controls (P < 0.01). Besides, 100 μg/ml LLAE significantly increased PPARγ2 mRNA levels in human adipocytes to 1.91 folds of controls (P < 0.01). In HFD-induced obese rats, administration with both low and high dose LLAE notably reduced visceral fat mass by 45.5 and 58.4%, respectively, and significantly decreased fasting serum insulin levels (P < 0.05). The high dose LLAE also significantly decreased homeostasis model assessment of insulin resistance in obese rats (P < 0.05). Furthermore, the mRNA levels of PPARγ2 and GLUT4 in VAT of obese rats were significantly increased when compared with control rats, and were

  11. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  12. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  13. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    PubMed

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  15. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    PubMed

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Role of intestinal inflammation as an early event in obesity and insulin resistance

    PubMed Central

    Ding, Shengli; Lund, Pauline K.

    2013-01-01

    Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067

  17. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  18. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Platelet activity in Chinese obese adolescents with and without insulin resistance.

    PubMed

    Lu, Huimin; Lei, Shundong; Zhao, Jiuming; Chen, Ni

    2014-01-01

    To investigate the platelet activity in Chinese obese adolescents with and without insulin resistance. A cross-sectional study was performed in 159 obese Chinese adolescents to investigate their platelet activity using anthropometrics and biochemical parameters, oral glucose tolerance test and platelet testing. An index of insulin sensitivity, homeostasis model assessment of insulin resistance (HOMA-IR), and plasma fibrinogen, prothrombin fragment 1.2 (PT 1.2), fibrinopeptide A (FPA) and the levels of aggregation to collagen 1 μg/ml, adenosine diphosphate (ADP) 10 μmol/L and arachidonic acid (AA) 0.5 mmol/L were measured. Obese adolescents with insulin resistance had significantly higher HOMA-IR, glucose response curve (AUC), insulin AUC, PT 1.2, FPA and fibrinogen and aggregation (to collagen 1 μg/ml, ADP 10 μmol/L and AA 0.5 mmol/L) comparison with obese adolescents without insulin resistance (P < 0.05). Moreover, a positive correlation was found between both aggregation (to collagen, ADP and AA) and HOMA-IR (ρ = 0.716; P < 0.01, ρ = 0.682; P < 0.01 and ρ = 0.699; P < 0.01, respectively), glucose AUC (ρ = 0.479; P < 0.01, ρ = 0.416; P < 0.01 and ρ = 0.458; P < 0.01, respectively) and insulin AUC (ρ = 0.585; P < 0.01, ρ = 0.511; P < 0.01 and ρ = 0.576; P < 0.01, respectively) in obese adolescents with insulin resistance. Insulin resistance is a major determinant of platelet activation in Chinese obese adolescents.

  20. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    PubMed Central

    Picklo, Matthew J.; Thyfault, John P.

    2016-01-01

    Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation. PMID:25761734

  1. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  2. Early-effect of bariatric surgery (Scopinaro method) on intestinal hormones and adipokines in insulin resistant Wistar rat.

    PubMed

    Dib, N; Kiciak, A; Pietrzak, P; Ferenc, K; Jaworski, P; Kapica, M; Tarnowski, W; Zabielski, R

    2013-10-01

    Bariatric surgery consists in duodenal exclusion from the food passage in obese patients with coexistent type 2 diabetes. Nowadays bariatric surgery is considered the most effective method of glycemic index normalization and insulin resistance reduction. Recent results on obese and non-obese rats showed remission of type 2 diabetes symptoms within few days after the surgery. The aim of the present work was to analyze the mechanisms of neuro-hormonal regulation responsible for early normalization of metabolic syndrome after bariatric surgery. In present study the concentration of selected intestinal hormones and adipokines in blood plasma and gastrointestinal tissues were analyzed. Study was conducted on Wistar rats. Animals were divided into three groups (each n=6): control (SH) shame-operated rats; animals in which visceral fat tissue was extracted (LP); and rats in which Scopinaro bariatric surgery was performed (BPD). Immunochemistry analysis of blood plasma showed decrease of insulin concentration in BPD and LP and increase of polypeptide YY (PYY) in BPD group as compared to the control. In duodenal mucosa homogenates the tendency to reduce insulin in LP and BPD group, and increase PYY and visfatin in BPD group was observed. Histometry analysis showed reduction of mucosa thickness in excluded segments of gastrointestinal tract in BPD group as compared to the SH and LP. Concluding, model studies on rats allowed better understanding of mechanisms important for early normalization of glycemic index and insulin resistance reduction in rats.

  3. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  4. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  5. Insulin Resistance, Metabolic Syndrome, and Polycystic Ovary Syndrome in Obese Youth.

    PubMed

    Platt, Adrienne M

    2015-07-01

    School nurses are well aware of the childhood obesity epidemic in the United States, as one in three youth are overweight or obese. Co-morbidities found in overweight or obese adults were not commonly found in youth three decades ago but are now increasingly "normal" as the obesity epidemic continues to evolve. This article is the second of six related articles discussing the co-morbidities of childhood obesity and discusses the complex association between obesity and insulin resistance, metabolic syndrome, and polycystic ovary syndrome. Insulin resistance increases up to 50% during puberty, which may help to explain why youth are more likely to develop co-morbidities as teens. Treatment of these disorders is focused on changing lifestyle habits, as a child cannot change his or her pubertal progression, ethnicity, or family history. School nurses and other personnel can assist youth with insulin resistance, metabolic syndrome, and polycystic ovary syndrome by supporting their efforts to make changes, reinforcing that insulin resistance is not necessarily type 2 diabetes even if the child is taking medication, and intervening with negative peer pressure. © 2015 The Author(s).

  6. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway.

    PubMed

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-06-01

    The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p <.05). Protein levels of insulin receptor subunit-1 (IRS-1), IRS-2, and p-Akt were significantly higher in the HFT, HFND, and HFNDT groups, as compared with HF group. In addition, the protein levels of the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal S6 protein kinase 1 were significantly decreased by exercise and dietary change (p <.05). However, mTORC2 and phosphoinositide 3-kinase were significantly increased (p <.05). In summary, despite the negative impact of continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels.

  7. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4.

    PubMed

    Cavallari, Joseph F; Fullerton, Morgan D; Duggan, Brittany M; Foley, Kevin P; Denou, Emmanuel; Smith, Brennan K; Desjardins, Eric M; Henriksbo, Brandyn D; Kim, Kalvin J; Tuinema, Brian R; Stearns, Jennifer C; Prescott, David; Rosenstiel, Philip; Coombes, Brian K; Steinberg, Gregory R; Schertzer, Jonathan D

    2017-05-02

    Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    PubMed

    Zhang, Xu; Zhao, Yufeng; Zhang, Menghui; Pang, Xiaoyan; Xu, Jia; Kang, Chaoying; Li, Meng; Zhang, Chenhong; Zhang, Zhiguo; Zhang, Yifei; Li, Xiaoying; Ning, Guang; Zhao, Liping

    2012-01-01

    Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2)>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  9. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  10. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  11. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  12. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  13. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  14. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    PubMed

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  16. Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats.

    PubMed

    Louis, Xavier L; Thandapilly, Sijo J; MohanKumar, Suresh K; Yu, Liping; Taylor, Carla G; Zahradka, Peter; Netticadan, Thomas

    2012-09-01

    We hypothesized that a low-dose resveratrol will reverse cardiovascular abnormalities in rats fed a high-fat (HF) diet. Obese prone (OP) and obese resistant (OR) rats were fed an HF diet for 17 weeks; Sprague-Dawley rats fed laboratory chow served as control animals. During the last 5 weeks of study, treatment group received resveratrol daily by oral gavage at a dosage of 2.5 mg/kg body weight. Assessments included echocardiography, blood pressure, adiposity, glycemia, insulinemia, lipidemia, and inflammatory and oxidative stress markers. Body weight and adiposity were significantly higher in OP rats when compared to OR rats. Echocardiographic measurements showed prolonged isovolumic relaxation time in HF-fed OP and OR rats. Treatment with resveratrol significantly improved diastolic function in OP but not in OR rats without affecting adiposity. OP and OR rats had increased blood pressure which remained unchanged with treatment. OP rats had elevated fasting serum glucose and insulin, whereas OR rats had increased serum glucose and normal insulin concentrations. Resveratrol treatment significantly reduced serum glucose while increasing serum insulin in both OP and OR rats. Inflammatory and oxidative stress markers, serum triglycerides and low-density lipoprotein were higher in OP rats, which were significantly reduced with treatment. In conclusion, HF induced cardiac dysfunction in both OP and OR rats. Treatment reversed abnormalities in diastolic heart function associated with HF feeding in OP rats, but not in OR rats. The beneficial effects of resveratrol may be mediated through regression of hyperglycemia, oxidative stress and inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  18. Effect of FTO rs9939609 variant on insulin resistance in obese female adolescents.

    PubMed

    Iskandar, Kristy; Patria, Suryono Yudha; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina; Susilowati, Rina

    2018-05-15

    FTO rs9939609 variant has been shown to be associated with insulin resistance in Caucasian children. However, studies in Asia show inconsistent findings. We investigated the association between FTO rs9939609 polymorphisms and insulin resistance in obese female adolescents in Indonesia, a genetically distinct group within Asia. A total of 78 obese female adolescents participated in this study. The risk allele (A) frequency of FTO rs9939609 variant in Indonesian obese female adolescence was 44.2%. The frequency of insulin resistance was higher in the subjects with AA (54.6%) or AT (59.6%) than the subject with TT genotype (50%), but did not statistically different (p = 0.81 and p = 0.47, respectively). The insulin resistance rate was also higher in the risk allele (A) than the non-risk allele (T) subjects (0.58 vs. 0.55), but did not statistically different (p = 0.75). There was no association between FTO rs9939609 variant and body mass index, fasting glucose level, fasting insulin level, homeostatic model assessment of insulin resistance, and waist circumference (p > 0.05). In conclusion, FTO rs9939609 variant may not be associated with insulin resistance in Indonesian obese female adolescents. A multicenter study with a larger sample size is needed to clarify these findings.

  19. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  20. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  1. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  2. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    PubMed

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  3. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  4. Insulin Resistance and Hunger in Childhood Obesity: A Patient and Physician's Perspective.

    PubMed

    Scinta, Wendy; Bayes, Harold; Smith, Nicole

    2017-10-01

    This article is co-authored by the mother of a child with obesity and insulin resistance, who gives her perspective. It is also co-authored by the treating Obesity Medicine clinician and an investigator in obesity clinical research (both certified in Obesity Medicine), who give their perspectives. The discussion focuses upon the potential clinical use of metformin in managing young patients with obesity and insulin resistance. The article integrates what is scientifically known about the mechanisms of actions of metformin and how these mechanisms are reflected in the clinical response of young patients.

  5. Diet-induced obesity alters memory consolidation in female rats.

    PubMed

    Zanini, P; Arbo, B D; Niches, G; Czarnabay, D; Benetti, F; Ribeiro, M F; Cecconello, A L

    2017-10-15

    Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  7. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    PubMed

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  8. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  9. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  10. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  11. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  13. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  14. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  15. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    PubMed

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  16. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  17. Effect of android to gynoid fat ratio on insulin resistance in obese youth.

    PubMed

    Aucouturier, Julien; Meyer, Martine; Thivel, David; Taillardat, Michel; Duché, Pascale

    2009-09-01

    Upper body fat distribution is associated with the early development of insulin resistance in obese children and adolescents. To determine if an android to gynoid fat ratio is associated with the severity of insulin resistance in obese children and adolescents, whereas peripheral subcutaneous fat may have a protective effect against insulin resistance. The pediatric department of University Hospital, Clermont-Ferrand, France. A retrospective analysis using data from medical consultations between January 2005 and January 2007. Data from 66 obese children and adolescents coming to the hospital for medical consultation were used in this study. Subjects were stratified into tertiles of android to gynoid fat ratio determined by dual-energy x-ray absorptiometry. Insulin resistance was assessed by the homeostasis model of insulin resistance (HOMA-IR) index. There were no differences in weight, body mass index, and body fat percentage between tertiles. Values of HOMA-IR were significantly increased in the 2 higher tertiles (mean [SD], tertile 2, 2.73 [1.41]; tertile 3, 2.89 [1.28]) compared with the lower tertile (tertile 1, 1.67 [1.24]) of android to gynoid fat ratio (P < .001). The HOMA-IR value was significantly associated with android to gynoid fat ratio (r = 0.35; P < .01). Android fat distribution is associated with an increased insulin resistance in obese children and adolescents. An android to gynoid fat ratio based on dual-energy x-ray absorptiometry measurements is a useful and simple technique to assess distribution of body fat associated with an increased risk of insulin resistance.

  18. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  19. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  20. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  1. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  2. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  3. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    PubMed

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  4. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  5. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    PubMed

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0

  6. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women

    PubMed Central

    Zaki, Moushira; Basha, Walaa; Reyad, Hanaa; Mohamed, Ramy; Hassan, Naglaa; Kholousi, Shams

    2018-01-01

    BACKGROUND: Myeloperoxidase (MPO) is an enzyme involved in the pathogenesis of several diseases. AIM: The current study aimed to investigate serum MPO levels in obese Egyptian women and assess its relation with insulin resistance (IR) and other biochemical risk parameters. METHODS: The study included 80 obese women and 50 age-and-sex-matched healthy controls. Insulin resistance (IR) was evaluated by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Serum MPO, fasting glucose, insulin and blood lipids and anthropometry were measured. Obese cases were divided into three groups based on MPO tertiles. ROC analysis was performed to obtain the optimal cut-off values of MPO to predicate IR in obese women. RESULTS: The mean serum MPO was significantly higher in obese cases than controls. Cases in the highest MPO tertile had higher HOMA-IR, blood lipids and pressure levels compared with those in the lower tertile. The cutoff point of MPO was > 87.8 (ng/mL) and area under curves was 0.82 (p < 0.01) for diagnosis of IR. MPO levels were higher in obese Egyptian women than healthy controls. CONCLUSION: Elevation of MPO was associated with abnormal metabolic parameters. MPO might be used as an earlier biomarker for IR and metabolic disturbance in obese women. PMID:29731928

  7. Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease.

    PubMed

    Yang, Hye Ran; Chang, Eun Jae

    2016-01-01

    The aim of this study was to evaluate the influence of body composition, especially distribution of body fat, and insulin resistance on nonalcoholic fatty liver disease (NAFLD) in obese children. One hundred obese children (66 boys, 34 girls) with (n=60) and without NAFLD (n=40) were assessed. Anthropometry, laboratory tests, abdominal ultrasonography, and dual energy x-ray absorption metry (DXA) were evaluated in all subjects. Subject age and measurements of liver enzymes, γ- glutamyl transpeptidase (γGT), uric acid, high-density lipoprotein cholesterol, and insulin resistance were significantly different between the non-NAFLD group and NAFLD group. Body fat and trunk fat percentage were significantly different between the two groups (p<0.001 and p=0.003), whereas extremity fat percentage was not (p=0.683). Insulin resistance correlated significantly with body fat and trunk fat percentages, age, liver enzymes, γGT, and uric acid in obese children. Multiple logistic regression analysis indicated that insulin resistance and trunk fat percentage significantly affected the development of NAFLD in obese children. Body fat, especially abdominal fat, influences the development of insulin resistance and subsequent NAFLD in obese children. Therefore, body composition measurement using DXA, in conjunction with biochemical tests, may be beneficial in evaluating obese children with NAFLD.

  8. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    PubMed

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  9. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  10. Obesity-related insulin resistance in adolescents: a systematic review and meta-analysis of observational studies.

    PubMed

    Thota, P; Perez-Lopez, F R; Benites-Zapata, V A; Pasupuleti, V; Hernandez, A V

    2017-03-01

    Insulin resistance is common among obese adolescents; however, the extent of this problem is not clear. We conducted a systematic review of PubMed-Medline, CINAHL, The Web of Science, EMBASE and Scopus for observational studies evaluating components defining insulin resistance (insulin, C-peptide and homeostatic model assessment-insulin resistance [HOMA-IR]) in obese adolescents (12-18 years) versus non-obese adolescents. Our systematic review and meta-analysis followed the PRISMA guidelines. Data were combined using a random-effects model and summary statistics were calculated using the mean differences (MDs). 31 studies were included (n = 8655). In 26 studies, fasting insulin levels were higher in obese adolescents when compared to non-obese adolescents (MD = 64.11 pmol/L, 95%CI 49.48-78.75, p < 0.00001). In three studies, fasting C-peptide levels were higher in obese adolescents when compared to non-obese adolescents (MD = 0.29 nmol/L, 95%CI 0.22-0.36, p < 0.00001). In 24 studies, HOMA-IR values were higher in obese adolescents when compared to non-obese adolescents (MD = 2.22, 95%CI 1.78-2.67, p < 0.00001). Heterogeneity of effects among studies was moderate to high. Subgroup analyses showed similar results to the main analyses. Circulating insulin and C-peptide levels and HOMA-IR values were significantly higher in obese adolescents compared to those non-obese.

  11. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  12. Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

    PubMed Central

    Park, Jeong-Kwon; Kim, Sang-Pyo

    2008-01-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (KATP) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of KATP channels, insulin receptor β-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that KATP-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on KATP channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects. PMID:20157388

  13. Ameliorating effects of sulfonylurea drugs on insulin resistance in Otsuka long-evans Tokushima Fatty rats.

    PubMed

    Park, Jeong-Kwon; Kim, Sang-Pyo; Song, Dae-Kyu

    2008-02-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (K(ATP)) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of K(ATP) channels, insulin receptor beta-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that K(ATP)-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on K(ATP) channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.

  14. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  15. Sexual dimorphism in interleukin 17A and adipocytokines and their association with insulin resistance among obese adolescents in Yogyakarta, Indonesia.

    PubMed

    Susilowati, Rina; Sulistyoningrum, Dian Caturini; Witari, Ni Putu Diah; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina

    2016-12-01

    Pro-inflammatory cytokines interleukin 17A (IL-17), leptin, and adiponectin have been associated with obesity and insulin resistance. Moreover, differences in sex and ethnicity as well as plasma concentration of adipocytokines and cytokines have been associated with the risk of insulin resistance. This study was conducted to elucidate whether sex differences exist in the risk of insulin resistance in Indonesian adolescents and to determine how plasma leptin, adiponectin, and IL-17 predict insulin resistance. The study participants were 69 obese-overweight boys, 53 obese-overweight girls, 59 non-obese boys, and 50 non-obese girls aged 15-18 years. Insulin resistance was determined using the homeostatic model assessment of insulin resistance index. Plasma IL-17, leptin, and adiponectin were measured using ELISA. Data were analysed using one-way ANOVA and linear regression analysis. Odd ratios [ORs; 95% confidence intervals (CIs)] were analysed to estimate the risk of insulin resistance; the significance level was set at 95%. The OR (95% CI) for insulin resistance was higher in obese-overweight boys than in obese-overweight girls. The plasma IL-17 was higher in boys, whereas plasma adiponectin and leptin were significantly higher in girls. In all participants, obesity status and plasma leptin were the most efficient predictors of insulin resistance, whereas the IL-17 could not significantly predict insulin resistance. Sexual dimorphism exists in IL17 as well as leptin and adiponectin in adolescents. Plasma IL-17 cannot be used to predict insulin resistance in adolescents of both sex.

  16. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents.

    PubMed

    Juárez-López, Carlos; Klünder-Klünder, Miguel; Medina-Bravo, Patricia; Madrigal-Azcárate, Adrián; Mass-Díaz, Eliezer; Flores-Huerta, Samuel

    2010-06-07

    Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated. Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors. Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.

  17. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  18. Obese adolescent girls with polycystic ovary syndrome (PCOS) have more severe insulin resistance measured by HOMA-IR score than obese girls without PCOS.

    PubMed

    Sawathiparnich, Pairunyar; Weerakulwattana, Linda; Santiprabhob, Jeerunda; Likitmaskul, Supawadee

    2005-11-01

    The prevalence of obesity in Thai children is increasing. These individuals are at increased risks of metabolic syndrome that includes insulin resistance, type 2 diabetes mellitus (T2DM), polycystic ovary syndrome (PCOS), dyslipidemia and hypertension. PCOS has been known to be associated with insulin resistance. To compare the insulin sensitivity between obese adolescent girls with PCOS and those without PCOS. We reviewed demographic and hormonal data of 6 obese adolescent girls with PCOS and compared with 6 age, weight and BMI-matched non-PCOS controls. Each subject underwent an oral glucose tolerance test. Homeostasis model assessment of insulin resistance score (HOMA-IR score) in obese adolescent girls with PCOS was significantly higher than in girls without PCOS with median and range as follows (16.5 [3.8, 21.8] vs. 4.1 [3.3, 6.9], p = 0.04). Our study demonstrates that obese adolescent girls with PCOS have more severe insulin resistance measured by HOMA-IR score than girls without PCOS independent of the degree of obesity. Since insulin resistance is a metabolic precursor of future cardiovascular diseases, obese adolescent girls with PCOS might be at greater risk of developing cardiovascular disease in later adulthood than their non-PCOS counterparts.

  19. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  20. Effects of losartan on whole-body, skeletal muscle, and vascular insulin responses in obesity/insulin resistance without hypertension

    PubMed Central

    Lteif, AA; Chisholm, RL; Gilbert, K; Considine, RV; Mather, KJ

    2011-01-01

    Aims Renin-angiotensin system antagonists have been found to improve glucose metabolism in obese hypertensive and type 2 diabetic subjects. The mechanism of these effects is not well understood. We hypothesized that the angiotensin receptor antagonist losartan would improve insulin-mediated vasodilation, and thereby improve insulin-stimulated glucose uptake in skeletal muscle of insulin resistant subjects. Materials and Methods We studied subjects with obesity and insulin resistance but without hypertension, hypercholesterolemia or dysglycemia (age 39.0±9.6 yrs [mean±SD], BMI 33.2±5.9 kg/m2, BP 115.8±12.2/70.9±7.2 mmHg, LDL 2.1±0.5 mmol/L). Subjects were randomized to 12 weeks’ double-blind treatment with losartan 100 mg once daily (n=9) or matching placebo (n=8). Before and after treatment, under hyperinsulinemic euglycemic clamp conditions we measured whole-body insulin stimulated glucose disposal, insulin-mediated vasodilation, and insulin-stimulated leg glucose uptake by the limb balance technique. Results Whole-body insulin-stimulated glucose disposal was not significantly increased by losartan. Insulin-mediated vasodilation was augmented following both treatments (increase in leg vascular conductance: pre-treatment 0.7±0.3 L*min−1*mmHg−1[losartan, mean ±SEM] and 0.9±0.3 [placebo], post-treatment 1.0±0.4 [losartan] and 1.3±0.6 [placebo]) but not different between treatment groups (p=0.53). Insulin’s action to augment NO production and to augment endothelium-dependent vasodilation were also not improved. Leg glucose uptake was not significantly changed by treatments, and not different between groups (p=0.11). Conclusions These findings argue against the hypothesis that losartan might improve skeletal muscle glucose metabolism by improving insulin-mediated vasodilation in normotensive insulin resistant obese subjects. The metabolic benefits of angiotensin receptor blockers may require the presence of hypertension in addition to obesity

  1. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2012-11-12

    Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Consumption of the

  2. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  4. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    PubMed

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  5. Freeze-dried strawberry and blueberry attenuates diet-induced obesity and insulin resistance in rats by inhibiting adipogenesis and lipogenesis.

    PubMed

    Aranaz, Paula; Romo-Hualde, Ana; Zabala, María; Navarro-Herrera, David; Ruiz de Galarreta, Marina; Gil, Ana Gloria; Martinez, J Alfredo; Milagro, Fermín I; González-Navarro, Carlos J

    2017-11-15

    Obesity and type 2-diabetes are becoming a worldwide health problem, reiterating the importance of alternative therapies to tackle their progression. Here, we hypothesized that supplementation of diet with 6% w/w of a freeze-dried strawberry-blueberry (5 : 1) powder (FDSB) could exert beneficial metabolic effects on Wistar rats. FDSB-supplemented animals experienced significantly reduced body weight gain, food efficiency and visceral adiposity accumulation in two independent experiments. FDSB supplementation also contributed to lower area under the curve after an intraperitoneal GTT and reduced serum insulin levels and an insulin resistance index (IR-HOMA) in HFS diet-fed animals, together with reduced plasma MCP-1 inflammation marker concentrations. Gene expression analysis in retroperitoneal adipocytes from experiment 1 and 3T3-L1 cells showed that FDSB inhibited adipogenesis and lipogenesis through down-regulation of Pparg, Cebpa, Lep, Fasn, Scd-1 and Lpl gene expression. Untargeted metabolomics identified the cis isomer of resveratrol-3-glucoside-sulphate as a metabolite differentially increased in FDSB-treated serum samples, which corresponds to a strawberry metabolite that could be considered a serum biomarker of FDSB-intake. Our results suggest that FDSB powder might be useful for treatment/prevention of obesity-related diseases.

  6. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.

    PubMed

    Abdulnour, Joseph; Yasari, Siham; Rabasa-Lhoret, Rémi; Faraj, May; Petrosino, Stefania; Piscitelli, Fabiana; Prud' Homme, Denis; Di Marzo, Vincenzo

    2014-01-01

    To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05). This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. © 2013 The Obesity Society.

  7. Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats

    PubMed Central

    Prasad Sakamuri, Siva Sankara Vara; Sukapaka, Mahesh; Prathipati, Vijay Kumar; Nemani, Harishankar; Putcha, Uday Kumar; Pothana, Shailaja; Koppala, Swarupa Rani; Ponday, Lakshmi Raj Kumar; Acharya, Vani; Veetill, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2012-01-01

    Background 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. Methodology/Principal Findings Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. Conclusions/Significance We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions. PMID:23284633

  8. Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets.

    PubMed

    Miranda, Rosiane A; Agostinho, Aryane R; Trevenzoli, Isis H; Barella, Luiz F; Franco, Claudinéia C S; Trombini, Amanda B; Malta, Ananda; Gravena, Clarice; Torrezan, Rosana; Mathias, Paulo C F; de Oliveira, Júlio C

    2014-01-01

    Impaired pancreatic beta cell function and insulin secretion/action are a link between obesity and type 2 diabetes, which are worldwide public health burdens. We aimed to characterize the muscarinic acetylcholine receptor (mAChR) M1-M4 subtypes in isolated pancreatic islets from pre-diabetic obese rats that had been treated neonatally with monosodium L-glutamate (MSG). At 90 days of age, both the MSG and the control groups underwent biometric and biochemical evaluation. Anti-muscarinic drugs were used to study mAChR function either in vivo or in vitro. The results demonstrated that atropine treatment reduced insulin secretion in the MSG-treated and control groups, whereas treatment with an M2mAChR-selective antagonist increased secretion. Moreover, the insulinostatic effect of an M3mAChR-selective antagonist was significantly higher in the MSG-treated group. M1mAChR and M3mAChR expression was increased in the MSG-obese group by 55% and 73%, respectively. In contrast, M2mAChR expression decreased by 25% in the MSG group, whereas M4mAChR expression was unchanged. Functional changes in and altered content of the mAChR (M1-M4) subtypes are pivotal to the demand for high pancreatic beta cell insulin secretion in MSG-obese rats, which is directly associated with vagal hyperactivity and peripheral insulin resistance. © 2014 S. Karger AG, Basel.

  9. Vitamin D deficiency and insulin resistance as risk factors for dyslipidemia in obese children.

    PubMed

    Erol, Meltem; Bostan Gayret, Özlem; Hamilçıkan, Şahin; Can, Emrah; Yiğit, Özgu L

    2017-04-01

    Dyslipidemia is one of the major complications of obesity; vitamin D deficiency and insulin resistance are attending metabolic complications in dyslipidemic obese children. Objective. To determine if vitamin D deficiency and insulin resistance are risk factors for dyslipidemia in obese children. This study was conducted in the Department of Pediatrics at Bagcilar Training and Research Hospital in Istanbul, Turkey between 2014 and 2015. Obese patients whose age range was 8-14 were included in the study. The serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol, fasting glucose, insulin, alanine aminotransferase, vitamin D levels were measured; a liver ultrasonography was performed. Homeostatic model assessment (HOMA-IR), was used to calculate insulin resistance. 108 obese children were included; 39 (36.11%) had dyslipidemia. The average fasting blood glucose (88.74 ± 7.58 vs. 95.31 ± 6.82; p= 0.0001), insulin level (14.71 ± 12.44 vs. 24.39 ± 15.02; p= 0.0001) and alanine aminotransferase level (23.45 ± 11.18 vs. 30.4 ± 18.95; p= 0.018) were significantly higher in the children with dyslipidemia. In the dyslipidemic obese children, the average hepatosteatosis rate and HOMA-IR level were higher; 28 (71.9%) had hepatosteatosis, 37 (94.87%) had insulin resistance; the vitamin D levels were <20 ng/ml in 69.3%. Vitamin D deficiency was significantly more common (p= 0.033). The multivariate regression analysis confirmed that the increase in the HOMA-IR level (p= 0.015) and the low vitamin D level (p= 0.04) were important risk factors for dyslipidemia. Obese children in our region exhibit low vitamin D and increased HOMA-IR levels, which are efficient risk factors of dyslipidemia.

  10. Heat Treatment Improves Glucose Tolerance and Prevents Skeletal Muscle Insulin Resistance in Rats Fed a High-Fat Diet

    PubMed Central

    Gupte, Anisha A.; Bomhoff, Gregory L.; Swerdlow, Russell H.; Geiger, Paige C.

    2009-01-01

    OBJECTIVE—Heat treatment and overexpression of heat shock protein 72 (HSP72) have been shown to protect against high-fat diet–induced insulin resistance, but little is known about the underlying mechanism or the target tissue of HSP action. The purpose of this study is to determine whether in vivo heat treatment can prevent skeletal muscle insulin resistance. RESEARCH DESIGN AND METHODS—Male Wistar rats were fed a high-fat diet (60% calories from fat) for 12 weeks and received a lower-body heat treatment (41°C for 20 min) once per week. RESULTS—Our results show that heat treatment shifts the metabolic characteristics of rats on a high-fat diet toward those on a standard diet. Heat treatment improved glucose tolerance, restored insulin-stimulated glucose transport, and increased insulin signaling in soleus and extensor digitorum longus (EDL) muscles from rats fed a high-fat diet. Heat treatment resulted in decreased activation of Jun NH2-terminal kinase (JNK) and inhibitor of κB kinase (IKK-β), stress kinases implicated in insulin resistance, and upregulation of HSP72 and HSP25, proteins previously shown to inhibit JNK and IKK-β activation, respectively. Mitochondrial citrate synthase and cytochrome oxidase activity decreased slightly with the high-fat diet, but heat treatment restored these activities. Data from L6 cells suggest that one bout of heat treatment increases mitochondrial oxygen consumption and fatty acid oxidation. CONCLUSIONS—Our results indicate that heat treatment protects skeletal muscle from high-fat diet–induced insulin resistance and provide strong evidence that HSP induction in skeletal muscle could be a potential therapeutic treatment for obesity-induced insulin resistance. PMID:19073766

  11. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  12. The early origins of obesity and insulin resistance: timing, programming and mechanisms.

    PubMed

    Nicholas, L M; Morrison, J L; Rattanatray, L; Zhang, S; Ozanne, S E; McMillen, I C

    2016-02-01

    Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.

  13. The Impact of Vitamin D Supplementation on Neurodegeneration, TNF-α Concentration in Hypothalamus, and CSF-to-Plasma Ratio of Insulin in High-Fat-Diet-Induced Obese Rats.

    PubMed

    Nameni, Ghazaleh; Hajiluian, Ghazaleh; Shahabi, Parviz; Farhangi, Mahdieh Abbasalizad; Mesgari-Abbasi, Mehran; Hemmati, Mohammad-Reza; Vatandoust, Seyed Mahdi

    2017-02-01

    There is growing evidence that obesity can lead to neurodegeneration induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF-α). Moreover, obesity is associated with reduced transport of insulin through the blood-brain barrier (BBB). Insulin deficiency in the brain especially in the hypothalamus region has neurodegenerative and obesity-promoting effects. Because of the anti-inflammatory and neuroprotective effects of vitamin D, in the current experimental study, we aimed to investigate the effects of vitamin D supplementation on neurodegeneration, TNF-α concentration in the hypothalamus, and cerebrospinal fluid (CSF) to serum ratio of insulin in high-fat-diet-induced obese rats. At the first phase of the study, the rats were divided into two groups: (1) normal diet (ND, 10% fat) and (2) high-fat diet (HFD, 59% fat) and were fed for 16 weeks. In the second phase, each group was subdivided into four groups including the following: ND, normal diet + vitamin D, HFD, and HFD + vitamin D. Weight was measured and recorded weekly. Vitamin D supplementation for 5 weeks at 500 IU/kg dosage was used. One week after vitamin D supplementation, daily food intake was recorded. At week 22, blood was collected to determine fasting serum glucose, vitamin D, and insulin concentrations, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. CSF samples were also collected to measure insulin concentrations, and the hypothalamus was dissected to determine TNF-α concentration. HFD significantly increased TNF-α concentrations and degenerated neurons in the hypothalamus (P = 0.02). We also observed a significant reduction of CSF-to-serum ratio of insulin in HFD group (P = 0.03). The HOMA-IR test indicated significant increment of insulin resistance in HFD-fed rats (P = 0.006). Vitamin D supplementation in HFD group significantly reduced weight (P = 0.001) and food intake (P = 0.008) and increased CSF-to-serum ratio of insulin

  14. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  15. Association between insulin resistance and preeclampsia in obese non-diabetic women receiving metformin.

    PubMed

    Balani, Jyoti; Hyer, Steve; Syngelaki, Argyro; Akolekar, Ranjit; Nicolaides, Kypros H; Johnson, Antoinette; Shehata, Hassan

    2017-12-01

    To examine whether the reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is mediated by changes in insulin resistance. This was a secondary analysis of obese pregnant women in a randomised trial (MOP trial). Fasting plasma glucose and insulin were measured in 384 of the 400 women who participated in the MOP trial. Homeostasis model assessment of insulin resistance (HOMA-IR) was compared in the metformin and placebo groups and in those that developed preeclampsia versus those that did not develop preeclampsia. At 28 weeks, median HOMA-IR was significantly lower in the metformin group. Logistic regression analysis demonstrated that there was a significant contribution in the prediction of preeclampsia from maternal history of chronic hypertension and gestational weight gain, but not HOMA-IR either at randomisation ( p  = 0.514) or at 28 weeks ( p  = 0.643). Reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is unlikely to be due to changes in insulin resistance.

  16. Fatty liver disease, glucose tolerance and insulin resistance in obese adolescents.

    PubMed

    Slyper, A H; Rosenberg, H; Kabra, A; Huang, W-M; Blech, B; Matsumura, M M

    2015-12-01

    Adult studies suggest that intra-hepatic fat predicts 2-h blood glucose levels and type 2 diabetes, and may have a role in the development of insulin resistance. Our study objective was to explore relationships between intra-hepatic fat and (i) blood glucose levels and (ii) insulin resistance determined by homeostasis model assessment (HOMA) in a group of obese adolescents. Subjects were 61 obese non-diabetic male and female volunteers aged 12-18 years inclusive with a body mass index >95th percentile for age and 2-h blood glucose <200 mg dL(-1) . Each subject underwent 2-h glucose tolerance testing and measurement of haemoglobin A1c, ultrasensitive C-reactive protein and fasting insulin. Visceral, subcutaneous abdominal and intra-hepatic fat were determined by magnetic resonance imaging. Intra-hepatic fat was measured by gradient echo chemical shift imaging. Alanine aminotransferase levels and hepatic phase difference were not significant correlates of fasting or 2-h glucose. In a multiple regression model including hepatic phase difference and visceral fat volume, visceral fat volume was the sole predictor of HOMA. This study provides no support to the notion that intra-hepatic fat has a role in the regulation of fasting blood glucose, 2-h postprandial blood glucose or systemic insulin resistance. © 2014 World Obesity.

  17. Obesity is the main determinant of insulin resistance more than the circulating pro-inflammatory cytokines levels in rheumatoid arthritis patients.

    PubMed

    Castillo-Hernandez, Jesus; Maldonado-Cervantes, Martha Imelda; Reyes, Juan Pablo; Patiño-Marin, Nuria; Maldonado-Cervantes, Enrique; Solorzano-Rodriguez, Claudia; de la Cruz Mendoza, Esperanza; Alvarado-Sanchez, Brenda

    Systemic blockade of TNF-α in Rheumatoid arthritis with insulin resistance seems to produce more improvement in insulin sensitivity in normal weight patients with Rheumatoid arthritis than in obese patients with Rheumatoid arthritis, suggesting that systemic-inflammation and obesity are independent risk factors for insulin resistance in Rheumatoid arthritis patients. To evaluate the insulin resistance in: normal weight patients with Rheumatoid arthritis, overweight patients with Rheumatoid arthritis, obese Rheumatoid arthritis patients, and matched control subjects with normal weight and obesity; and its association with major cytokines involved in the pathogenesis of the disease. Assessments included: body mass index, insulin resistance by Homeostasis Model Assessment, ELISA method, and enzymatic colorimetric assay. Outstanding results from these studies include: (1) In Rheumatoid arthritis patients, insulin resistance was well correlated with body mass index, but not with levels of serum cytokines. In fact, levels of cytokines were similar in all Rheumatoid arthritis patients, regardless of being obese, overweight or normal weight (2) Insulin resistance was significantly higher in Rheumatoid arthritis with normal weight than in normal weight (3) No significant difference was observed between insulin resistances of Rheumatoid arthritis with obesity and obesity (4) As expected, levels of circulating cytokines were significantly higher in Rheumatoid arthritis patients than in obesity. Obesity appears to be a dominant condition above inflammation to produce IR in RA patients. The dissociation of the inflammation and obesity components to produce IR suggests the need of an independent therapeutic strategy in obese patients with RA. Copyright © 2017. Published by Elsevier Editora Ltda.

  18. Loss of prion protein is associated with the development of insulin resistance and obesity.

    PubMed

    de Brito, Giovanna; Lupinacci, Fernanda C; Beraldo, Flávio H; Santos, Tiago G; Roffé, Martín; Lopes, Marilene H; de Lima, Vladmir C; Martins, Vilma R; Hajj, Glaucia N

    2017-08-17

    Prion protein (PrP C ) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrP C in the response to insulin and obesity development. Two independent PrP C knockout (KO) and one PrP C overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrP C KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrP C KO mice and increased in TG20 animals. PrP C KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrP C reflects susceptibility to the development of insulin resistance and metabolic syndrome. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  20. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

    PubMed Central

    Panveloski-Costa, Ana Carolina; Yokota, Caroline Naomi Fukusawa; Pereira, Joice Naiara Bertaglia; Filho, Jorge Mancini; Torres, Rosangela Pavan; Hirabara, Sandro Massao; Curi, Rui; Alba-Loureiro, Tatiana Carolina

    2017-01-01

    Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn’t present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of

  1. [Studies of diet management and insulin resistance in obese pregnant women].

    PubMed

    Takeda, S; Saitoh, M; Kinoshita, K; Sakamoto, S

    1992-02-01

    In an attempt to determine the principles of diet management in obese pregnant women, the association between maternal weight gain during pregnancy (Group I; weight reduction, Group II; +0-4 kg, Group III; +5-9 kg, Group IV; +10 kg-) and the incidence of the complications was investigated in 151 obese pregnant women. Studies on glucose tolerance and insulin binding to erythrocytes were also undertaken. 1) In Group I, the incidences of C/S, forceps delivery, prolonged labor and complication of PIH were lower than those of other groups. There were no heavy-for-dates and light-for-dates babies in Group I, differing from the other three groups. 2) Plasma levels of glucose and insulin were high in obese pregnant women on 75 g OGTT in the second trimester. The binding sites of insulin to erythrocytes were significantly decreased in obese pregnant women. In conclusion, the risks of pregnancy complicated by obesity were high. Insulin resistance was a characteristic of obese pregnant women. The results of this study suggested that the nutritional requirements for very obese pregnant women should be restricted to maintaining the same weight or losing weight during the course of pregnancy to minimize maternal and perinatal risks.

  2. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2012-06-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

  3. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

    PubMed Central

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2012-01-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D. PMID:22916045

  4. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration.

    PubMed

    Spielman, Lindsay J; Little, Jonathan P; Klegeris, Andis

    2014-08-15

    Obesity is a growing epidemic that contributes to several brain disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Obesity could promote these diseases through several different mechanisms. Here we review evidence supporting the involvement of two recently recognized factors linking obesity with neurodegeneration: the induction of pro-inflammatory cytokines and onset of insulin and insulin-like growth factor 1 (IGF-1) resistance. Excess peripheral pro-inflammatory mediators, some of which can cross the blood brain barrier, may trigger neuroinflammation, which subsequently exacerbates neurodegeneration. Insulin and IGF-1 resistance leads to weakening of neuroprotective signaling by these molecules and can contribute to onset of neurodegenerative diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  6. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  7. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    PubMed

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Greater physical activity levels during pregnancy are associated with lower inflammation and insulin resistance in obese women

    USDA-ARS?s Scientific Manuscript database

    Compared to lean pregnant women, obese women develop greater insulin resistance and systemic inflammation during pregnancy. Identifying lifestyle factors that can reduce the metabolic effect of obesity during pregnancy is critical to protect both the mother and the fetus from insulin resistance and ...

  9. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  10. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  11. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus

    PubMed Central

    Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan

    2016-01-01

    Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373

  13. Dietary fiber, plasma insulin, and obesity.

    PubMed

    Albrink, M J

    1978-10-01

    The relationship between obesity, insulin resistance, and hyperinsulinemia is briefly reviewed. The possibility is considered that excess insulin secretion is the cause rather than the result of insulin resistance and obesity. Glucose administration is one of the most frequently studied of those factors known to stimulate insulin secretion. Much less well documented is the fact that meals of equal protein, fat, and carbohydrate content may cause different responses of plasma glucose and insulin. An experiment is reported in which the effects of a high-carbohydrate, high-fiber meal administered to seven healthy young adults were compared with the effects of a meal equally high in carbohydrate but composed largely of glucose in liquid formula form. The high-fiber meal caused an insulin rise less than half that caused by the liquid formula meal although the plasma glucose response to the two meals was not significantly different. The hypothesis is proposed that a high-carbohydrate, fiber-depleted diet, high in simple sugars, by repeatedly stimulating an excessive insulin response, may lead to insulin resistance and obesity in susceptible individuals and may play a role in the common occurrence of obesity in industrialized societies.

  14. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats.

    PubMed

    Salman, Zenat K; Refaat, Rowaida; Selima, Eman; El Sarha, Ashgan; Ismail, Menna A

    2013-08-15

    Increasing evidence has established causative links between obesity, chronic inflammation and insulin resistance; the core pathophysiological feature in type 2 diabetes mellitus. This study was designed to examine whether the combination of L-cysteine and metformin would provide additional benefits in reducing oxidative stress, inflammation and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Male Wistar rats were fed a high-fat diet (HFD) for 8 weeks to induce insulin resistance after which they were rendered diabetic with low-dose streptozotocin. Diabetic rats were treated with metformin (300 mg/kg/day), L-cysteine (300 mg/kg/day) and their combination along with HFD for another 2 weeks. Control rats were fed normal rat chow throughout the experiment. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index (HOMA-IR) and serum free fatty acids (FFAs) were measured. Serum levels of the inflammatory markers; monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and nitrite/nitrate were also determined. The liver was isolated and used for determination of malondialdehyde (MDA), reduced glutathione (GSH), caspase-3 and cytochrome c levels. The hypoglycemic effect of the combination therapy exceeded that of metformin and L-cysteine monotherapies with more improvement in insulin resistance. All treated groups exhibited significant reductions in serum FFAs, oxidative stress and inflammatory parameters, caspase-3 and cytochrome c levels compared to untreated diabetic rats with the highest improvement observed in the combination group. In conclusion, the present results clearly suggest that L-cysteine can be strongly considered as an adjunct to metformin in management of type 2 diabetes. © 2013 Elsevier B.V. All rights reserved.

  15. Expression of the central obesity and Type 2 Diabetes mellitus genes is associated with insulin resistance in young obese children.

    PubMed

    Skoczen, S; Wojcik, M; Fijorek, K; Siedlar, M; Starzyk, J B

    2015-04-01

    The assessment of the health consequences associated with obesity in young children is challenging. The aims of this study were: (1) to compare insulin resistance indices derived from OGTT in obese patients and healthy control (2) to analyze central obesity and Type 2 Diabetes genes expression in obese children, with special attention to the youngest group (< 10 years old). The study included 49 children with obesity (median age 13.5 years old), and 25 healthy peers. Biochemical blood tests and expression of 11 central obesity and 33 Type 2 Diabetes genes was assessed. A significant difference in insulin resistance between obese and non-obese adolescents was observed in all studied indices (mean values of the insulin levels: 24.9 vs. 9.71 mIU/L in T0, 128 vs. 54.7 mIU/L in T60 and 98.7 vs. 41.1 mIU/L in T120 respectively; AUC: 217 vs. 77.2 ng/ml*h, mean values of B% (state beta cell function), S% (insulin sensitivity), and IR were 255 (±97) vs. 135 (±37.8), 46.6 (±37.3) vs. 84.2 (±29.6) and 3 (±1.55) vs. 1.36 (±0,56); HIS, WBIS and ISIBel median 3.89, 44.7, 0.73 vs. 8.57, 110, 2.25. All comparisons differed significantly p<0.001). Moreover, insulin sensitivity was significantly better in the older obese group (>10 years old): median AUC 239 vs. 104 ng/ml*h, and HIS, WBIS and ISIBel 3.57, 38, 0.67 vs. 6.23, 75.6, 1.87 respectively in the obese older compared to the obese younger subgroup, p<0.05. The expression of 64% of the central obesity genes and 70% of Type 2 Diabetes genes was higher in the obese compared to control groups. The differences were more pronounced in the younger obese group. Insulin resistance may develop in early stage of childhood obesity and in very young children may be associated with higher expression of the central obesity and Type 2 Diabetes genes. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance

    PubMed Central

    Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.

    2011-01-01

    OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175

  18. Association between gamma glutamyl transferase and insulin resistance markers in healthy obese children.

    PubMed

    Kaushik, Girdhar Gopal; Sharm, Sonali; Sharma, Reenu; Mittal, Prerna

    2009-10-01

    To study the relationship of gamma glutamyl transferase (GGT) with insulin resistance markers [fasting insulin and Homeostasis Model Assessment of-insulin resistance (HOMA-IR)] and to assess the role of GGT as a determinant of insulin resistance in healthy obese children. Fifty healthy obese children (boys and girls with mean age 9.2 +/- 0.73 and 8.8 +/- 0.74 years) born to diabetic mothers were studied. In all the subjects, anthropometric measurements viz, BMI and body weight were studied. The biochemical parameters analysed in fasting samples of subjects were plasma glucose, plasma insulin, serum GGT and calculation of HOMA-IR. The fifty studied subjects belonged to age group 8 to12 years. The difference in mean age of boys and girls was not significant (p = 0.09). Body weight values in all subjects ranged from 20 to 78 kgs and BMI values ranged from 14.5 to 42.1 Kg/m2. No significant difference was observed between body weight and BMI values when compared between boys and girls. A similar trend was observed in the values of biochemical parameters viz, fasting glucose, fasting insulin and HOMA-IR levels when compared between boys and girls (p = 0.72, p = 0.80, p = 0.59). Serum GGT correlated significantly with age, body weight, BMI, fasting insulin and HOMA-IR levels. HOMA-IR values also showed significant correlation with body weight, BMI, fasting glucose and fasting insulin levels. The association of GGT with fasting insulin and HOMA-IR levels was considerably significant compared to its association with other variables. The serum activity of GGT remained correlated with HOMA-IR even after removing the effect of BMI, weight and age on GGT values. The results showed that GGT is a determinant of HOMA-IR independently of age, BMI and weight. A correlation exists between GGT and insulin resistance markers. The observed correlation indicates that monitoring GGT and fasting insulin levels in obese children might serve to help prevent the development of diabetes in

  19. [Effect of soy isoflavone on gene expression of leptin and insulin sensibility in insulin-resistant rats].

    PubMed

    Chen, Shi-wei; Zhang, Li-shi; Zhang, Hong-min; Feng, Xiao-fan; Peng, Xiao-li

    2006-04-18

    To explore the effects of soy isoflavone (SIF) on gene expression of leptin and insulin sensibility in insulin-resistant (IR) rats induced by high-fat, and to reveal the mechanisms of SIF in ameliorating insulin sensibility. IR rats were randomly divided into four groups based on their insulin-resistant indexes (IRI): one model control group and three SIF groups that were gavaged with water solutions with SIF at doses of 0 mg/kg, 50 mg/kg, 150 mg/kg, and 450 mg/kg, respectively. After one month, fasting glucose, fasting insulin, leptin in serum, and leptin mRNA in the perirenal adipocyte were detected by enzymic method, radioimmunoassay, enzyme linked immunosorbent assay, and real time quantitative RT-PCR, respectively. The model control group was used to compare against the other groups: (1) Insulin and IRI were lower in the 150 mg/kg and 450 mg/kg groups; (2) In the 450 mg/kg group, body weight and leptin mRNA expression were lower, serum leptin content was higher. These results indicate that soy isoflavone might decrease body weight of rats and leptin mRNA, increase serum leptin level, and ameliorate leptin and insulin sensitivities.

  20. Tesaglitazar, a dual PPAR{alpha}/{gamma} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats.

    PubMed

    Oakes, Nicholas D; Thalén, Pia; Hultstrand, Therese; Jacinto, Severina; Camejo, Germán; Wallin, Boel; Ljung, Bengt

    2005-10-01

    Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.

  1. Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats

    PubMed Central

    Cheng, Kai-Chun; Asakawa, Akihiro; Li, Ying-Xiao; Chung, Hsien-Hui; Amitani, Haruka; Ueki, Takatoshi; Cheng, Juei-Tang; Inui, Akio

    2014-01-01

    Background and aims Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. Methods Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. Results Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. Conclusions Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients. PMID:24404172

  2. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  3. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance.

    PubMed

    García-Cardona, M C; Huang, F; García-Vivas, J M; López-Camarillo, C; Del Río Navarro, B E; Navarro Olivos, E; Hong-Chong, E; Bolaños-Jiménez, F; Marchat, L A

    2014-11-01

    Epigenetic alterations have been suggested to be associated with obesity and related metabolic disorders. Here we examined the correlation between obesity and insulin resistance with the methylation frequency of the leptin (LEP) and adiponectin (ADIPOQ) promoters in obese adolescents with the aim to identify epigenetic markers that might be used as tools to predict and follow up the physiological alterations associated with the development of the metabolic syndrome. One hundred and six adolescents were recruited and classified according to body mass index and homeostasis model of assessment-insulin resistance index. The circulating concentrations of leptin, adiponectin and of several metabolic markers of obesity and insulin resistance were determined by standard methods. The methylation frequency of the LEP and ADIPOQ promoters was determined by methylation-specific PCR (MS-PCR) in DNA obtained from peripheral blood samples. Obese adolescents without insulin resistance showed higher and lower circulating levels of, respectively, leptin and adiponectin along with increased plasmatic concentrations of insulin and triglycerides. They also exhibited the same methylation frequency than lean subjects of the CpG sites located at -51 and -31 nt relative to the transcription start site of the LEP gene. However, the methylation frequency of these nucleotides dropped markedly in obese adolescents with insulin resistance. We found the same inverse relationship between the combined presence of obesity and insulin resistance and the methylation frequency of the CpG site located at -283 nt relative to the start site of the ADIPOQ promoter. These observations sustain the hypothesis that epigenetic modifications might underpin the development of obesity and related metabolic disorders. They also validate the use of blood leukocytes and MS-PCR as a reliable and affordable methodology for the identification of epigenetic modifications that could be used as molecular markers to

  4. IL-34 is associated with obesity, chronic inflammation, and insulin resistance.

    PubMed

    Chang, Eun-Ju; Lee, Seul Ki; Song, Young Sook; Jang, Yeon Jin; Park, Hye Soon; Hong, Joon Pio; Ko, A Ra; Kim, Dae Yeon; Kim, Jong-Hyeok; Lee, Yeon Ji; Heo, Yoon-Suk

    2014-07-01

    IL-34 is a recently identified alternative ligand for colony-stimulating factor-1 (CSF-1) receptor. IL-34 and CSF-1 are regulators of differentiation, proliferation, and survival in mononuclear phagocytes. Here, we investigated the IL-34 serum concentration and expression in human adipose tissues and any associations with insulin resistance. We recruited 19 nondiabetic obese women, 9 type 2 diabetic women, and 27 normal-weight women. Metabolic parameters, abdominal fat distribution, serum IL-34 concentration, and IL-34 mRNA expression were measured in abdominal sc adipose tissue (SAT) and visceral adipose tissue (VAT). In addition, the expression/secretion and putative effects of IL-34 were assessed in human differentiated adipocytes. Serum IL-34 concentration was measured before and 5 to 9 months after laparoscopic Roux-en-Y gastric bypass surgery was performed on the 20 obese patients. Regardless of diabetes status, obese patients demonstrated significantly higher serum IL-34 concentrations than controls. Serum IL-34 was significantly and positively correlated with insulin resistance-related metabolic parameters. IL-34 mRNA was significantly higher in VAT than SAT. IL-34 was expressed in adipocytes as well as nonadipocytes, and expression was significantly higher during adipogenesis. In differentiated adipocytes, the expression/secretion of IL-34 was enhanced by TNFα and IL-1β. In addition, IL-34 augmented fat accumulation and inhibited the stimulatory effects of insulin on glucose transport. Moreover, serum IL-34 was significantly decreased after Roux-en-Y gastric bypass-induced weight loss. The present study demonstrates, for the first time, that IL-34 is expressed in human adipose tissues and the circulating concentration is significantly elevated in obese patients. This suggests that IL-34 is associated with insulin resistance.

  5. Immunity as a link between obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Type-2 diabetes mellitus (T2DM) is a major health problem in the United States and worldwide. Obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and T2DM. A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesit...

  6. Obesity alters the ovarian glucidic homeostasis disrupting the reproductive outcome of female rats.

    PubMed

    Bazzano, María Victoria; Paz, Dante Agustín; Elia, Evelin Mariel

    2017-04-01

    Obesity constitutes a health problem of increasing worldwide prevalence related to many reproductive problems such as infertility, ovulation dysfunction, preterm delivery, fetal growth disorders, etc. The mechanisms linking obesity to these pathologies are not fully understood. Cafeteria diet (CAF) is the animal model used for the study of obesity that more closely reflects western diet habits. Previously we described that CAF induces obesity associated to hyperglycemia, reduced ovarian reserve, presence of follicular cysts and ovulatory impairments. The aim of the present study was to contribute in the understanding of the physiological mechanisms altered as consequence of obesity. For that purpose, female Wistar rats were fed ad libitum with a standard diet (control group) or CAF (Obese group). We found that CAF fed-rats developed obesity, glucose intolerance and insulin resistance. Ovaries from obese rats showed decreased glucose uptake and became insulin resistant, showing decreased ovarian expression of glucotransporter type 4 and insulin receptor gene expression respect to controls. These animals showed an increased follicular nitric oxyde synthase expression that may be responsible for the ovulatory disruptions and for inflammation, a common feature in obesity. Obese rats resulted subfertile and their pups were macrosomic. We conclude that obesity alters the systemic and the ovarian glucidic homeostasis impairing the reproductive outcome. Since macrosomia is a risk factor for metabolic and obstetric disorders in adult life, we suggest that obesity is impacting not only on health and reproduction but it is also impacting on health and reproduction of the offspring. Published by Elsevier Inc.

  7. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  8. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  9. Relation of insulin resistance to neurocognitive function and electroencephalography in obese children.

    PubMed

    Akın, Onur; Eker, İbrahim; Arslan, Mutluay; Yavuz, Süleyman Tolga; Akman, Sevil; Taşçılar, Mehmet Emre; Ünay, Bülent

    2017-10-26

    Childhood obesity may lead to neuronal impairment in both the peripheral and the central nervous system. This study aimed to investigate the impact of obesity and insulin resistance (IR) on the central nervous system and neurocognitive functions in children. Seventy-three obese children (38 male and 35 female) and 42 healthy children (21 male and 21 female) were recruited. Standard biochemical indices and IR were evaluated. The Wechsler Intelligence Scale for Children-Revised (WISC-R) and electroencephalography (EEG) were administered to all participants. The obese participants were divided into two groups based on the presence or absence of IR, and the data were compared between the subgroups. Only verbal scores on the WISC-R in the IR+ group were significantly lower than those of the control and IR- groups. There were no differences between the groups with respect to other parameters of the WISC-R or the EEG. Verbal scores of the WISC-R were negatively correlated with obesity duration and homeostatic model assessment-insulin resistance (HOMA-IR) values. EEGs showed significantly more frequent 'slowing during hyperventilation' (SDHs) in obese children than non-obese children. Neurocognitive functions, particularly verbal abilities, were impaired in obese children with IR. An early examination of cognitive functions may help identify and correct such abnormalities in obese children.

  10. Inflammasome is a central player in the induction of obesity and insulin resistance

    PubMed Central

    Stienstra, Rinke; van Diepen, Janna A.; Tack, Cees J.; Zaki, Md. Hasan; van de Veerdonk, Frank L.; Perera, Deshani; Neale, Geoffrey A.; Hooiveld, Guido J.; Hijmans, Anneke; Vroegrijk, Irene; van den Berg, Sjoerd; Romijn, Johannes; Rensen, Patrick C. N.; Joosten, Leo A. B.; Netea, Mihai G.; Kanneganti, Thirumala-Devi

    2011-01-01

    Inflammation plays a key role in the pathogenesis of obesity. Chronic overfeeding leads to macrophage infiltration in the adipose tissue, resulting in proinflammatory cytokine production. Both microbial and endogenous danger signals trigger assembly of the intracellular innate immune sensor Nlrp3, resulting in caspase-1 activation and production of proinflammatory cytokines IL-1β and IL-18. Here, we showed that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance. Furthermore, hepatic triglyceride content, adipocyte size, and macrophage infiltration in adipose tissue were all reduced in mice deficient in inflammasome components. Monocyte chemoattractant protein (MCP)-1 is a key molecule that mediates macrophage infiltration. Indeed, defective inflammasome activation was associated with reduced MCP-1 production in adipose tissue. Furthermore, plasma leptin and resistin that affect energy use and insulin sensitivity were also changed by inflammasome-deficiency. Detailed metabolic and molecular phenotyping demonstrated that the inflammasome controls energy expenditure and adipogenic gene expression during chronic overfeeding. These findings reveal a critical function of the inflammasome in obesity and insulin resistance, and suggest inhibition of the inflammasome as a potential therapeutic strategy. PMID:21876127

  11. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    PubMed

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P < 0.001), and obese PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are

  12. The Roles of IL-6, IL-10, and IL-1RA in Obesity and Insulin Resistance in African-Americans

    PubMed Central

    Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale

    2011-01-01

    Objective: The aim of the study was to investigate the associations between IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, measures of obesity, and insulin resistance in African-Americans. Research Design and Methods: Nondiabetic participants (n = 1025) of the Howard University Family Study were investigated for associations between serum IL (IL-1RA, IL-6, IL-10), measures of obesity, and insulin resistance, with adjustment for age and sex. Measures of obesity included body mass index, waist circumference, hip circumference, waist-to-hip ratio, and percent fat mass. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Data were analyzed with R statistical software using linear regression and likelihood ratio tests. Results: IL-1RA and IL-6 were associated with measures of obesity and insulin resistance, explaining 4–12.7% of the variance observed (P values < 0.001). IL-1RA was bimodally distributed and therefore was analyzed based on grouping those with low vs. high IL-1RA levels. High IL-1RA explained up to 20 and 12% of the variance in measures of obesity and HOMA-IR, respectively. Among the IL, only high IL-1RA improved the fit of models regressing HOMA-IR on measures of obesity. In contrast, all measures of obesity improved the fit of models regressing HOMA-IR on IL. IL-10 was not associated with obesity measures or HOMA-IR. Conclusions: High IL-1RA levels and obesity measures are associated with HOMA-IR in this population-based sample of African-Americans. The results suggest that obesity and increased levels of IL-1RA both contribute to the development of insulin resistance. PMID:21956416

  13. Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary schoolchildren. The healthy growth study.

    PubMed

    Moschonis, George; Androutsos, Odysseas; Hulshof, Toine; Dracopoulou, Maria; Chrousos, George P; Manios, Yannis

    2018-04-02

    To explore the associations of vitamin D status and obesity with insulin resistance (IR) in children. A sample of 2282 schoolchildren (9-13 years old) in Greece was examined. Sociodemographic, anthropometric (weight, height), biochemical (fasting plasma glucose, serum insulin and 25(OH)D), pubertal status and physical activity data were collected, using standard methods. The "Vitamin D Standardization Program" protocol was applied to standardize serum 25(OH)D values. The prevalence of vitamin D insufficiency (serum 25(OH)D < 50 nmol/L) was higher in obese children compared to their over- and normal-weight counterparts (60.5% vs 51.6% and 51%, P = .017). Furthermore, children with IR (both obese and non-obese) had higher prevalence of vitamin D insufficiency compared to non-obese, non-insulin resistant children (66% and 59.2% vs 49.8%, P < .05), possibly indicating that IR is associated with vitamin D insufficiency, independently of obesity. In line with the above, the results from logistic regression analyses controlled for several potential confounders, showed a 1.48 (95% C.I: 1.2-1.84) higher likelihood for vitamin D insufficiency for insulin resistant children compared to the non-insulin resistant ones, while no significant association was observed with obesity. The present study revealed a high prevalence of vitamin D insufficiency among schoolchildren in Greece, particularly among obese and insulin resistant ones. In addition, it highlighted that the significant association of vitamin D insufficiency with IR is possibly independent of obesity. Further clinical trials are needed to confirm this possible independent association but also explore the potential beneficial effect of vitamin D supplementation on IR and possibly on weight management too. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Adaptive response of rat pancreatic β-cells to insulin resistance induced by monocrotophos: Biochemical evidence.

    PubMed

    Nagaraju, Raju; Rajini, Padmanabhan Sharda

    2016-11-01

    Our previous findings clearly suggested the role of duration of exposure to monocrotophos (MCP) in the development of insulin resistance. Rats exposed chronically to MCP developed insulin resistance with hyperinsulinemia without overt diabetes. In continuation of this vital observation, we sought to delineate the biochemical mechanisms that mediate heightened pancreatic β-cell response in the wake of MCP-induced insulin resistance in rats. Adult rats were orally administered (0.9 and 1.8mg/kgb.w/d) MCP for 180days. Terminally, MCP-treated rats exhibited glucose intolerance, hyperinsulinemia, and potentiation of glucose-induced insulin secretion along with elevated levels of circulating IGF1, free fatty acids, corticosterone, and paraoxonase activity. Biochemical analysis of islet extracts revealed increased levels of insulin, malate, pyruvate and ATP with a concomitant increase in activities of cytosolic and mitochondrial enzymes that are known to facilitate insulin secretion and enhanced shuttle activities. Interestingly, islets from MCP-treated rats exhibited increased insulin secretory potential ex vivo compared to those isolated from control rats. Further, MCP-induced islet hypertrophy was associated with increased insulin-positive cells. Our study demonstrates the impact of the biological interaction between MCP and components of metabolic homeostasis on pancreatic beta cell function/s. We speculate that the heightened pancreatic beta cell function evidenced may be mediated by increased IGF1 and paraoxonase activity, which effectively counters insulin resistance induced by chronic exposure to MCP. Our findings emphasize the need for focused research to understand the confounding environmental risk factors which may modulate heightened beta cell functions in the case of organophosphorus insecticide-induced insulin resistance. Such an approach may help us to explain the sharp increase in the prevalence of type II diabetes worldwide. Copyright © 2016 Elsevier

  15. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity

    PubMed Central

    Law, Ivy K.M.; Xu, Aimin; Lam, Karen S.L.; Berger, Thorsten; Mak, Tak W.; Vanhoutte, Paul M.; Liu, Jacky T.C.; Sweeney, Gary; Zhou, Mingyan; Yang, Bo; Wang, Yu

    2010-01-01

    OBJECTIVE The proinflammatory cytokines/adipokines produced from adipose tissue act in an autocrine and/or endocrine manner to perpetuate local inflammation and to induce peripheral insulin resistance. The present study investigates whether lipocalin-2 deficiency or replenishment with this adipokine has any impact on systemic insulin sensitivity and the underlying mechanisms. METHODS AND RESULTS Under conditions of aging or dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO) mice show significantly decreased fasting glucose and insulin levels and improved insulin sensitivity compared with their wild-type littermates. Despite enlarged fat mass, inflammation and the accumulation of lipid peroxidation products are significantly attenuated in the adipose tissues of Lcn2-KO mice. Adipose fatty acid composition of these mice varies significantly from that in wild-type animals. The amounts of arachidonic acid (C20:4 n6) are elevated by aging and obesity and are paradoxically further increased in adipose tissue, but not skeletal muscle and liver of Lcn2-KO mice. On the other hand, the expression and activity of 12-lipoxygenase, an enzyme responsible for metabolizing arachidonic acid, and the production of tumor necrosis factor-α (TNF-α), a critical insulin resistance–inducing factor, are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimulates the expression and activity of 12-lipoxygenase and TNF-α production in fat tissues. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), an arachidonate lipoxygenase inhibitor, prevents TNF-α expression induced by lipocalin-2. Moreover, treatment with TNF-α neutralization antibody or CDC significantly attenuated the differences of insulin sensitivity between wild-type and Lcn2-KO mice. CONCLUSIONS Lipocalin-2 deficiency protects mice from developing aging- and obesity-induced insulin resistance largely by modulating 12-lipoxygenase and TNF-α levels in adipose tissue. PMID:20068130

  16. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    PubMed

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  17. [Diagnosis of insulin resistance by indirect methods in obese school children].

    PubMed

    Angulo, Nerkis; de Szarvas, Sobeida Barbella; Mathison, Yaira; Hadad, Erika; González, Dora; Hernández, Ana; Guevara, Harold

    2013-06-01

    Obesity leads to a deterioration of glucose tolerance and the action of insulin. The purpose of this study was to determine insulin resistance (IR) by indirect methods, and its correlation with clinical, anthropometric and biochemical variables in obese normoglycemic school children. This was a descriptive-correlational study of 72 school prepubescent children, who attended the ambulatory "El Concejo" of the University of Carabobo (UC) and at the Gastroenterology and Pediatric Nutrition service of the city hospital "Enrique Tejera" (CHET), in Valencia, Venezuela, between January-April 2011. exogenous obesity. We assessed personal and family history, presence of Acanthosis Nigricans and nutritional and biochemical status. We found a higher percentage of IR, through the use of the QUICKI method (66.7%), followed by the HOMA (55.6%) and basal insulin (45.9%). The mean (chi) indexes of body mass and waist circumference were significantly greater (p < 0.05) in patients with IR, by HOMA and QUICKI techniques. The QUICKI method detected significant differences (p < 0.05) in the values of glycemia, basal insulin and postprandial insulin, among patients with diminished and normal insulin sensitivities. While HOMA, detected these differences (p < 0.05) in the values of glycemia and basal insulin. A statistically significant relationship was observed (p < 0.05), between the presence of Acanthosis Nigricans and IR, by the HOMA, QUICKI and basal insulin methods. In conclusion, the evaluated techniques, QUICKI, HOMA and basal insulin indexes, were most effective for detecting the IR.

  18. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods.

    PubMed

    Kurtoğlu, Selim; Hatipoğlu, Nihal; Mazıcıoğlu, Mümtaz; Kendirici, Mustafa; Keskin, Mehmet; Kondolot, Meda

    2010-01-01

    Childhood obesity is associated with an increased risk for insulin resistance. The underlying mechanism for the physiological increase in insulin levels in puberty is not clearly understood. The aim of the present study was to determine the cut-off values for homeostasis model assessment for insulin resistance (HOMA-IR) in obese children and adolescents according to gender and pubertal status. Two hundred and eight obese children and adolescents (141 girls, 127 boys) aged between 5 and 18 years were included in the study. The children were divided into prepubertal and pubertal groups. A standard oral glucose tolerance test (OGTT) was carried out in all children. A total insulin level exceeding 300 μU/mL in the blood samples, collected during the test period, was taken as the insulin resistance criterion. Cut-off values for HOMA-IR were calculated by receiver operating characteristic (ROC) analysis. In the prepubertal period, the rate of insulin resistance was found to be 37% in boys and 27.8% in girls,while in the pubertal period, this rate was 61.7% in boys and 66.7% in girls. HOMA-IR cut-off values for insulin resistance in the prepubertal period were calculated to be 2.67 (sensitivity 88.2%, specificity 65.5%) in boys and 2.22 (sensitivity 100%, specificity 42.3%) in girls, and in the pubertal period, they were 5.22 (sensitivity 56%, specificity 93.3%) in boys and 3.82 (sensitivity 77.1%, specificity 71.4%) in girls. Since gender, obesity and pubertal status are factors affecting insulin resistance, cut-off values which depend on gender and pubertal status, should be used in evaluation of insulin resistance.

  19. Differential effects of prenatal stress on metabolic programming in diet-induced obese and dietary-resistant rats.

    PubMed

    Balasubramanian, Priya; Varde, Pratibha A; Abdallah, Simon Labib; Najjar, Sonia M; MohanKumar, P S; MohanKumar, Sheba M J

    2015-09-15

    Stress during pregnancy is a known contributing factor for the development of obesity in the offspring. Since maternal obesity is on the rise, we wanted to identify the effects of prenatal stress in the offspring of diet-induced obese (DIO) rats and compare them with the offspring of dietary-resistant (DR) rats. We hypothesized that prenatal stress would make both DIO and DR offspring susceptible to obesity, but the effect would be more pronounced in DIO rats. Pregnant DIO and DR rats were divided into two groups: nonstressed controls (control) and prenatal stress (subjected to restraint stress, three times/day from days 14 to 21 of gestation). After recording birth weight and weaning weight, male offspring were weaned onto a chow diet for 9 wk and shifted to a high-fat (HF) diet for 1 wk. At the end of the 10th wk the animals were euthanized, and visceral adipose mass, blood glucose, serum insulin, and C-peptide levels were measured. Prenatal stress resulted in hyperinsulinemia and higher C-peptide levels without altering caloric intake, body weight gain, or fat mass in the DIO offspring after 1 wk of HF intake, but not in DR offspring. To determine the mechanism underlying the hyperinsulinemia, we measured the levels of CEACAM1 that are responsible for insulin clearance. CEACAM1 levels in the liver were reduced in prenatally stressed DIO offspring after the HF challenge, suggesting that preexisting genetic predisposition in combination with prenatal stress increases the risk for obesity in adulthood, especially when offspring are fed a HF diet. Copyright © 2015 the American Physiological Society.

  20. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Estrogen Receptors

    PubMed Central

    Meyer, Matthias R.; Clegg, Deborah J.; Prossnitz, Eric R.; Barton, Matthias

    2010-01-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension, and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of estrogens are classically mediated by the two nuclear estrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G protein-coupled estrogen receptor, GPER, originally designated as GPR30, also mediates some of the actions attributed to estrogens. Estrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women, but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and estrogen receptors in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in females and males. PMID:21281456

  1. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats.

    PubMed

    Vazquez-Anaya, Guillermo; Martinez, Bridget; Soñanez-Organis, José G; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2017-03-01

    Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T 4 ) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T 4 (8.0 µg/100 g BM/day × 5 weeks). T 4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T 4 -treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T 4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T 4 treatment increased the influx of T 4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T 3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis. © 2017 Society for Endocrinology.

  2. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study.

    PubMed

    Liu, Jia; Wang, Ying; Hu, Yanjin; Leng, Song; Wang, Guang

    2016-07-01

    To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Arteriolar insulin resistance in a rat model of polycystic ovary syndrome.

    PubMed

    Sara, Levente; Antal, Peter; Masszi, Gabriella; Buday, Anna; Horvath, Eszter M; Hamar, Peter; Monos, Emil; Nadasy, Gyorgy L; Varbiro, Szabolcs

    2012-02-01

    To investigate the vascular dysfunction caused by insulin resistance in polycystic ovary syndrome (PCOS) and the effectiveness of vitamin D in an animal model. Controlled experimental animal study. Animal laboratory at a university research institute. Thirty female Wistar rats. Rats were divided into groups at age 21-28 weeks. Twenty of them were subjected to dihydrotestosterone (DHT) treatment (83 μg/d); ten of them also received parallel vitamin D treatment (120 ng/100 g/wk). Oral glucose tolerance tests with insulin level measurements were performed. Gracilis arterioles were tested for their contractility as well as their nitric oxide (NO)-dependent and insulin-induced dilation using pressure arteriography. Several physiologic parameters, glucose metabolism, and pressure arteriography. DHT treatment increased the passive diameter of resistance arterioles, lowered norepinephrine-induced contraction (30.1 ± 4.7% vs. 8.7 ± 3.6%) and reduced acetylcholine-induced (122.0 ± 2.9% vs. 48.0 ± 1.4%) and insulin-induced (at 30 mU/mL: 21.7 ± 5.3 vs. 9.8 ± 5.6%) dilation. Vitamin D treatment restored insulin relaxation and norepinephrine-induced contractility; in contrast, it failed to alter NO-dependent relaxation. In DHT-treated rats, in addition to metabolically proven insulin resistance, decreased insulin-induced vasorelaxation was observed and was improved by vitamin D treatment without affecting NO-dependent relaxation. The reduction in insulin-induced dilation of arterioles is an important as yet undescribed pathway of vascular damage in PCOS and might explain the clinical effectiveness of vitamin D treatment. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges.

    PubMed

    Jeanes, Yvonne M; Reeves, Sue

    2017-06-01

    Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.

  5. Physical Training Improves Insulin Resistance Syndrome Markers in Obese Adolescents.

    ERIC Educational Resources Information Center

    Kang, Hyun-Sik; Gutin, Bernard; Barbeau, Paule; Owens, Scott; Lemmon, Christian R.; Allison, Jerry; Litaker, Mark S.; Le, Ngoc-Anh

    2002-01-01

    Tested the hypothesis that physical training (PT), especially high-intensity PT, would favorably affect components of the insulin resistance syndrome (IRS) in obese adolescents. Data on teens randomized into lifestyle education (LSE) alone, LSE plus moderate -intensity PT, and LSE plus high-intensity PT indicated that PT, especially high-intensity…

  6. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    PubMed

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Relationship of obesity and insulin resistance with the cerebrovascular reactivity: a case control study

    PubMed Central

    2014-01-01

    Background Obesity is associated with increased risk for stroke. The breath-holding index (BHI) is a measure of vasomotor reactivity of the brain which can be measured with the transcranial Doppler (TCD). We aim to evaluate obesity as an independent factor for altered cerebrovascular reactivity. Methods Cerebrovascular hemodynamics (mean flow velocities MFV, pulsatility index, PI, resistance index, RI, and BHI) was determined in 85 non-obese (Body Mass Index, BMI ≤27 kg/m2) and 85 obese subjects (BMI ≥35 kg/m2) without diabetes mellitus and hypertension. Anthropometric and metabolic variables, and scores to detect risk for obstructive sleep apnea (OSA) were analyzed for their association with the cerebrovascular reactivity. Results The BHI was significantly lower in subjects with obesity according to BMI and in subjects with abdominal obesity, but the PI and RI were not different between groups. There was a linear association between the BMI, the HOMA-IR, the Matsuda index, the waist circumference, and the neck circumference, with the cerebrovascular reactivity. After adjusting for insulin resistance, neck circumference, and abdominal circumference, obesity according to BMI was negatively correlated with the cerebrovascular reactivity. Conclusions We found a diminished vasomotor reactivity in individuals with obesity which was not explained by the presence of insulin resistance. PMID:24383894

  8. Hyperandrogenism and insulin resistance contribute to hepatic steatosis and inflammation in female rat liver

    PubMed Central

    Zhang, Yuehui; Meng, Fanci; Sun, Xiaoyan; Sun, Xue; Hu, Min; Cui, Peng; Vestin, Edvin; Li, Xin; Li, Wei; Wu, Xiao-Ke; Jansson, John-Olov; Shao, Linus R.; Billig, Håkan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) are at high risk for nonalcoholic fatty liver disease (NAFLD). While insulin resistance is a common trait for both PCOS and NAFLD, hyperandrogenism is also considered to be a key factor contributing to PCOS, and the molecular mechanisms behind the interactions between insulin resistance and hyperandrogenism in the female liver remain largely unexplored. Using chronic treatment with insulin and/or human chorionic gonadotropin (hCG), we showed that all female rats with different treatments induced imbalance between de novo lipogenesis and mitochondrial β-oxidation via the Pparα/β–Srebp1/2–Acc1 axis, resulting in varying degrees of hepatic steatosis. Given the fact that hepatic lipid metabolism and inflammation are tightly linked processes, we found that hCG-induced hyperandrogenic rats had strongly aggravated hepatic inflammation. Further mechanistic investigations revealed that dysregulation of the IRS–PI3K–Akt signaling axis that integrated aberrant inflammatory, apoptotic and autophagic responses in the liver was strongly associated with hyperandrogenism itself or combined with insulin resistance. Additionally, we found that hCG-treated and insulin+hCG-induced rats developed visceral adipose tissue inflammation characterized by the presence of “crown like” structure and increased inflammatory gene expression. Because a more pronounced hepatic steatosis, inflammatory responses, and hepatocyte cell damage were observed in insulin+hCG-induced PCOS-like rats, our finding suggest that NAFLD seen in PCOS patients is dependent of hyperandrogenism and insulin resistance. PMID:29719598

  9. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    PubMed Central

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-01

    Background & objectives: Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation & conclusions: High

  10. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    PubMed

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  11. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    PubMed

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  12. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.

  13. Glucose alteration and insulin resistance in asymptomatic obese children and adolescents.

    PubMed

    Assunção, Silvana Neves Ferraz de; Boa Sorte, Ney Christian Amaral; Alves, Crésio de Aragão Dantas; Mendes, Patricia S Almeida; Alves, Carlos Roberto Brites; Silva, Luciana Rodrigues

    Obesity is associated with the abnormal glucose metabolism preceding type 2 diabetes mellitus. Thus, further investigation on the prediction of this lethal outcome must be sought. The objective was the profile glycemic assessment of asymptomatic obese children and adolescents from Salvador, Brazil. A fasting venous blood sample was obtained from 90 consecutive obese individuals aged 8-18 years, of both sexes, for laboratory determinations of glycated hemoglobin, basal insulin, and the Homeostasis Model Assessment Insulin Resistance index. The clinical evaluation included weight, height, waist circumference, assessment of pubertal development, and acanthosis nigricans research. The body mass index/age indicator was used for the severity of overweight assessment. Glycemic alterations were evidenced clinically and biochemically, although these individuals had no complaints or symptoms related to blood sugar levels. Quantitative and qualitative variables were respectively expressed measures of central tendency/dispersion and simple/relative frequency, using the SPSS, version 20.0. A p-value <0.05 was considered significant. Notably, this study found a high prevalence of glucose and insulin disorders in asymptomatic obese children and adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  15. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats

    PubMed Central

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-01-01

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid. PMID:28545248

  16. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    PubMed

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  17. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    PubMed

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.

    PubMed

    Afifi, M M; Abbas, Amr M

    2011-06-01

    We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.

  19. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8±2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7±2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Results: Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. Conclusions: In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance. Conflict of interest:None declared. PMID:23367495

  20. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease.

    PubMed

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8 ± 2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7 ± 2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance.

  1. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

    PubMed

    Kim, Jong Hun; Lee, Eunjung; Friedline, Randall H; Suk, Sujin; Jung, Dae Young; Dagdeviren, Sezin; Hu, Xiaodi; Inashima, Kunikazu; Noh, Hye Lim; Kwon, Jung Yeon; Nambu, Aya; Huh, Jun R; Han, Myoung Sook; Davis, Roger J; Lee, Amy S; Lee, Ki Won; Kim, Jason K

    2018-04-01

    Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78 -/- ) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78 -/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78 -/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78 -/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

  2. Laparoscopic sleeve gastrectomy improves body composition and alleviates insulin resistance in obesity related acanthosis nigricans.

    PubMed

    Zhang, Yi; Zhu, Cuiling; Wen, Xin; Wang, Xingchun; Li, Liang; Rampersad, Sharvan; Lu, Liesheng; Zhou, Donglei; Qian, Chunhua; Cui, Ran; Zhang, Manna; Yang, Peng; Qu, Shen; Bu, Le

    2017-11-07

    Acanthosis nigricans (AN) has a close relationship with obesity. It is believed that obesity and AN have the common pathophysiological basis such as hyperinsulinism. This study is aimed to observe the effect of laparoscopic sleeve gastrectomy (LSG) on body composition and insulin resistance in Chinese obese patients with acanthosis nigricans. A total of 37 obese patients who underwent LSG in our hospital were selected for analysis. They were divided into simple obesity (OB n = 14) and obesity with acanthosis nigricans (AN n = 23) group respectively. Body composition was measured by dual-energy X-ray absorptiometry (DEXA). Anthropometric measurements and glucolipid metabolism before and 3 months post LSG were collected for analysis. Patients with AN got noticeable improvement in skin condition and their AN score was significantly decreased (3.52 ± 0.79 vs. 1.48 ± 0.73, P < 0.001).Alleviated insulin resistance and more trunk fat loss than limbs' were observed in both groups (P value < 0.01). In AN group, preoperative android fat mass (FM) was positively correlated with fasting insulin and natural logarithm of HOMA-IR (LNIR) (r = 0.622, 0.608, respectively; all P < 0.01). Besides, changes in android FM and visceral adipose tissue (VAT) also showed significantly positive correlation with changes in LNIR (r = 0.588, r = 0.598, respectively; all P < 0.01). LSG had a positive impact on body composition and skin condition in Chinese obese patients with AN. Loss of android FM and VAT might result in the alleviation of insulin resistance in AN patients. Android fat distribution seems to be a potential indicator of postoperative metabolic benefits for obese patients with AN.

  3. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors.

    PubMed

    Meyer, M R; Clegg, D J; Prossnitz, E R; Barton, M

    2011-09-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of oestrogens are classically mediated by the two nuclear oestrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G-protein-coupled oestrogen receptor (GPER) originally designated as GPR30 also mediates some of the actions attributed to oestrogens. Oestrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and ERs in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in women and men. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  4. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats.

    PubMed

    Lubaczeuski, C; Balbo, S L; Ribeiro, R A; Vettorazzi, J F; Santos-Silva, J C; Carneiro, E M; Bonfleur, M L

    2015-05-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.

  5. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats

    PubMed Central

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-01-01

    BACKGROUND AND PURPOSE mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. EXPERIMENTAL APPROACH Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. KEY RESULTS Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. CONCLUSIONS AND IMPLICATIONS Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. PMID:22014210

  6. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats.

    PubMed

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-04-01

    mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  8. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle

    PubMed Central

    Ye, Ji-Ming; Tid-Ang, Jennifer; Turner, Nigel; Zeng, Xiao-Yi; Li, Hai-Yan; Cooney, Gregory J; Wulff, Erik Max; Sauerberg, Per; Kraegen, Edward W

    2011-01-01

    BACKGROUND AND PURPOSE The peroxisome proliferator-activated receptor (PPAR)δ has been considered a therapeutic target for diabetes and obesity through enhancement of fatty acid oxidation. The present study aimed to characterize the effects of PPARδ agonists during insulin resistance of the whole body, muscle and liver. EXPERIMENTAL APPROACH Wistar rats and C57BL/J6 mice were fed a high fat diet (HF) and then treated with PPARδ agonists NNC61-5920 and GW501516. The effects on insulin resistance were evaluated by hyperinsulinaemic clamp or glucose tolerance tests combined with glucose tracers. KEY RESULTS In HF rats, 3 weeks of treatment with NNC61-5920 reduced the glucose infusion rate (by 14%, P < 0.05) and glucose disposal into muscle (by 20–30%, P < 0.01) during hyperinsulinaemic clamp. Despite increased mRNA expression of carnitine palmitoyltransferase-1, pyruvate dehydrogenase kinase 4 and uncoupling protein 3 in muscle, plasma and muscle triglyceride levels were raised (P < 0.01). Similar metabolic effects were observed after extended treatment with NNC61-5920 and GW501516 to 6 weeks. However, HF mice treated with NNC61-5920 improved their plasma lipid profile, glucose tolerance and insulin action in muscle. In both HF rats and mice, NNC61-5920 treatment attenuated hepatic insulin resistance and decreased expression of stearoyl-CoA desaturase 1, fatty acid translocase protein CD36 and lipoprotein lipase in liver. CONCLUSIONS AND IMPLICATIONS PPARδ agonists exacerbated insulin resistance in HF rats in contrast to their beneficial effects on metabolic syndrome in HF mice. These opposing metabolic consequences result from their different effects on lipid metabolism and insulin sensitivity in skeletal muscle of these two species. PMID:21265823

  9. PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle.

    PubMed

    Ye, Ji-Ming; Tid-Ang, Jennifer; Turner, Nigel; Zeng, Xiao-Yi; Li, Hai-Yan; Cooney, Gregory J; Wulff, Erik Max; Sauerberg, Per; Kraegen, Edward W

    2011-06-01

    The peroxisome proliferator-activated receptor (PPAR)δ has been considered a therapeutic target for diabetes and obesity through enhancement of fatty acid oxidation. The present study aimed to characterize the effects of PPARδ agonists during insulin resistance of the whole body, muscle and liver. Wistar rats and C57BL/J6 mice were fed a high fat diet (HF) and then treated with PPARδ agonists NNC61-5920 and GW501516. The effects on insulin resistance were evaluated by hyperinsulinaemic clamp or glucose tolerance tests combined with glucose tracers. In HF rats, 3 weeks of treatment with NNC61-5920 reduced the glucose infusion rate (by 14%, P < 0.05) and glucose disposal into muscle (by 20-30%, P < 0.01) during hyperinsulinaemic clamp. Despite increased mRNA expression of carnitine palmitoyltransferase-1, pyruvate dehydrogenase kinase 4 and uncoupling protein 3 in muscle, plasma and muscle triglyceride levels were raised (P < 0.01). Similar metabolic effects were observed after extended treatment with NNC61-5920 and GW501516 to 6 weeks. However, HF mice treated with NNC61-5920 improved their plasma lipid profile, glucose tolerance and insulin action in muscle. In both HF rats and mice, NNC61-5920 treatment attenuated hepatic insulin resistance and decreased expression of stearoyl-CoA desaturase 1, fatty acid translocase protein CD36 and lipoprotein lipase in liver. PPARδ agonists exacerbated insulin resistance in HF rats in contrast to their beneficial effects on metabolic syndrome in HF mice. These opposing metabolic consequences result from their different effects on lipid metabolism and insulin sensitivity in skeletal muscle of these two species. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    PubMed

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  11. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity

    PubMed Central

    Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop

    2017-01-01

    Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496

  12. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity.

    PubMed

    Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop

    2017-03-01

    Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.

  13. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  14. Food fried in extra-virgin olive oil improves postprandial insulin response in obese, insulin-resistant women.

    PubMed

    Farnetti, Sara; Malandrino, Noemi; Luciani, Davide; Gasbarrini, Giovanni; Capristo, Esmeralda

    2011-03-01

    The benefits of low glycemic load (GL) diets on clinical outcome in several metabolic and cardiovascular diseases have extensively been demonstrated. The GL of a meal can be affected by modulating the bioavailability of carbohydrates or by changing food preparation. We investigated the effect on plasma glucose and insulin response in lean and obese women of adding raw or fried extra-virgin olive oil to a carbohydrate-containing meal. After an overnight fast, 12 obese insulin-resistant women (body mass index [BMI], 32.8 ± 2.2 kg/m(2)) and five lean subjects (BMI, 22.2 ± 1.2 kg/m(2)) were randomly assigned to receive two different meals (designated A and B). Meal A was composed of 60 g of pasta made from wheat flour and 150 g of grilled courgettes with 25 g of uncooked oil. Meal B included 15 g of oil in the 150 g of deep-fried courgettes and 10 g of oil in the 60 g of stir-fried pasta. Both meals included 150 g of apple. Blood samples were collected at baseline and every 30 minutes over a 3-hour post-meal period and were tested for levels of glucose, insulin, C-peptide, and triglycerides. The area under the curve (AUC) values were calculated. In obese women the AUCs for C-peptide were significantly higher after meal A than after meal B at 120 minutes (W [Wilcoxon sign rank test] = 27.5, P = .0020), 150 minutes (W = 26.5, P = .0039), and 180 minutes (W = 26.5, P = .0039). No differences were found in lean subjects. This study demonstrated that in obese, insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal.

  15. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  16. Obese ZDF rats fermented resistant starch with effects on gut microbiota but no reduction in abdominal fat.

    PubMed

    Goldsmith, Felicia; Guice, Justin; Page, Ryan; Welsh, David A; Taylor, Christopher M; Blanchard, Eugene E; Luo, Meng; Raggio, Anne M; Stout, Rhett W; Carvajal-Aldaz, Diana; Gaither, Amanda; Pelkman, Christine; Ye, Jianping; Martin, Roy J; Geaghan, James; Durham, Holiday A; Coulon, Diana; Keenan, Michael J

    2017-01-01

    To determine if whole-grain (WG) flour with resistant starch (RS) will produce greater fermentation than isolated RS in obese Zucker Diabetic Fatty (ZDF) rats, and whether greater fermentation results in different microbiota, reduced abdominal fat, and increased insulin sensitivity. This study utilized four groups fed diets made with either isolated digestible control starch, WG control flour (6.9% RS), isolated RS-rich corn starch (25% RS), or WG corn flour (25% RS). ZDF rats fermented RS and RS-rich WG flour to greatest extent among groups. High-RS groups had increased serum glucagon-like peptide 1 (GLP-1) active. Feeding isolated RS showed greater Bacteroidetes to Firmicutes phyla among groups, and rats consuming low RS diets possessed more bacteria in Lactobacillus genus. However, no differences in abdominal fat were observed, but rats with isolated RS had greatest insulin sensitivity among groups. Data demonstrated ZDF rats (i) possess a microbiota that fermented RS, and (ii) WG high-RS fermented better than purified RS. However, fermentation and microbiota changes did not translate into reduced abdominal fat. The defective leptin receptor may limit ZDF rats from responding to increased GLP-1 and different microbiota for reducing abdominal fat, but did not prevent improved insulin sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    PubMed

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  18. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  19. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  20. Serum resistin correlates with central obesity but weakly with insulin resistance in Chinese children and adolescents.

    PubMed

    Li, M; Fisette, A; Zhao, X-Y; Deng, J-Y; Mi, J; Cianflone, K

    2009-04-01

    Resistin has been linked with obesity and hypothesized as a potential marker of insulin resistance in addition to being linked with acute inflammation. However, these links are still highly controversial in humans. Our goal was to examine resistin levels in relation to obesity, insulin resistance and inflammation markers in a large population of Asian children and adolescents. Children and adolescents (n=3472) aged 6-18 years, boys (n=1765) and girls (n=1707), were assessed for body size parameters, pubertal development, blood lipids, glucose, insulin, resistin, C-reactive protein (CRP), adiponectin and complement C3 (C3) levels. Resistin increased with central obesity in both genders but not with simple adiposity in boys. Several markers associated with central obesity correlated in a gender-specific fashion with plasma resistin. Waist circumference, fat-mass percentage, waist-to-height ratio and body mass index (BMI) positively correlated with resistin in both genders. Blood lipids such as triglycerides, nonesterified fatty acids (NEFA) and low-density lipoprotein cholesterol, diastolic and systolic blood pressure correlated positively with resistin in boys. NEFA, high-density lipoprotein cholesterol (negatively) and inflammation markers, such as CRP and C3, positively correlated with resistin in girls. There was no correlation between resistin and adiponectin, and no association of adiponectin with resistin quintiles in either boys or girls. In both boys and girls, resistin tended to decrease with age, with girls having higher levels than boys. Few indices of insulin resistance were linked with plasma resistin in either gender. In this population, plasma resistin levels are a weak biochemical marker of metabolic dysfunction defined by central obesity, adiposity and inflammation and does not predict insulin resistance. Only a small proportion of resistin variation can be explained by factors related to metabolic syndrome, suggesting that resistin is not strongly

  1. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    PubMed

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  2. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    PubMed

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  3. A review of obesity, insulin resistance, and the role of exercise in breast cancer patients.

    PubMed

    Ghose, Abhimanyu; Kundu, Ria; Toumeh, Anis; Hornbeck, Catherine; Mohamed, Iman

    2015-01-01

    Breast cancer, the most common female malignancy in the world, has a strong association with obesity and insulin resistance. The importance of these risk factors goes up significantly in patients already affected by this cancer as they negatively affect the prognosis, recurrence rate, and survival by various mechanisms. The literature on the role of physical activity and aerobic exercise on modifying the above risks is debatable with data both for and against it. In this article, we have reviewed the risks of obesity and insulin resistance in breast cancer patients and the controversy associated with the impact of exercise. Ultimately, we have concluded that a randomized control trial is necessary with an individualized aerobic exercise program for a minimum duration of 20 wk on breast cancer patients, who are undergoing or recently completed chemotherapy, to study its effects on insulin resistance, weight, and clinical outcome.

  4. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  5. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  6. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats

    PubMed Central

    Lubaczeuski, C.; Balbo, S.L.; Ribeiro, R.A.; Vettorazzi, J.F.; Santos-Silva, J.C.; Carneiro, E.M.; Bonfleur, M.L.

    2015-01-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats. PMID:25714886

  7. Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity.

    PubMed

    Fernandez-Twinn, Denise S; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L; Alfaradhi, Maria Z; Loche, Elena; Sferruzzi-Perri, Amanda N; Fowden, Abigail L; Ozanne, Susan E

    2017-03-14

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.

  8. SEX DIFFERENCES IN THE ASSOCIATION BETWEEN DIETARY RESTRAINT, INSULIN RESISTANCE AND OBESITY

    PubMed Central

    Jastreboff, Ania M.; Gaiser, Edward C.; Gu, Peihua; Sinha, Rajita

    2014-01-01

    Background & Aims Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. Methods In this cross-sectional, observational study, we studied 487 individuals from the community (men N=222, women N=265), who ranged from lean (body mass index 18.5–24.9kg/m2, N=173), overweight (body mass index 25–29.9kg/m2, N=159) and obese (body mass index >30kg/m2, N=155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. Results In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p<0.0001). Furthermore, homeostatic model assessment of insulin resistance levels were significantly higher in men who were high-versus low-restrained eaters (p=0.0006). Conclusions This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restraint eating is associated with insulin resistance in men but not in women. PMID:24854820

  9. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    PubMed

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (P<0.05). The fasting plasma glucose of rats in high-fat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, P<0.05), however there was no significant difference in fasting serum insulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  10. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway

    PubMed Central

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    Objective: To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Methods: Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. Results: The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (P<0.05). The fasting plasma glucose of rats in high-fat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, P<0.05), however there was no significant difference in fasting serum insulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. Conclusion: High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression. PMID:26191217

  11. Submandibular Gland and Caries Susceptibility in the Obese Zucker Rat

    PubMed Central

    Mozaffari, Mahmood S.; Abdelsayed, Rafik; Zakhary, Ibrahim; El-Salanty, Mohammed; Liu, Jun Yao; Wimborne, Hereward; El-Marakby, Ahmed

    2010-01-01

    Background Obesity is a prevalent disorder characterized as marked insulin resistance and low grade inflammation. We tested the hypothesis that obesity upregulates inflammatory markers in the submandibular gland in association with derangements of its architecture and predisposition to caries in obese Zucker rats. We also examined the potential impact of chromium picolinate (Cr(Pic)3), a nutritional supplement suggested to improve glycemic control, on the aforementioned parameters. Design Male obese Zucker rats (OZR) were treated with diets lacking and containing 5 or 10 mg/kg chromium (as Cr(Pic)3) from 6 weeks to about 6 months of age; lean Zucker rats (LZR) served as controls. Thereafter, glycemic status, salivary tissue architecture and levels of several inflammatory markers were determined in association with caries susceptibility. Results OZR showed reduced insulin sensitivity, increased ratio of phospho-nuclear factor kappa B (NF-κB) to total NF-κB and increased intercellular adhesion molecule-1 level but similar histological features compared to LZR. Importantly, compared to LZR, OZR displayed rampant caries and a tendency for reduced dentin mineral density. Treatment of OZR with Cr(Pic)3 attenuated upregulation of these proinflammatory indicators in association with reduced severity of caries without improving insulin sensitivity. Conclusions Obesity promotes proinflammatory changes within the submandibular gland, without affecting glandular architecture, in association with rampant caries; Cr(Pic)3 treatment provided some protective effects. PMID:20973827

  12. Abdominal obesity in older women: potential role for disrupted fatty acid reesterification in insulin resistance.

    PubMed

    Yeckel, Catherine W; Dziura, James; DiPietro, Loretta

    2008-04-01

    Excess abdominal adiposity is a primary factor for insulin resistance in older age. Our objectives were to examine the role of abdominal obesity on adipose tissue, hepatic, and peripheral insulin resistance in aging, and to examine impaired free fatty acid metabolism as a mechanism in these relations. This was a cross-sectional study. The study was performed at a General Clinical Research Center. Healthy, inactive older (>60 yr) women (n = 25) who were not on hormone replacement therapy or glucose-lowering medication were included in the study. Women with abdominal circumference values above the median (>97.5 cm) were considered abdominally obese. Whole-body peripheral glucose utilization, adipose tissue lipolysis, and hepatic glucose production were measured using in vivo techniques according to a priori hypotheses. In the simple analysis, glucose utilization at the 40 mU insulin dose (6.3 +/- 2.8 vs. 9.1 +/- 3.4; P < 0.05), the index of the insulin resistance of basal hepatic glucose production (23.6 +/- 13.0 vs. 15.1 +/- 6.0; P < 0.05), and insulin-stimulated suppression of lipolysis (35 vs. 54%; P < 0.05) were significantly different between women with and without abdominal obesity, respectively. Using the glycerol appearance rate to free fatty acid ratio as an index of fatty acid reesterification revealed markedly blunted reesterification in the women with abdominal adiposity under all conditions: basal (0.95 +/- 0.29 vs. 1.35 +/- 0.47; P < 0.02); low- (2.58 +/- 2.76 vs. 6.95 +/- 5.56; P < 0.02); and high-dose (4.46 +/- 3.70 vs. 12.22 +/- 7.13; P < 0.01) hyperinsulinemia. Importantly, fatty acid reesterification was significantly (P < 0.01) associated with abdominal circumference and hepatic and peripheral insulin resistance, regardless of total body fat. These findings support the premise of dysregulated fatty acid reesterification with abdominal obesity as a pathophysiological link to perturbed glucose metabolism across multiple tissues in aging.

  13. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty.

    PubMed

    Tobisch, B; Blatniczky, L; Barkai, L

    2015-02-01

    The prevalence of obesity with concomitant increasing risk for having cardiometabolic diseases is rising in the childhood population. Insulin resistance has a key role in metabolic changes in these children. Insulin levels elevate as puberty commences in every individual. Children with increased risk for cardiometabolic diseases show significant differences in insulin levels even before the onset of puberty compared with those without risks. The pattern of appearance of dyslipidaemia also varies in children with risk factors even in the pre-pubertal group from those without risk. Children with metabolic syndrome display considerably pronounced changes in their metabolic parameters before the onset of puberty, which become more pronounced as puberty passes. Insulin resistance (IR) has a key role in the metabolic changes in obese children. In commencing puberty, the insulin levels elevate. It is not clear, however, how insulin levels develop if the metabolic syndrome appears. Metabolic changes were assessed in obese children before, during and after puberty to analyse the relationship between IR and puberty in subjects with and without metabolic syndrome. Three hundred thirty-four obese children (5-19 years) attended the study. The criteria of the International Diabetes Federation were used to assess the presence of cardiometabolic risks (CMRs). Subjects with increased CMR were compared with those without risk (nCMR). Pubertal staging, lipid levels, plasma glucose and insulin levels during oral glucose tolerance test were determined in each participant. IR was expressed by homeostasis model assessment (HOMA-IR) and the ratio of glucose and insulin areas under the curve (AUC-IR). Significantly higher AUC-IR were found in pre-pubertal CMR children compared with nCMR subjects (11.84 ± 1.03 vs. 8.00 ± 0.69; P < 0.01), but no difference was discovered during and after puberty. HOMA-IR differs between CMR and nCMR only in post-puberty (6.03 ± 1.26 vs. 2

  14. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior.

    PubMed

    Mendes, Natalia Ferreira; Castro, Gisele; Guadagnini, Dioze; Tobar, Natalia; Cognuck, Susana Quiros; Elias, Lucila Leico Kagohara; Boer, Patricia Aline; Prada, Patricia Oliveira

    2017-05-01

    Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    PubMed

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  16. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.

    PubMed

    Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N

    2015-11-01

    The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical

  17. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    PubMed

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  18. The efficacy and tolerability of azilsartan in obese insulin-resistant mice with left ventricular pressure overload.

    PubMed

    Tarikuz Zaman, A K M; McLean, Danielle L; Sobel, Burton E

    2013-10-01

    Angiotensin II receptor blockers (ARBs) are used widely for the treatment of heart failure. However, their use in obese and insulin-resistant patients remains controversial. To clarify their potential efficacy in these conditions, we administered azilsartan medoxomil (azilsartan), a prodrug of an angiotensin II receptor blocker to mice fed a high-fat diet (HFD) with left ventricular (LV) pressure overload (aortic banding). LV fibrosis (hydroxyproline), cardiac plasminogen activator inhibitor-1 (PAI-1; a marker of profibrosis), and creatine kinase (a marker of myocardial viability and energetics) were assessed. LV wall thickness and cardiac function were assessed echocardiographically. Mice given a HFD were obese and insulin resistant. Their LV hypertrophy was accompanied by greater LV PAI-1 and reduced LV creatine kinase compared with normal diet controls. Drug treatment reduced LV wall thickness, hypertrophy, and PAI-1 and increased cardiac output after aortic banding compared with results in HFD vehicle controls. Thus, azilsartan exerted favorable biological effects on the hearts of obese insulin-resistant mice subjected to LV pressure overload consistent with its potential utility in patients with analogous conditions.

  19. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats

    PubMed Central

    Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji

    2015-01-01

    Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892

  20. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  1. Insulin resistance during euglycemic clamp studies in chronically undernourished rats with mild streptozocin diabetes.

    PubMed

    Rao, R H

    1995-11-01

    Malnutrition has been shown to impair insulin sensitivity, but it is not known whether this effect has any impact on coexisting diabetes. Insulin sensitivity was therefore studied using the glucose clamp technique in rats with chronic nutritional deprivation superimposed on mild streptozocin (STZ) diabetes mellitus. In pair-feeding experiments, 4-week-old littermate rats were either allowed ad libitum access to food or restricted to 50% of ad libitum intake for 8 weeks, and were injected with STZ 40 mg/kg intraperitoneally halfway through the experiment. Fasting plasma glucose (FPG) was similar in both groups of rats, but fasting plasma insulin (FPI) was lower in the undernourished group (P = .016). Undernourished rats were significantly more insulin resistant during euglycemic hyperinsulinemia of the same degree, with glucose disposal rate being impaired by 50% as compared with that in ad libitum-fed diabetic littermates (24.4 +/- 2.8 v 51.5 +/- 4.4 mumol/kg/min, P = .0008). The insulin sensitivity index was significantly lower in the undernourished group (3.03 +/- 0.32 v 5.67 +/- 0.6, P = .0057). The results show that chronic undernutrition markedly reduces insulin sensitivity in rats with mild STZ diabetes. This is further evidence that chronic undernutrition is a deleterious modifying influence on coexisting diabetes mellitus. It suggests that the insulin resistance of malnutrition-related diabetes mellitus (MRDM) could potentially be an acquired defect mediated by the coexistent undernutrition, rather than a "distinctive" feature that is intrinsically unique to this diabetic syndrome.

  2. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  3. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed Central

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats. PMID:7972005

  4. Consumption of a liquid high-fat meal increases triglycerides but decreases high-density lipoprotein cholesterol in abdominally obese subjects with high postprandial insulin resistance.

    PubMed

    Wang, Feng; Lu, Huixia; Liu, Fukang; Cai, Huizhen; Xia, Hui; Guo, Fei; Xie, Yulan; Huang, Guiling; Miao, Miao; Shu, Guofang; Sun, Guiju

    2017-07-01

    Abdominal obesity is associated with an increased risk of insulin resistance, which may be a potential contributor to dyslipidemia. However, the relationship between postprandial insulin resistance and lipid metabolism in abdominally obese subjects remains unknown. We hypothesized that postprandial dyslipidemia would be exaggerated in abdominally obese subjects with high postprandial insulin resistance. To test this hypothesis, serum glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and apolipoprotein B were measured at baseline and postprandial state at 0.5, 1, 2, 4, 6, and 8 hours after a liquid high-fat meal in non-abdominally obese controls (n=44) and abdominally obese subjects with low (AO-LPIR, n=40), middle (n=40), and high postprandial insulin resistance (AO-HPIR, n=40) based on the tertiles ratio of the insulin to glucose areas under the curve (AUC). Their serum adipokines were tested at baseline only. Fasting serum leptin was higher (P<.05) in AO-HPIR than that in AO-LPIR and controls. Postprandial triglycerides AUC was higher (P<.05), whereas high-density lipoprotein cholesterol AUC was lower (P<.05), in AO-HPIR than those in AO-LPIR and controls. Postprandial AUCs for total cholesterol and apolipoprotein B were similar in abdominally obese subjects with different degrees of postprandial insulin resistance and controls. The present study indicated that the higher degree of postprandial insulin resistance, the more adverse lipid profiles in abdominally obese subjects, which provides insight into opportunity for screening in health. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  6. Oral salmon calcitonin protects against impaired fasting glycemia, glucose intolerance, and obesity induced by high-fat diet and ovariectomy in rats.

    PubMed

    Feigh, Michael; Andreassen, Kim V; Hjuler, Sara T; Nielsen, Rasmus H; Christiansen, Claus; Henriksen, Kim; Karsdal, Morten A

    2013-07-01

    Oral salmon calcitonin (sCT) has demonstrated clinical efficacy in treating osteoporosis in postmenopausal women. The postmenopausal state is also associated with obesity-related insulin resistance (IR) and type 2 diabetes. The aim of this study was to investigate the preventive effects of oral sCT on energy and glucose homeostasis in high-fat diet (HFD)- and ovariectomy (OVX)-induced obese rats. Furthermore, the weight-regulatory and gluco-regulatory effects of short-term oral sCT intervention on HFD-induced obese rats were explored. For prevention, female rats exposed to HFD with or without OVX were treated with oral sCT for 5 weeks. As intervention, HFD-induced obese male rats were treated with oral sCT for 4 days. Body weight, food intake, and plasma glucose, insulin, and leptin levels were measured, and the clinical homeostasis model assessment for insulin resistance (HOMA-IR) index was calculated. In addition, oral glucose tolerance was evaluated in the systemic and portal circulations. For prevention, oral sCT reduced body weight by ∼16% to 19% (P < 0.001), reduced plasma insulin and leptin by ∼50%, and improved impaired fasting glycemia (P < 0.05) concomitantly with amelioration of IR (HOMA-IR; P < 0.01) in HFD- and OVX-induced obesity. Furthermore, oral sCT significantly reduced the incremental area under the curve for plasma glucose and insulin by ∼40% and ∼70%, respectively, during glucose tolerance testing. As intervention in HFD-induced obese rats, oral sCT reduced body weight, fasting glycemia, and insulinemia in conjunction with HOMA-IR (P < 0.001). Finally, oral sCT alleviated glucose intolerance predominantly in the portal circulation. Oral sCT treatment displays weight-regulatory and glucoregulatory efficacy in HFD- and OVX-induced obese rats, indicating the clinical usefulness of oral sCT in postmenopausal obesity-related IR and type 2 diabetes.

  7. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

    PubMed

    Ittichaicharoen, Jitjiroj; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-04-01

    Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comprehensive assessment of insulin resistance in non-obese Asian Indian and Chinese men.

    PubMed

    Tan, Hong Chang; Yew, Tong Wei; Chacko, Shaji; Tai, E Shyong; Kovalik, Jean-Paul; Ching, Jianhong; Myo Thant, Sandi; Khoo, Chin Meng

    2018-03-27

    Indian individuals are more insulin resistant (IR) than Chinese individuals, even among those with a non-obese body mass index (BMI). However, BMI often underestimates body fat in Indian individuals, and it remains unclear whether Indians would remain more IR than Chinese individuals when both BMI and body fat are equally matched. Using the hyperinsulinemic-euglycemic clamp with stable-isotope infusion, we comprehensively assessed IR between 13 non-obese Indian men with 13 Chinese men matched for age, BMI and body fat. We further compared the differences in insulin metabolic clearance rate (MCR) between the two groups and its relationship with various metabolic parameters. The response of lipid and amino acid metabolism to insulin stimulation was also evaluated using metabolomic profiling. The rates of endogenous glucose production during fasting were similar, and endogenous glucose production was completely suppressed during insulin clamp for both ethnic groups. Glucose disappearance during insulin clamp was also similar between the two groups, even after accounting for differences in insulin concentration. Metabolomic profiles of amino acids and various acylcarnitines were similar during both fasting and insulin clamp. However, plasma insulin during clamp was significantly higher in Indian men, indicating that insulin MCR was lower. Insulin MCR correlated significantly with total adiposity and skeletal muscle insulin sensitivity. When equally matched for body fat, non-obese Indian men had similar skeletal muscle insulin sensitivity and endogenous glucose production to Chinese men. The effects of insulin on lipid and amino acid metabolism were also similar. Low insulin MCR is associated with greater adiposity and lower skeletal muscle insulin sensitivity. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  10. Evaluation of Mn-superoxide dismutase and catalase gene expression in childhood obesity: its association with insulin resistance.

    PubMed

    Mohseni, Roohollah; Arab Sadeghabadi, Zahra; Goodarzi, Mohammad Taghi; Teimouri, Maryam; Nourbakhsh, Mitra; Razzaghy Azar, Maryam

    2018-06-28

    Obesity is associated with oxidative stress. Superoxide dismutase (SOD) is the first line of defense against reactive oxygen species (ROS), eliminating the strong superoxide radical and producing H2O2, which can then be degraded by catalase (CAT). The main objective of this study was to evaluate the gene expression antioxidant enzymes (Mn-SOD and CAT) in peripheral blood mononuclear cells (PBMCs) of obese and normal-weight children, and its association with anthropometric and biochemical parameters. Thirty obese and 30 control subjects between the ages of 8 and 16 years were enrolled in this study. Serum insulin levels were measured using enzyme-linked immunosorbent assay (ELISA), and insulin resistance was calculated using the homeostasis model assessment of insulin resistance (HOMA-IR). Biochemical parameters were also measured. PBMCs of the subjects were separated and Mn-SOD and CAT gene expression was measured using real-time polymerase chain reaction (PCR). Mn-SOD and CAT gene expression was significantly lower in the obese group compared with the control group (p<0.01). Also, a positive correlation was observed between the gene expression of Mn-SOD and CAT and body mass index (BMI), fasting blood sugar, insulin resistance, low density lipoprotein-cholesterol (LDL-C) cholesterol, triglycerides (TG) and systolic blood pressure (SBP). Induction of antioxidants, especially Mn-SOD and CAT, can lead to reduction of oxidative stress and prevent the complications of obesity in children.

  11. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    PubMed Central

    McNabney, Sean M.

    2017-01-01

    Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance. PMID:29231905

  13. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons.

    PubMed

    Vogeser, Michael; König, Daniel; Frey, Ingrid; Predel, Hans-Georg; Parhofer, Klaus Georg; Berg, Aloys

    2007-09-01

    Lifestyle changes with increased physical activity and balanced energy intake are recognized as the principal interventions in obesity and insulin resistance. Only few prospective studies, however, have so far addressed the potential role of routine biochemical markers of insulin sensitivity in the monitoring of respective interventions. Fasting insulin and glucose was measured in 33 obese individuals undergoing a lifestyle modification program (MOBILIS) at baseline and after 1 year. The HOMA-IR index (homeostasis model of insulin resistance) was calculated as [fasting serum glucose*fasting serum insulin/22.5], with lower values indicating a higher degree of insulin sensitivity. While the median body mass index (BMI) and waist circumference decreased by 10% and 11%, respectively, the HOMA-IR index decreased in an over-proportional manner by 45% within 1 year (BMI baseline, median 35.7, interquartile range (IQR) 33.7-37.7; after 1 year, median 32.2, IQR 29.6-35.1. HOMA-IR baseline, median 2.9, IQR 1.5-4.6; after 1 year 1.6, IQR 0.9-2.7). In contrast to HOMA-IR and fasting serum insulin, no significant changes in fasting serum glucose were observed. Baseline and post-intervention HOMA-IR showed a high degree of inter-individual variation with eight individuals maintaining high HOMA-IR values despite weight loss after 1 year of intervention. Individual changes in the carbohydrate metabolism achieved by a lifestyle intervention program were displayed by fasting serum insulin concentrations and the HOMA-IR but not by fasting glucose measurement alone. Therefore, assessment of the HOMA-IR may help to individualize lifestyle interventions in obesity and to objectify improvements in insulin sensitivity after therapeutic lifestyle changes.

  14. Immobilization rapidly induces thioredoxin-interacting protein (TXNIP) gene expression together with insulin resistance in rat skeletal muscle.

    PubMed

    Kawamoto, Emi; Tamakoshi, Keigo; Ra, Song-Gyu; Masuda, Hiroyuki; Kawanaka, Kentaro

    2018-05-24

    Acute short-duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Since thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-hr hindlimb immobilization by plaster cast. At the end of this period, the soleus muscles from both immobilized and contralateral non-immobilized hindlimbs were excised and examined. The 6-hr immobilization resulted in an increase in TXNIP mRNA and protein expressions together with a decrease in insulin-stimulated 2-deoxyglucose uptake in the rat soleus muscle. Additionally, in the rats sacrificed 6 hr after the plaster cast removal, TXNIP protein expression and insulin-stimulated glucose uptake in the immobilized muscle had both been restored to a normal level. Various interventions (pretreatment with transcription inhibitor actinomycin D or AMPK activator AICAR) also suppressed the increase in TXNIP protein expression in 6-hr-immobilized muscle together with partial prevention of insulin resistance for glucose uptake. These results suggested the possibility that increased TXNIP protein expression in immobilized rat soleus muscles was associated with the rapid induction of insulin resistance for glucose uptake in that tissue.

  15. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  16. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state.

    PubMed

    Adams, Sean H

    2011-11-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+).

  17. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  18. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    PubMed

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  19. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    PubMed

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  20. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance.

    PubMed

    Pincelli, A I; Brunani, A; Scacchi, M; Dubini, A; Borsotti, R; Tibaldi, A; Pasqualinotto, L; Maestri, E; Cavagnini, F

    2001-01-01

    The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. These data indicate

  1. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents.

    PubMed

    McCormack, S E; Shaham, O; McCarthy, M A; Deik, A A; Wang, T J; Gerszten, R E; Clish, C B; Mootha, V K; Grinspoon, S K; Fleischman, A

    2013-02-01

    What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly

  2. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis.

    PubMed

    Reinehr, Thomas; Elfers, Clinton; Lass, Nina; Roth, Christian L

    2015-05-01

    Irisin is a recently identified myokine affecting metabolic and glucose homeostasis. However, the role of irisin in obesity and its metabolic consequences are controversial, and data in children are scarce. To study the relationships between irisin, insulin resistance, and puberty before and after weight loss in obese children with and without impaired glucose tolerance. One-year follow-up study in obese children participating in a lifestyle intervention. Primary care. Forty obese children and 20 normal-weight children of similar age, gender, and pubertal stage. A 1-year outpatient intervention program based on exercise, behavior, and nutrition therapy. Fasting serum irisin, weight status (body mass index [BMI] SD score), and the following parameters of the metabolic syndrome: insulin resistance index (homeostasis model of assessment), blood pressure, and lipids. The irisin levels were the highest in obese children with impaired glucose tolerance, followed by obese children with normal glucose tolerance, and levels were lowest in normal-weight children (P < .001). In a multiple linear regression analysis, baseline irisin was significantly associated with pubertal stage, high-density lipoprotein-cholesterol, and homeostasis model of assessment, but not to age, gender, BMI, or any other parameter of the metabolic syndrome. The irisin concentrations were significantly (P = .010) lower in the prepubertal compared to the pubertal children. In longitudinal analyses, changes of irisin were significantly associated with entry into puberty, change of fasting glucose, and 2-hour glucose in an oral glucose tolerance test, but not with change of BMI or any other parameter. Irisin levels are related to pubertal stage and insulin resistance but not to weight status in childhood.

  3. Sex differences in the association between dietary restraint, insulin resistance and obesity.

    PubMed

    Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita

    2014-04-01

    Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance

    PubMed Central

    Khan, Ilvira M.; Dai Perrard, Xiao-Yuan; Brunner, Gerd; Lui, Hua; Sparks, Lauren M.; Smith, Steven R.; Wang, Xukui; Shi, Zheng-Zheng; Lewis, Dorothy E.; Wu, Huaizhu; Ballantyne, Christie M.

    2015-01-01

    Background/Objectives Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. Subjects/Methods T cells and macrophage markers were examined in SM of obese humans by RT-PCR. Mice were fed high-fat diet (HFD) for 2–24 weeks, and time course of macrophage and T cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-CT, and correlation to T cell number in SM was examined. CD11a−/− mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T cell accumulation in SM. To investigate the involvement JAK/STAT, the major pathway for T helper I (TH1) cytokine IFNγ? in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. Results Macrophage and T cells markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. Conclusions Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM

  5. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  6. Beneficial Effects of Phyllanthus amarus Against High Fructose Diet Induced Insulin Resistance and Hepatic Oxidative Stress in Male Wistar Rats.

    PubMed

    Putakala, Mallaiah; Gujjala, Sudhakara; Nukala, Srinivasulu; Desireddy, Saralakumari

    2017-11-01

    Insulin resistance (IR) is a characteristic feature of obesity, type 2 diabetes mellitus, and cardiovascular diseases. Emerging evidence suggests that the high-fructose consumption is a potential and important factor responsible for the rising incidence of IR. The present study investigates the beneficial effects of aqueous extract of Phyllanthus amarus (PAAE) on IR and oxidative stress in high-fructose (HF) fed male Wistar rats. HF diet (66% of fructose) and PAAE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 60 days. Fructose-fed rats showed weight gain, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin sensitivity, dyslipidemia, hyperleptinemia, and hypoadiponectinemia (P < 0.05) after 60 days. Co-administration of PAAE along with HF diet significantly ameliorated all these alterations. Regarding hepatic antioxidant status, higher lipid peroxidation and protein oxidation, lower reduced glutathione levels and lower activities of enzymatic antioxidants, and the histopathological changes like mild to severe distortion of the normal architecture as well as the prominence and widening of the liver sinusoids observed in the HF diet-fed rats were significantly prevented by PAAE treatment. These findings indicate that PAAE is beneficial in improving insulin sensitivity and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.

  7. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial

    PubMed Central

    van der Aa, M P; Elst, M A J; van de Garde, E M W; van Mil, E G A H; Knibbe, C A J; van der Vorst, M M J

    2016-01-01

    Background: As adolescents with obesity and insulin resistance may be refractory to lifestyle intervention therapy alone, additional off-label metformin therapy is often used. In this study, the long-term efficacy and safety of metformin versus placebo in adolescents with obesity and insulin resistance is studied. Methods: In a randomized placebo-controlled double-blinded trial, 62 adolescents with obesity aged 10–16 years old with insulin resistance received 2000 mg of metformin or placebo daily and physical training twice weekly over 18 months. Primary end points were change in body mass index (BMI) and insulin resistance measured by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). Secondary end points were safety and tolerability of metformin. Other end points were body fat percentage and HbA1c. Results: Forty-two participants completed the 18-month study (66% girls, median age 13 (12–15) years, BMI 30.0 (28.3 to 35.0) kg m−2 and HOMA-IR 4.08 (2.40 to 5.88)). Median ΔBMI was +0.2 (−2.9 to 1.3) kg m−2 (metformin) versus +1.2 (−0.3 to 2.4) kg m−2 (placebo) (P=0.015). No significant difference was observed for HOMA-IR. No serious adverse events were reported. Median change in fat percentage was −3.1 (−4.8 to 0.3) versus −0.8 (−3.2 to 1.6)% (P=0.150), in fat mass −0.2 (−5.2 to 2.1) versus +2.0 (1.2–6.4) kg (P=0.007), in fat-free mass +2.0 (−0.1 to 4.0) versus +4.5 (1.3 to 11.6) kg (P=0.047) and in ΔHbA1c +1.0 (−1.0 to 2.3) versus +3.0 (0.0 to 5.0) mmol mol−1 (P=0.020) (metformin versus placebo). Conclusions: Long-term treatment with metformin in adolescents with obesity and insulin resistance results in stabilization of BMI and improved body composition compared with placebo. Therefore, metformin may be useful as an additional therapy in combination with lifestyle intervention in adolescents with obesity and insulin resistance. PMID:27571249

  8. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial.

    PubMed

    van der Aa, M P; Elst, M A J; van de Garde, E M W; van Mil, E G A H; Knibbe, C A J; van der Vorst, M M J

    2016-08-29

    As adolescents with obesity and insulin resistance may be refractory to lifestyle intervention therapy alone, additional off-label metformin therapy is often used. In this study, the long-term efficacy and safety of metformin versus placebo in adolescents with obesity and insulin resistance is studied. In a randomized placebo-controlled double-blinded trial, 62 adolescents with obesity aged 10-16 years old with insulin resistance received 2000 mg of metformin or placebo daily and physical training twice weekly over 18 months. Primary end points were change in body mass index (BMI) and insulin resistance measured by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). Secondary end points were safety and tolerability of metformin. Other end points were body fat percentage and HbA1c. Forty-two participants completed the 18-month study (66% girls, median age 13 (12-15) years, BMI 30.0 (28.3 to 35.0) kg m(-2) and HOMA-IR 4.08 (2.40 to 5.88)). Median ΔBMI was +0.2 (-2.9 to 1.3) kg m(-2) (metformin) versus +1.2 (-0.3 to 2.4) kg m(-2) (placebo) (P=0.015). No significant difference was observed for HOMA-IR. No serious adverse events were reported. Median change in fat percentage was -3.1 (-4.8 to 0.3) versus -0.8 (-3.2 to 1.6)% (P=0.150), in fat mass -0.2 (-5.2 to 2.1) versus +2.0 (1.2-6.4) kg (P=0.007), in fat-free mass +2.0 (-0.1 to 4.0) versus +4.5 (1.3 to 11.6) kg (P=0.047) and in ΔHbA1c +1.0 (-1.0 to 2.3) versus +3.0 (0.0 to 5.0) mmol mol(-1) (P=0.020) (metformin versus placebo). Long-term treatment with metformin in adolescents with obesity and insulin resistance results in stabilization of BMI and improved body composition compared with placebo. Therefore, metformin may be useful as an additional therapy in combination with lifestyle intervention in adolescents with obesity and insulin resistance.

  9. Importance of Lean Muscle Maintenance to Improve Insulin Resistance by Body Weight Reduction in Female Patients with Obesity.

    PubMed

    Fukushima, Yaeko; Kurose, Satoshi; Shinno, Hiromi; Cao Thu, Ha; Takao, Nana; Tsutsumi, Hiromi; Kimura, Yutaka

    2016-04-01

    It has recently been suggested that skeletal muscle has an important role in insulin resistance in obesity, in addition to exercise tolerance and the fat index. The aim of this study was to identify body composition factors that contribute to improvement of insulin resistance in female patients with obesity who reduce body weight. We studied 92 female obese patients (age 40.9±10.4 years, body mass index 33.2±4.6 kg/m²) who reduced body weight by ≥5% after an intervention program including diet, exercise therapy, and cognitive behavioral therapy. Before and after the intervention, body composition was evaluated by dual-energy X-ray absorptiometry to examine changes in skeletal muscle mass. Homeostasis model assessment of insulin resistance (HOMA-IR) was measured as an index of insulin resistance. Cardiopulmonary exercise was also performed by all patients. There were significant improvements in body weight (-10.3%±4.5%), exercise tolerance (anaerobic threshold oxygen uptake 9.1%±18.4%, peak oxygen uptake 11.0%±14.2%), and HOMA-IR (-20.2%±38.3%). Regarding body composition, there were significant decreases in total body fat (-19.3%±9.6%), total fat-free mass (-2.7%±4.3%), and % body fat (-10.1%±7.5%), whereas % skeletal muscle significantly increased (8.9%±7.2%). In stepwise multiple linear regression analysis with change in HOMA-IR as the dependent variable, the change in % skeletal muscle was identified as an independent predictor (β=-0.280, R²=0.068, P<0.01). Improvement of insulin resistance in female obese patients requires maintenance of skeletal muscle mass.

  10. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    PubMed

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  11. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.

    PubMed

    Wimalawansa, Sunil J

    2018-01-01

    The aim of this study is to determine the relationships of vitamin D with diabetes, insulin resistance obesity, and metabolic syndrome. Intra cellular vitamin D receptors and the 1-α hydroxylase enzyme are distributed ubiquitously in all tissues suggesting a multitude of functions of vitamin D. It plays an indirect but an important role in carbohydrate and lipid metabolism as reflected by its association with type 2 diabetes (T2D), metabolic syndrome, insulin secretion, insulin resistance, polycystic ovarian syndrome, and obesity. Peer-reviewed papers, related to the topic were extracted using key words, from PubMed, Medline, and other research databases. Correlations of vitamin D with diabetes, insulin resistance and metabolic syndrome were examined for this evidence-based review. In addition to the well-studied musculoskeletal effects, vitamin D decreases the insulin resistance, severity of T2D, prediabetes, metabolic syndrome, inflammation, and autoimmunity. Vitamin D exerts autocrine and paracrine effects such as direct intra-cellular effects via its receptors and the local production of 1,25(OH) 2 D 3 , especially in muscle and pancreatic β-cells. It also regulates calcium homeostasis and calcium flux through cell membranes, and activation of a cascade of key enzymes and cofactors associated with metabolic pathways. Cross-sectional, observational, and ecological studies reported inverse correlations between vitamin D status with hyperglycemia and glycemic control in patients with T2D, decrease the rate of conversion of prediabetes to diabetes, and obesity. However, no firm conclusions can be drawn from current studies, because (A) studies were underpowered; (B) few were designed for glycemic outcomes, (C) the minimum (or median) serum 25(OH) D levels achieved are not measured or reported; (D) most did not report the use of diabetes medications; (E) some trials used too little (F) others used too large, unphysiological and infrequent doses of vitamin D; and

  12. Adipokines and Hepatic Insulin Resistance

    PubMed Central

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  13. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  14. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats.

    PubMed

    Rojas, J M; Printz, R L; Niswender, K D

    2011-07-04

    Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.

  15. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  16. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats.

    PubMed

    Dotzert, Michelle S; Murray, Michael R; McDonald, Matthew W; Olver, T Dylan; Velenosi, Thomas J; Hennop, Anzel; Noble, Earl G; Urquhart, Brad L; Melling, C W James

    2016-05-20

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training.

  17. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy.

    PubMed

    Forbes, Shareen; Barr, Sarah M; Reynolds, Rebecca M; Semple, Scott; Gray, Calum; Andrew, Ruth; Denison, Fiona C; Walker, Brian R; Norman, Jane E

    2015-11-01

    Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case-control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic-euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6-9) and body fat distribution by MRI in late pregnancy (n = 10/group). Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy.

  18. Effect of fat loss on arterial elasticity in obese adolescents with clinical insulin resistance: RESIST study.

    PubMed

    Ho, Mandy; Gow, Megan; Baur, Louise A; Benitez-Aguirre, Paul Z; Tam, Charmaine S; Donaghue, Kim C; Craig, Maria E; Cowell, Chris T; Garnett, Sarah P

    2014-10-01

    Reduced arterial elasticity contributes to an obesity-related increase in cardiovascular risk in adults. To evaluate the effect of fat loss on arterial elasticity in obese adolescents at risk of type 2 diabetes. A secondary data analysis of the RESIST study was performed in two hospitals in Sydney, Australia. The study included 56 subjects (ages, 10 to 17 y; 25 males) with prediabetes and/or clinical features of insulin resistance. A 12-month lifestyle plus metformin intervention. Arterial elasticity and systemic vascular resistance were measured using radial tonometry pulse contour analysis, percentage body fat (%BF) was measured by dual-energy x-ray absorptiometry, and insulin sensitivity index was derived from an oral glucose tolerance test and lipids. Adolescents (n = 31) with decreased %BF (mean change [range], -4.4% [-18.3 to -0.01%]) after the intervention had significant increases in the mean large arterial elasticity index (mean change [95%CI], 5.1 [1.9 to 8.2] mL/mm Hg * 10; P = .003) and insulin sensitivity index (0.5 [0.1 to 0.9]; P = .010) and a decrease in systemic vascular resistance (-82 [-129 to -35] dyne * s * cm(-5); P = .001). There were no significant changes in these parameters in adolescents who increased their %BF. Nor was there any significant change in the mean small arterial elasticity index in either group. Long-term follow-up of these adolescents is warranted to assess whether the observed changes in vascular elasticity will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  19. Insulin resistance and self-perceived scholastic competence in inner-city, overweight and obese, African American children.

    PubMed

    Fyfe, Molly; Raman, Aarthi; Sharma, Sushma; Hudes, Mark L; Fleming, Sharon E

    2011-01-10

    scholastic competence is a predictor of future achievement, yet there is little research about health factors that influence the development of self-perceived scholastic competence (SPSC). This study examined the relationship of insulin resistance and body fatness with SPSC in low-income, overweight and obese, African American children. data were analyzed from a convenience sample of 9-10years old African American children (89 boys and 113 girls) enrolled in a type 2 diabetes prevention study. Health variables analyzed for their influence on SPSC (Harter scale) included insulin resistance (Homeostatic model-derived insulin sensitivity, HOMA-IR) and body fatness (% body fat). Adjustments were made for self-esteem (Global Self Worth). there was a significant gender by insulin resistance interaction effect on the child's SPSC, so separate regression models were developed for each gender. In boys, neither insulin resistance nor body fatness was related to SPSC. In girls, however, insulin resistance was negatively related to SPSC scores, and the significance of the relationship increased further after adjusting for body fatness. Body fatness alone was not significantly related to SPSC in girls, but after adjusting for insulin resistance, body fatness was positively related to SPSC. Thus, insulin resistance and body fatness mutually suppressed SPSC in girls. high SPSC was associated with lower insulin resistance and, with insulin resistance held constant, with higher body fatness in girls but not in boys. These relationships were not influenced by self-esteem in these children. 2010 Elsevier Inc. All rights reserved.

  20. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  1. Effects of food pattern change and physical exercise on cafeteria diet-induced obesity in female rats.

    PubMed

    Goularte, Jéferson F; Ferreira, Maria B C; Sanvitto, Gilberto L

    2012-10-28

    Obesity affects a large number of people around the world and appears to be the result of changes in food intake, eating habits and physical activity levels. Changes in dietary patterns and physical exercise are therefore strongly recommended to treat obesity and its complications. The present study tested the hypothesis that obesity and metabolic changes produced by a cafeteria diet can be prevented with dietary changes and/or physical exercise. A total of fifty-six female Wistar rats underwent one of five treatments: chow diet; cafeteria diet; cafeteria diet followed by a chow diet; cafeteria diet plus exercise; cafeteria diet followed by a chow diet plus exercise. The duration of the experiment was 34 weeks. The cafeteria diet resulted in higher energy intake, weight gain, increased visceral adipose tissue and liver weight, and insulin resistance. The cafeteria diet followed by the chow diet resulted in energy intake, body weight, visceral adipose tissue and liver weight and insulin sensitivity equal to that of the controls. Exercise increased total energy intake at week 34, but produced no changes in the animals' body weight or adipose tissue mass. However, insulin sensitivity in animals subjected to exercise and the diet was similar to that of the controls. The present study found that exposure to palatable food caused obesity and insulin resistance and a diet change was sufficient to prevent cafeteria diet-induced obesity and to maintain insulin sensitivity at normal levels. In addition, exercise resulted in normal insulin sensitivity in obese rats. These results may help to develop new approaches for the treatment of obesity and type 2 diabetes mellitus.

  2. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats.

    PubMed

    Kramer, D; Shapiro, R; Adler, A; Bush, E; Rondinone, C M

    2001-11-01

    Thiazolidinediones (TZDs), a class of antidiabetic agents, are specific agonists of peroxisome proliferator activator receptor (PPARgamma). However, their mechanisms of action, and the in vivo target tissues that mediate insulin sensitization are not well understood. The aim of this study was to investigate the role of glucose transporters (GLUT-1 and GLUT-4) in the TZD insulin-sensitizer action. The effects of rosiglitazone treatment were studied using Zucker (fa/fa) rats after 7 days of oral dosing (3.6 mg/kg/d). Rosiglitazone lowered (approximate 80%) basal plasma insulin levels in obese rats and substantially corrected (approximately 50%) insulin resistance based upon results from hyperinsulinemic euglycemic clamp studies. GLUT-4 protein levels were reduced (approximately 75%) in adipose tissue of obese rats and treatment with rosiglitazone normalized them. Interestingly, GLUT-1 protein content was increased in adipose tissue ( thick approximate 150%) and skeletal muscle (approximately 50%) of obese rats and treatment with rosiglitazone increased it even more by 5.5-fold in fat and by 2.5-fold in muscle. Consistent with these results, basal (GLUT-1-mediated) transport rate of 3-O-methyl-D-glucose into isolated epitrochlearis muscle was elevated in response to rosiglitazone. Incubation of fully differentiated 3T3-L1 adipocytes with the drug for 7 days increased the levels of GLUT-1 protein, but did not affect GLUT-4 levels. In conclusion, rosiglitazone may improve insulin resistance in vivo by normalizing GLUT-4 protein content in adipose tissue and increasing GLUT-1 in skeletal muscle and fat. While the drug has a direct effect on GLUT-1 protein expression in vitro without a direct effect on GLUT-4 suggests that direct and indirect effects of rosiglitazone on glucose transporters may have an important role in improving insulin resistance in vivo. Copyright 2001 by W.B. Saunders Company

  3. Role of insulin resistance and adipocytokines on serum alanine aminotransferase in obese patients with type 2 diabetes mellitus.

    PubMed

    de Luis, D A; Aller, R; Izaola, O; Gonzalez Sagrado, M; Conde, R; de la Fuente, B

    2013-01-01

    The aim of our study was to study the association of insulin resistance expressed by HOMA and adipokines in obese type 2 diabetic patients with or without hyper-transaminasemia. A population of 72 obese patients with type 2 diabetes mellitus was analyzed. HOMA-IR was calculated as indicator of insulin-resistance. Adipocytokines blood levels were measured. Patients were classified as group I (n=37) when serum ALT activity was normal or group II (NAFLD patients: n=35) when serum ALT activity was greater than the median value of the group (≥ 28 UI/L). In NAFLD group, BMI, weight, fat mass, waist to hip ratio, waist circumference, triglycerides, HOMA and insulin levels were higher than control group. In the logistic regression analysis with a dependent variable (ALT) and the statistical univariant variables as independent variables, the HOMA-IR remained in the model, with an Odd's ratio of 1.21 (CI:95%: 1.11-1.35) to have a high ALT level with each 1 unit of HOMA-IR adjusted by age, sex, weight, and dietary intake. Some metabolic parameters are associated with elevated ALT in female obese patients. However, adjusted by other variables, only insulin resistance remained associated.

  4. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model.

    PubMed

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2016-12-04

    This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    PubMed Central

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  6. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity.

    PubMed

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Marreiro PhD, Dilina do Nascimento

    2017-03-01

    The aim of this review was to convey updated information on the role of microRNAs in adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Obesity is a chronic disease characterized by the presence of metabolic disorders (e.g., low-grade chronic inflammation), which contributes to the manifestation of insulin resistance. Diverse molecular mechanisms have been implicated in the development of these disorders, and microRNAs stand out as a contributing factor. They are a class of noncoding RNAs that regulate the expression of genes by inducing cleavage of mRNAs or via inhibition of protein translation. It is important to point out that obese individuals show alterations in the expression of microRNAs favoring manifestation of the metabolic disorders present in these patients, and these alterations may be reversed by the loss of weight. Therefore, microRNAs may be regarded as potential biomarkers of obesity-related disorders. Further studies on this topic may advance the understanding of the molecular basis of obesity, including the participation of microRNAs in the pathogenesis of this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  8. Effect of an avocado oil-enhanced diet (Persea americana) on sucrose-induced insulin resistance in Wistar rats.

    PubMed

    Del Toro-Equihua, Mario; Velasco-Rodríguez, Raymundo; López-Ascencio, Raúl; Vásquez, Clemente

    2016-04-01

    A number of studies have been conducted to evaluate the effects of vegetable oils with varying percentages of monounsaturated and polyunsaturated fatty acids on insulin resistance. However, there is no report on the effect of avocado oil on this pathologic condition. The aim of this work was to evaluate the effect of avocado oil on sucrose-induced insulin resistance in Wistar rats. An experimental study was carried out on Wistar rats that were randomly assigned into six groups. Each group received a different diet over an 8-week period (n = 11 in each group): the control group was given a standard diet, and the other five groups were given the standard feed plus sucrose with the addition of avocado oil at 0%, 5%, 10%, 20%, and 30%, respectively. Variables were compared using Student t test and analysis of variance. Statistically significant difference was considered when p < 0.05. Rats that were given diets with 10% and 20% avocado oil showed lower insulin resistance (p = 0.022 and p = 0.024, respectively). Similar insulin resistance responses were observed in the control and 30% avocado oil addition groups (p = 0.85). Addition of 5-30% avocado oil lowered high sucrose diet-induced body weight gain in Wistar rats. It was thus concluded that glucose tolerance and insulin resistance induced by high sucrose diet in Wistar rats can be reduced by the dietary addition of 5-20% avocado oil. Copyright © 2016. Published by Elsevier B.V.

  9. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    PubMed

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  10. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity

    PubMed Central

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B

    2014-01-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. PMID:24947364

  11. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.

    PubMed

    Frank, Nicholas; Elliott, Sarah B; Brandt, Laura E; Keisler, Duane H

    2006-05-01

    To compare obese horses with insulin resistance (IR) with nonobese horses and determine whether blood resting glucose, insulin, leptin, and lipid concentrations differed between groups and were correlated with combined glucose-insulin test (CGIT) results. 7 obese adult horses with IR (OB-IR group) and 5 nonobese mares. Physical measurements were taken, and blood samples were collected after horses had acclimated to the hospital for 3 days. Response to insulin was assessed by use of the CGIT, and maintenance of plasma glucose concentrations greater than the preinjection value for > or = 45 minutes was used to define IR. Area under the curve values for glucose (AUC(g)) and insulin (AUC(i)) concentrations were calculated. Morgan, Paso Fino, Quarter Horse, and Tennessee Walking Horse breeds were represented in the OB-IR group. Mean neck circumference and BCS differed significantly between groups and were positively correlated with AUC values. Resting insulin and leptin concentrations were 6 and 14 times as high, respectively, in the OB-IR group, compared with the nonobese group, and were significantly correlated with AUC(g) and AUC(i). Plasma nonesterified fatty acid, very low-density lipoprotein, and high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly higher (86%, 104%, and 29%, respectively) in OB-IR horses, and HDL-C concentrations were positively correlated with AUC values. Measurements of neck circumference and resting insulin and leptin concentrations can be used to screen obese horses for IR. Dyslipidemia is associated with IR in obese horses.

  12. Development of insulin resistance and endothelin-1 levels in the Zucker fatty rat.

    PubMed

    Berthiaume, Nathalie; Mika, Amanda K; Zinker, Bradley A

    2003-07-01

    In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.

  13. Response of osteocalcin and insulin resistance after a hypocaloric diet in obese patients.

    PubMed

    de Luis, D A; Perez Castrillon, J L; Aller, R; Izaola, O; Bachiller, C

    2015-06-01

    Osteocalcin is a hormone with a complex cross-talk between adipose tissue and the skeleton. The aim of the present study was to explore the change of osteocalcin, insulin resistance, and adipocytokines after hypocaloric diet in obese patients. A population of 178 obese patients was analyzed. At basal time and 2 months after the dietary intervention, weight, fat mass, body mass index, basal glucose, insulin, insulin resistance (HOMA), total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, leptin, adiponectin, IL-6, TNF alpha and osteocalcin levels were measured. After dietary treatment, BMI, weight, fat mass, waist circumference, waist to hip ratio, systolic pressure, glucose, HOMA, triglycerides, total cholesterol, leptin and LDL cholesterol decreased significantly. Osteocalcin levels have a significant decrease after weight loss (Osteocalcin (ng/ml); 9.76 ± 5.3 vs 9.31 ± 4.1: p < 0.05). In correlation analysis, a negative association was detected among osteocalcin and age, BMI, fat mass, glucose, C reactive protein, interleukin-6. In the linear regression with age-, sex-, BMI, fat mass- and insulin- adjusted, only C reactive protein concentrations are related with osteocalcin levels -0.21 (CI 95%: -0.40 -0.009). Osteocalcin decreased after a weight loss treatment. Moreover, osteocalcin levels, before and after treatment, were related in a negative way with CRP fat mass, body mass index, age and glucose levels.

  14. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational

  15. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    PubMed Central

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  16. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  17. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport.

    PubMed

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-05-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using (125)I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging.

  18. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    PubMed Central

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-01-01

    Purpose Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state and it has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats with 125I-6-Deoxy-6-Iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Methods Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood were assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Results Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady-state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p<0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) and whereas no significant changes were observed in fructose-fed rats. Conclusion This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. PMID:17171359

  19. Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, iNKT cells, and ILCs.

    PubMed

    Bonamichi, Beatriz Dal Santo Francisco; Lee, Jongsoon

    2017-08-01

    The notion that obesity-induced inflammation mediates the development of insulin resistance in animal models and humans has been gaining strong support. It has also been shown that immune cells in local tissues, in particular in visceral adipose tissue, play a major role in the regulation of obesity-induced inflammation. Specifically, obesity increases the numbers and activation of proinflammatory immune cells, including M1 macrophages, neutrophils, Th1 CD4 T cells, and CD8 T cells, while simultaneously suppressing anti-inflammatory cells such as M2 macrophages, CD4 regulatory T cells, regulatory B cells, and eosinophils. Recently, however, new cell types have been shown to participate in the development of obesity-induced inflammation and insulin resistance. Some of these cell types also appear to regulate obesity. These cells are natural killer (NK) cells and innate lymphoid cells (ILCs), which are closely related, and invariant natural killer T (iNKT) cells. It should be noted that, although iNKT cells resemble NK cells in name, they are actually a completely different cell type in terms of their development and functions in immunity and metabolism. In this review, we will focus on the roles that these relatively new players in the metabolism field play in obesity-induced insulin resistance and the regulation of obesity. Copyright © 2017 Korean Diabetes Association.

  20. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  1. Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats.

    PubMed

    Boqué, Noemi; Campión, Javier; de la Iglesia, Rocío; de la Garza, Ana L; Milagro, Fermín I; San Román, Belén; Bañuelos, Óscar; Martínez, J Alfredo

    2013-03-30

    Polyphenols have been reported to prevent chronic diseases such as cardiovascular diseases, cancers, diabetes and neurodegenerative diseases. The objective of the study was to conduct a screening for potential anti-obesity polyphenolic plant extracts using a diet-induced animal model. Rats were fed a high-fat-sucrose (HFS) diet with or without supplementation of different polyphenolic plant extracts (almond, apple, cinnamon, orange blossom, hamamelis, lime blossom, grape vine, and birch) for 56-64 days. Body weight gain was lower in rats supplemented with apple, cinnamon, hamamelis and birch extracts as compared to HFS non-supplemented group. Moreover, apple and cinnamon extracts prevented the increase in fat mass promoted by the HFS diet. Insulin resistance, estimated by the homostatic model assessment-insulin resistance (HOMA-IR) index, was reduced in rats fed apple, cinnamon, hamamelis and birch extracts. Apple extract also prevented the HFS-induced hyperglycaemia and hyperleptinaemia. Only apple and cinnamon extracts were finally considered as potentially important anti-obesogenic extracts, due to their body fat-lowering effects, while the improvement of obesity-related metabolic complications by apple polyphenols highlights this extract as a promising functional food ingredient for the management of obesity and its metabolic complications. © 2012 Society of Chemical Industry.

  2. Ovariectomized Highly Fit Rats Are Protected against Diet-Induced Insulin Resistance.

    PubMed

    Park, Young-Min; Kanaley, Jill A; Zidon, Terese M; Welly, Rebecca J; Scroggins, Rebecca J; Britton, Steven L; Koch, Lauren G; Thyfault, John P; Booth, Frank W; Padilla, Jaume; Vieira-Potter, Victoria J

    2016-07-01

    In the absence of exercise training, rats selectively bred for high intrinsic aerobic capacity (high-capacity running (HCR)) are protected against ovariectomy (OVX)-induced insulin resistance (IR) and obesity compared with those bred for low intrinsic aerobic capacity (low-capacity running (LCR)). This study determined whether OVX HCR rats remain protected with exposure to high-fat diet (HFD) compared with OVX LCR rats. Female HCR and LCR rats (n = 36; age, 27-33 wk) underwent OVX and were randomized to a standard chow diet (NC, 5% kcal fat) or HFD (45% kcal fat) ad libitum for 11 wk. Total energy expenditure, resting energy expenditure, spontaneous physical activity (SPA), and glucose tolerance were assessed midway, whereas fasting circulating metabolic markers, body composition, adipose tissue distribution, and skeletal muscle adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial markers were assessed at sacrifice. Both HCR and LCR rats experienced HFD-induced increases in total and visceral adiposity after OVX. Despite similar gains in adiposity, HCR rats were protected from HFD-induced IR and reduced total energy expenditure observed in LCR rats (P < 0.05). This metabolic protection was likely attributed to a compensatory increase in SPA and associated preservation of skeletal muscle AMPK activity in HCR; however, HFD significantly reduced SPA and AMPK activity in LCR (P < 0.05). In both lines, HFD reduced citrate synthase activity, gene expression of markers of mitochondrial biogenesis (tFAM, NRF1, and PGC-1α), and protein levels of mitochondrial oxidative phosphorylation complexes I, II, IV, and V in skeletal muscle (all P < 0.05). After OVX, HCR and LCR rats differentially respond to HFD such that HCR increase while LCR decrease SPA. This "physical activity compensation" likely confers protection from HFD-induced IR and reduced energy expenditure in HCR rats.

  3. Study of genetic variation in the STAT3 on obesity and insulin resistance in male adults.

    PubMed

    Gianotti, Tomas F; Sookoian, Silvia; Gemma, Carolina; Burgueño, Adriana L; González, Claudio D; Pirola, Carlos J

    2008-07-01

    Signal transducer and activator of transcription 3 (STAT3) plays an important role in hepatic glucose homeostasis and carbohydrate metabolism and has been implicated in the leptin-mediated energy homeostasis. We explored whether STAT3 gene variants are associated with obesity and insulin resistance in a well-characterized sample of 984 adult men (aged 34.4+/-8.6 years) of self-reported European ancestry from a population-based study. We analyzed three tagging single-nucleotide polymorphisms (tagSNPs), two intronic (rs2293152 and rs6503695) and one located in a noncoding region near the gene promoter (rs9891119). These variants were not associated with either obesity (in which 488 lean individuals were compared to 496 overweight/obese subjects) (P values: 0.68, 0.49, and 0.9 for rs2293152, rs6503695, and rs9891119, respectively) or BMI as a continuous trait (P values: 0.85, 0.73, and 0.58 for rs2293152, rs6503695, and rs9891119, respectively). We found no significant association between the three tagSNPs and fasting plasma glucose and insulin. Likewise, no association was observed between the homeostasis model assessment (HOMA) index and any of the tagSNPs. A significant association was observed with total cholesterol and rs6503695 (nominal P value 0.019), but after correcting for multiple testing by Bonferroni correction, the significance becomes marginal (P=0.057). In conclusion, although STAT3 is an excellent candidate gene for assessing obesity and insulin resistance susceptibility alleles, our results do not support a major role for STAT3 variants in BMI and insulin resistance in our male population.

  4. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain.

    PubMed

    Cheke, Lucy G; Bonnici, Heidi M; Clayton, Nicola S; Simons, Jon S

    2017-02-01

    Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity-related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What-Where-When episodic memory test (the "Treasure-Hunt Task") that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure-Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The influence of puberty on vitamin D status in obese children and the possible relation between vitamin D deficiency and insulin resistance.

    PubMed

    Gutiérrez Medina, Sonsoles; Gavela-Pérez, Teresa; Domínguez-Garrido, María Nieves; Gutiérrez-Moreno, Elisa; Rovira, Adela; Garcés, Carmen; Soriano-Guillén, Leandro

    2015-01-01

    Puberty can affect vitamin D levels. The goal of this study was to analyze the relation between vitamin D deficiency and puberty in obese Spanish children, along with the possible interrelation between vitamin D status and degree of insulin resistance. A cross-sectional study was carried out, in which clinical and biochemical data were gathered from 120 obese and 50 normal weight children between January 2011 and January 2013. Mean vitamin D levels were 19.5 and 31.6 ng/mL in obese pubertal and obese prepubertal children, respectively. About 75% of the obese pubertal subjects and 46% of the obese prepubertal subjects had vitamin D deficiency. Vitamin D levels were significantly lower in pubescent subjects compared with pre-pubescent subjects in summer, fall, and winter. There was no apparent relation between vitamin D levels and homeostasis model assessment index for insulin resistence (expressed in standard deviation score for sex and Tanner stage) in either puberty or pre-puberty. Puberty may be a risk factor for the vitamin D deficiency commonly found in the obese child population. This deficiency is not associated with higher insulin resistance in obese pubertal children compared with obese prepubertal children.

  6. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents.

    PubMed

    Vukovic, Rade; Milenkovic, Tatjana; Mitrovic, Katarina; Todorovic, Sladjana; Plavsic, Ljiljana; Vukovic, Ana; Zdravkovic, Dragan

    2015-12-01

    Available data on metabolically healthy obese (MHO) phenotype in children suggest that gender, puberty, waist circumference, insulin sensitivity, and other laboratory predictors have a role in distinguishing these children from metabolically unhealthy obese (MUO) youth. The goal of this study was to identify predictors of MHO phenotype and to analyze glucose and insulin metabolism during oral glucose tolerance test (OGTT) in MHO children. OGTT was performed in 244 obese children and adolescents aged 4.6-18.9 years. Subjects were classified as MHO in case of no fulfilled criterion of metabolic syndrome except anthropometry or as MUO (≥2 fulfilled criteria). Among the subjects, 21.7 % had MHO phenotype, and they were more likely to be female, younger, and in earlier stages of pubertal development, with lower degree of abdominal obesity. Insulin resistance was the only independent laboratory predictor of MUO phenotype (OR 1.59, CI 1.13-2.25), with 82 % sensitivity and 60 % specificity for diagnosing MUO using HOMA-IR cutoff point of ≥2.85. Although no significant differences were observed in glucose regulation, MUO children had higher insulin demand throughout OGTT, with 1.53 times higher total insulin secretion. Further research is needed to investigate the possibility of targeted treatment of insulin resistance to minimize pubertal cross-over to MUO in obese children. • Substantial proportion of the obese youth (21-68 %) displays a metabolically healthy (MHO) phenotype. • Gender, puberty, waist circumference, insulin sensitivity, and lower levels of uric acid and transaminases have a possible role in distinguishing MHO from metabolically unhealthy obese (MUO) children. • Insulin resistance was found to be the only significant laboratory predictor of MUO when adjusted for gender, puberty, and the degree of abdominal obesity. • Besides basal insulin resistance, MUO children were found to have a significantly higher insulin secretion throughout OGTT in

  7. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats.

    PubMed

    Miranda, Rosiane A; Torrezan, Rosana; de Oliveira, Júlio C; Barella, Luiz F; da Silva Franco, Claudinéia C; Lisboa, Patrícia C; Moura, Egberto G; Mathias, Paulo C F

    2016-07-01

    Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity. © 2016 Society for Endocrinology.

  8. Obesity-resistant S5B rats showed great cocaine conditioned place preference than the obesity-prone OM rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Wang, G.; Thanos, P.K..

    Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards. Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet. We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse. Therefore, we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP). To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity, wemore » then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains. OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days. Rats were then tested for cocaine preference. The effects of BC (0.5, 1, 5, 10, 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions. OM rats did not show a significant preference for the cocaine-paired chamber on test day. Only the S5B/P rats showed cocaine CPP. Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine. Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats. These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine). However, they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs.« less

  9. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    PubMed

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  10. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice.

    PubMed

    Ussher, John R; Keung, Wendy; Fillmore, Natasha; Koves, Timothy R; Mori, Jun; Zhang, Liyan; Lopaschuk, David G; Ilkayeva, Olga R; Wagg, Cory S; Jaswal, Jagdip S; Muoio, Deborah M; Lopaschuk, Gary D

    2014-06-01

    There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits fatty acid oxidation in the heart secondary to inhibition of 3-ketoacyl-CoA thiolase (3-KAT), may have off-target effects on glycemic control in obesity. We fed C57BL/6NCrl mice a high-fat diet (HFD) for 10 weeks before a 22-day treatment with the 3-KAT inhibitor trimetazidine (15 mg/kg per day). Insulin resistance was assessed via glucose/insulin tolerance testing, and lipid metabolite content was assessed in gastrocnemius muscle. Trimetazidine-treatment led to a mild shift in substrate preference toward carbohydrates as an oxidative fuel source in obese mice, evidenced by an increase in the respiratory exchange ratio. This shift in metabolism was accompanied by an accumulation of long-chain acyl-CoA and a trend to an increase in triacylglycerol content in gastrocnemius muscle, but did not exacerbate HFD-induced insulin resistance compared with control-treated mice. It is noteworthy that trimetazidine treatment reduced palmitate oxidation rates in the isolated working mouse heart and neonatal cardiomyocytes but not C2C12 skeletal myotubes. Our findings demonstrate that trimetazidine therapy does not adversely affect HFD-induced insulin resistance, suggesting that treatment with trimetazidine would not worsen glycemic control in obese patients with angina.

  11. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    PubMed

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  12. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  13. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients.

    PubMed

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2-3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects.

  14. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    PubMed

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    PubMed

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  16. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    PubMed

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

  17. Effect of L-Carnitine Supplementation on Apelin and Apelin Receptor (Apj) Expression in Cardiac Muscle of Obese Diabetic Rats.

    PubMed

    Ranjbar Kohan, Neda; Nazifi, Saeed; Tabandeh, Mohammad Reza; Ansari Lari, Maryam

    2018-10-01

    L-carnitine (LC) has been shown to protect cardiac metabolism in diabetes patients with cardiovascular diseases (CVDs). Apelin, a newly discovered adipocytokines, is an important regulator of cardiac muscle function; however, the role of the level of expression of Apelin axis in improvement of cardiac function by LC in diabetic patients, is not clear. In the present study, obese insulin-resistant rats were used to determine the effect of LC, when given orally with a high-calorie diet, on Apelin and Apelin receptor (Apj) expression in cardiac muscle. In this experimental study, rats were fed with high-fat/high-carbohydrate diet for five weeks and subsequently were injected with streptozotocin 30 mg/kg for induction of obesity and insulin resistance. After confirming the induction of diabetes (serum glucose above 7.5 mmol/L), the animals received LC 300 mg/kg in drinking water for 28 days. On days 0, 14 and 28 after treatment, cardiac Apelin and Apj gene expression was evaluated by real time polymerase chain reaction (PCR) analysis. Serum levels of insulin, Apelin, glucose, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and the homeostasis model assessment of insulin resistance (HOMA-IR) were also measured using commercial kits. Cardiac Apelin and Apj expression and serum Apelin were increased in obese rats, while LC supplementation decreased the serum levels of Apelin and down-regulated Apelin and Apj expression in cardiac muscle. These changes were associated with reduced insulin resistance markers and serum inflammatory factors and improved lipid profile. We concluded that LC supplementation could attenuate the over-expression of Apelin axis in heart of diabetic rats, a novel mechanism by which LC improves cardiovascular complications in diabetic patients. Copyright© by Royan Institute. All rights reserved.

  18. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    PubMed

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  19. Cardiovascular fitness, insulin resistance and metabolic syndrome in severely obese prepubertal Italian children.

    PubMed

    Brufani, Claudia; Grossi, Armando; Fintini, Danilo; Fiori, Rossana; Ubertini, Graziamaria; Colabianchi, Diego; Ciampalini, Paolo; Tozzi, Alberto; Barbetti, Fabrizio; Cappa, Marco

    2008-01-01

    To evaluate if insulin resistance (IR) and metabolic syndrome (MS) were associated with poor cardiovascular fitness in very obese prepubertal Italian subjects. Children referred to the Endocrinology and Diabetes Unit of Bambino Gesù Children's Hospital underwent an OGTT with glucose and insulin assays. QUICKI, ISI and HOMA-IR were calculated. Total and HDL cholesterol, triglycerides and percentage of body fat (DEXA) were determined. Cardiovascular fitness (maximal treadmill time) was evaluated using a treadmill protocol. The MS was defined as having 3 or more of following risk factors: obesity, impaired glucose tolerance, high blood pressure, low HDL-cholesterol, high triglycerides. Fifty-five very obese prepubertal Italian children were enrolled in the study. Unadjusted correlation revealed maximal treadmill time negatively related to fasting insulin (r = -0.53, p < 0.0001) and HOMA-IR (r = -0.57, p < 0.0001) and positively to QUICKI (r = 0.51, p < 0.0001) and ISI (r = 0.46, p = 0.0035). These relationships remained significant when in multivariate analysis age, gender, BMI SD and body composition were accounted for (all p < 0.01). The presence of the MS was independently associated with maximal treadmill time. Poorcardiovascular fitness, IR and MS were independently related, suggesting that the relationship between fitness and insulin action develops early in life. Copyright 2008 S. Karger AG, Basel.

  20. Attenuation of insulin-resistance-based hepatocarcinogenesis and angiogenesis by combined treatment with branched-chain amino acids and angiotensin-converting enzyme inhibitor in obese diabetic rats.

    PubMed

    Yoshiji, Hitoshi; Noguchi, Ryuichi; Kaji, Kosuke; Ikenaka, Yasuhide; Shirai, Yusaku; Namisaki, Tadashi; Kitade, Mitsuteru; Tsujimoto, Tatsuhiro; Kawaratani, Hideto; Fukui, Hiroshi

    2010-04-01

    Insulin resistance (IR) is reportedly involved in the progression of hepatocellular carcinoma (HCC). Because neovascularization plays an important role in HCC, including hepatocarcinogenesis, an angiostatic therapy would be a promising approach for chemoprevention against HCC. The aim of the present study was to examine the combined effect of clinically used branched-chain amino acids (BCAAs) and an angiotensin-converting enzyme inhibitor (ACE-I), in conjunction with neovascularization, on hepatocarcinogenesis under the condition of IR. The combined effect of the treatment on the development of liver enzyme-altered preneoplastic lesions, angiogenesis, and several indices was elucidated in obese diabetic rats. We also performed several sets of in vitro experiments to examine the mechanisms involved. When used individually, both BCAAs and ACE-I at clinically comparable low doses significantly attenuated the development of preneoplastic lesions, along with the suppression of both angiogenesis and vascular endothelial growth factor (VEGF) expression. The combination treatment with both agents exerted a more potent inhibitory effect than that of either single agent. Our in vitro study showed a similar combined effect on endothelial cell tubule formation. This combination regimen showed a marked chemopreventive effect against hepatocarcinogenesis, along with suppression of neovascularization and VEGF expression, in obese diabetic rats. Because both BCAAs and ACE-Is are widely used in clinical practice, this combination therapy may represent a potential new strategy for chemoprevention against IR-based HCC in the future.

  1. Rice Bran Protein Hydrolysates Improve Insulin Resistance and Decrease Pro-inflammatory Cytokine Gene Expression in Rats Fed a High Carbohydrate-High Fat Diet

    PubMed Central

    Boonloh, Kampeebhorn; Kukongviriyapan, Veerapol; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Pannangpetch, Patchareewan

    2015-01-01

    A high carbohydrate-high fat (HCHF) diet causes insulin resistance (IR) and metabolic syndrome (MS). Rice bran has been demonstrated to have anti-dyslipidemic and anti-atherogenic properties in an obese mouse model. In the present study, we investigated the beneficial effects of rice bran protein hydrolysates (RBP) in HCHF-induced MS rats. After 12 weeks on this diet, the HCHF-fed group was divided into four subgroups, which were orally administered RBP 100 or 500 mg/kg, pioglitazone 10 mg/kg, or tap water for a further 6 weeks. Compared with normal diet control group, the MS rats had elevated levels of blood glucose, lipid, insulin, and HOMA-IR. Treatment with RBP significantly alleviated all those changes and restored insulin sensitivity. Additionally, RBP treatment increased adiponectin and suppressed leptin levels. Expression of Ppar-γ mRNA in adipose tissues was significantly increased whereas expression of lipogenic genes Srebf1 and Fasn was significantly decreased. Levels of mRNA of proinflammatory cytokines, Il-6, Tnf-α, Nos-2 and Mcp-1 were significantly decreased. In conclusion, the present findings support the consumption of RBP as a functional food to improve insulin resistance and to prevent the development of metabolic syndrome. PMID:26247962

  2. Expanded Normal Weight Obesity and Insulin Resistance in US Adults of the National Health and Nutrition Examination Survey

    PubMed Central

    Martinez, Keilah E.; Bailey, Bruce W.

    2017-01-01

    This study aims to expand the evaluation of normal weight obesity (NWO) and its association with insulin resistance using an NHANES (1999–2006) sample of US adults. A cross-sectional study including 5983 men and women (50.8%) was conducted. Body fat percentage (BF%) was assessed using dual-energy X-ray absorptiometry. Expanded normal weight obesity (eNWO) categories, pairings of BMI and body fat percentage classifications, were created using standard cut-points for BMI and sex-specific median for BF%. Homeostatic model assessment-insulin resistance (HOMA-IR) levels were used to index insulin resistance. Mean ± SE values were BMI: 27.9 ± 0.2 (women) and 27.8 ± 0.1 (men); body fat percentage: 40.5 ± 0.2 (women) and 27.8 ± 0.2 (men); and HOMA-IR: 2.04 ± 0.05 (women) and 2.47 ± 0.09 (men). HOMA-IR differed systematically and in a dose-response fashion across all levels of the eNWO categories (F = 291.3, P < 0.0001). As BMI levels increased, HOMA-IR increased significantly, and within each BMI category, higher levels of body fat were associated with higher levels of HOMA-IR. Both high BMI and high BF% were strongly related to insulin resistance. Insulin resistance appears to increase incrementally according to BMI levels primarily and body fat levels secondarily. Including a precise measure of body fat with BMI adds little to the utility of BMI in the prediction of insulin resistance. PMID:28812029

  3. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    PubMed Central

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  4. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment.

    PubMed

    Wang, Zhenzhi; Zhai, Dongxia; Zhang, Danying; Bai, Lingling; Yao, Ruipin; Yu, Jin; Cheng, Wen; Yu, Chaoqin

    2017-05-01

    Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepiandrosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

  5. [Metabolic profile in obese patients with obstructive sleep apnea. A comparison between patients with insulin resistance and with insulin sensitivity].

    PubMed

    Dumitrache-Rujinski, Stefan; Dinu, Ioana; Călcăianu, George; Erhan, Ionela; Cocieru, Alexandru; Zaharia, Dragoş; Toma, Claudia Lucia; Bogdan, Miron Alexandru

    2014-01-01

    Obstructive sleep apnea syndrome (OSAS) may induce metabolic abnormalities through intermittent hypoxemia and simpathetic activation. It is difficult to demonstrate an independent role of OSAS in the occurrence of metabolic abnormalities, as obesity represents an important risk factor for both OSAS and metabolic abnormalities. to assess the relations between insulin resistance (IR), insulin sensitivity (IS), OSAS severity and nocturnal oxyhaemoglobin levels in obese, nondiabetic patients with daytime sleepiness. We evaluated 99 consecutive, obese, nondiabetic patients (fasting glycemia < 126 mg/dL, no hypoglycemic or hypolipemiant medication) diagnosed with OSAS (AHI > 5/hour and daytime sleepiness) by an ambulatory six channel cardio-respiratory polygraphy. Hight, weight serum triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) levels were evaluated. Correlations between Apneea Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), average and lowest oxyhaemoglobin saturation (SaO), body mass index (BMI) and insulin resistance or sensitivity were assesed. IR was defined as a TG/ HDL-Cratio > 3, and insulin sensitivity (IS) as a TG/HDL-C ratio < 2. 64 patients (out of 99) had lR and 18 IS. In the IR group (44 men and 20 women), the mean age was 52 +/- 10.6 years, mean BMI: 38.54 +/- 6.67 Kg/m2 (30-60), TG/HDL-C:5, 27 +/- 2.03 (3.02-11.1), mean AHI: 49.65 +/- 25.55/hour (7-110), mean ODI: 4769 +/- 24.95/hour (4-98), mean average SaO2 89.42 +/- 4.6 and mean lowest SaO2 68.4% +/- 13.8% (32-88%). 48 patients had severe, 7 moderate and 9 mild OSAS. In the IS group (10 men and 8 women), the mean age was 58.4 +/- 8.2years, mean BMI: 35.4 +/- 4.29 Kg/m2 (30-46), TG/ HDL-C: 1.64 +/- 0.29 (1.13-1.95), mean AHI: 45.8 +/- 30.3/hour (9-131), mean ODI: 39.9 +/- 32.2/hour (2-133), mean average SaO2 90.8 +/- 8.2 (81-95) and mean lowest SaO2: 74% +/- 10.8% (52-87%). 12 patients had severe, 3 moderate and 3 mild OSAS. Insulin sensitivity positively correlated with mean

  6. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    PubMed

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    PubMed

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  8. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.

    PubMed

    Wang, Zhiyong; Shah, O Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.

  9. The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models

    PubMed Central

    Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932

  10. The incidence of metabolic syndrome in obese Czech children: the importance of early detection of insulin resistance using homeostatic indexes HOMA-IR and QUICKI.

    PubMed

    Pastucha, D; Filipčíková, R; Horáková, D; Radová, L; Marinov, Z; Malinčíková, J; Kocvrlich, M; Horák, S; Bezdičková, M; Dobiáš, M

    2013-01-01

    Common alimentary obesity frequently occurs on a polygenic basis as a typical lifestyle disorder in the developed countries. It is associated with characteristic complex metabolic changes, which are the cornerstones for future metabolic syndrome development. The aims of our study were 1) to determine the incidence of metabolic syndrome (based on the diagnostic criteria defined by the International Diabetes Federation for children and adolescents) in Czech obese children, 2) to evaluate the incidence of insulin resistance according to HOMA-IR and QUICKI homeostatic indexes in obese children with and without metabolic syndrome, and 3) to consider the diagnostic value of these indexes for the early detection of metabolic syndrome in obese children. We therefore performed anthropometric and laboratory examinations to determine the incidence of metabolic syndrome and insulin resistance in the group of 274 children with obesity (128 boys and 146 girls) aged 9-17 years. Metabolic syndrome was found in 102 subjects (37 %). On the other hand, the presence of insulin resistance according to QUICKI <0.357 was identified in 86 % and according to HOMA-IR >3.16 in 53 % of obese subjects. This HOMA-IR limit was exceeded by 70 % children in the MS(+) group, but only by 43 % children in the MS(-) group (p<0.0001). However, a relatively high incidence of insulin resistance in obese children without metabolic syndrome raises a question whether the existing diagnostic criteria do not falsely exclude some cases of metabolic syndrome. On the basis of our results we suggest to pay a preventive attention also to obese children with insulin resistance even if they do not fulfill the actual diagnostic criteria for metabolic syndrome.

  11. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model.

    PubMed

    Ouchfoun, Meriem; Eid, Hoda M; Musallam, Lina; Brault, Antoine; Li, Shilin; Vallerand, Diane; Arnason, John T; Haddad, Pierre S

    2016-04-01

    Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/β) and a decrease in the hepatic content of SREBP-1 (39 %). Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.

  12. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Insulin-sensitive obese children display a favorable metabolic profile.

    PubMed

    Vukovic, Rade; Mitrovic, Katarina; Milenkovic, Tatjana; Todorovic, Sladjana; Soldatovic, Ivan; Sipetic-Grujicic, Sandra; Zdravkovic, Dragan

    2013-02-01

    Most of what is known about the metabolically healthy obese phenomenon is derived from studies in the adult population and no standardized criteria to identify these individuals exist to date. The aim of this study was to determine if the preserved insulin sensitivity evaluated by homeostatic model assessment of insulin resistance (HOMA-IR) index is associated with favorable metabolic profile in the obese children. We studied a group of 248 children and adolescents (150 female, 98 male), aged 5.9-18.9 years with diet-induced obesity (BMI >95th percentile). The entire cohort was divided into quartiles based on levels of insulin resistance determined by HOMA-IR index. Subjects in the lower quartile of HOMA-IR were classified as insulin-sensitive group (ISG), whereas children in the upper quartile were categorized as insulin-resistant group (IRG). The ISG subjects had values of HOMA-IR ≤2.75 while the children from the IRG group had HOMA-IR ≥6.16. Subjects from ISG group had lower basal β-cell activity and were less likely to have impaired fasting glucose or impaired glucose tolerance. Concentrations of LDL and total cholesterol, triglycerides, and transaminases were lower and HDL cholesterol levels were higher in ISG subjects. Findings obtained by the use of Matsuda index correlated well with the findings obtained by the use of HOMA-IR. Lower HOMA-IR values were significantly associated with favorable metabolic profile in studied children, which correlates with findings in the adult population and emphasizes the need for further, longitudinal studies of insulin resistance development in childhood obesity.

  14. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat.

    PubMed

    Coan, Philip M; Hummel, Oliver; Garcia Diaz, Ana; Barrier, Marjorie; Alfazema, Neza; Norsworthy, Penny J; Pravenec, Michal; Petretto, Enrico; Hübner, Norbert; Aitman, Timothy J

    2017-03-01

    We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl , RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1 , Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying genes and

  15. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

    PubMed Central

    Hummel, Oliver; Garcia Diaz, Ana; Barrier, Marjorie; Alfazema, Neza; Norsworthy, Penny J.; Pravenec, Michal; Petretto, Enrico; Hübner, Norbert

    2017-01-01

    ABSTRACT We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying

  16. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  17. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth.

    PubMed

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  18. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    PubMed Central

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome. PMID:25763405

  19. Endocrinology and Adolescence: aerobic exercise reduces insulin resistance markers in obese youth: a meta-analysis of randomized controlled trials.

    PubMed

    García-Hermoso, Antonio; Saavedra, Jose M; Escalante, Yolanda; Sánchez-López, Mairena; Martínez-Vizcaíno, Vicente

    2014-10-01

    The purpose of this meta-analysis was to examine the evidence for the effectiveness of aerobic exercise interventions on reducing insulin resistance markers in obese children and/or adolescents. A secondary outcome was change in percentage of body fat. A computerized search was made from seven databases: CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, ERIC, MEDLINE, PsycINFO, and Science Citation Index. The analysis was restricted to randomized controlled trials that examined the effect of aerobic exercise on insulin resistance markers in obese youth. Two independent reviewers screened studies and extracted data. Effect sizes (ES) and 95% confidence interval (CI) were calculated, and the heterogeneity of the studies was estimated using Cochran's Q-statistic. Nine studies were selected for meta-analysis as they fulfilled the inclusion criteria (n=367). Aerobic exercise interventions resulted in decreases in fasting glucose (ES=-0.39; low heterogeneity) and insulin (ES=-0.40; low heterogeneity) and in percentage of body fat (ES=-0.35; low heterogeneity). These improvements were specifically accentuated in adolescents (only in fasting insulin), or through programs lasting more than 12 weeks, three sessions per week, and over 60 min of aerobic exercise per session. This meta-analysis provides insights into the effectiveness of aerobic exercise interventions on insulin resistance markers in the obese youth population. © 2014 European Society of Endocrinology.

  20. A Prospective Observational Study of Obesity, Body Composition, and Insulin Resistance in 18 Women With Bipolar Disorder and 17 Matched Control Subjects

    PubMed Central

    Fleet-Michaliszyn, Sara B.; Soreca, Isabella; Otto, Amy D.; Jakicic, John M.; Fagiolini, Andrea; Kupfer, David J.; Goodpaster, Bret H.

    2012-01-01

    Objective Patients with bipolar disorder are at increased risk for diabetes and cardiovascular diseases, possibly because of more severe insulin resistance. The primary purpose of this study was to determine whether insulin resistance is characteristic of bipolar disorder. Method The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was performed in 18 women with DSM-IV bipolar I disorder, and results were compared to those of 17 matched controls. Other risk factors were compared, including blood pressure, blood lipids, and abdominal obesity by computed tomography (CT). Additionally, substrate utilization was measured by indirect calorimetry, and free-living energy expenditure was estimated using wearable activity monitors. All data were collected between February 2006 and December 2007. Results Patients with bipolar disorder were no more insulin resistant than controls after accounting for generalized obesity (mean ± SEM HOMA-IR = 2.7 ± 0.7 vs. 2.5 ± 0.7, for patients and controls, respectively; p = .79). Although blood lipid profiles were generally similar in patients and controls, obese patients had higher blood pressure than controls. Obese patients had more mean ± SEM total abdominal fat (718.1 ± 35.1 cm2 vs. 607.4 ± 33.6 cm2: p = .04), and tended (p = .06) to have more visceral abdominal fat. Patients oxidized 13% less fat during resting conditions, although their resting metabolic rate was similar to that of controls. Conclusion Women with bipolar I disorder were no more insulin resistant than matched controls after accounting for their level of obesity. However, they were more hypertensive, had higher amounts of abdominal obesity, and had reduced rates of fat oxidation. Therefore, women with bipolar I disorder may be at a heightened risk for future weight gain and concomitant risk for diabetes and cardiovascular disease. PMID:19026257

  1. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    PubMed

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat.

    PubMed

    Kotoh, Jun; Sasaki, Daiki; Matsumoto, Kozo; Maeda, Akihiko

    2016-12-01

    Type 2 diabetes is a polygenic disease and characterized by hyperglycemia and insulin resistance, and it is strongly associated with obesity. However, the mechanism by which obesity contributes to onset of type 2 diabetes is not well understood. We generated rat strains with a hyperglycemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr -/- ) locus derived from the Zucker Fatty rat. Phenotypes for plasma glucose, and insulin levels were measured, and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blot analyses, respectively. Compared with the obese control strain F344-fa (Lepr -/- ), plasma glucose levels of the obese F344-fa-nidd6 (Lepr -/- and Nidd6/of) significantly increased, and plasma insulin levels significantly decreased. These phenotypes were not observed in the lean strains, suggesting that the Nidd6/of locus harbors a diabetogenic gene associated with obesity. We measured the expression of 41 genes in the Nidd6/of QTL region of each strain and found that the mRNA expression levels of the two genes significantly differed between the obese strains. The two genes, pleckstrin homology domain-containing, family S member 1 (Plechs1) and peroxiredoxin III (Prdx3), were differentially expressed only in the obese rats, suggesting that these two genes are involved in the mild elevation of blood glucose levels and insulin resistance in obesity.

  3. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. White blood cells levels and PCOS: direct and indirect relationship with obesity and insulin resistance, but not with hyperandogenemia.

    PubMed

    Papalou, Olga; Livadas, Sarantis; Karachalios, Athanasios; Tolia, Nikoleta; Kokkoris, Panayiotis; Tripolitakis, Konstantinos; Diamanti-Kandarakis, Evanthia

    2015-01-01

    To study white blood cells count (WBC) in women suffering from PCOS and compare these results with age and BMI-matched healthy women. The specific aim of this study was to assess the possible correlations of WBC with the major components of PCOS, obesity, insulin resistance and hyperandrogenism. Anthropometrical, metabolic and hormonal data were analyzed from 203 women with PCOS (NIH criteria) and 76 age-matched controls. In the total population studied (N=279), WBC was significantly higher (P=0.003) in the PCOS group compared with age-matched healthy women and was positively correlated with BMI (r=0.461, p<0.001), total testosterone (r= 0.210, p<0.001), insulin (r=0.271, p<0.001), triglycerides (r=0.285, p<0.001), HOMA score (r=0.206, p=0.001), FAI (r=0.329, p<0.001) and negatively correlated with SHBG (r=-0.300, p<0.001) and HDL (r=-0.222, p<0.001). Due to the fact that WHR was only available in the group of PCOS women, the role of central adiposity is assessed only in this group. Multiple regression analysis in the PCOS group, including WHR, revealed BMI, SHBG and TGL as the main predicting factors of WBC. Multinomial logistic regression analysis was also conducted and overweight/obesity was the sole independent risk factor for elevated WBC (higher tertile) (OR:0.907 CI:0.85-0.96, p=0.002). After dividing the sample based on BMI in the lean subgroups, WBC did not differ significantly between PCOS and controls, while multiple regression analysis indicated SHBG as the main predicting factor of WBC. Finally, we picked out the group of overweight/obese (BMI ≥25 kg/m2) women with PCOS and conducted another classification based on HOMA score (HOMA-IR≤2: insulin-sensitive women, HOMA-IR>2: insulin-resistant women) in the group of overweight and obese women with PCOS separately. In overweight women with PCOS, WBC, although higher in the group of insulin-resistant, did not differ significantly between the two groups, while in the subcategory of overweight women WBC

  5. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  6. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance.

    PubMed

    Gaggini, Melania; Carli, Fabrizia; Rosso, Chiara; Buzzigoli, Emma; Marietti, Milena; Della Latta, Veronica; Ciociaro, Demetrio; Abate, Maria Lorena; Gambino, Roberto; Cassader, Maurizio; Bugianesi, Elisabetta; Gastaldelli, Amalia

    2018-01-01

    Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort. Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism

  7. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less

  8. Nesfatin-1 in childhood and adolescent obesity and its association with food intake, body composition and insulin resistance.

    PubMed

    Anwar, Ghada M; Yamamah, Gamal; Ibrahim, Amani; El-Lebedy, Dalia; Farid, Tarek M; Mahmoud, Rasha

    2014-01-10

    Nesfatin-1 is an anorexigenic peptide that controls feeding behavior and glucose homeostasis. However, there is little data that exists regarding nesfatin-1 secretion in obese children and young adolescents. The aim of this study is to investigate serum nesfatin-1 in childhood and adolescent obesity and to study potential correlations with food intake, anthropometric indices, body composition and insulin resistance. Forty obese children and adolescents and 40 healthy control subjects were studied. Anthropometric measurements were assessed, dietary food intake was evaluated based on 3-days food record and body composition indices were evaluated using bioelectrical impedance analysis. Lipid profile, fasting blood sugar, fasting insulin and HOMA-IR were measured. Fasting serum nesfatin-1 was quantitatively assayed by ELISA. Serum nesfatin-1 was significantly higher in obese group (2.49±1.96 ng/ml) than in control group (0.70±0.81 ng/ml), P=0.001. Positive correlations with serum insulin (P=0.001), HOMA-IR (P=0.000), BMI-SDS (P=0.04), body fat % (P=0.000), fat mass (P=0.000), fat free mass (P=0.03), CHO % (P=0.000), and saturated fat % (P=0.01) were found. While significant negative correlation with protein % (P=0.000) was observed. In conclusion, our results denote that nesfatin-1 might have an important role in regulation of food intake and pathogenesis of insulin resistance in obese children and young adolescents. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome.

    PubMed

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel; Lykkegaard, Kirsten; Tang-Christensen, Mads; Hansen, Harald S; Levin, Barry E; Larsen, Philip Just; Knudsen, Lotte Bjerre; Fosgerau, Keld; Vrang, Niels

    2010-09-01

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.

  10. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  11. Accretion of visceral fat and hepatic insulin resistance in pregnant rats.

    PubMed

    Einstein, Francine H; Fishman, Sigal; Muzumdar, Radhika H; Yang, Xiao Man; Atzmon, Gil; Barzilai, Nir

    2008-02-01

    Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.

  12. CREG1 heterozygous mice are susceptible to high fat diet-induced obesity and insulin resistance.

    PubMed

    Tian, Xiaoxiang; Yan, Chenghui; Liu, Meili; Zhang, Quanyu; Liu, Dan; Liu, Yanxia; Li, Shaohua; Han, Yaling

    2017-01-01

    Cellular repressor of E1A-stimulated genes 1 (CREG1) is a small glycoprotein whose physiological function is unknown. In cell culture studies, CREG1 promotes cellular differentiation and maturation. To elucidate its physiological functions, we deleted the Creg1 gene in mice and found that loss of CREG1 leads to early embryonic death, suggesting that it is essential for early development. In the analysis of Creg1 heterozygous mice, we unexpectedly observed that they developed obesity as they get older. In this study, we further studied this phenotype by feeding wild type (WT) and Creg1 heterozygote (Creg1+/-) mice a high fat diet (HFD) for 16 weeks. Our data showed that Creg1+/- mice exhibited a more prominent obesity phenotype with no change in food intake compared with WT controls when challenged with HFD. Creg1 haploinsufficiency also exacerbated HFD-induced liver steatosis, dyslipidemia and insulin resistance. In addition, HFD markedly increased pro-inflammatory cytokines in plasma and epididymal adipose tissue in Creg1+/- mice as compared with WT controls. The activation level of NF-κB, a major regulator of inflammatory response, in epididymal adipose tissue was also elevated in parallel with the cytokines in Creg1+/- mice. These pro-inflammatory responses elicited by CREG1 reduction were confirmed in 3T3-L1-derived adipocytes with CREG1 depletion by siRNA transfection. Given that adipose tissue inflammation has been shown to play a key role in obesity-induced insulin resistance and metabolic syndrome, our results suggest that Creg1 haploinsufficiency confers increased susceptibility of adipose tissue to inflammation, leading to aggravated obesity and insulin resistance when challenged with HFD. This study uncovered a novel function of CREG1 in metabolic disorders.

  13. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    PubMed

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  14. Effect of lipoprotein-associated phospholipase A2 inhibitor on insulin resistance in streptozotocin-induced diabetic pregnant rats.

    PubMed

    Wang, Guo-Hua; Jin, Jun; Sun, Li-Zhou

    2018-06-21

    This paper aims to investigate the influence of lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, darapladib, on insulin resistance (IR) in streptozotocin (STZ)-induced diabetic pregnant rats. The rat models were divided into Control (normal pregnancy), STZ + saline (STZ-induced diabetic pregnant rats), STZ + Low-dose and STZ + High-dose darapladib (STZ-induced diabetic pregnant rats treated with low-/high-dose darapladib) groups. Pathological changes were observed by Hematoxylin-eosin (HE) and Immunohistochemistry staining. Lp-PLA2 levels were determined by enzyme-linked immunosorbent assay (ELISA). An automatic biochemical analyzer was used to measure the serum levels of biochemical indicators, and homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were calculated. Western blot was applied to determine levels of inflammatory cytokines. Compared with Control group, rats in the STZ + saline group were significantly decreased in body weight, the number of embryo implantation, the number of insulin positive cells and pancreatic islet size as well as the islet endocrine cells, and high-density lipoprotein (HDL-C) level, but substantially increased in Lp-PLA2, low-density lipoprotein (LDL-C), fatty acids (FFA), serum total cholesterol (TC), triglyceride (TG) levels. Moreover, the increased fasting plasma glucose (FPG) and HOMA-IR and inflammatory cytokines but decreased fasting insulin (FINS) and ISI were also found in diabetic pregnant rats. On the contrary, rats in the darapladib-treated groups were just opposite to the STZ + saline group, and STZ + High-dose group improved better than STZ + Low-dose group. Thus, darapladib can improve lipid metabolism, and enhance insulin sensitivity of diabetic pregnant rats by regulating inflammatory cytokines.

  15. [Effects of telmisartan on resistin expression in a rat model of nonalcoholic steatohepatitis and insulin resistance].

    PubMed

    Zhang, Qiuzan; Wang, Yanrong; Liu, Yingli; Yang, Qian; Wang, Xiuru; Wang, Qiang; Zhang, Chenming; Wang, Bangmao

    2015-04-01

    To investigate the effects of telmisartan on expression of resistin in serum and liver under conditions of nonalcoholic steatohepatitis (NASH) and insulin resistance using a rat model system. Forty-five male Sprague-Dawley rats were randomly divided into a normal control group (NC, n=10), a model control group (MC, n=15), a polyene phosphatidylcholine prevention group (PP, n=10), and a telmisartan prevention group (TP, n=10). The NC group was given a standard diet and the other groups were given a high-fat diet for 16 weeks in order to induce NASH. At the end of week 12, 5 rats in the MC group were sacrificed for pathology confirmation of the NASH model. At the end of week 12, the TP group was given telmisartan (8.0 mg/kg/d) and the PP group was given polyene phosphatidylcholine (8.4 mg/kg/d) for an additional 4 weeks by intragastric administration. At the end of week 16, all rats were sacrificed and body weights recorded. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG), resistin, insulin and fasting blood glucose were measured. The insulin resistance value, HOMA-IR, was assessed by homeostasis mode assessment. Liver expression of the resistin protein was detected by western blotting and of the resistin mRNA was detected by RT-PCR. The F test and LSD test were used for statistical analyses. Compared to the NC group, the body weight and HOMA-IR of rats in the MC group were significantly increased (P<0.01). The levels of serum resistin, and of resistin protein and mRNA in liver, were significantly higher in the MC group than in the NC group of rats (all P less than 0.01). The body weight of rats in the TP group was significantly lower than those in the MC group (P<0.05). The levels of serrn resistin, resistin protein and mRNA in the liver, and insulin resistance were significantly lower in the TP group than in the MC group of rats (all P<0.01). The PP group did not show significant

  16. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds.

    PubMed

    Giannini, Cosimo; Santoro, Nicola; Caprio, Sonia; Kim, Grace; Lartaud, Derek; Shaw, Melissa; Pierpont, Bridget; Weiss, Ram

    2011-08-01

    We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798-12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity.

  17. Preoperative oral carbohydrate improved postoperative insulin resistance in rats through the PI3K/AKT/mTOR pathway.

    PubMed

    Wang, Zhiguo; Liu, Yiqing; Li, Qi; Ruan, Canping; Wu, Bin; Wang, Qiang; Hu, Zhiqian; Qin, Huanlong

    2015-01-01

    Preoperative oral carbohydrate (OCH) improves postoperative insulin resistance (PIR) and insulin sensitivity. However, the exact mechanisms involved in the improvement of PIR with respect to preoperative OCH are still not clear. The aim of this study was to investigate the involvement of preoperative OCH and PI3K/AKT/mTOR pathway in reducing PIR in rats. Forty male Sprague-Dawley rats were randomly assigned to PreOp, glucose, saline, and fasting groups. Rats in the PreOp, glucose, and saline groups received OCH, 5% glucose solution, and saline, respectively. Rats in the fasting group did not receive anything but were fasted 3 h before surgery. Blood glucose, insulin and leucine levels, and insulin resistance, secretion, and sensitivity indexes were measured before and after surgery. mRNA and protein (total and phosphorylated) levels of mTOR, IRS-1, PI3K, PKB/AKT, and GlUT4 were measured using real-time polymerase chain reaction and Western blot in skeletal muscles. In the PIR experiment, blood glucose, serum insulin, insulin resistance, and serum leucine levels were all significantly lower in the PreOp group than in the other 3 groups (P<0.05) after surgery. HOMA-ISI were higher in the PreOp group vs the other 3 groups after surgery (P<0.05), and HOMA-b in the PreOp group was higher than that in the other 3 groups at 30 and 120 min after surgery. Additionally, post-operative phosphorylated IRS-1, PI3K, and AKT protein levels were significantly higher in the PreOp group than in the other 3 groups (P<0.05), but no significant differences were observed in their respective protein levels (P>0.05). OCH decreases postoperative insulin resistance and improves postoperative insulin sensitivity in skeletal muscles through the PI3K/AKT/mTOR pathway.

  18. Infusion of adipose‑derived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats.

    PubMed

    Deng, Zihui; Xu, Huiyan; Zhang, Jinying; Yang, Chen; Jin, Liyuan; Liu, Jiejie; Song, Haijing; Chen, Guanghui; Han, Weidong; Si, Yiling

    2018-06-01

    It is widely accepted that infusion of mesenchymal stem cells (MSCs) ameliorates hyperglycemia by alleviating insulin resistance in rats with type 2 diabetes mellitus (T2D). However, the detailed underlying mechanisms are not clearly defined. Mitsugumin 53 (MG53) is an E3 ligase that has recently been implicated in the aggravation of insulin resistance by promoting the ubiquitinoylation of insulin receptor substrate‑1 (IRS‑1) in skeletal muscles. It was therefore hypothesized that MG53 may be involved in MSC‑mediated therapeutic effects on insulin resistance. To test this hypothesis, in the present study, T2D rat models were induced by a high‑fat diet combined with streptozotocin administration and MSC infusion was performed four times (once every 2 weeks for 8 weeks). The therapeutic effects of MSC infusion on insulin resistance were evaluated and the effect on the expression of MG53 and insulin receptor signaling elements in skeletal muscle was also investigated by immunofluorescence staining and western blotting. The results demonstrated that MSC infusion ameliorated hyperglycemia and insulin resistance in T2D rats. Furthermore, MSC infusion inhibited MG53 elevation and reversed the decreases in glucose transporter type 4, insulin receptor, IRS‑1 and phosphorylated‑AKT levels in the skeletal muscle of T2D rats. These results indicated that MSC infusion has therapeutic effects in rats and that MG53 in skeletal muscle may be a promising novel therapeutic target protein for MSC‑mediated amelioration of insulin resistance in T2D.

  19. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  20. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F

    2000-10-01

    To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.

  1. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  2. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  3. Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats

    PubMed Central

    Muniyappa, Ranganath; Chen, Hui; Muzumdar, Radhika H.; Einstein, Francine H.; Yan, Xu; Yue, Lilly Q.; Barzilai, Nir

    2009-01-01

    Assessing insulin resistance in rodent models gives insight into mechanisms that cause type 2 diabetes and the metabolic syndrome. The hyperinsulinemic euglycemic glucose clamp, the reference standard for measuring insulin sensitivity in humans and animals, is labor intensive and technically demanding. A number of simple surrogate indexes of insulin sensitivity/resistance have been developed and validated primarily for use in large human studies. These same surrogates are also frequently used in rodent studies. However, in general, these indexes have not been rigorously evaluated in animals. In a recent validation study in mice, we demonstrated that surrogates have a weaker correlation with glucose clamp estimates of insulin sensitivity/resistance than in humans. This may be due to increased technical difficulties in mice and/or intrinsic differences between human and rodent physiology. To help distinguish among these possibilities, in the present study, using data from rats substantially larger than mice, we compared the clamp glucose infusion rate (GIR) with surrogate indexes, including QUICKI, HOMA, 1/HOMA, log (HOMA), and 1/fasting insulin. All surrogates were modestly correlated with GIR (r = 0.34–0.40). Calibration analyses of surrogates adjusted for body weight demonstrated similar predictive accuracy for GIR among all surrogates. We conclude that linear correlations of surrogate indexes with clamp estimates and predictive accuracy of surrogate indexes in rats are similar to those in mice (but not as substantial as in humans). This additional rat study (taken with the previous mouse study) suggests that application of surrogate insulin sensitivity indexes developed for humans may not be appropriate for determining primary outcomes in rodent studies due to intrinsic differences in metabolic physiology. However, use of surrogates may be appropriate in rodents, where feasibility of clamps is an obstacle and measurement of insulin sensitivity is a secondary

  4. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    PubMed Central

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  5. Evaluating the evidence for macrophage presence in skeletal muscle and its relation to insulin resistance in obese mice and humans: a systematic review protocol.

    PubMed

    Bhatt, Meha; Rudrapatna, Srikesh; Banfield, Laura; Bierbrier, Rachel; Wang, Pei-Wen; Wang, Kuan-Wen; Thabane, Lehana; Samaan, M Constantine

    2017-08-08

    The current global rates of obesity and type 2 diabetes are staggering. In order to implement effective management strategies, it is imperative to understand the mechanisms of obesity-induced insulin resistance and diabetes. Macrophage infiltration and inflammation of the adipose tissue in obesity is a well-established paradigm, yet the role of macrophages in muscle inflammation, insulin resistance and diabetes is not adequately studied. In this systematic review, we will examine the evidence for the presence of macrophages in skeletal muscle of obese humans and mice, and will assess the association between muscle macrophages and insulin resistance. We will identify published studies that address muscle macrophage content and phenotype, and its association with insulin resistance. We will search MEDLINE/PubMed, EMBASE, and Web of Science for eligible studies. Grey literature will be searched in ProQuest. Quality assessment will be conducted using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias Tool for animal studies. The findings of this systematic review will shed light on immune-metabolic crosstalk in obesity, and allow the consideration of targeted therapies to modulate muscle macrophages in the treatment and prevention of diabetes. The review will be published in a peer-reviewed journal and presented at conferences.

  6. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  7. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  8. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S.

    PubMed

    Younis, Nahla N; Shaheen, Mohamed A; Mahmoud, Mona F

    2016-08-01

    Hydrogen sulfide (H2S) can protect against hepatic ischemia-reperfusion injury (HIR). However, it is unknown whether it can protect against HIR in insulin resistance. This study investigated the protective effects of silymarin against HIR in a rat model of insulin resistance and the possible involvement of endogenous H2S. Insulin resistance was first established using 10% fructose in drinking water for 10 weeks. HIR was conducted in fructose-fed rats treated with saline or silymarin (100 mg/kg), 15 min before HIR (30 min ischemia, followed by 1 h reperfusion). Insulin resistance and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), total nitrites (NO2(-)), and H2S were measured. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), hydroxyproline, H2S synthesizing activity, and mRNA expression of cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) were determined. Additionally, histopathological examination involved H&E, Sirius red, and caspase-3 immunostaining. Fructose-induced insulin resistance increased serum ALT, TNF-α, H2S and H2S synthesizing activity, and hepatic MDA, hydroxyproline, and CSE mRNA and decreased NO2(-) and GSH. These changes exacerbated the HIR injury in which endogenous H2S production was auxiliary increased. Silymarin preconditioning decreased ALT, AST, MDA, NO2(-), TNF-α, and TNF-α/IL-10 ratio, increased GSH, IL-10, improved hepatic architecture, and lowered caspase-3 immunostaining. Serum H2S, its hepatic synthesizing activity, and CSE and CBS mRNA expressions were all suppressed by silymarin pretreatment. The increases in endogenous H2S exacerbate HIR injury, whereas silymarin preconditioning protected against HIR in insulin resistant rats via powerful antioxidant, anti-inflammatory, and antiapoptotic effects along with suppressing H2S production. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism.

    PubMed

    Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle

    2018-04-01

    Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.

  10. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance.

    PubMed

    Haus, Jacob M; Solomon, Thomas P J; Marchetti, Christine M; Edmison, John M; González, Frank; Kirwan, John P

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P < 0.05) and fat mass (P < 0.05). However, both lifestyle interventions reduced hepatic insulin resistance during basal (P = 0.005) and INS (P = 0.001) conditions, and insulin-mediated suppression of HGP during INS was equally improved in both groups (EU: -42 +/- 22%; HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.

  11. Free Fatty Acid-Induced Hepatic Insulin Resistance is Attenuated Following Lifestyle Intervention in Obese Individuals with Impaired Glucose Tolerance

    PubMed Central

    Haus, Jacob M.; Solomon, Thomas P. J.; Marchetti, Christine M.; Edmison, John M.; González, Frank; Kirwan, John P.

    2010-01-01

    Objective: The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Research Design and Methods: Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; ∼1800 kcal; n = 11) or hypocaloric (HYPO; ∼1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass−1 per minute−1) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m2 · min−1) euglycemic (5.0 mm) clamp with [3-3H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). Results: At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 ± 0.8, 2.0 ± 0.5, and 2.6 ± 0.4; HYPO, 3.8 ± 0.5, 1.2 ± 0.3, and 2.3 ± 0.4, respectively). After the intervention the HYPO group lost more body weight (P < 0.05) and fat mass (P < 0.05). However, both lifestyle interventions reduced hepatic insulin resistance during basal (P = 0.005) and INS (P = 0.001) conditions, and insulin-mediated suppression of HGP during INS was equally improved in both groups (EU: −42 ± 22%; HYPO: −50 ± 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: −15 ± 24% vs. HYPO: −58 ± 19%, P = 0.02). Conclusions: Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention. PMID:19906790

  12. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice.

    PubMed

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2011-02-01

    Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

  13. Insulin resistance in the control of body fat distribution: a new hypothesis.

    PubMed

    Ali, A T; Ferris, W F; Naran, N H; Crowther, N J

    2011-02-01

    Obesity causes insulin resistance, which is a prime etiological factor for type 2 diabetes, dyslipidemia, and cardiovascular disease. However, insulin resistance may be a normal physiological response to obesity that limits further fat deposition and which only has pathological effects at high levels. The current hypothesis suggests that in obesity the initial deposition of triglycerides occurs in subcutaneous adipose tissue and as this increases in size insulin resistance will rise and limit further subcutaneous lipid accumulation. Triglycerides will then be diverted to the visceral fat depot as well as to ectopic sites. This leads to a substantial rise in insulin resistance and the prevalence of its associated disorders. Evidence supporting this hypothesis includes studies showing that in lean subjects the prime determinant of insulin resistance is BMI, that is, subcutaneous fat whilst in overweight and obese subjects it is waist circumference and visceral adiposity. It has also been shown that the metabolic syndrome suddenly increases in prevalence at high levels of insulin resistance and we suggest that this is due to the diversion of lipids from the subcutaneous to the visceral depot. This system may have functioned in our evolutionary past to limit excessive adiposity by causing lipid deposition to occur at a site that has maximal effects on insulin resistance but involves minimal weight gain. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  15. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    USDA-ARS?s Scientific Manuscript database

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial (MT) function and induces insulin resistance ...

  16. The origins and drivers of insulin resistance.

    PubMed

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-02-14

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country.

    PubMed

    Rahmadhani, Rayinda; Zaharan, Nur Lisa; Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004). VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin

  18. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country

    PubMed Central

    Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    Background The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. Aims This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Methods Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Result Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03–2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36–5.19, p = 0.004). Conclusion VDR BsmI polymorphism was significantly associated

  19. The Chinese herbal medicine FTZ attenuates insulin resistance via IRS1 and PI3K in vitro and in rats with metabolic syndrome

    PubMed Central

    2014-01-01

    Background Insulin resistance plays an important role in the development of metabolic syndrome (MS). Fu Fang Zhen Zhu Tiao Zhi formula (FTZ), a Chinese medicinal decoction, has been used to relieve hyperlipidemia, atherosclerosis and other symptoms associated with metabolic disorders in the clinic. Methods To evaluate the effect of FTZ on insulin resistance, HepG2 cells were induced with high insulin as a model of insulin resistance and treated with FTZ at one of three dosages. Next, the levels of glucose content, insulin receptor substrate1 (IRS1) protein expression and phosphatidylinositol 3-kinase (PI3K) subunit p85 mRNA expression were measured. Alternatively, MS was induced in rats via gavage feeding of a high-fat diet for four consecutive weeks followed by administration of FTZ for eight consecutive weeks. Body weight and the plasma levels of lipids, insulin and glucose were evaluated. Finally, the expression of PI3K p85 mRNA in adipose tissue of rats was measured. Results Our results revealed that FTZ attenuated glucose content and up-regulated the expression of PI3K p85 mRNA and IRS1 protein in insulin-resistant HepG2 cells in vitro. Moreover, FTZ reduced body weight and the plasma concentrations of triacylglycerol, cholesterol, fasting glucose and insulin in insulin resistant MS rats. FTZ also elevated the expression of PI3K p85 mRNA in the adipose tissues of MS rats. Conclusion FTZ attenuated MS symptoms by decreasing the plasma levels of glucose and lipids. The underlying mechanism was attenuation of the reduced expression of PI3K p85 mRNA and IRS1 protein in both insulin-resistant HepG2 cells and MS rats. PMID:24555840

  20. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats.

    PubMed

    Begg, Denovan P; Mul, Joram D; Liu, Min; Reedy, Brianne M; D'Alessio, David A; Seeley, Randy J; Woods, Stephen C

    2013-03-01

    Diet-induced obesity (DIO) reduces the ability of centrally administered insulin to reduce feeding behavior and also reduces the transport of insulin from the periphery to the central nervous system (CNS). The current study was designed to determine whether reversal of high-fat DIO restores the anorexic efficacy of central insulin and whether this is accompanied by restoration of the compromised insulin transport. Adult male Long-Evans rats were initially maintained on either a low-fat chow diet (LFD) or a high-fat diet (HFD). After 22 weeks, half of the animals on the HFD were changed to the LFD, whereas the other half continued on the HFD for an additional 8 weeks, such that there were 3 groups: 1) a LFD control group (Con; n = 18), 2) a HFD-fed, DIO group (n = 17), and 3) a HFD to LFD, DIO-reversal group (DIO-rev; n = 18). The DIO reversal resulted in a significant reduction of body weight and epididymal fat weight relative to the DIO group. Acute central insulin administration (8 mU) reduced food intake and caused weight loss in Con and DIO-rev but not DIO rats. Fasting cerebrospinal fluid insulin was higher in DIO than Con animals. However, after a peripheral bolus injection of insulin, cerebrospinal fluid insulin increased in Con and DIO-rev rats but not in the DIO group. These data provide support for previous reports that DIO inhibits both the central effects of insulin and insulin's transport to the CNS. Importantly, DIO-rev restored sensitivity to the effects of central insulin on food intake and insulin transport into the CNS.

  1. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Nobile, Cameron W; Chadderdon, Aaron M; Jutkiewicz, Emily M; Ferrario, Carrie R

    2015-12-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel "junk-food" diet on the development of obesity and metabolic dysfunction, 2) over-consumption of "junk-food" in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, "junk-food" diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats

    PubMed Central

    Vollbrecht, Peter J.; Nobile, Cameron W.; Chadderdon, Aaron M.; Jutkiewicz, Emily M.; Ferrario, Carrie R.

    2015-01-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel “junk-food” diet on the development of obesity and metabolic dysfunction, 2) over-consumption of “junk-food” in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, “junk-food” diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. PMID:26423787

  3. Insulin resistance influences weight loss in non-obese women who followed a home-based exercise program and slight caloric restriction.

    PubMed

    Mediano, Mauro Felippe Felix; Sichieri, Rosely

    2011-06-01

    This study aimed to evaluate the influence of insulin resistance status on weight changes in non-obese women who followed a home-based exercise program and slight caloric restriction over a period of 12 months. Middle-aged (25-45 year), non-obese (body mass index of 23-29.9 kg/m(2)) women were randomly assigned to control (CG) or home-based exercise group (HB). The HB group received a booklet explaining the physical exercises to be practiced at home at least three times per week (40 min/session). Both groups were required to follow a small energy restriction of 100-300 calories per day. For the analysis, women were stratified in two groups according to baseline insulin sensitivity: NIR (non-insulin resistant; n = 121) and IR (insulin resistant; n = 64). Women classified as IR at baseline had greater weight loss after 12 months of follow-up (-1.6 kg vs. -1.1 kg; p = 0.01), and HB exercise helped to reduce weight only among NIR women (-1.5 vs. -0.7; p = 0.04); no differences were observed between intervention groups for IR women (-1.5 vs. -1.7; p = 0.24). There were no differences between IR and NIR groups for lipid profile after adjustment for weight changes. Insulin resistance facilitated weight loss, and home-based exercise promoted greater weight loss only in non-insulin resistance women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis.

    PubMed

    Verkest, K R; Fleeman, L M; Morton, J M; Ishioka, K; Rand, J S

    2011-07-01

    The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Familial and individual predictors of obesity and insulin resistance in urban Hispanic children.

    PubMed

    Santiago-Torres, M; Cui, Y; Adams, A K; Allen, D B; Carrel, A L; Guo, J Y; Delgado-Rendon, A; LaRowe, T L; Schoeller, D A

    2016-02-01

    High intake of sugar-sweetened beverages (SSB) has been suggested to contribute to the pediatric obesity epidemic, however, how the home food environment influence children's intake of SSB among Hispanic families is still poorly understood. To evaluate the relationships between the home food environment and Hispanic children's diet in relation to weight status and insulin resistance (IR). A food frequency questionnaire was administered to 187 Hispanic children (ages 10 to 14 years) and anthropometrics were measured. IR was estimated from fasting insulin and glucose levels using the homeostasis model assessment of insulin resistance (HOMAIR ). Parents reported on family demographics and the home food environment. A structural equation modelling approach was applied to examine the hypothesized relationships among variables. The prevalence of childhood overweight and obesity was 52.8% and it was positively associated with HOMAIR (β = 0.687, P < .0001). Children's SSB consumption was positively associated with children's body mass index z-score (β = 0.151, P < 0.05) and subsequently to HOMAIR . Children's SSB consumption was predicted by home availability (β = 0.191) and parental intake of SSB (β = 0.419) (P < 0.05). The model fit indices [χ(2)  = 45.821 (d.f. = 30, P > 0.01 and < 0.05), χ(2) /d.f. = 1.53, root mean square error of approximation = 0.053 (90% confidence interval = 0.016, 0.082), comparative fit index = 0.904] suggested a satisfactory goodness-of-fit. The home food environment and parental diet seem to play an important role in the children's access to and intake of SSB, which in turn predicted children's weight status. © 2015 World Obesity.

  6. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats

    PubMed Central

    da Silva, Karolline S.; Pinto, Paula R.; Fabre, Nelly T.; Gomes, Diego J.; Thieme, Karina; Okuda, Ligia S.; Iborra, Rodrigo T.; Freitas, Vanessa G.; Shimizu, Maria H. M.; Teodoro, Walcy R.; Marie, Suely K. N.; Woods, Tom; Brimble, Margaret A.; Pickford, Russell; Rye, Kerry-Anne; Okamoto, Maristela; Catanozi, Sergio; Correa-Giannela, Maria L.; Machado, Ubiratan F.; Passarelli, Marisa

    2017-01-01

    Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and

  7. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats.

    PubMed

    da Silva, Karolline S; Pinto, Paula R; Fabre, Nelly T; Gomes, Diego J; Thieme, Karina; Okuda, Ligia S; Iborra, Rodrigo T; Freitas, Vanessa G; Shimizu, Maria H M; Teodoro, Walcy R; Marie, Suely K N; Woods, Tom; Brimble, Margaret A; Pickford, Russell; Rye, Kerry-Anne; Okamoto, Maristela; Catanozi, Sergio; Correa-Giannela, Maria L; Machado, Ubiratan F; Passarelli, Marisa

    2017-01-01

    Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara . CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf , Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and

  8. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    PubMed

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  9. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats.

    PubMed

    Li, Jun; Zhu, Liang; Xu, Ming; Han, Juntao; Bai, Xiaozhi; Yang, Xuekang; Zhu, Huayu; Xu, Jie; Zhang, Xing; Gong, Yangfan; Hu, Dahai; Gao, Feng

    2015-08-01

    Severe burns often initiate the prevalence of hyperglycemia and insulin resistance, significantly contributing to adverse clinical outcomes. However, there are limited treatment options. This study was designed to investigate the role and the underlying mechanisms of oral antibiotics to selectively decontaminate the digestive tract (SDD) on burn-induced insulin resistance. Rats were subjected to 40% of total body surface area full-thickness burn or sham operation with or without SDD treatment. Translocation of FITC-labeled LPS was measured at 4h after burn. Furthermore, the effect of SDD on post-burn quantity of gram-negative bacteria in gut was investigated. Serum or muscle LPS and proinflammatory cytokines were measured. Intraperitoneal glucose tolerance test and insulin tolerance test were used to determine the status of systemic insulin resistance. Furthermore, intracellular insulin signaling (IRS-1 and Akt) and proinflammatory related kinases (JNK and IKKβ) were assessed by western blot. Burn increased the translocation of LPS from gut 4h after injury. SDD treatment effectively inhibited post-burn overgrowth of gram-negative enteric bacilli in gut. In addition, severe burns caused significant increases in the LPS and proinflammatory cytokines levels, activation of proinflammatory related kinases, and systemic insulin resistance as well. But SDD treatment could significantly attenuate burn-induced insulin resistance and improve the whole-body responsiveness to insulin, which was associated with the inhibition of gut-derived LPS, cytokines, proinflammatory related kinases JNK and IKKβ, as well as activation of IRS-1 and Akt. SDD appeared to have an effect on proinflammatory signaling cascades and further reduced severe burn-induced insulin resistance. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats.

    PubMed

    Buhl, Esben S; Jensen, Thomas Korgaard; Jessen, Niels; Elfving, Betina; Buhl, Christian S; Kristiansen, Steen B; Pold, Rasmus; Solskov, Lasse; Schmitz, Ole; Wegener, Gregers; Lund, Sten; Petersen, Kitt Falck

    2010-05-01

    Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.

  11. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations.

    PubMed

    Mastrangelo, A; Martos-Moreno, G Á; García, A; Barrios, V; Rupérez, F J; Chowen, J A; Barbas, C; Argente, J

    2016-10-01

    Insulin resistance (IR) is usually the first metabolic alteration diagnosed in obese children and the key risk factor for development of comorbidities. The factors determining whether or not IR develops as a result of excess body mass index (BMI) are still not completely understood. This study aimed to elucidate the mechanisms underpinning the predisposition toward hyperinsulinemia-related complications in obese children by using a metabolomic strategy that allows a profound interpretation of metabolic profiles potentially affected by IR. Serum from 60 prepubertal obese children (30 girls/30 boys, 50% IR and 50% non-IR in each group, but with similar BMIs) were analyzed by using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry following an untargeted metabolomics approach. Validation was then performed on a group of 100 additional children with the same characteristics. When obese children with and without IR were compared, 47 metabolites out of 818 compounds (P<0.05) obtained after data pre-processing were found to be significantly different. Bile acids exhibit the greatest changes (that is, approximately a 90% increase in IR). The majority of metabolites differing between groups were lysophospholipids (15) and amino acids (17), indicating inflammation and central carbon metabolism as the most altered processes in impaired insulin signaling. Multivariate analysis (OPLS-DA models) showed subtle differences between groups that were magnified when females were analyzed alone. Inflammation and central carbon metabolism, together with the contribution of the gut microbiota, are the most altered processes in obese children with impaired insulin signaling in a sex-specific fashion despite their prepubertal status.

  12. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    PubMed Central

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  13. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease.

    PubMed

    Yan, Hua; Gao, Yan-Qiong; Zhang, Ying; Wang, Huan; Liu, Gui-Sheng; Lei, Jian-Yuan

    2018-06-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases around the world and commonly associated with insulin resistance and hyperlipidemia. Chlorogenic acid (CG) was reported to have insulinsensitizing activity and exert hypocholesterolemic and hypoglycemic effect. However, the involvement of CG in NAFLD remains far from being addressed. In this study, a high-fat diet-induced NAFLD rat model was used to investigate the biological roles and underlying mechanism of CG in NAFLD. The results showed that high-fat diet-fed rats exhibited an increase in body weight, glucose tolerance, liver injury, insulin resistance, as well as autophagy and C-Jun N-terminal kinase (JNK) pathway. Nevertheless, all these effects were alleviated by CG treatment. Moreover, angiotensin treatment in CG group activated the JNK pathway, and promoted autophagy, insulin resistance, and liver injury. In conclusion, our findings demonstrated that CG ameliorated liver injury and insulin resistance by suppressing autophagy via inactivation of JNK pathway in a rat model of NAFLD. Therefore, CG might be a potential application for the treatment of NAFLD.

  14. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    DOE PAGES

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; ...

    2014-10-09

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less

  15. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less

  16. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  17. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents.

    PubMed

    Habib, Salem A; Saad, Entsar A; Elsharkawy, Ashraf A; Attia, Zeinab R

    2015-09-01

    To investigate the inter-relationships between adipocytokines, oxidative stress, insulin, Zn and Cu and obesity among Egyptian obese non-diabetic children and adolescents. 72 obese children and adolescents of both sexes (5-17 years) were recruited for the study. 40 healthy normal non-obese persons of matched ages and sexes were used as control group. Lipid profile, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and leptin levels were measured. Malondialdehyde (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were estimated. Micronutrients (Zn and Cu) concentrations in addition to insulin and fasting blood sugar (FBS) levels were also evaluated. Estimation of insulin resistance (homeostatic model assessment (HOMA-IR)) was derived from FBS measurements. Significant elevations (P<0.001) in TNF-α, IL-6, leptin, MDA, Cu and FBS levels and significant decreases (P<0.001) in GSH, Zn levels and SOD activity were detected among obese individuals as compared with control group. Insulin and triglyceride levels were significantly increased in obese male children and HDL-cholesterol level was increased significantly in obese adolescent females compared to controls. However, total cholesterol and LDL-cholesterol levels were significantly high in all obese cases as compared with controls. Insulin resistance was detected in 100% of the patients. We concluded that obesity with pro-inflammatory adipocytokines and hypozincemia together by many mechanisms participate in excessive oxidative stress and are highly associated with inflammation and the development of obesity-related complications. Obesity represents a critical risk factor for development of insulin resistance status. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Mid-arm muscle circumference as a surrogate in predicting insulin resistance in non-obese elderly individuals

    PubMed Central

    Chao, Yuan-Ping; Lai, Yi-Fen; Kao, Tung-Wei; Peng, Tao-Chun; Lin, Yuan-Yung; Shih, Mu-Tsun; Chen, Wei-Liang; Wu, Li-Wei

    2017-01-01

    The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure the degree of insulin resistance (IR). Previous literature revealed that mid-arm muscle circumference (MAMC) is one of the anthropometric indicators for nutritional status and the relationship between MAMC and HOMA-IR remains uncertain in the obese and non-obese elderly individuals. The present study included 5,607 participants aged between 60 to 84 years old, using data from the 1999 to 2006 National Health and Nutrition Examination Survey (NHANES). To further explore the association between HOMA-IR and MAMC in the obese and non-obese elderly population using multivariate Cox regression analyses, we divided the participants into obese (BMI ≥ 30 kg/m2) group and non-obese (19 ≤ BMI < 30 kg/m2) group in this study; each group was then divided into quartiles based on their MAMC levels. A positive association was noted between the MAMC and HOMA-IR in all of the designed models initially. After adjusting for multiple covariates, a higher level of the MAMC was significantly associated with elevated HOMA-IR (P < 0.05) in the non-obesity group, which was not the case in the obesity group. Additionally, subjects in the higher quartiles of MAMC tended to have higher HOMA-IR with a significant association (P for trend = 0.003 in model 1; P for trend < 0.001 in model 2, 3, and 4). These results demonstrated that the MAMC can be an auxiliary indicator of HOMA-IR in non-obese elderly individuals and may have substantial additional value in screening for IR if well extrapolated. PMID:29108358

  19. Compliance with behavioral guidelines for diet, physical activity and sedentary behaviors is related to insulin resistance among overweight and obese youth.

    PubMed

    Huang, Jeannie S; Gottschalk, Michael; Norman, Gregory J; Calfas, Karen J; Sallis, James F; Patrick, Kevin

    2011-02-01

    Overweight and obesity are established risk factors for insulin resistance in youth. A number of behavioral recommendations have been publicized with the goal of improving glycemic control. However, there is limited information about whether meeting these behavioral recommendations actually reduces insulin resistance. 92 youths 11 - 16 years with BMI ≥ 85% underwent oral glucose tolerance testing. HOMA-IR and AUCInsulin/AUCGlucose were calculated as measures of insulin resistance. Dietary and physical activity (PA) measures were performed. Assessments included whether or not participants met recommended levels of diet, PA and sedentary behaviors.62% youths met criteria for insulin resistance. 82% (75/92) met at least one behavioral recommendation. Participants who met ≥ 1 dietary, sedentary, or PA recommendations had significantly reduced insulin resistance as compared with youth who did not. This relationship remained significant in multivariate modeling of insulin resistance adjusting for age, sex, and BMI. Even relatively minor behavior change may reduce insulin resistance in youth at risk for diabetes. Our findings support the relevance of current behavioral interventions for glycemic control. Clinical Trials #NCT00412165.

  20. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

  1. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  2. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

    PubMed Central

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2011-01-01

    Background Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Conclusion Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested. PMID:21494375

  3. TRB3 gene silencing activates AMPK in adipose tissue with beneficial metabolic effects in obese and diabetic rats.

    PubMed

    Sun, Xiaoyan; Song, Ming; Wang, Hui; Zhou, Huimin; Wang, Feng; Li, Ya; Zhang, Yun; Zhang, Wei; Zhong, Ming; Ti, Yun

    2017-06-17

    Our previous study had suggested Tribbles homolog 3 (TRB3) might be involved in metabolic syndrome via adipose tissue. Given prior studies, we sought to determine whether TRB3 plays a major role in adipocytes and adipose tissue with beneficial metabolic effects in obese and diabetic rats. Fully differentiated 3T3-L1 adipocytes were incubated to induce insulin resistant adipocytes. Forty male Sprague-Dawley rats were all fed high-fat (HF) diet. Type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin (STZ). Compared with control group, in insulin resistant adipocytes, protein levels of insulin receptor substrate-1(IRS-1), glucose transporter 4(GLUT4) and phosphorylated-AMP-activated protein kinase (p-AMPK)were reduced, TRB3 protein level and triglyceride level were significantly increased, glucose uptake was markedly decreased. TRB3 silencing alleviated adipocytes insulin resistance. With TRB3 gene silencing, protein levels of IRS-1, GLUT4 and p-AMPK were significantly increased in adipocytes. TRB3 gene silencing decreased blood glucose, ameliorated insulin sensitivity and adipose tissue remodeling in diabetic rats. TRB3 silencing decreased triglyceride, increased glycogen simultaneously in diabetic epididymal and brown adipose tissues (BAT). Consistently, p-AMPK levels were increased in diabetic epididymal adipose tissue, and BAT after TRB3-siRNA treatment. TRB3silencing increased phosphorylation of Akt in liver, and improved liver insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  4. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    PubMed

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  5. Ordovas-Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baselin...

  6. Elevated circulating irisin is associated with lower risk of insulin resistance: association and path analyses of obese Chinese adults.

    PubMed

    Shi, Xiulin; Lin, Mingzhu; Liu, Changqin; Xiao, Fangsen; Liu, Yongwen; Huang, Peiying; Zeng, Xin; Yan, Bing; Liu, Suhuan; Li, Xiaoying; Yang, Shuyu; Li, Xuejun; Li, Zhibin

    2016-07-29

    Evidence on the role of irisin in insulin resistance is limited and controversial, and pathways between them remain unknown. We aimed to examine the independent effects of circulating irisin and different adiposity measurements, as well as their potential interactions, on insulin resistance. We also aimed to explore possible pathways among circulating irisin, adiposity, glucose and insulin levels and insulin resistance. A cross-sectional study of 1,115 community- living obese Chinese adults, with data collection on clinical characteristics, glucose and lipid metabolic parameters and circulating irisin levels. Among the 1,115 subjects, 667 (59.8 %) were identified as insulin-resistance, and showed significantly decreased serum irisin than their controls (log-transformed irisin: 1.19 ± 2.34 v.s. 1.46 ± 2.05 ng/ml, p = 0.042). With adjustment for potential confounders, elevated circulating irisin was significantly associated with reduced risk of insulin resistance, with adjusted odds ratio per standard deviation increase of irisin of 0.871 (0.765-0.991, p = 0.036). As for different adiposity measurements, body fat percentage, but neither BMI nor waist, was significantly associated with increased risk of insulin resistance (OR: 1.152 (1.041-1.275), p = 0.006). No significant interaction effect between serum irisin and adiposity on insulin resistance was found. A one pathway model about the relationship between serum irisin and insulin resistance fits well (χ (2) = 44.09, p < 0.001; CFI-0.994; TLI =0.986; and RMSEA = 0.067), and shows that elevated circulating irisin might improve insulin resistance indirectly through lowering fasting insulin levels (standardized path coefficient = -0.046, p = 0.032). Elevated circulating irisin is associated with lower risk of insulin resistance indirectly through lowering fasting insulin.

  7. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells.

    PubMed

    Liu, Xuebin; Mameza, Marie G; Lee, Yun Sang; Eseonu, Chikezie I; Yu, Cheng-Rong; Kang Derwent, Jennifer J; Egwuagu, Charles E

    2008-06-01

    Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.

  8. Childhood obesity, thyroid function, and insulin resistance – is there a link? A longitudinal study.

    PubMed

    Santos, Maria Inês; Limbert, Catarina; Marques, Filipa Carlota; Rosário, Frederico; Lopes, Lurdes

    2015-05-01

    Serum thyroid stimulating hormone (TSH) levels are frequently elevated in obese children and are most likely to be associated with insulin resistance. However, clinical relevance of this association remains unclear. To assess the prevalence of hyperthyrotropinemia; to analyze the relationship between TSH and homeostasis model assessment - insulin resistance (HOMA-IR); and to verify whether TSH levels and HOMA-IR vary with weight loss in obese children. Retrospective longitudinal study with data from baseline and 1 year after lifestyle intervention in a pediatric obese group (344 children were recruited and 100 among them completed follow-up). For postintervention analysis, three groups were considered according to body mass index-standard deviation score (BMI-SDS) variations: ≤-0.5 (significant weight loss); 0.5-0 (weight loss); and >0 (weight gain). Statistical analysis was performed using SPSS 19.0®. The prevalence of increased TSH levels was 9.3%. At baseline TSH (p=0.007), fT4 (p=0.006), and HOMA-IR (p<0.001) were positively correlated to BMI-SDS (n=344). Weight reduction was verified in 67 out of 100 cases but significant loss was present in only 21 cases. Decreases in both TSH and BMI-SDS were independently associated with decreases in HOMA-IR (p=0.005 and p=0.016, respectively). There was no correlation between TSH and BMI-SDS variation. Significant decreases in the HOMA-IR (p=0.006) were only achieved in the significant weight loss group. The prevalence of hyperthyrotropinemia was lower than previously reported. However, cutoff values were adjusted to pubertal stage, suggesting an over report in other studies. Insulin resistance and TSH were positively correlated, independent of body status. Although weight loss was not associated with TSH variation, a decrease in TSH levels was independently associated with decreases in HOMA-IR.

  9. Insulin resistance and improvements in signal transduction.

    PubMed

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  10. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance.

    PubMed

    Baranova, Ancha; Gowder, Shobha J; Schlauch, Karen; Elariny, Hazem; Collantes, Rochelle; Afendy, Arian; Ong, Janus P; Goodman, Zachary; Chandhoke, Vikas; Younossi, Zobair M

    2006-09-01

    Adipose tissue is an active endocrine organ that secretes a variety of metabolically important substances including adipokines. These factors affect insulin sensitivity and may represent a link between obesity, insulin resistance, type 2 diabetes (DM), and nonalcoholic fatty liver disease (NAFLD). This study uses real-time polymerase chain reaction (PCR) quantification of mRNAs encoding adiponectin, leptin, and resistin on snap-frozen samples of intra-abdominal adipose tissue of morbidly obese patients undergoing bariatric surgery. Morbidly obese patients undergoing bariatric surgery were studied. Patients were classified into two groups: Group A (with insulin resistance) (N=11; glucose 149.84 +/- 40.56 mg/dL; serum insulin 8.28 +/- 3.52 microU/mL), and Group B (without insulin resistance) (N=10; glucose 102.2 +/- 8.43 mg/dL; serum insulin 3.431 +/- 1.162 microU/mL). Adiponectin mRNA in intra-abdominal adipose tissue and serum adiponectin levels were significantly lower in Group A compared to Group B patients (P<0.016 and P<0.03, respectively). Although serum resistin was higher in Group A than in Group B patients (P<0.005), resistin gene expression was not different between the two groups. Finally, for leptin, neither serum level nor gene expression was different between the two groups. Serum adiponectin level was the only predictor of nonalcoholic steatohepatitis (NASH) in this study (P=0.024). Obese patients with insulin resistance have decreased serum adiponectin and increased serum resistin. Additionally, adiponectin gene expression is also decreased in the adipose tissue of these patients. This low level of adiponectin expression may predispose patients to the progressive form of NAFLD or NASH.

  11. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma.

    PubMed

    Forno, Erick; Han, Yueh-Ying; Muzumdar, Radhika H; Celedón, Juan C

    2015-08-01

    Obesity increases both the risk of asthma and asthma severity and is a well-known risk factor for insulin resistance and the metabolic syndrome (MS) in children and adolescents. We aimed to examine the association among obesity, insulin sensitivity, MS, and lung function in US adolescents with and without asthma. We performed a cross-sectional study of 1429 adolescents aged 12 to 17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adjusted regression was used to assess the relationships among obesity, insulin sensitivity/resistance, MS, and lung function in children with and without asthma. Insulin resistance was negatively associated with FEV1 and forced vital capacity (FVC) in adolescents with and without asthma, whereas MS was associated with lower FEV1/FVC ratios, with a more pronounced decrease found among asthmatic patients; these associations were driven by overweight/obese adolescents. Higher body mass index was associated with a decrease in FEV1/FVC ratios among adolescents with insulin resistance. Compared with healthy participants, adolescents with MS had an approximately 2% decrease in FEV1/FVC ratios, adolescents with asthma had an approximately 6% decrease, and those with MS and asthma had approximately 10% decreased FEV1/FVC ratios (P < .05). Insulin resistance and MS are associated with worsened lung function in overweight/obese adolescents. Asthma and MS synergistically decrease lung function, as do obesity and insulin resistance. These factors might contribute to the pathogenesis of asthma severity in obese patients and warrant further investigation. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  14. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

    PubMed

    Acevedo, Luz M; Raya, Ana I; Martínez-Moreno, Julio M; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

  15. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  16. Age-related inflammation and insulin resistance: a review of their intricate interdependency.

    PubMed

    Park, Min Hi; Kim, Dae Hyun; Lee, Eun Kyeong; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young

    2014-12-01

    Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.

  17. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    PubMed

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women.

    PubMed

    Peterson, Linda R; Herrero, Pilar; Schechtman, Kenneth B; Racette, Susan B; Waggoner, Alan D; Kisrieva-Ware, Zulia; Dence, Carmen; Klein, Samuel; Marsala, JoAnn; Meyer, Timothy; Gropler, Robert J

    2004-05-11

    Obesity is a risk factor for impaired cardiac performance, particularly in women. Animal studies suggest that alterations in myocardial fatty acid metabolism and efficiency in obesity can cause decreased cardiac performance. In the present study, we tested the hypothesis that myocardial fatty acid metabolism and efficiency are abnormal in obese women. We studied 31 young women (body mass index [BMI] 19 to 52 kg/m2); 19 were obese (BMI >30 kg/m2). Myocardial oxygen consumption (MVO2) and fatty acid uptake (MFAUp), utilization (MFAU), and oxidation (MFAO) were quantified by positron emission tomography. Cardiac work was measured by echocardiography, and efficiency was calculated as work/MVO2. BMI correlated with MVO2 (r=0.58, P=0.0006), MFAUp (r=0.42, P<0.05), and efficiency (r=-0.40, P<0.05). Insulin resistance, quantified by the glucose area under the curve (AUC) during an oral glucose tolerance test, correlated with MFAUp (r=0.55, P<0.005), MFAU (r=0.62, P<0.001), and MFAO (r=0.58, P<0.005). A multivariate, stepwise regression analysis showed that BMI was the only independent predictor of MVO2 and efficiency (P=0.0005 and P<0.05, respectively). Glucose AUC was the only independent predictor of MFAUp, MFAU, and MFAO (P<0.05, <0.005, and <0.005, respectively). In young women, obesity is a significant predictor of increased MVO2 and decreased efficiency, and insulin resistance is a robust predictor of MFAUp, MFAU, and MFAO. This increase in fatty acid metabolism and decrease in efficiency is concordant with observations made in experimental models of obesity. These metabolic changes may play a role in the pathogenesis of decreased cardiac performance in obese women.

  19. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    PubMed

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  20. Metabolic signatures of insulin resistance in 7,098 young adults.

    PubMed

    Würtz, Peter; Mäkinen, Ville-Petteri; Soininen, Pasi; Kangas, Antti J; Tukiainen, Taru; Kettunen, Johannes; Savolainen, Markku J; Tammelin, Tuija; Viikari, Jorma S; Rönnemaa, Tapani; Kähönen, Mika; Lehtimäki, Terho; Ripatti, Samuli; Raitakari, Olli T; Järvelin, Marjo-Riitta; Ala-Korpela, Mika

    2012-06-01

    Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

  1. Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats.

    PubMed

    Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; de Oliveira, Júlio Cezar; Barella, Luiz Felipe; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; Pavanello, Audrei; da Conceição, Ellen Paula Santos; Torrezan, Rosana; Armitage, James; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; de Freitas Mathias, Paulo Cezar; Vieira, Elaine

    2017-01-01

    Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F 2 ) (CTLF 2 ), MSG-treated second generation (F 2 ) (MSGF 2 ), which suckled from their CTL and MSG biological dams, respectively, or CTLF 2 -CR, control offspring suckled by MSG dams and MSGF 2 -CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.

  2. Dietary intervention, but not losartan, completely reverses non-alcoholic steatohepatitis in obese and insulin resistant mice.

    PubMed

    Verbeek, Jef; Spincemaille, Pieter; Vanhorebeek, Ilse; Van den Berghe, Greet; Vander Elst, Ingrid; Windmolders, Petra; van Pelt, Jos; van der Merwe, Schalk; Bedossa, Pierre; Nevens, Frederik; Cammue, Bruno; Thevissen, Karin; Cassiman, David

    2017-02-23

    Dietary intervention is the cornerstone of non-alcoholic steatohepatitis (NASH) treatment. However, histological evidence of its efficacy is limited and its impact on hepatic pathways involved in NASH is underreported. The efficacy of the angiotensin receptor type 1 blocker losartan is controversial because of varying results in a few animal and human studies. We evaluated the effect of dietary intervention versus losartan on NASH and associated systemic metabolic features in a representative mouse model. Male C57BL/6 J mice with high fat-high sucrose diet (HF-HSD) induced NASH, obesity, insulin resistance and hypercholesterolemia were subjected to dietary intervention (switch from HF-HSD to normal chow diet (NCD)) (n = 9), continuation HF-HSD together with losartan (30 mg/kg/day) (n = 9) or continuation HF-HSD only (n = 9) for 8 weeks. 9 mice received NCD during the entire experiment (20 weeks). We assessed the systemic metabolic effects and performed a detailed hepatic histological and molecular profiling. A P-value of < 0.05, using the group with continuation of HF-HSD only as control, was considered as statistically significant. Dietary intervention normalized obesity, insulin resistance, and hypercholesterolemia (for all P < 0.001), and remarkably, completely reversed all histological features of pre-existent NASH (for all P < 0.001), including fibrosis measured by quantification of collagen proportional area (P < 0.01). At the hepatic molecular level, dietary intervention targeted fibrogenesis with a normalization of collagen type I alpha 1, transforming growth factor β1, tissue inhibitor of metalloproteinase 1 mRNA levels (for all P < 0.01), lipid metabolism with a normalization of fatty acid translocase/CD36, fatty acid transport protein 5, fatty acid synthase mRNA levels (P < 0.05) and markers related to mitochondrial function with a normalization of hepatic ATP content (P < 0.05) together with sirtuin1 and

  3. IGF-1 and Insulin Resistance Are Major Determinants of Common Carotid Artery Thickness in Morbidly Obese Young Patients.

    PubMed

    Sirbu, Anca; Nicolae, Horia; Martin, Sorina; Barbu, Carmen; Copaescu, Catalin; Florea, Suzana; Panea, Cristina; Fica, Simona

    2016-03-01

    We assessed the relationship between insulin resistance, serum insulin-like growth factor 1 (IGF-1) levels, and common carotid intima-media thickness (CC-IMT) in morbidly obese young patients. A total of 249 patients (aged 37.9 ± 9.8 years, body mass index [BMI] 45.6 ± 8.3 kg/m(2)) were evaluated (metabolic tests, serum IGF-1 measurements, homeostasis model assessment-insulin resistance [HOMA-IR], and ultrasonographically assessed CC-IMT) in a research program for bariatric surgery candidates. After adjusting for age, gender, BMI, systolic blood pressure, uric acid, antihypertensive and lipid-lowering treatment, metabolic syndrome, and metabolic class, both HOMA-IR and IGF-1 z-score were significantly associated with CC-IMT. These results were confirmed in logistic regression analysis, in which age (β = 1.11, P = .001), gender (β = 3.19, P = .001), HOMA-IR (β = 1.221, P = .005), and IGF-1 z-score (β = 1.734, P = .009) were the only independent determinants of abnormal CC-IMT, presumably modulating the effect of the other risk factors included in the regression. Area under the receiver-operating characteristic curve for the model was 0.841 (confidence interval: 0.776-0.907; P < .001). In conclusion, in morbidly obese young adults, insulin resistance and IGF-1 z-score are significantly associated with CC-IMT, independent of other major cardiovascular risk factors. © The Author(s) 2015.

  4. Common variants in SOCS7 gene predict obesity, disturbances in lipid metabolism and insulin resistance.

    PubMed

    Tellechea, M L; Steinhardt, A Penas; Rodriguez, G; Taverna, M J; Poskus, E; Frechtel, G

    2013-05-01

    Specific Suppressor of Cytokine Signaling (SOCS) members, such as SOCS7, may play a role in the development of insulin resistance (IR) owing to their ability to inhibit insulin signaling pathways. The objective was to explore the association between common variants and related haplotypes in SOCS7 gene and metabolic traits related to obesity, lipid metabolism and IR. 780 unrelated men were included in a cross-sectional study. We selected three tagged SNPs that capture 100% of SNPs with minor allele frequency ≥ 0.10. Analyses were done separately for each SNP and followed up by haplotype analysis. rs8074124C was associated with both obesity (p = 0.005) and abdominal obesity (p = 0.002) and allele C carriers showed, in comparison with TT carriers, lower BMI (p = 0.001) and waist circumference (p = 0.001). rs8074124CC- carriers showed lower fasting insulin (p = 0.017) and HOMA-IR (p = 0.018) than allele T carriers. rs12051836C was associated with hypertriglyceridemia (p = 0.009) and hypertriglyceridemic waist (p = 0.006). rs12051836CC- carriers showed lower fasting insulin (p = 0.043) and HOMA-IR (p = 0.042). Haplotype-based association analysis (rs8074124 and rs12051836 in that order) showed associations with lipid and obesity -related phenotypes, consistent with single locus analysis. Haplotype analysis also revealed association between haplotype CT and both decreased HDL-C (p = 0.026) and HDL-C (p = 0.014) as a continuous variable. We found, for the first time, significant associations between SOCS7 common variants and related haplotypes and obesity, IR and lipid metabolism disorders. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Insulin resistance in non-obese women with polycystic ovary syndrome: relation to byproducts of oxidative stress.

    PubMed

    Macut, D; Simic, T; Lissounov, A; Pljesa-Ercegovac, M; Bozic, I; Djukic, T; Bjekic-Macut, J; Matic, M; Petakov, M; Suvakov, S; Damjanovic, S; Savic-Radojevic, A

    2011-07-01

    To get more insight into molecular mechanisms underlying oxidative stress and its link with insulin resistance, oxidative stress parameters, as well as, antioxidant enzyme activities were studied in young, non-obese women with polycystic ovary syndrome (PCOS). Study was performed in 34 PCOS women and 23 age and body mass index (BMI)-matched healthy controls. Plasma nitrotyrosine and malondialdehyde (MDA), representative byproducts of protein and lipid oxidative damage, were determined by enzyme immunoassay. Antioxidant enzyme activities, superoxide dismutase (SOD) and glutathione peroxidase (GPX) were studied spectrophotometrically. Insulin resistance was calculated using homeostasis assessment model (HOMA-IR). Plasma nitrotyrosine and MDA were increased, but only nitrotyrosine was significantly higher (p < 0.05) in PCOS women compared to controls. Uric acid (surrogate marker of × antine oxidase) was also significantly elevated in PCOS (p < 0.05). Both plasma SOD and GPX activity showed no statistically significant difference between PCOS and controls. Indices of insulin resistance (insulin and HOMAIR) were significantly higher in PCOS group and positively correlated with level of MDA (r = 0.397 and r = 0.523, respectively; p < 0.05) as well as GPX activity (r = 0.531 and r = 0.358, respectively; p < 0.05). Our results indicate that insulin resistance could be responsible for the existence of subtle form of oxidative stress in young, nonobese PCOS women. Hence, presence of insulin resistance, hyperinsulinemia and oxidative damage are likely to accelerate slow development of cardiovascular disease in PCOS. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  6. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The severity of nocturnal hypoxia but not abdominal adiposity is associated with insulin resistance in non-obese men with sleep apnea.

    PubMed

    Borel, Anne-Laure; Monneret, Denis; Tamisier, Renaud; Baguet, Jean-Philippe; Faure, Patrice; Levy, Patrick; Halimi, Serge; Pépin, Jean-Louis

    2013-01-01

    Beyond obesity, sleep apnea syndrome is frequently associated with excess abdominal adiposity that could contribute to the deteriorated cardiometabolic risk profile of apneic patients. The present study addressed the respective contribution of the severity of sleep apnea syndrome and excess abdominal adiposity to the cardiometabolic risk profile of 38 non obese men with polysomnography-diagnosed sleep apnea syndrome (apnea-hypopnea index >15 events/hour). These otherwise healthy men performed a 75g-oral glucose tolerance test (OGTT) with plasma lipid/inflammatory and redox profiles. Twenty-one apneic men with high-waist circumference (>94 cm) were compared to 17 apneic men with low-waist circumference. Apneic men with high-waist circumference had higher AUC glucose and AUC insulin than apneic men with low-waist circumference. Accordingly, apneic men with high-waist circumference had higher hepatic insulin resistance as reflected by higher HOMA-resistance index, and lower global insulin sensitivity as reflected by lower insulin sensitivity index of Matsuda (derived from OGTT). The sleep structure and the apnea-hypopnea index were not different between the two groups. However, apneic men with high-waist circumference presented with lower mean nocturnal oxyhemoglobin (SpO2). In the 38 men, waist circumference and mean nocturnal SpO2 were inversely correlated (r = -0.43, p = 0.011) and were both associated with plasma glucose/insulin homeostasis indices: the higher the waist circumference, the lower the mean nocturnal SpO2, the lower the insulin-sensitivity. Finally, in multivariable regression model, mean nocturnal SpO2 and not waist circumference was associated with insulin-resistance. Thus, excess abdominal adiposity in non obese apneic men was associated with a deteriorated insulin-sensitivity that could be driven by a more severe nocturnal hypoxemia.

  8. The Severity of Nocturnal Hypoxia but Not Abdominal Adiposity Is Associated with Insulin Resistance in Non-Obese Men with Sleep Apnea

    PubMed Central

    Borel, Anne-Laure; Monneret, Denis; Tamisier, Renaud; Baguet, Jean-Philippe; Faure, Patrice; Levy, Patrick; Halimi, Serge; Pépin, Jean-Louis

    2013-01-01

    Background Beyond obesity, sleep apnea syndrome is frequently associated with excess abdominal adiposity that could contribute to the deteriorated cardiometabolic risk profile of apneic patients. Methods The present study addressed the respective contribution of the severity of sleep apnea syndrome and excess abdominal adiposity to the cardiometabolic risk profile of 38 non obese men with polysomnography-diagnosed sleep apnea syndrome (apnea-hypopnea index >15 events/hour). These otherwise healthy men performed a 75g-oral glucose tolerance test (OGTT) with plasma lipid/inflammatory and redox profiles. Twenty-one apneic men with high-waist circumference (>94 cm) were compared to 17 apneic men with low-waist circumference. Results Apneic men with high-waist circumference had higher AUC glucose and AUC insulin than apneic men with low-waist circumference. Accordingly, apneic men with high-waist circumference had higher hepatic insulin resistance as reflected by higher HOMA-resistance index, and lower global insulin sensitivity as reflected by lower insulin sensitivity index of Matsuda (derived from OGTT). The sleep structure and the apnea-hypopnea index were not different between the two groups. However, apneic men with high-waist circumference presented with lower mean nocturnal oxyhemoglobin (SpO2). In the 38 men, waist circumference and mean nocturnal SpO2 were inversely correlated (r = −0.43, p = 0.011) and were both associated with plasma glucose/insulin homeostasis indices: the higher the waist circumference, the lower the mean nocturnal SpO2, the lower the insulin-sensitivity. Finally, in multivariable regression model, mean nocturnal SpO2 and not waist circumference was associated with insulin-resistance. Conclusion Thus, excess abdominal adiposity in non obese apneic men was associated with a deteriorated insulin-sensitivity that could be driven by a more severe nocturnal hypoxemia. PMID:23951064

  9. Clinical impact of insulin resistance syndrome in cardiovascular diseases and its therapeutic approach.

    PubMed

    Harano, Y; Suzuki, M; Shinozaki, K; Hara, Y; Ryomoto, K; Kanazawa, A; Nishioheda, Y; Tsushima, M

    1996-06-01

    In subjects with coronary artery diseases (obstructive and vasospastic angina pectoris (AP)) who have no diabetes, hypertension, obesity and physical inactivity, insulin sensitivity was significantly reduced with compensated hyperinsulinemia on OGTT. Insulin resistance significantly correlated with coronary atherosclerosis score. In vasospastic AP (VAP), those who fulfilled more than 3 risk factors out of 5 (hyperinsulinemia, obesity, glucose intolerance, hypertension, dyslipidemia) consist of 70 and 40% for smokers and nonsmokers respectively. Insulin resistance syndrome who fulfilled all the criteria was 9-10% for VAP. In atherothrombotic brain infarction (ATTI) with the same exclusion criteria, the similar insulin resistance and hyperinsulinemia have been observed, but not in embolic (cardiac origin) or lacunar infarction. In ATTI, high TG and apo B with low HDL-chol were noted in blood. In essential hypertension without diabetes and obesity, hyperinsulinemia was noted in 25-35% and insulin resistance in 56-88%. Reduction of blood pressure with alpha blocker (bunazosin), ACE inhibitor (cilazapril), long-acting Ca++ blocker (amlodipine) significantly improved lowered insulin sensitivity. Insulin resistance rather than hyperinsulinemia is more closely associated with blood pressure. Cardiovascular diseases (vasospastic and obstructive AP, brain cortical artery diseases) are prone to develop diabetes because of insulin resistance and also promote the generation of cumulative risk factors resulting in a vicious cycle. Efforts to alleviate insulin resistance is crucial for the primary and secondary prevention of cardiovascular diseases.

  10. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  11. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    PubMed

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  12. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    PubMed

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  13. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    PubMed

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p < 0.001 for both). AUC-OGTT was also higher in HFD rats (p = 0.003). HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p < 0.0001. ROC curves of HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  14. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  15. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    PubMed

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  16. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle

    PubMed Central

    2013-01-01

    Background Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Methods Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Results Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. Conclusions These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling. PMID:23452929

  17. Insulin resistance and GLUT-4 glucose transporter in adipocytes from hypertensive rats.

    PubMed

    Chiappe De Cingolani, Gladys E; Caldiz, Claudia I

    2004-03-01

    To investigate the mechanisms that cause insulin resistance in hypertension, experiments were performed to study the effect of insulin on glucose transport, GLUT-4 translocation from intracellular to plasma membranes and GLUT-4 phosphorylation in isolated adipocytes from normotensive Wistar (W) and spontaneously hypertensive rats (SHR). Glucose transport was measured in adipocytes incubated with 3-O-d[Methyl-(3)H] glucose with and without insulin (0.1 to 5 nmol/L). GLUT-4 protein was determined by Western blot immunoanalysis with GLUT-4 antibody. Phosphorylation of GLUT-4 was measured by immunoprecipitation with GLUT-4 antibody followed by immunoanalysis with phosphoserine or phosphothreonine antibodies. Compared with adipocytes from W, insulin-stimulated glucose transport was lower in the SHR (P <.05). GLUT-4 protein expression was similar in adipocytes from W and SHR. Insulin increased GLUT-4 translocation from intracellular to plasma membranes in both groups. This effect was lower in the SHR (P <.05). The effect of insulin on GLUT-4 serine phosphorylation showed no changes in plasma membranes from W and decreased in the SHR (P <.05). In intracellular membranes, insulin increased specific GLUT-4 serine phosphorylation in both groups (P <.05), but the increase was lower in the SHR (P <.05). The results suggest that a deficient GLUT-4 translocation to plasma membranes in response to insulin shown in adipocytes from SHR, which was accompanied by a decrease in GLUT-4 phosphorylation at serine site, could be one of the causes of insulin resistance in hypertension.

  18. Fast-food restaurants, park access, and insulin resistance among Hispanic youth.

    PubMed

    Hsieh, Stephanie; Klassen, Ann C; Curriero, Frank C; Caulfield, Laura E; Cheskin, Lawrence J; Davis, Jaimie N; Goran, Michael I; Weigensberg, Marc J; Spruijt-Metz, Donna

    2014-04-01

    Evidence of associations between the built environment and obesity risk has been steadily building, yet few studies have focused on the relationship between the built environment and aspects of metabolism related to obesity's most tightly linked comorbidity, type 2 diabetes. To examine the relationship between aspects of the neighborhood built environment and insulin resistance using accurate laboratory measures to account for fat distribution and adiposity. Data on 453 Hispanic youth (aged 8-18 years) from 2001 to 2011 were paired with neighborhood built environment and 2000 Census data. Analyses were conducted in 2011. Walking-distance buffers were built around participants' residential locations. Body composition and fat distribution were assessed using dual x-ray absorptiometry and waist circumference. Variables for park space, food access, walkability, and neighborhood sociocultural aspects were entered into a multivariate regression model predicting insulin resistance as determined by the homeostasis model assessment. Independent of obesity measures, greater fast-food restaurant density was associated with higher insulin resistance. Increased park space and neighborhood linguistic isolation were associated with lower insulin resistance among boys. Among girls, park space was associated with lower insulin resistance, but greater neighborhood linguistic isolation was associated with higher insulin resistance. A significant interaction between waist circumference and neighborhood linguistic isolation indicated that the negative association between neighborhood linguistic isolation and insulin resistance diminished with increased waist circumference. Reducing access to fast food and increasing public park space may be valuable to addressing insulin resistance and type 2 diabetes, but effects may vary by gender. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    PubMed Central

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.; Smith, Richard D.; Qian, Wei-Jun; Lynch, Christopher J.; Newgard, Christopher B.; Buettner, Christoph

    2014-01-01

    Summary Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in non-human primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs, and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. PMID:25307860

  20. Defective Insulin Signalling, Mediated by Inflammation, Connects Obesity to Alzheimer Disease; Relevant Pharmacological Therapies and Preventive Dietary Interventions.

    PubMed

    Rodriguez-Casado, Arantxa; Toledano-Díaz, Adolfo; Toledano, Adolfo

    2017-01-01

    Recent evidence suggests that obesity, besides being a risk factor for cardiovascular events, also increases the risk of Alzheimer's disease. Insulin resistance is common in all cases of obesity and appears to be the linkage between both diseases. Obesity, often associated with excessive fat and sugar intake, represents a preclinical stage toward insulin resistance during which nutrition intervention is likely to have maximum effect. In this way, healthy lifestyles lifetime to prevent obesity-related modifiable risk factors such as inflammation, oxidative stress and metabolic disorders could be simultaneously beneficial for preserving cognition and controlling the Alzheimer's disease. This review relates extensive research literature on facts linking nutrients and dietary patterns to obesity and Alzheimer's disease. In addition briefly presents molecular mechanisms involved in obesity- induced insulin resistance and the contribution of peripheral inflammatory and defective insulin signalling pathways, as well as ectopic lipids accumulation to Alzheimer's development through brain inflammation, neuronal insulin resistance, and cognitive dysfunction seen in Alzheimer's disease. The work relates current and emerging pharmacological and non-pharmacological therapies for the management of obesity, insulin resistance and Alzheimer's considering them as disorders with common molecular features. The findings of this review validate the importance of some nutritional interventions as possible approach to prevent or delay simultaneously progression of Alzheimer's disease and obesity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  2. Triglyceride to HDL-C Ratio is Associated with Insulin Resistance in Overweight and Obese Children

    PubMed Central

    Iwani, Nur Ahmad Kamil Zati; Jalaludin, Muhammad Yazid; Zin, Ruziana Mona Wan Mohd; Fuziah, Md Zain; Hong, Janet Yeow Hua; Abqariyah, Yahya; Mokhtar, Abdul Halim; Wan Nazaimoon, Wan Mohamud

    2017-01-01

    The purpose of this study was to investigate the usefulness of triglyceride to hdl-c ratio (TG:HDL-C) as an insulin resistance (IR) marker for overweight and obese children. A total of 271 blood samples of obese and overweight children aged 9–16 years were analysed for fasting glucose, lipids and insulin. Children were divided into IR and non-insulin resistance, using homeostasis model assessment (HOMA). The children were then stratified by tertiles of TG: HDL-C ratio. The strength between TG:HDL-C ratio and other parameters of IR were quantified using Pearson correlation coefficient (r). Odds ratio was estimated using multiple logistic regression adjusted for age, gender, pubertal stages and IR potential risk factors. Children with IR had significantly higher TG:HDL-C ratio (2.48) (p = 0.01). TG:HDL-C ratio was significantly correlated with HOMA-IR (r = 0.104, p < 0.005) and waist circumference (r = 0.134, p < 0.001). Increasing tertiles of TG:HDL-C ratio showed significant increase in mean insulin level (p = 0.03), HOMA-IR (p = 0.04) and significantly higher number of children with acanthosis nigricans and metabolic syndrome. The odds of having IR was about 2.5 times higher (OR = 2.47; 95% CI 1.23, 4.95; p = 0.01) for those in the highest tertiles of TG:HDL-C ratio. Hence, TG:HDL-C may be a useful tool to identify high risk individuals. PMID:28059134

  3. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.

    PubMed

    Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-02-01

    Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.

  4. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    PubMed

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  5. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    PubMed

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    was alleviated. Octreotide might improve pancreatic fatty infiltration, lipid disorder, insulin resistance and alleviate pancreatic injury by down-regulating the expression of ADFP in pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  6. Regulation of liver glucokinase activity in rats with fructose-induced insulin resistance and impaired glucose and lipid metabolism.

    PubMed

    Francini, Flavio; Castro, María C; Gagliardino, Juan J; Massa, María L

    2009-09-01

    We evaluated the relative role of different regulatory mechanisms, particularly 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK2/FBPase-2), in liver glucokinase (GK) activity in intact animals with fructose-induced insulin resistance and impaired glucose and lipid metabolism. We measured blood glucose, triglyceride and insulin concentration, glucose tolerance, liver triglyceride content, GK activity, and GK and PFK2 protein and gene expression in fructose-rich diet (FRD) and control rats. After 3 weeks, FRD rats had significantly higher blood glucose, insulin and triglyceride levels, and liver triglyceride content, insulin resistance, and impaired glucose tolerance. FRD rats also had significantly higher GK activity in the cytosolic fraction (18.3 +/- 0.35 vs. 11.27 +/- 0.34 mU/mg protein). Differences in GK protein concentration (116% and 100%) were not significant, suggesting a potentially impaired GK translocation in FRD rats. Although GK transcription level was similar, PFK2 gene expression and protein concentration were 4- and 5-fold higher in the cytosolic fraction of FRD animals. PFK2 immunological blockage significantly decreased GK activity in control and FRD rats; in the latter, this blockage decreased GK activity to control levels. Results suggest that increased liver GK activity might participate in the adaptative response to fructose overload to maintain glucose/triglyceride homeostasis in intact animals. Under these conditions, PFK2 increase would be the main enhancer of GK activity.

  7. Gamma-oryzanol ameliorates insulin resistance and hyperlipidemia in rats with streptozotocin/nicotinamide-induced type 2 diabetes.

    PubMed

    Cheng, Hsing-Hsien; Ma, Chien-Ya; Chou, Tsui-Wei; Chen, Ya-Yen; Lai, Ming-Hoang

    2010-01-01

    Gamma-oryzanol is a component of rice bran oil (RBO) with purported health benefits. This study evaluated the effects of gamma-oryzanol on insulin resistance and lipid metabolism in Wistar rats with type 2 diabetes (T2DM). The rats were divided into three groups and consumed one of the following diets for 5 weeks: 15 % soybean oil (control group); 15 % palm oil (PO); and 15 % PO with the addition of 5.25 g gamma-oryzanol (POO). The results showed that PO markedly increased plasma low-density-lipoprotein cholesterol, plasma triglycerides, and hepatic triglyceride levels, but did not reduce the area under the curve for glucose and insulin significantly, compared with the control group. Adding gamma-oryzanol to PO improved the negative influence of PO on lipid metabolism in T2DM rats. In addition, gamma-oryzanol tended to increase insulin sensitivity in T2DM rats compared to control and PO groups. Longer-term studies are needed to evaluate these effects further.

  8. Antidiabetic Effect of Hydroalcholic Urtica dioica Leaf Extract in Male Rats with Fructose-Induced Insulin Resistance

    PubMed Central

    Ahangarpour, Akram; Mohammadian, Maryam; Dianat, Mahin

    2012-01-01

    Background: Urtica dioica has been used as antihypertensive, antihyperlipidemic and antidiabetic herbal medicine. The purpose of this study was to study the effect of hydroalcoholic extract of Urtica dioica on fructose-induced insulin resistance rats. Methods: Forty male Wistar rats were randomly divided into five groups including control, fructose, extract 50, extract 100 and extract 200. The control rat received vehicle, the fructose and extract groups received fructose 10% for eight weeks. The extract groups received single daily injection of vehicle, 50, 100 or 200 mg/kg/day for the two weeks. Blood glucose, insulin, last fasting insulin resistance index (FIRI), serum triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), alanin trasaminase (AST) and alkaline phosphatase (ALP), leptin and LDL/HDL ratio were determined. Results: Compared to control group, daily administration of fructose was associated with significant increase in FIRI, blood glucose and insulin, significant decrease in lepin, and no significant change in TG, HDL, LDL, LDL/HDL ratio, VLDL, ALT, and ALP. The extract significantly decreased serum glucose, insulin, LDL and leptin, and LDL/HDL ratio and FIRI. It also significantly increased serum TG, VLDL, and AST, but did not change serum ALP. Conclusion: We suggest that Urtica dioica extract, by decreasing serum glucose, and FIRI, may be useful to improve type 2 diabetes mellitus. Also, by positive effect on lipid profile and by decreasing effect on leptin, it may improve metabolic syndrome. PMID:23115450

  9. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-05

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats.

    PubMed

    Foletto, Kelly Carraro; Melo Batista, Bruna Aparecida; Neves, Alice Magagnin; de Matos Feijó, Fernanda; Ballard, Cíntia Reis; Marques Ribeiro, Maria Flávia; Bertoluci, Marcello Casaccia

    2016-01-01

    In a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state. In a 14 week experiment, 16 male Wistar rats received either saccharin-sweetened yogurt or non-sweetened yogurt daily in addition to chow and water ad lib. We measured daily food intake and weight gain weekly. At the end of the experiment, we evaluated fasting leptin, glucose, insulin, PYY and determined insulin resistance through HOMA-IR. Cumulative weight gain and food intake were evaluated through linear mixed models. Results showed that saccharin induced greater weight gain when compared with non-sweetened control (p = 0.027) despite a similar total caloric intake. There were no differences in HOMA-IR, fasting leptin or PYY levels between groups. We conclude that saccharin sweet taste can induce mild weight gain in Wistar rats without increasing total caloric intake. This weight gain was not related with insulin-resistance nor changes in fasting leptin or PYY in Wistar rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of a sleeve gastrectomy weight loss model in obese Zucker rats.

    PubMed

    Lopez, Peter P; Nicholson, Susannah E; Burkhardt, Gabriel E; Johnson, Robert A; Johnson, Fruzsina K

    2009-12-01

    Obesity promotes the development of diabetes and cardiovascular disease. The most effective weight loss treatment is bariatric surgery, but results greatly vary depending on the procedure. Sleeve gastrectomy (SG) has recently emerged as a reduced risk weight loss procedure for super obese patients. However, the mechanism of weight loss from SG and its effects on obesity-induced complications are yet to be determined. Our goal was to develop an experimental model of SG in genetically obese rats. Male obese Zucker rats (400-500 g, leptin-insensitive) were anesthetized with isoflurane. After a midline laparotomy, the stomach was clamped, the greater curvature was excised, and a triple suture line was used to close the gastric remnant. Sham rats underwent laparotomy only. Metabolic parameters were followed for 14 d after surgery. Caloric intake and body weight decreased in SG rats over 14 d by 98 +/- 10 kcal/d and 74 +/- 14 g, respectively. Blood total cholesterol levels were lower in rats that lost weight. Furthermore, blood glucose levels were lower in rats that lost weight. Active ghrelin levels were unchanged in SG rats 14 d after surgery. These results show that SG promotes weight loss in obese Zucker rats. Furthermore, SG-induced weight loss is accompanied by improved plasma cholesterol and glucose profile. However, SG does not promote a prolonged decrease in ghrelin levels. These results suggest that SG is an effective weight loss procedure in leptin insensitivity to improve the lipid profile and decrease insulin resistance and these effects might be independent of changes in ghrelin levels.

  12. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation.

    PubMed

    Caprio, Sonia; Perry, Rachel; Kursawe, Romy

    2017-05-01

    As a consequence of the global rise in the prevalence of adolescent obesity, an unprecedented phenomenon of type 2 diabetes has emerged in pediatrics. At the heart of the development of type 2 diabetes lies a key metabolic derangement: insulin resistance (IR). Despite the widespread occurrence of IR affecting an unmeasurable number of youths worldwide, its pathogenesis remains elusive. IR in obese youth is a complex phenomenon that defies explanation by a single pathway. In this review we first describe recent data on the prevalence, severity, and racial/ethnic differences in pediatric obesity. We follow by elucidating the initiating events associated with the onset of IR, and describe a distinct "endophenotype" in obese adolescents characterized by a thin superficial layer of abdominal subcutaneous adipose tissue, increased visceral adipose tissue, marked IR, dyslipidemia, and fatty liver. Further, we provide evidence for the cellular and molecular mechanisms associated with this peculiar endophenotype and its relations to IR in the obese adolescent. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  14. Familial and individual predictors of obesity and insulin resistance in urban Hispanic children

    PubMed Central

    Santiago-Torres, Margarita; Cui, Yuchen; Adams, Alexandra K.; Allen, David B.; Carrel, Aaron L.; Guo, Jessica Y.; Delgado-Rendon, Angelica; LaRowe, Tara L.; Schoeller, Dale A.

    2015-01-01

    Background High intake of sugar-sweetened beverages (SSB) has been suggested to contribute to the pediatric obesity epidemic, however, how the home food environment influence children’s intake of SSB among Hispanic families is still poorly understood. Objectives To evaluate the relationships between the home food environment and Hispanic children’s diet in relation to weight status and insulin resistance (IR). Methods A food frequency questionnaire was administered to 187 Hispanic children (ages 10 to 14 years), and anthropometrics were measured. IR was estimated from fasting insulin and glucose levels using the homeostasis model assessment of insulin resistance (HOMAIR). Parents reported on family demographics and the home food environment. A structural equation modeling approach was applied to examine the hypothesized relationships among variables. Results The prevalence of childhood overweight and obesity was 52.8% and it was positively associated with HOMAIR (β=0.687, P <.0001). Children’s SSB consumption was positively associated with children’s BMI z-score (β=0.151, P <0.05) and subsequently to HOMAIR. Children’s SSB consumption was predicted by home availability (β=0.191) and parental intake of SSB (β=0.419) (P <0.05). The model fit indices [X2 = 45.821 (d.f. = 30, P > 0.01 and < 0.05), X2/d.f. = 1.53, RMSEA = 0.053 (90% C.I. = 0.016, 0.082), CFI = 0.904] suggested a satisfactory goodness-of-fit. Conclusions The home food environment and parental diet seem to play an important role in the children’s access to and intake of SSB, which in turn predicted children’s weight status. PMID:25728238

  15. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    PubMed

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.

  16. Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription

    PubMed Central

    Nazarians-Armavil, Anaies; Menchella, Jonathan A.

    2013-01-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance. PMID:23579487

  17. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  18. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    PubMed

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Major Locus for Fasting Insulin Concentrations and Insulin Resistance on Chromosome 6q with Strong Pleiotropic Effects on Obesity-Related Phenotypes in Nondiabetic Mexican Americans

    PubMed Central

    Duggirala, Ravindranath; Blangero, John; Almasy, Laura; Arya, Rector; Dyer, Thomas D.; Williams, Kenneth L.; Leach, Robin J.; O’Connell, Peter; Stern, Michael P.

    2001-01-01

    Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting “true” insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)–related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LODeq for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LODeq for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other

  20. Obesity and Insulin Resistance Screening Tools in American Adolescents: National Health and Nutrition Examination Survey (NHANES) 1999 to 2010.

    PubMed

    Lee, Joey A; Laurson, Kelly R

    2016-08-01

    To identify which feasible obesity and insulin resistance (IR) screening tools are most strongly associated in adolescents by using a nationally representative sample. Adolescents aged 12.0 to 18.9 years who were participating in the National Health and Nutrition Examination Survey (NHANES) (n=3584) and who were measured for height, weight, waist circumference (WC), triceps and subscapular skinfold thickness, glycated hemoglobin, fasting glucose (FG) and fasting insulin (FI) level were included. Adolescents were split by gender and grouped by body mass index (BMI) percentile. Age- and gender-specific classifications were constructed for each obesity screening tool measure to account for growth and maturation. General linear models were used to establish groups objectively for analysis based on when IR began to increase. Additional general linear models were used to identify when IR significantly increased for each IR measure as obesity group increased and to identify the variance accounted for among each obesity-IR screening tool relationship. As the obesity group increased, homeostasis model assessment-insulin resistance (HOMA-IR) and FI significantly increased, while FG increased only (above the referent) in groups with BMI percentiles ≥95.0, and glycated hemoglobin level did not vary across obesity groups. The most strongly associated screening tools were WC and FI in boys (R(2)=0.253) and girls (R(2)=0.257). FI had the strongest association with all of the obesity measures. BMI associations were slightly weaker than WC in each in relation to IR. Our findings show that WC and FI are the most strongly associated obesity and IR screening tool measures in adolescents. These feasible screening tools should be utilized in screening practices for at-risk adolescents. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  1. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Wang, Jianwei, E-mail: wangjianwei1968@gmail.com; Gu, Tieguang

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) indexmore » in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo

  2. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet

    PubMed Central

    Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071

  3. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  4. Associations of sarcopenic obesity with the metabolic syndrome and insulin resistance over five years in older men: The Concord Health and Ageing in Men Project.

    PubMed

    Scott, David; Cumming, Robert; Naganathan, Vasi; Blyth, Fiona; Le Couteur, David G; Handelsman, David J; Seibel, Markus; Waite, Louise M; Hirani, Vasant

    2018-07-15

    Previous cross-sectional studies investigating associations of sarcopenic obesity with metabolic syndrome (MetS) and insulin resistance have not utilised consensus definitions of sarcopenia. We aimed to determine associations of sarcopenic obesity with MetS and insulin resistance over five years in community-dwelling older men. 1231 men aged ≥70 years had appendicular lean mass (ALM) and body fat percentage assessed by dual-energy X-ray absorptiometry and hand grip strength and gait speed tests. Sarcopenia was defined as low ALM/height (m 2 ) and low hand grip strength or gait speed (European Working Group definition); obesity was defined as body fat percentage ≥30%. MetS was assessed at baseline and 5-years later. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was assessed at 5-years only. Men with sarcopenic obesity (odds ratio, 95% CI: 2.07, 1.21-3.55) and non-sarcopenic obesity (4.19, 3.16-5.57) had higher MetS likelihood than those with non-sarcopenic non-obesity at baseline. Higher gait speed predicted lower odds for prevalent MetS (0.45, 0.21-0.96 per m/s). Higher body fat predicted increased odds for prevalent and incident MetS (1.14, 1.11-1.17 and 1.11, 1.02-1.20 per kg, respectively) and deleterious 5-year changes in MetS fasting glucose, high-density lipoprotein cholesterol and triglycerides (all P < 0.05). Compared with non-sarcopenic non-obesity, estimated marginal means for HOMA-IR at 5-years were higher in non-sarcopenic obesity only (1.0, 0.8-1.1 vs 1.3, 1.2-1.5; P < 0.001). Similar results were observed when sarcopenic obesity was defined by waist circumference. Sarcopenic obesity does not appear to confer greater risk for incident MetS or insulin resistance than obesity alone in community-dwelling older men. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study.

    PubMed

    Brochu, Martin; Mathieu, Marie-Eve; Karelis, Antony D; Doucet, Eric; Lavoie, Marie-Eve; Garrel, Dominique; Rabasa-Lhoret, Rémi

    2008-05-01

    Some insulin-resistant obese postmenopausal (PM) women are characterized by an android body fat distribution type and higher levels of lean body mass (LBM) compared to insulin-sensitive obese PM women. This study investigates the independent contribution of LBM to the detrimental effect of visceral fat (VF) levels on the metabolic profile. One hundred and three PM women (age: 58.0+/-4.9 years) were studied and categorized in four groups on the basis of their VF (higher vs. lower) and lean BMI (LBMI=LBM (kg)/height (m2); higher vs. lower). Measures included: fasting lipids, glucose homeostasis (by euglycemic/hyperinsulinemic clamp technique and 2-h oral glucose tolerance test (OGTT)), C-reactive protein (CRP) levels, fat distribution (by computed tomography (CT) scan), and body composition (by dual-energy X-ray absorptiometry). Women in the higher VF/higher LBMI group had lower glucose disposal and higher plasma insulin levels compared to the other groups. They also had higher plasma CRP levels than the women in the lower VF/lower LBMI group. VF was independently associated with insulin levels, measures of glucose disposal, and CRP levels (P<0.05). LBMI was also independently associated with insulin levels, glucose disposal, and CRP levels (P<0.05). Finally, significant interactions were observed between LBMI and VF levels for insulin levels during the OGTT and measures of glucose disposal (P<0.05). In conclusion, VF and LBMI are both independently associated with alterations in glucose homeostasis and CRP levels. The contribution of VF to insulin resistance seems to be exacerbated by increased LBM in PM women.

  6. Partial Reversal of Obesity-Induced Insulin Resistance Owing to Anti-Inflammatory Immunomodulatory Potential of Flaxseed Oil.

    PubMed

    Bashir, Samina; Ali, Shakir; Khan, Farah

    2015-01-01

    The present study was designed to assess the potential of supplementation of diet with Flaxseed (Linum usitatissimum, L.) oil (FXO), on obesity-related inflammation and reversal of obesity-induced insulin resistance. Swiss Albino mice, C57bl/6 mice and co-culture of 3T3-L1 adipocytes - RAW 264.7 macrophages to mimick obese adipose tissue environment were used for the study. Oral gavage of FXO at concentrations of 4, 8 or 16 mg/kg body weight (bwt) for 4 weeks or high-fat diet (HFD, 60% energy as fat) supplemented with dietary FXO (4, 8 or 16 mg/kg bwt) was given to the mice. FXO was characterised using gas chromatography - mass spectrometry. FXO supplemented HFD-fed mice (4 mg/kg bwt exhibited reduced adiposity index, serum glucose levels and triglycerides (8 and 16 mg/kg bwt) and improvement in insulin sensitisation (4, 8 and 16 mg/kg bwt) when compared with HFD mice. The co-culture showed a dose-dependent shift in cytokines towards anti-inflammatory (IL-4) state, with a decrease in pro-inflammatory TNF-α (p < 0.05). For immunomodulatory studies a dose-dependent increase (p < 0.05) was observed in antigen-specific levels of Th2 (IL-4) cytokine, serum anti-ova IgG1 and IgE levels. Suppression in anti-ova IgG2a, IgG2b, and IgG3 and antigen-specific Th1 cytokines like TNF-α and IFN-γ significantly (p < 0.05) was observed at 16 mg/kg bwt dosage. The results indicate that FXO exhibits an anti-inflammatory immunomodulatory potential and may partially relieve symptoms of obesity-associated insulin resistance.

  7. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats.

    PubMed

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca K; Rector, R Scott; Hinton, Pamela S

    2017-10-01

    The present study extends our previous findings that exercise, which prevents the onset of insulin resistance and type 2 diabetes (T2D), also prevents the detrimental effects of T2D on whole-bone and tissue-level strength. Our objective was to determine whether exercise improves bone's structural and material properties if insulin resistance is already present in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is hyperphagic due to a loss-of-function mutation in cholecystokinin-1 receptor (CCK-1 receptor), which leads to progressive obesity, insulin resistance and T2D after the majority of skeletal growth is complete. Because exercise reduces body mass, which is a significant determinant of bone strength, we used a body-mass-matched caloric-restricted control to isolate body-mass-independent effects of exercise on bone. Eight-wk old, male OLETF rats were fed ad libitum until onset of hyperglycemia (20weeks of age), at which time they were randomly assigned to three groups: ad libitum fed, sedentary (O-SED); ad libitum fed, treadmill running (O-EX); or, sedentary, mild caloric restriction to match body mass of O-EX (O-CR). Long-Evans Tokushima Otsuka rats served as the normophagic, normoglycemic controls (L-SED). At 32weeks of age, O-SED rats had T2D as evidenced by hyperglycemia and a significant reduction in fasting insulin compared to OLETFs at 20weeks of age. O-SED rats also had reduced total body bone mineral content (BMC), increased C-terminal telopeptide of type I collagen (CTx)/tartrate resistant acid phosphatase isoform 5b (TRAP5b), decreased N-terminal propeptide of type I procollagen (P1NP), reduced percent cancellous bone volume (BV/TV), trabecular number (Tb.N) and increased trabecular separation (Tb.Sp) and structural model index (SMI) of the proximal tibia compared to L-SED. T2D also adversely affected biomechanical properties of the tibial diaphysis, and serum sclerostin was increased and β-catenin, runt-related transcription factor

  8. Involvement of insulin resistance in D-galactose-induced age-related dementia in rats: Protective role of metformin and saxagliptin

    PubMed Central

    Kenawy, Sara; Hassan, Azza; El-Shenawy, Siham; Gomaa, Nawal; Zaki, Hala; Attia, Amina

    2017-01-01

    Age-related dementia is one of the most devastating disorders affecting the elderly. Recently, emerging data suggest that impaired insulin signaling is the major contributor in the development of Alzheimer’s dementia (AD), which is the most common type of senile dementia. In the present study, we investigated the potential therapeutic effects of metformin (Met) and saxagliptin (Saxa), as insulin sensitizing agents, in a rat model of brain aging and AD using D-galactose (D-gal, 150 mg/kg/day, s.c. for 90 successive days). Six groups of adult male Wistar rats were used: normal, D-gal, Met (500 mg/kg/day, p.o), and Saxa (1 mg/kg/day, p.o) control groups, as well as D-gal/Met and D-gal/Sax treated groups. Impaired learning and memory function was observed in rats treated with D-gal using Morris water maze test. Biochemical and histopathological findings also revealed some characteristic changes of AD in the brain that include the increased content of acetylcholine, glutamate, and phosphorelated tau, as well as deposition of amyloid plaques and neurofibrillary tangles. Induction of insulin resistance in experimentally aged rats was evidenced by increased blood glycated hemoglobin, brain contents of insulin and receptors for advanced glycated end-products, as well as decreased brain insulin receptor level. Elevation of oxidative stress markers and TNF-α brain content was also demonstrated. Met and Saxa, with a preference to Met, restored the normal memory and learning functions in rats, improved D-gal-induced state of insulin resistance, oxidative stress and inflammation, and ameliorated the AD biochemical and histopathological alterations in brain tissues. Our findings suggest that D-gal model of aging results in a diminishing of learning and memory function by producing a state of impaired insulin signaling that causes a cascade of deleterious events like oxidative stress, inflammation, and tau hyper-phosphorylation. Reversing of these harmful effects by the use of

  9. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women123

    PubMed Central

    Albu, Jeanine B; Kenya, Sonjia; He, Qing; Wainwright, Marsha; Berk, Evan S; Heshka, Stanley; Kotler, Donald P; Engelson, Ellen S

    2009-01-01

    Background Obesity and insulin resistance are growing problems in HIV-positive (HIV+) women receiving highly active antiretroviral therapy (HAART). Objective The objective was to determine the contribution of adipose tissue (AT) enlargement and distribution to the presence of insulin resistance in obese HIV+ women. Design Whole-body intermuscular AT (IMAT), visceral AT (VAT), subcutaneous AT (SAT), and SAT distribution (leg versus upper body) were measured by whole-body magnetic resonance imaging. Insulin sensitivity (SI) was measured with an intravenous glucose tolerance test in obese HIV+ women recruited because of their desire to lose weight (n = 17) and in obese healthy controls (n = 32). Results The HIV+ women had relatively less whole-body SAT and more VAT and IMAT than did the controls (P < 0.05 for all). A significant interaction by HIV status was observed for the relation of total SAT with SI (P < 0.001 for the regression’s slope interactions after adjustment for age, height, and weight). However, relations of IMAT, VAT, and SAT distribution (leg SAT as a percentage of total SAT; leg SAT%) with SI did not differ significantly between groups. For both groups combined, the best model predicting a low SI included significant contributions by both high IMAT and low leg SAT%, independent of age, height, and weight, and no interaction between groups was observed (overall r2 = 0.44, P = 0.0003). Conclusion In obese HIV+ women, high whole-body IMAT and low leg SAT% distribution are independently associated with insulin resistance. PMID:17616768

  11. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats

    PubMed Central

    Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.

    2012-01-01

    The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464

  12. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly

  13. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    PubMed Central

    Huang, Rae-Chi; de Klerk, Nicholas H.; Smith, Anne; Kendall, Garth E.; Landau, Louis I.; Mori, Trevor A.; Newnham, John P.; Stanley, Fiona J.; Oddy, Wendy H.; Hands, Beth; Beilin, Lawrence J.

    2011-01-01

    OBJECTIVE In light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN AND METHODS A total of 1,197 Australian children with cardiovascular/metabolic profiling at age 14 years were studied serially from birth to age 14 years. Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories of z scores (weight-for-height and BMI). Fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were compared at age 14 years between adiposity trajectories. RESULTS Seven adiposity trajectories were identified. Three (two rising and one chronic high adiposity) trajectories comprised 32% of the population and were associated with significantly higher fasting insulin and HOMA-IR compared with a reference trajectory group (with longitudinal adiposity z scores of approximately zero). There was a significant sex by trajectory group interaction (P < 0.001). Girls within a rising trajectory from low to moderate adiposity did not show increased insulin resistance. Maternal obesity, excessive weight gain during pregnancy, and gestational diabetes were more prevalent in the chronic high adiposity trajectory. CONCLUSIONS A range of childhood adiposity trajectories exist. The greatest insulin resistance at age 14 years is seen in those with increasing trajectories regardless of birth weight and in high birth weight infants whose adiposity remains high. Public health professionals should urgently target both excessive weight gain in early childhood across all birth weights and maternal obesity and excessive weight gain during pregnancy. PMID:21378216

  15. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  16. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  17. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    USDA-ARS?s Scientific Manuscript database

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  18. Insulin resistance and polycystic ovary syndrome.

    PubMed

    Galluzzo, Aldo; Amato, Marco Calogero; Giordano, Carla

    2008-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in humans, affecting approximately 7-8% of women of reproductive age. Despite the criteria adopted, PCOS is considered to be a predominantly hyperandrogenetic syndrome and the evaluation of metabolic parameters and insulin sensitivity is not mandatory. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Acknowledging the strong impact of insulin-resistance in the genesis of PCOS could be helpful not only to make the diagnosis more robust, but also for conferring better cardiovascular risk prevention. Several current studies support a strong recommendation that women with PCOS should undergo comprehensive evaluation for the metabolic syndrome and recognized cardiovascular risk factors, and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many of these women do not lose weight easily. Insulin-sensitizing drugs are discussed as a promising and unique therapeutic option for the chronic treatment of PCOS.

  19. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.

  20. Oral vitamin D supplementation has a lower bioavailability and reduces hypersecretion of parathyroid hormone and insulin resistance in obese Chinese males.

    PubMed

    Zhou, Ji-Chang; Zhu, Yu-Mei; Chen, Zheng; Mo, Jun-Luan; Xie, Feng-Zhu; Wen, Ying-Hong; Guo, Ping; Peng, Ji; Xu, Jian; Wang, Jun; Liu, Xiao-Li

    2015-08-01

    To examine the vitamin D status, SNP of the vitamin D receptor gene (VDR) and the effects of vitamin D supplementation on parathyroid hormone and insulin secretion in adult males with obesity or normal weight in a subtropical Chinese city. An intervention trial. Shenzhen City, Guangdong Province, China. From a cross-sectional survey conducted from June to July, eighty-two normal-weight and ninety-nine obese males (18-69 years) were screened to analyse their vitamin D status and for five SNP of VDR. From these individuals, in the same season of a different year, obese and normal-weight male volunteers (twenty-one per group) were included for an intervention trial with oral vitamin D supplementation at 1250 µg/week for 8 weeks. For the survey, there was no significant difference (P>0·05) in baseline circulating 25-hydroxyvitamin D concentrations or in the percentages of participants in different categories of vitamin D status between the two groups. The VDR SNP, rs3782905, was significantly associated with obesity (P=0·043), but none of the examined SNP were correlated with serum 25-hydroxyvitamin D when adjusted for age, BMI and study group. After vitamin D supplementation, serum 25-hydroxyvitamin D concentration, hypersecretions of parathyroid hormone and insulin, and insulin resistance in the obese were changed beneficially (P<0·05); however, the increase in serum 25-hydroxyvitamin D was less than that of the normal-weight men. For obese and normal-weight men of subtropical China, the summer baseline vitamin D status was similar. However, oral vitamin D supplementation revealed a decreased bioavailability of vitamin D in obese men and ameliorated their hypersecretion of parathyroid hormone and insulin resistance.

  1. Voluntary post weaning exercise restores metabolic homeostasis in offspring of obese rats.

    PubMed

    Rajia, S; Chen, H; Morris, M J

    2013-06-01

    Physical exercise reduces obesity, insulin resistance and dyslipidemia. We previously found that maternal obesity alters central appetite circuits and contributes to increased adiposity, glucose intolerance and metabolic disease in offspring. Here we hypothesized that voluntary exercise would ameliorate the adverse metabolic effects of maternal obesity on offspring. Sprague-Dawley females fed chow (C) or high-fat diet HFD (H) were mated. Female offspring from C dams were weaned onto chow (CC); those from H dams recieved chow (HC) or HFD (HH). Half of each group was provided with running wheels (CC(EX), HC(EX), HH(EX); n=10-12). Maternal obesity increased body weight (12%), adiposity, plasma lipids and induced glucose intolerance (HC vs CC; P<0.05). These were exaggerated by postweaning HFD (HH vs HC; P<0.01), showed doubled energy intake, a 37% increase in body weight, insulin resistance and glucose intolerance (HH vs HC; P<0.01). Exercise reduced fat mass, plasma lipids, HOMA and fasting glucose in HC(EX) (vs HC; P<0.05) and HH(EX) (vs HH; P<0.01). Values in HC(EX) were indistinguishable from CC, however in HH(EX) these metabolic parameters remained higher than the sedentary HC and CC rats (P<0.01). mRNA expression of hypothalamic pro-opiomelanocortin, and adipose tumour necrosis factor α and 11β-hydroxysteroid dehydrogenase type 1 were reduced by exercise in HH(EX) (vs HH; P<0.05). While voluntary exercise almost completely reversed the metabolic effects of maternal obesity in chow fed offspring, it did not fully attenuate the increased adiposity, glucose intolerance and insulin resistance in offspring weaned onto HFD. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance

    PubMed Central

    Amati, Francesca; Dubé, John J.; Alvarez-Carnero, Elvis; Edreira, Martin M.; Chomentowski, Peter; Coen, Paul M.; Switzer, Galen E.; Bickel, Perry E.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.

    2011-01-01

    OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. PMID

  3. Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats.

    PubMed

    Hocayen, Palloma de A S; Grassiolli, Sabrina; Leite, Nayara C; Pochapski, Márcia T; Pereira, Ricardo A; da Silva, Luiz A; Snack, Andre L; Michel, R Garcia; Kagimura, Francini Y; da Cunha, Mário A A; Malfatti, Carlos R M

    2016-07-01

    Obesity is the main risk factor for type 2 diabetes mellitus. Secondary metabolites with biological activities and pharmacological potential have been identified in species of the Baccharis genus that are specifically distributed in the Americas. This study evaluated the effects of methanol extracts from Baccharis dracunculifolia DC. Asteraceae on metabolic parameters, satiety, and growth in monosodium glutamate (MSG) induced-obesity model rats. MSG was administered to 32 newborn rats (4 mg/g of body weight) once daily for 5 consecutive days. Four experimental groups (control, control + extract, MSG, and MSG + extract) were treated for 30 consecutive days with 400 mg/kg of B. dracunculifolia extract by gavage. Biochemical parameters, antioxidant activity, total extract phenolic content (methanolic, ethanolic, and acetone extractions), and pancreatic islets were evaluated. High levels of phenolic compounds were identified in B. dracunculifolia extracts (methanol: 46.2 ± 0.4 mg GAE/L; acetate: 70.5 ± 0.5 mg GAE/L; and ethanol: 30.3 ± 0.21 mg GAE/L); high antioxidant activity was detected in B. dracunculifolia ethanol and methanol extracts. The concentration of serum insulin increased 30% in obese animals treated with extract solutions (1.4-2.0 µU/mL, p < 0.05). Insulin secretion in pancreatic islets was 8.3 mM glucose (58%, p < 0.05) and 16.7 mM (99.5%, p < 0.05) in rats in the MSG + extract and MSG groups, respectively. Treatment with B. dracunculifolia extracts protected pancreatic islets and prevented the irreversible cellular damage observed in animals in obesity and diabetes models.

  4. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats.

    PubMed

    Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B

    2017-02-23

    Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (p<0.05) increase in body weight, body mass index and abdominal circumference. Similarly, levels of blood glucose, insulin, leptin, adiponectin and insulin resistance were increased. It also caused a significant increase in the levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index while high-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to

  5. Leptin Rapidly Improves Glucose Homeostasis in Obese Mice by Increasing Hypothalamic Insulin Sensitivity

    PubMed Central

    Koch, Christiane; Augustine, Rachael A.; Steger, Juliane; Ganjam, Goutham K.; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W.; Shepherd, Peter R.; Anderson, Greg M.; Grattan, David R.; Tups, Alexander

    2013-01-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lepob/ob mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes. PMID:21123564

  6. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    PubMed

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  7. Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats.

    PubMed

    Franco, Claudinéia C S; Prates, Kelly V; Previate, Carina; Moraes, Ana M P; Matiusso, Camila C I; Miranda, Rosiane A; de Oliveira, Júlio C; Tófolo, Laize P; Martins, Isabela P; Barella, Luiz F; Ribeiro, Tatiane A; Malta, Ananda; Pavanello, Audrei; Francisco, Flávio A; Gomes, Rodrigo M; Alves, Vander S; Moreira, Veridiana M; Rigo, Késia P; Almeida, Douglas L; de Sant Anna, Juliane R; Prado, Marialba A A C; Mathias, Paulo C F

    2017-05-01

    Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.

  8. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    PubMed

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  9. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Acute effect of the dual angiotensin-converting enzyme and neutral endopeptidase 24-11 inhibitor mixanpril on insulin sensitivity in obese Zucker rat

    PubMed Central

    Arbin, V; Claperon, N; Fournié-Zaluski, M -C; Roques, B P; Peyroux, J

    2001-01-01

    The aim of this study was to determine whether acute dual angiotensin-converting enzyme (ACE)/neutral endopeptidase 24-11 (NEP) inhibition could improve whole body insulin-mediated glucose disposal (IMGD) more than ACE inhibition alone and whether this effect was mediated by the kinin-nitric oxide (NO) pathway activation.We therefore compared in anaesthetized obese (fa/fa) Zucker rats (ZOs) the effects of captopril (2 mg kg−1, i.v.+2 mg kg−1 h−1), retrothiorphan (25 mg kg−1, i.v. +25 mg  kg−1 h−1), a selective NEP inhibitor, and mixanpril (25 mg kg−1, i.v.+25 mg kg−1 h−1), a dual ACE/NEP inhibitor, on IMGD using hyperinsulinaemic euglycaemic clamp technique. The role of the kinin-NO pathway in the effects of mixanpril was tested using a bradykinin B2 receptor antagonist (Hoe-140, 300 μg kg−1) and a NO-synthase inhibitor (Nω-nitro-L-arginine methyl ester, L-NAME, 10 mg kg−1 i.v. +10 mg kg−1 h−1) as pretreatments.Insulin sensitivity index (ISI) was lower in ZO controls than in lean littermates. Increases in ISI were observed in captopril- and retrothiorphan-treated ZOs. In mixanpril-treated ZOs, ISI was further increased, compared to captopril- and retrothiorphan-treated ZOs.In ZOs, Hoe-140 and L-NAME alone did not significantly alter and slightly reduced the ISI respectively. Hoe-140 and L-NAME markedly inhibited the ISI improvement induced by mixanpril.These results show that in obese insulin-resistant Zucker rats, under acute conditions, NEP or ACE inhibition can improve IMGD and that dual ACE/NEP inhibition improves IMGD more effectively than does either single inhibition. This effect is linked to an increased activation of the kinin-NO pathway. PMID:11399666

  11. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade.

    PubMed

    Pedersen, Morten Høgild; Svart, Mads Vandsted; Lebeck, Janne; Bidlingmaier, Martin; Stødkilde-Jørgensen, Hans; Pedersen, Steen Bønløkke; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2017-04-01

    Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. To study the metabolic effects of GH blockade during fasting in obese subjects. Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. GH levels increased with fasting (P < 0.01), and the fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P < 0.05). Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P < 0.01) primarily due to reduced endogenous glucose production (P = 0.003). Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects. Copyright © 2017 by the Endocrine Society

  12. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo.

    PubMed

    Pereira, Sandra; Park, Edward; Moore, Jessy; Faubert, Brandon; Breen, Danna M; Oprescu, Andrei I; Nahle, Ashraf; Kwan, Denise; Giacca, Adria; Tsiani, Evangelia

    2015-11-01

    Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity.

  13. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats.

    PubMed

    Merroun, Ikram; Sánchez-González, Cristina; Martínez, Rosario; López-Chaves, Carlos; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; Galisteo, Milagros; Zarzuelo, Antonio; Errami, Mohammed; López-Jurado, María

    2013-11-01

    Recent research suggests that cannabinoid receptor CB1 antagonists can affect appetite and body weight gain, although their influence on other parameters related to metabolic syndrome is not well documented. The present study was designed to assess the effects of chronic treatment with the CB1 receptor inverse agonist AM 251 (3 mg/kg for 3 weeks) in obese and lean Zucker rats on parameters related to metabolic syndrome. Four groups of rats were used: lean Zucker rats, untreated obese Zucker rats, AM 251-treated obese Zucker rats and a pair-fed obese Zucker rat experimental group which received the same amount of food as that consumed by the animals treated with AM251. Food intake, body weight gain, energy expenditure, plasma biochemical parameters, leptin, insulin and hepatic status markers were analysed. Daily injection of AM 251 in obese Zucker rats produced a marked and sustained decrease in daily food intake and body weight and a considerable increase in energy expenditure in comparison with untreated obese Zucker rats. AM 251 administration to obese rats significantly reduced plasma levels of glucose, leptin, AST, ALT, Gamma GT, total bilirubin and LDL cholesterol whereas HDL cholesterol plasma levels increased. The results also showed a decrease in liver/weight body ratio and total fat content in the liver. The main effects of AM251 (3 mg/kg) found in this study were not observed in pair-fed obese animals, highlighting the additional beneficial effects of treatment with AM 251. The results obtained in obese rats can be interpreted as a decrease in leptin and insulin resistance, thereby improving glucose and lipid metabolism, alleviating the steatosis present in the metabolic syndrome and thus favourably modifying plasma levels of hepatic biomarkers. Our results indicate that the cannabinoid CB1 inverse agonist AM 251 represents a promising therapeutic strategy for the treatment of obesity and metabolic syndrome. © 2013.

  14. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance.

    PubMed

    Du, Caiqi; Zhang, Cai; Wu, Wei; Liang, Yan; Wang, Anru; Wu, Shimin; Zhao, Yue; Hou, Ling; Ning, Qin; Luo, Xiaoping

    2018-04-25

    A novel bioactive peptide, mitochondrial-derived peptide (MOTS-c), has recently attracted attention as a potential prevention or therapeutic option for obesity and type 2 diabetes mellitus (T2DM). MOTS-c profiles have not yet been reported in human obesity and T2DM. We aimed to determine circulating MOTS-c levels in obesity and explore the association between MOTS-c levels and various metabolic parameters. In this case-control study, 40 obese children and adolescents (27 males) and 57 controls (40 males) were recruited in the Hubei Province of China in 2017. Circulating MOTS-c levels were measured, clinical data (e.g., glucose, insulin and lipid profile) were recorded, and anthropometric measurements were performed. Finally, we investigated correlations between MOTS-c levels and related variables. MOTS-c levels were significantly decreased in the obese group compared with the control group (472.61 ± 22.83 ng/mL vs. 561.64 ± 19.19 ng/mL, p < 0.01). After classification by sex, MOTS-c levels were significantly decreased in obese male children and adolescents compared to their counterparts (465.26 ± 24.53 ng/mL vs. 584.07 ± 21.18 ng/mL, p < 0.001), while they were comparable between the obese and healthy female subjects (487.89 ± 49.77 ng/mL vs. 508.85 ± 38.76 ng/mL, p > 0.05). Further, MOTS-c levels were negatively correlated with body mass index (BMI), BMI standard deviation score, waist circumference, waist-to-hip ratio, fasting insulin level, HOMA-IR, and HbA1c in the male cohort. Circulating MOTS-c levels were decreased in obese male children and adolescents and correlated with markers of insulin resistance and obesity. This article is protected by copyright. All rights reserved.

  15. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  16. Alterations of local cerebral glucose utilization in lean and obese fa/fa rats after acute adrenalectomy.

    PubMed

    Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1994-08-29

    An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.

  17. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats.

    PubMed

    Brahma Naidu, Parim; Uddandrao, V V Sathibabu; Ravindar Naik, Ramavat; Suresh, Pothani; Meriga, Balaji; Begum, Mustapha Shabana; Pandiyan, Rajesh; Saravanan, Ganapathy

    2016-01-05

    Obesity, generally linked to hyperlipidemia, has been occurring of late with distressing alarm and has now become a global phenomenon casting a huge economic burden on the health care system of countries around the world. The present study investigated the effects of gingerol over 30 days on the changes in HFD-induced obese rats in marker enzymes of lipid metabolism such as fatty-acid synthase (FAS), Acetyl CoA Carboxylase (ACC), Carnitine Palmitoyl Transferase-1(CPT-1), HMG co-A Reductase (HMGR), Lecithin Choline Acyl Transferase (LCAT) and Lipoprotein Lipase (LPL) and inflammatory markers (TNF-α and IL-6). The rats were treated orally with gingerol (75 mg kg(-1)) once daily for 30 days with a lorcaserin-treated group (10 mg kg(-1)) included for comparison. Changes in body weight, glucose, insulin resistance and expressions of lipid marker enzymes and inflammatory markers in tissues were observed in experimental rats. The administration of gingerol resulted in a significant reduction in body weight gain, glucose and insulin levels, and insulin resistance, which altered the activity, expressions of lipid marker enzymes and inflammatory markers. It showed that gingerol had significantly altered these parameters when compared with HFD control rats. This study confirms that gingerol prevents HFD-induced hyperlipidemia by modulating the expression of enzymes important to cholesterol metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Correlation of P-wave dispersion with insulin sensitivity in obese adolescents.

    PubMed

    Sert, Ahmet; Aslan, Eyup; Buyukınan, Muammer; Pirgon, Ozgur

    2017-03-01

    P-wave dispersion is a new and simple electrocardiographic marker that has been reported to be associated with inhomogeneous and discontinuous propagation of sinus impulses. In the present study, we evaluated P-wave dispersion in obese adolescents and investigated the relationship between P-wave dispersion, cardiovascular risk factors, and echocardiographic parameters. We carried out a case-control study comparing 150 obese adolescents and 50 healthy controls. Maximum and minimum P-wave durations were measured using a 12-lead surface electrocardiogram, and P-wave dispersion was calculated as the difference between these two measures. Echocardiographic examination was also performed for each subject. Multivariate linear regression analysis with stepwise variable selection was used to evaluate parameters associated with increased P-wave dispersion in obese subjects. Maximum P-wave duration and P-wave dispersion were significantly higher in obese adolescents than control subjects (143±19 ms versus 117±20 ms and 49±15 ms versus 29±9 ms, p<0.0001 for both). P-wave dispersion was positively correlated with body mass index, waist and hip circumferences, systolic and diastolic blood pressures, total cholesterol, serum levels of low-density lipoprotein cholesterol, triglycerides, glucose, and insulin, homoeostasis model assessment for insulin resistance score, left ventricular mass, and left atrial dimension. P-wave dispersion was negatively correlated with high-density lipoprotein cholesterol levels. By multiple stepwise regression analysis, left atrial dimension (β: 0.252, p=0.008) and homoeostasis model assessment for insulin resistance (β: 0.205; p=0.009) were independently associated with increased P-wave dispersion in obese adolescents. Insulin resistance is a significant, independent predictor of P-wave dispersion in obese adolescents.

  19. Short stature, abdominal obesity, insulin resistance and alterations in lipid profile in very low-income women living in Maceió, north-eastern Brazil.

    PubMed

    Florêncio, Telma T; Ferreira, Haroldo S; Cavalcante, Jairo C; Stux, Gabriela R; Sawaya, Ana L

    2007-04-01

    To test the hypothesis that short stature is associated with abdominal obesity, insulin resistance and lipid profile changes. Anthropometric data were collected from 237 women (18-60 years old), residents of a shantytown in Maceió. Biochemical profiles of 60 individuals drawn from this population were determined. Total and low-density lipoprotein (LDL) cholesterol levels and insulin resistance rose with increasing waist : hip circumference ratio, particularly in women. Short, overweight individuals exhibited larger biochemical alterations than overweight individuals of average stature. Short stature, when associated with overweight, is a risk factor for increased insulin resistance and alterations in lipid profile.

  20. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin