Sample records for obesity insulin sensitivity

  1. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    PubMed

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  2. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  3. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  4. Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity.

    PubMed

    Fernandez-Twinn, Denise S; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L; Alfaradhi, Maria Z; Loche, Elena; Sferruzzi-Perri, Amanda N; Fowden, Abigail L; Ozanne, Susan E

    2017-03-14

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.

  5. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  6. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  7. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  8. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents.

    PubMed

    Vukovic, Rade; Milenkovic, Tatjana; Mitrovic, Katarina; Todorovic, Sladjana; Plavsic, Ljiljana; Vukovic, Ana; Zdravkovic, Dragan

    2015-12-01

    Available data on metabolically healthy obese (MHO) phenotype in children suggest that gender, puberty, waist circumference, insulin sensitivity, and other laboratory predictors have a role in distinguishing these children from metabolically unhealthy obese (MUO) youth. The goal of this study was to identify predictors of MHO phenotype and to analyze glucose and insulin metabolism during oral glucose tolerance test (OGTT) in MHO children. OGTT was performed in 244 obese children and adolescents aged 4.6-18.9 years. Subjects were classified as MHO in case of no fulfilled criterion of metabolic syndrome except anthropometry or as MUO (≥2 fulfilled criteria). Among the subjects, 21.7 % had MHO phenotype, and they were more likely to be female, younger, and in earlier stages of pubertal development, with lower degree of abdominal obesity. Insulin resistance was the only independent laboratory predictor of MUO phenotype (OR 1.59, CI 1.13-2.25), with 82 % sensitivity and 60 % specificity for diagnosing MUO using HOMA-IR cutoff point of ≥2.85. Although no significant differences were observed in glucose regulation, MUO children had higher insulin demand throughout OGTT, with 1.53 times higher total insulin secretion. Further research is needed to investigate the possibility of targeted treatment of insulin resistance to minimize pubertal cross-over to MUO in obese children. • Substantial proportion of the obese youth (21-68 %) displays a metabolically healthy (MHO) phenotype. • Gender, puberty, waist circumference, insulin sensitivity, and lower levels of uric acid and transaminases have a possible role in distinguishing MHO from metabolically unhealthy obese (MUO) children. • Insulin resistance was found to be the only significant laboratory predictor of MUO when adjusted for gender, puberty, and the degree of abdominal obesity. • Besides basal insulin resistance, MUO children were found to have a significantly higher insulin secretion throughout OGTT in

  9. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  10. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  12. Insulin-sensitive obese children display a favorable metabolic profile.

    PubMed

    Vukovic, Rade; Mitrovic, Katarina; Milenkovic, Tatjana; Todorovic, Sladjana; Soldatovic, Ivan; Sipetic-Grujicic, Sandra; Zdravkovic, Dragan

    2013-02-01

    Most of what is known about the metabolically healthy obese phenomenon is derived from studies in the adult population and no standardized criteria to identify these individuals exist to date. The aim of this study was to determine if the preserved insulin sensitivity evaluated by homeostatic model assessment of insulin resistance (HOMA-IR) index is associated with favorable metabolic profile in the obese children. We studied a group of 248 children and adolescents (150 female, 98 male), aged 5.9-18.9 years with diet-induced obesity (BMI >95th percentile). The entire cohort was divided into quartiles based on levels of insulin resistance determined by HOMA-IR index. Subjects in the lower quartile of HOMA-IR were classified as insulin-sensitive group (ISG), whereas children in the upper quartile were categorized as insulin-resistant group (IRG). The ISG subjects had values of HOMA-IR ≤2.75 while the children from the IRG group had HOMA-IR ≥6.16. Subjects from ISG group had lower basal β-cell activity and were less likely to have impaired fasting glucose or impaired glucose tolerance. Concentrations of LDL and total cholesterol, triglycerides, and transaminases were lower and HDL cholesterol levels were higher in ISG subjects. Findings obtained by the use of Matsuda index correlated well with the findings obtained by the use of HOMA-IR. Lower HOMA-IR values were significantly associated with favorable metabolic profile in studied children, which correlates with findings in the adult population and emphasizes the need for further, longitudinal studies of insulin resistance development in childhood obesity.

  13. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  14. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  15. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  16. Aldosterone Is Not Associated With Metabolic and Microvascular Insulin Sensitivity in Abdominally Obese Men.

    PubMed

    Schütten, Monica T J; Kusters, Yvo H A M; Houben, Alfons J H M; Scheijen, Jean L J M; van de Waarenburg, Marjo P H; Schalkwijk, Casper G; Joris, Peter J; Plat, Jogchum; Mensink, Ronald P; de Leeuw, Peter W; Stehouwer, Coen D A

    2018-02-01

    Impaired insulin-mediated muscle microvascular recruitment (IMMR) may add to the development of insulin resistance and hypertension. Increased aldosterone levels have been linked to these obesity-related complications in severely to morbidly obese individuals and to impaired microvascular function in experimental studies. To investigate whether aldosterone levels are associated with IMMR, insulin sensitivity, and blood pressure in lean and moderately abdominally obese men, and to study the effect of weight loss. In 25 lean and 53 abdominally obese men, 24-hour blood pressure measurement was performed, and aldosterone levels were measured using ultra-performance liquid chromatography tandem mass spectrometry. Insulin sensitivity was assessed by determining whole-body glucose disposal during a hyperinsulinemic clamp. IMMR in forearm skeletal muscle was measured with contrast-enhanced ultrasonography. These assessments were repeated in the abdominally obese men following an 8-week weight loss or weight stable period. Sodium excretion and aldosterone levels were similar in lean and abdominally obese participants, but sodium excretion was inversely associated with aldosterone concentration only in the lean individuals [lean, β/100 mmol sodium excretion (adjusted for age and urinary potassium excretion) = -0.481 (95% confidence interval, -0.949 to -0.013); abdominally obese, β/100 mmol sodium excretion = -0.081 (95% confidence interval, -0.433 to 0.271); P for interaction = 0.02]. Aldosterone was not associated with IMMR, insulin sensitivity, or blood pressure and was unaffected by weight loss. In moderately abdominally obese men, the inverse relationship between sodium excretion and aldosterone concentration is less than that in lean men but does not translate into higher aldosterone levels. The absolute aldosterone level does not explain differences in microvascular and metabolic insulin sensitivity and blood pressure between lean and moderately abdominally obese men

  17. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  18. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.

    PubMed

    Abdulnour, Joseph; Yasari, Siham; Rabasa-Lhoret, Rémi; Faraj, May; Petrosino, Stefania; Piscitelli, Fabiana; Prud' Homme, Denis; Di Marzo, Vincenzo

    2014-01-01

    To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05). This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. © 2013 The Obesity Society.

  19. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    PubMed Central

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P < 0.05) and insulin sensitivity (hyperinsulinemic euglycemic clamp; OP, 6.8 ± 0.9 mg/kg · min; OR, 22.2 ± 1.2 mg/kg · min; CON, 17.7 ± 0.8 mg/kg · min; P < 0.05), which were well correlated (r2 = 0.49; P < 0.01). In OP rats, rosiglitazone dose-dependently improved (P < 0.05) insulin sensitivity (12.8 ± 0.6 mg/kg · min at 3 mg/kg; 16.0 ± 1.5 mg/kg · min at 6 mg/kg) and BRG (3.8 ± 0.4 bpm/mm Hg at 3 mg/kg; 5.3 ± 0.7 bpm/mm Hg at 6 mg/kg). However, 6 mg/kg rosiglitazone also increased BRG in OR rats without increasing insulin sensitivity, disrupted the correlation between BRG and insulin sensitivity (r2 = 0.08), and, in OP and OR rats, elevated BRG relative to insulin sensitivity (analysis of covariance; P < 0.05). Moreover, in OP rats, stimulation of the aortic depressor nerve, to activate central baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  20. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  1. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice.

    PubMed

    Fang, Penghua; Yu, Mei; Min, Wen; Han, Shiyu; Shi, Mingyi; Zhang, Zhenwen; Bo, Ping

    2018-05-01

    Although baicalin has been shown to increase glucose uptake and insulin sensitivity in skeletal muscle of mice, there is no literature available about the effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. In the present study, diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and 3T3-L1 cells were treated with 100, 200, 400 μM baicalin for 3 h. Then insulin resistance indexes and insulin signal protein levels were examined to elucidate whether baicalin increased glucose uptake and GLUT4 translocation in adipocytes of diet-induced obese mice. The present findings showed that administration of baicalin decreased food intake, body weight, HOMA-IR and p-p38 MAPK and pERK levels, but enhanced pAKT and PGC-1α contents, as well as GLUT4 mRNA, PGC-1α mRNA expression in adipocytes, and reversed high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Moreover, baicalin treatment increased GLUT4 concentration in plasma membranes of adipocytes. These data demonstrated that baicalin accelerated GLUT4 translocation from intracellular membrane compartments to plasma membranes in adipocytes. Baicalin plays a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  3. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    PubMed Central

    van der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J.J.; Sunehag, Agneta L.

    2010-01-01

    Introduction Data are limited on the metabolic effects of resistance exercise (strength training) in adolescents. Purpose The objective of this study was to determine whether a controlled resistance exercise program without dietary intervention or weight loss, reduces body fat accumulation, increases lean body mass, and improves insulin sensitivity and glucose metabolism in sedentary obese Hispanic adolescents. Methods Twelve obese adolescents (15.5±0.5y; 35.3 ±0.8kg/m2;40.8±1.5% body fat), completed a 12 wk resistance exercise program (2×1h/wk, exercising all major muscle groups). At baseline and completion of the program, body composition was measured by DXA, abdominal fat distribution by Magnetic Resonance Imaging, hepatic and intramyocellular fat by Magnetic Resonance Spectroscopy, peripheral insulin sensitivity by the Stable Labeled IV Glucose Tolerance Test and hepatic insulin sensitivity by the Hepatic Insulin Sensitivity Index =1000/(GPR*fasting insulin). Glucose production rate (GPR), gluconeogenesis and glycogenolysis were quantified using Stable Isotope-Gas Chromatography/Mass Spectrometry techniques. Results All participants were normoglycemic. The exercise program resulted in significant strength gain in both upper and lower body muscle groups. Body weight increased from 97.0±3.8 to 99.6±4.2 kg (p<0.01). The major part (~80%) was accounted for by increased lean body mass (55.7±2.8 to 57.9±3.0 kg; p≤0.01).Total, visceral, hepatic and intramyocellular fat content remained unchanged. Hepatic insulin sensitivity increased by 24±9% (p<0.05), while peripheral insulin sensitivity did not change significantly. GPR decreased by 8±1% (p<0.01) due to a 12±5% decrease in glycogenolysis (p<0.05). Conclusion We conclude that a controlled resistance exercise program without weight loss increases strength and lean body mass, improves hepatic insulin sensitivity and decreases GPR without affecting total fat mass or visceral, hepatic and intramyocellular

  4. Divergent Effects of a Combined Hormonal Oral Contraceptive on Insulin Sensitivity in Lean versus Obese Women

    PubMed Central

    Cheang, Kai I.; Essah, Paulina A.; Sharma, Susmeeta; Wickham, Edmond P.; Nestler, John E.

    2011-01-01

    Objective To evaluate the effects of a commonly used combined hormonal oral contraceptive (OC) on carbohydrate metabolism in obese as compared with obese women. Design 6-month prospective study. Setting Clinical Research Center at an academic medical center. Patients Premenopausal non-diabetic women with BMI < 25 kg/m2 (n=15) or > 30 kg/m2 (n=14). Intervention Ethinyl estradiol 35mcg and norgestimate 0.18/0.215/0.25 mg for 6 cycles. Main Outcome Measures Insulin sensitivity (Si) by frequent sampling intravenous glucose tolerance test; other indices of insulin sensitivity (ISI HOMA, Matsuda index); fasting lipid panel. Results Si changed from 6.62±3.69 min−1/mu/L (baseline) to 8.23±3.30 min−1/mu/L (6 months) in lean women, and from 4.36±2.32 to 3.82±2.32 min−1/mu/L in obese women (p for interaction=0.0494). Divergent effects on insulin sensitivity were also observed with ISI HOMA (p=0.0128) and Matsuda index (p=0.0227). LDL increased by approximately 20 mg/dL in both groups (p<0.005 [lean]; p<0.01 [obese]). Conclusions Lean and obese women exhibit differential changes in insulin sensitivity when given 6 months of a commonly used OC. The mechanisms of these differences, and whether these divergent effects persist long-term, require further investigations. Capsule Lean and obese non-diabetic women exhibit differential changes in insulin sensitivity when given 6 months of a commonly used OC (ethinyl estradiol 35mcg and norgestimate 0.18/0.215/0.25 mg) PMID:21676394

  5. [Effect of oral administration of ascorbic acid on insulin sensitivity and lipid profile in obese individuals].

    PubMed

    Martínez-Abundis, E; Pascoe-González, S; González-Ortiz, M; Mora-Martínez, J M; Cabrera-Pivaral, C E

    2001-01-01

    The aim of this study was to identify the effect of an oral ascorbic acid (AA) supplement on lipid profile and insulin sensitivity in obese people. A randomized double-blind clinical trial placebo controlled was performed in 16 obese male volunteers [body mass index (BMI) 30-40 kg/m2]. Eight received orally 1 g of AA daily for four weeks and the other eight volunteers received placebo by the same scheme and period of time. Before and after the pharmacological intervention were measured total cholesterol, high-density-lipoprotein (HDL) cholesterol, triglycerides, glucose, creatinine and uric acid. Low-density-lipoprotein (LDL) cholesterol and very-low-density-lipoprotein (VLDL) triglycerides were calculated using formulas. In order to assess insulin sensitivity before and after the intervention, the steady-state glucose (SSG) was calculated from the insulin suppression test modified with octreotide. There were not significant differences in clinical characteristics between both groups. Basal metabolic profile and SSG were similar between both groups. There were not significant differences in both groups between before and after the intervention in metabolic profile and insulin sensitivity. AA did not modify the lipid profile nor insulin sensitivity in the group of obese people studied.

  6. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity.

    PubMed

    Reyman, M; Verrijn Stuart, A A; van Summeren, M; Rakhshandehroo, M; Nuboer, R; de Boer, F K; van den Ham, H J; Kalkhoven, E; Prakken, B; Schipper, H S

    2014-01-01

    Childhood obesity is accompanied by low-grade systemic inflammation, which contributes to the development of insulin resistance and cardiovascular complications later in life. As vitamin D exhibits profound immunomodulatory functions and vitamin D deficiency is highly prevalent in childhood obesity, we hypothesized that vitamin D deficiency in childhood obesity coincides with enhanced systemic inflammation and reduced insulin sensitivity. In a cross-sectional study of 64 obese and 32 healthy children aged 6-16 years, comprehensive profiling of 32 circulating inflammatory mediators was performed, together with assessment of 25-hydroxyvitamin D (25(OH)D) levels and measures for insulin sensitivity. Severe vitamin D insufficiency, which is further referred to as vitamin D deficiency, was defined as a 25(OH)D level ≤37.5 nmol l(-1), and was highly prevalent in obese (56%) versus healthy control children (16%). Throughout the study, 25(OH)D-deficient children were compared with the other children, including 25(OH)D insufficient (37.5-50 nmol l(-1)) and 25(OH)D sufficient children (≥50 nmol l(-1)). First, 25(OH)D-deficient obese children showed a lower insulin sensitivity than other obese children, as measured by a lower quantitative insulin sensitivity check index. Second, the association between 25(OH)D deficiency and insulin resistance in childhood obesity was confirmed with multiple regression analysis. Third, 25(OH)D-deficient obese children showed higher levels of the inflammatory mediators cathepsin S, chemerin and soluble vascular adhesion molecule (sVCAM), compared with the other obese children. Finally, hierarchical cluster analysis revealed an over-representation of 25(OH)D deficiency in obese children expressing inflammatory mediator clusters with high levels of cathepsin S, sVCAM and chemerin. 25(OH)D deficiency in childhood obesity was associated with enhanced systemic inflammation and reduced insulin sensitivity. The high cathepsin S and sVCAM levels

  7. Insulin Sensitivity and Secretion in Obese Type 2 Diabetic Women after Various Bariatric Operations

    PubMed Central

    Vrbikova, Jana; Kunesova, Marie; Kyrou, Ioannis; Tura, Andrea; Hill, Martin; Grimmichova, Tereza; Dvorakova, Katerina; Sramkova, Petra; Dolezalova, Karin; Lischkova, Olga; Vcelak, Josef; Hainer, Vojtech; Bendlova, Bela; Kumar, Sudhesh; Fried, Martin

    2017-01-01

    Objective To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity. PMID:27951535

  8. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats.

    PubMed

    Zhao, M; Li, Y; Wang, J; Ebihara, K; Rong, X; Hosoda, K; Tomita, T; Nakao, K

    2011-12-01

    Hypertension often coexists with insulin resistance. However, most metabolic effects of the antihypertensive agents have been investigated in nomotensive animals, in which different conclusions may arise. We investigated the metabolic effects of the new angiotensin II type 1 receptor blocker azilsartan using the obese Koletsky rats superimposed on the background of the spontaneously hypertensive rats. Male Koletsky rats were treated with azilsartan (2 mg/kg/day) over 3 weeks. Blood pressure was measured by tail-cuff. Blood biochemical and hormonal parameters were determined by enzymatic or ELISA methods. Gene expression was assessed by RT-PCR. In Koletsky rats, azilsartan treatment lowered blood pressure, basal plasma insulin concentration and the homeostasis model assessment of insulin resistance index, and inhibited over-increase of plasma glucose and insulin concentrations during oral glucose tolerance test. These effects were accompanied by decreases in both food intake and body weight (BW) increase. Although two treatments showed the same effect on BW gain, insulin sensitivity was higher after azilsartan treatment than pair-feeding. Azilsartan neither affected plasma concentrations of triglyceride and free fatty acids, nor increased adipose mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and its target genes such as adiponectin, aP2. In addition, azilsartan downregulated 11β-hydroxysteroid dehydrogenase type 1 expression. These results show the insulin-sensitizing effect of azilsartan in obese Koletsky rats. This effect is independent of decreases in food intake and BW increase or of the activation of adipose PPARγ. Our findings indicate the possible usefulness of azilsartan in the treatment of metabolic syndrome. © 2011 Blackwell Publishing Ltd.

  9. Assessment of insulin sensitivity from measurements in fasting state and during an oral glucose tolerance test in obese children.

    PubMed

    Atabek, Mehmet Emre; Pirgon, Ozgur

    2007-02-01

    Few previous studies have examined the validity of the fasting glucose-to-insulin ratio (FGIR), homeostasis model assessment of insulin resistance (HOMA-IR) and quantitative insulin-sensitivity check index (QUICKI) in pediatric populations. To compare simple indices of insulin resistance calculated from fasting glucose and insulin levels with insulin sensitivity indices (area under the response curve [AUCinsulin], insulin sensitivity index [ISI-compositeL) determined by oral glucose tolerance testing (OGTT) in obese children. One hundred and forty-eight obese children and adolescents (86 girls and 62 boys, mean age: 10.86 +/- 3.08 years, mean body mass index (BMI): 27.7 +/- 4.2) participated in the study. OGTT was performed in all participants. After glucose and insulin measurements from OGTT, the children were divided into two groups according to the presence or absence of insulin resistance. Insulin sensitivity indices obtained from the OGTT were compared between the groups. The total plasma glucose response and insulin secretion were evaluated from the AUC estimated by the trapezoid rule. Cut-off points, and sensitivity and specificity calculations were based on insulin resistance with receiver operating characteristic curve (ROC) analysis. The prevalence of insulin resistance, glucose intolerance and dyslipidemia was 37.1%, 24.3% and 54% in obese children, respectively. The groups consisted of 93 children without insulin resistance (54 girls and 39 boys; mean age: 10.5 +/- 3.3 years; mean BMI: 27.0 +/- 4.2) and 55 children with insulin resistance (32 girls and 23 boys; mean age: 11.4 +/- 2.5 years; mean BMI: 27.9 +/- 3.9). There were significant differences in mean FGIR (10.0 +/- 7.2 vs 5.6 +/- 2.8, p < 0.001), HOMA-IR (3.2 +/- 2.3 vs 4.9 +/- 2.3, p < 0.001) and QUICKI (0.33 +/- 0.03 vs 0.30 +/- 0.02, p < 0.001) between the groups. The cut-off points for diagnosis of insulin resistance were < 5.6 for FGIR (sensitivity 61.8, specificity 76.3), > 2.7 for HOMA

  10. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  11. Leptin Rapidly Improves Glucose Homeostasis in Obese Mice by Increasing Hypothalamic Insulin Sensitivity

    PubMed Central

    Koch, Christiane; Augustine, Rachael A.; Steger, Juliane; Ganjam, Goutham K.; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W.; Shepherd, Peter R.; Anderson, Greg M.; Grattan, David R.; Tups, Alexander

    2013-01-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lepob/ob mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes. PMID:21123564

  12. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    PubMed

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  13. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study.

    PubMed

    Tousignant, B; Faraj, M; Conus, F; Garrel, D; Brochu, M; Rabasa-Lhoret, R; Coderre, L

    2008-11-01

    Central fat mass (CFM) correlates with insulin resistance and increases the risk of type 2 diabetes and cardiovascular complications. On the other hand, increased peripheral fat mass (PFM) is associated with higher insulin sensitivity. Thus, we examined the contribution of adipose tissue distribution, as assessed by the PFM/CFM ratio, to insulin sensitivity in overweight and obese postmenopausal women. A total of 124 nondiabetic overweight and obese postmenopausal women underwent an oral glucose tolerance test (OGTT) and a hyperinsulinemic/euglycemic (HI) clamp. Body composition was determined using computed tomography for visceral adipose tissue (VAT) and dual X-ray absorptiometry for fat mass, lean body mass and their respective proportions. Participants were divided by tertiles of the PFM/CFM ratio. Participants with preferential CFM (group 1) had higher fasting insulin levels and insulin area under the curve (AUC) during OGTT, as well as lower glucose infusion rates during the HI clamp, whether it was expressed per kg of body weight (M) or per kg of fat-free mass (Mm), compared with the other two groups. The PFM/CFM ratio also correlated significantly with fasting insulin (r=-0.32, P<0.001), the insulin AUC (r=-0.42 P<0.001), M (r=0.39 P<0.001) and Mm (r=0.37 P<0.001). Using hierarchical regression, we demonstrated that the PFM/CFM ratio was an independent predictor of insulin AUC, M and Mm and that its sequential addition to CFM and VAT improved significantly the predictive value of the model for insulin sensitivity for all variables except fasting insulin. The PFM/CFM ratio, which integrates the antagonistic effects of both central and peripheral depots on insulin sensitivity, added substantially to the prediction of insulin sensitivity over VAT and CFM alone.

  14. Chromium supplementation in non-obese non-diabetic subjects is associated with a decline in insulin sensitivity

    PubMed Central

    2012-01-01

    Background The use of chromium supplements is widespread for the prevention and treatment of diabetes mellitus but there are conflicting reports on efficacy, possibly reflecting discrepant effects across different populations. In the present studies, we test the hypothesis that chromium supplementation raises serum chromium levels and correspondingly improves insulin sensitivity. Methods A double blind placebo-controlled randomized trial was conducted on 31 non-obese, normoglycemic subjects. After baseline studies, the subjects were randomized to placebo or chromium picolinate 500 μg twice a day. The primary endpoint was change in insulin sensitivity as measured by euglycemic hyperinsulinemic clamp. Pre-specified secondary endpoints included fasting lipids, blood pressure, weight, body composition measured by DXA scan. Results After 16 weeks of chromium picolinate therapy there was no significant change in insulin sensitivity between groups (p=0.83). There was, however, a strong association between serum chromium and change in insulin resistance (β = -0.83, p=0.01), where subjects with the highest serum chromium had a worsening of insulin sensitivity. This effect could not be explained by changes in physiological parameters such as body weight, truncal fat and serum lipids with chromium therapy. Conclusions Chromium therapy did not improve insulin sensitivity in non-obese normoglycemic individuals. Further, subjects who have high serum chromium levels paradoxically had a decline in insulin sensitivity. Caution therefore should be exercised in recommending the use of this supplement. Trial registration The study was registered on the NIH registry (clinicaltrials.gov) and the identifier is NCT00846248 PMID:23194380

  15. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  16. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade.

    PubMed

    Pedersen, Morten Høgild; Svart, Mads Vandsted; Lebeck, Janne; Bidlingmaier, Martin; Stødkilde-Jørgensen, Hans; Pedersen, Steen Bønløkke; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2017-04-01

    Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. To study the metabolic effects of GH blockade during fasting in obese subjects. Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. GH levels increased with fasting (P < 0.01), and the fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P < 0.05). Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P < 0.01) primarily due to reduced endogenous glucose production (P = 0.003). Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects. Copyright © 2017 by the Endocrine Society

  17. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice.

    PubMed

    Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A

    2012-11-01

    The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.

  18. Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion.

    PubMed

    Heni, Martin; Haupt, Axel; Schäfer, Silke A; Ketterer, Caroline; Thamer, Claus; Machicao, Fausto; Stefan, Norbert; Staiger, Harald; Häring, Hans-Ulrich; Fritsche, Andreas

    2010-06-09

    Prohormone convertase 1 is involved in maturation of peptides. Rare mutations in gene PCSK1, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, beta-cell dysfunction, or glucose intolerance. We genotyped 1498 German subjects for SNPs rs6232 and rs6235 within PCSK1. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp. The minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p >or= 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUCproinsulin and AUCproinsulin/AUCinsulin (rs6235: p(additive) model Insulin secretion was not affected by the variants (different secretion parameters, all p >or= 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (pdom insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis.

  19. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes.

    PubMed

    Kasumov, Takhar; Solomon, Thomas P J; Hwang, Calvin; Huang, Hazel; Haus, Jacob M; Zhang, Renliang; Kirwan, John P

    2015-07-01

    To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). Twenty-four adults with obesity and normal glucose tolerance (NGT, n = 14) or diabetes (n = 10) were studied before and after a 12-week supervised exercise-training program (5 days/week, 1 h/day, 80-85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m(2) /min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. Plasma ceramides were similar for the subjects with obesity and NGT and the subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity and increased peripheral insulin sensitivity in both groups (P < 0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P < 0.05). Decreases in total (r = -0.51, P = 0.02) and C14:0 (r = -0.56, P = 0.009) ceramide were negatively correlated with the increase in insulin sensitivity. Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D. © 2015 The Obesity Society.

  20. [Metabolic profile in obese patients with obstructive sleep apnea. A comparison between patients with insulin resistance and with insulin sensitivity].

    PubMed

    Dumitrache-Rujinski, Stefan; Dinu, Ioana; Călcăianu, George; Erhan, Ionela; Cocieru, Alexandru; Zaharia, Dragoş; Toma, Claudia Lucia; Bogdan, Miron Alexandru

    2014-01-01

    Obstructive sleep apnea syndrome (OSAS) may induce metabolic abnormalities through intermittent hypoxemia and simpathetic activation. It is difficult to demonstrate an independent role of OSAS in the occurrence of metabolic abnormalities, as obesity represents an important risk factor for both OSAS and metabolic abnormalities. to assess the relations between insulin resistance (IR), insulin sensitivity (IS), OSAS severity and nocturnal oxyhaemoglobin levels in obese, nondiabetic patients with daytime sleepiness. We evaluated 99 consecutive, obese, nondiabetic patients (fasting glycemia < 126 mg/dL, no hypoglycemic or hypolipemiant medication) diagnosed with OSAS (AHI > 5/hour and daytime sleepiness) by an ambulatory six channel cardio-respiratory polygraphy. Hight, weight serum triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) levels were evaluated. Correlations between Apneea Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), average and lowest oxyhaemoglobin saturation (SaO), body mass index (BMI) and insulin resistance or sensitivity were assesed. IR was defined as a TG/ HDL-Cratio > 3, and insulin sensitivity (IS) as a TG/HDL-C ratio < 2. 64 patients (out of 99) had lR and 18 IS. In the IR group (44 men and 20 women), the mean age was 52 +/- 10.6 years, mean BMI: 38.54 +/- 6.67 Kg/m2 (30-60), TG/HDL-C:5, 27 +/- 2.03 (3.02-11.1), mean AHI: 49.65 +/- 25.55/hour (7-110), mean ODI: 4769 +/- 24.95/hour (4-98), mean average SaO2 89.42 +/- 4.6 and mean lowest SaO2 68.4% +/- 13.8% (32-88%). 48 patients had severe, 7 moderate and 9 mild OSAS. In the IS group (10 men and 8 women), the mean age was 58.4 +/- 8.2years, mean BMI: 35.4 +/- 4.29 Kg/m2 (30-46), TG/ HDL-C: 1.64 +/- 0.29 (1.13-1.95), mean AHI: 45.8 +/- 30.3/hour (9-131), mean ODI: 39.9 +/- 32.2/hour (2-133), mean average SaO2 90.8 +/- 8.2 (81-95) and mean lowest SaO2: 74% +/- 10.8% (52-87%). 12 patients had severe, 3 moderate and 3 mild OSAS. Insulin sensitivity positively correlated with mean

  1. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss.

    PubMed

    Hoenig, M; Thomaseth, K; Waldron, M; Ferguson, D C

    2007-01-01

    Obesity is a major health problem in cats and a risk factor for diabetes. It has been postulated that cats are always gluconeogenic and that the rise in obesity might be related to high dietary carbohydrates. We examined the effect of a high-carbohydrate/low-protein (HC) and a high-protein/low-carbohydrate (HP) diet on glucose and fat metabolism during euglycemic hyperinsulinemic clamp, adipocytokines, and fat distribution in 12 lean and 16 obese cats before and after weight loss. Feeding diet HP led to greater heat production in lean but not in obese cats. Regardless of diet, obese cats had markedly decreased glucose effectiveness and insulin resistance, but greater suppression of nonesterified fatty acids during the euglycemic hyperinsulinemic clamp was seen in obese cats on diet HC compared with lean cats on either diet or obese cats on diet HP. In contrast to humans, obese cats had abdominal fat equally distributed subcutaneously and intra-abdominally. Weight loss normalized insulin sensitivity; however, increased nonesterified fatty acid suppression was maintained and fat loss was less in cats on diet HC. Adiponectin was negatively and leptin positively correlated with fat mass. Lean cats and cats during weight loss, but not obese cats, adapted to the varying dietary carbohydrate/protein content with changes in substrate oxidation. We conclude that diet HP is beneficial through maintenance of normal insulin sensitivity of fat metabolism in obese cats, facilitating the loss of fat during weight loss, and increasing heat production in lean cats. These data also show that insulin sensitivity of glucose and fat metabolism can be differentially regulated in cats.

  2. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  3. Improved Insulin Sensitivity After Exercise Training is Linked to Reduced Plasma C14:0 Ceramide in Obesity and Type 2 Diabetes

    PubMed Central

    Kasumov, Takhar; Solomon, Thomas P.J.; Hwang, Calvin; Huang, Hazel; Haus, Jacob M.; Zhang, Renliang; Kirwan, John P.

    2015-01-01

    Objective To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). Methods Twenty-four adults with obesity and normal glucose tolerance (NGT, n=14), or diabetes (n=10) were studied before and after a 12-week supervised exercise-training program (5 d/wk, 1 hr/d, 80–85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m2/min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0 and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. Results Plasma ceramides were similar for the obese NGT and subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity, and increased peripheral insulin sensitivity in both groups (P<0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P<0.05). Decreases in total (r=-0.51, P=0.02) and C14:0 (r=-0.56, P=0.009) ceramide were negatively correlated with the increase in insulin sensitivity. Conclusion Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D. PMID:25966363

  4. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    PubMed Central

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  5. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    PubMed Central

    2013-01-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity). PMID:23441028

  6. Adipokines and insulin action: A sensitive issue.

    PubMed

    Knights, Alexander J; Funnell, Alister Pw; Pearson, Richard Cm; Crossley, Merlin; Bell-Anderson, Kim S

    2014-04-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.

  7. Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion

    PubMed Central

    2010-01-01

    Background Prohormone convertase 1 is involved in maturation of peptides. Rare mutations in gene PCSK1, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, β-cell dysfunction, or glucose intolerance. Methods We genotyped 1498 German subjects for SNPs rs6232 and rs6235 within PCSK1. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp. Results The minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p ≥ 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUCproinsulin and AUCproinsulin/AUCinsulin (rs6235: padditive model ≤ 0.009, effect sizes 8/8%, rs6232: pdominant model ≤ 0.01, effect sizes 10/21%). Insulin secretion was not affected by the variants (different secretion parameters, all p ≥ 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (pdom ≤ 0.0047), 4.5% lower HOMAIR (pdom = 0.02) and 3.5% lower 120-min glucose (pdom = 0.0003) independently of BMI and proinsulin conversion. SNP rs6235 was not associated with parameters of glucose metabolism. Conclusions Like rare mutations in PCSK1, the more common variants tested determine glucose-stimulated proinsulin conversion, but not insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis. PMID:20534142

  8. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity.

    PubMed

    Barker, Gillian; Lim, Ratana; Rice, Gregory E; Lappas, Martha

    2012-11-01

    The aim of this study was to determine the effect of maternal obesity and gestational diabetes mellitus (GDM) on (i) the circulating concentrations of chemerin in cord and maternal plasma, and (ii) gene expression and release of chemerin from human placenta and adipose tissue. Chemerin concentrations were measured in maternal and cord plasma from 62 normal glucose tolerant women (NGT) and 69 women with GDM at the time of term elective Caesarean section. Placenta and adipose tissue expression and release of chemerin was measured from 22 NGT and 22 GDM women. There was no effect of maternal obesity or GDM on maternal chemerin concentrations. Chemerin concentrations were significantly higher in cord plasma from women with maternal obesity. Cord chemerin concentrations in NGT women negatively correlated with the concentrations of maternal insulin sensitivity. There was no effect of GDM on maternal and cord chemerin concentrations, and on the release of chemerin from placenta and adipose tissue. At the time of term Caesarean section, preexisting maternal obesity, and its associated insulin resistance, is associated with higher cord plasma chemerin concentrations.

  9. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Lili; Li, Jinmei

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gainmore » and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. - Highlights: • Curcumin decreases biosynthesis of cholesterol and fatty acid in vitro. • Curcumin as a SREBP inhibitor ameliorates HFD-induced obesity. • Curcumin as a SREBP inhibitor improves insulin resistance.« less

  10. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    PubMed

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P < 0.001), and obese PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are

  11. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4.

    PubMed

    Cavallari, Joseph F; Fullerton, Morgan D; Duggan, Brittany M; Foley, Kevin P; Denou, Emmanuel; Smith, Brennan K; Desjardins, Eric M; Henriksbo, Brandyn D; Kim, Kalvin J; Tuinema, Brian R; Stearns, Jennifer C; Prescott, David; Rosenstiel, Philip; Coombes, Brian K; Steinberg, Gregory R; Schertzer, Jonathan D

    2017-05-02

    Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice.

    PubMed

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2011-02-01

    Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

  13. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  14. Comparison between several insulin sensitivity indices and metabolic risk factors in overweight and obese postmenopausal women: a MONET study.

    PubMed

    Malita, F M; Messier, V; Lavoie, J-M; Bastard, J-P; Rabasa-Lhoret, R; Karelis, A D

    2010-03-01

    The purpose of this study was to compare the relationship of several insulin sensitivity indices with cardiometabolic risk factors in overweight and obese postmenopausal women. This was a cross-sectional study involving 137 overweight and obese postmenopausal women (age: 57.7+/-4.8 yrs; body mass index: 32.4+/-4.6 kg/m(2); body fat: 38.6+/-9.2 kg). Insulin sensitivity was determined by the euglycaemic-hyperinsulinemic (EH) clamp technique as well as by oral glucose tolerance test (OGTT) derived indices (Stumvoll, Matsuda and SI(is)) and fasting surrogate indices (HOMA, QUICKI). Cardiometabolic risk factors included: body composition and visceral fat that were measured using dual energy X-ray absorptiometry and computed tomography, respectively. Peak oxygen consumption, lower body muscle strength (using weight training equipment), physical activity energy expenditure (doubly labeled water), plasma lipids and C-reactive protein were also measured. Correlations of insulin sensitivity indices with metabolic risk factors showed some similarities, however, a wide range of variations were also observed. Furthermore, our results showed that visceral fat was the primary predictor for surrogate and OGTT indices, explaining 15-28% of the variance and the triglycerides/HDL-C ratio was the primary predictor for the EH clamp indices, explaining 15-17% of the variance. The present study indicates that the different methods of measuring and/or expressing insulin sensitivity display variations for associations with cardiometabolic risk factors. Therefore, interpretations of relationships between insulin sensitivity indices and cardiometabolic risk factors should take into account the method used to estimate and express insulin sensitivity. (c) 2009 Elsevier B.V. All rights reserved.

  15. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

    PubMed Central

    Shin, Eunju; Shim, Kyu-Suk; Kong, Hyunseok; Lee, Sungwon; Shin, Seulmee; Kwon, Jeunghak; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2011-01-01

    Background Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Conclusion Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested. PMID:21494375

  16. Aerobic exercise and weight loss reduce vascular markers of inflammation and improve insulin sensitivity in obese women.

    PubMed

    Ryan, Alice S; Ge, Shealinna; Blumenthal, Jacob B; Serra, Monica C; Prior, Steven J; Goldberg, Andrew P

    2014-04-01

    To examine the relationships between plasma and tissue markers of systemic and vascular inflammation and obesity and insulin resistance and determine the effects of aerobic exercise training plus weight loss (AEX+WL) and weight loss (WL) alone on these biomarkers. Prospective controlled study. Veterans Affairs Medical Center and University research setting. Overweight and obese sedentary postmenopausal women (N = 77). Six months, 3 d/wk AEX+WL (n = 37) or WL (n = 40). Total-body dual-energy X-ray absorptiometry, abdominal computed tomography, hyperinsulinemic-euglycemic clamps (a criterion standard method of assessing insulin sensitivity), adipose tissue biopsies (n = 28), and blood for homeostasis model assessment-insulin resistance, and soluble forms of intracellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1), C-reactive protein (CRP), and serum amyloid A (SAA). Body weight (P < .001), percentage of fat (P < .001), visceral fat (P < .005), triglyceride levels (P < .001), and systolic blood pressure decreased comparably after WL and AEX+WL (P = .04). Maximal oxygen consumption increased 16% after AEX+WL (P < .001). Insulin resistance decreased in both groups (P = .005). Glucose utilization according to the clamp increased 10% (P = .04) with AEX+WL and 8% with WL (P = .07). AEX+WL decreased CRP by 29% (P < .001) and WL by 21% (P = .02). SAA levels decreased twice as much after AEX+WL (-19%, P = .02) as after WL (-9%, P = .08). Plasma sICAM-1 and sVCAM-1 levels did not change, but women with the greatest reduction in plasma sICAM-1 levels had the greatest reductions in fasting glucose (P = .02), insulin (P = .02), and insulin resistance (P = .004). Gluteal ICAM messenger ribonucleic acid levels decreased 27% after AEX+WL (P = .02) and did not change after WL. Obesity and insulin resistance worsen markers of systemic and vascular inflammation. A reduction in plasma sICAM-1 is important to improve insulin sensitivity. CRP, SAA, and

  17. Correlation of P-wave dispersion with insulin sensitivity in obese adolescents.

    PubMed

    Sert, Ahmet; Aslan, Eyup; Buyukınan, Muammer; Pirgon, Ozgur

    2017-03-01

    P-wave dispersion is a new and simple electrocardiographic marker that has been reported to be associated with inhomogeneous and discontinuous propagation of sinus impulses. In the present study, we evaluated P-wave dispersion in obese adolescents and investigated the relationship between P-wave dispersion, cardiovascular risk factors, and echocardiographic parameters. We carried out a case-control study comparing 150 obese adolescents and 50 healthy controls. Maximum and minimum P-wave durations were measured using a 12-lead surface electrocardiogram, and P-wave dispersion was calculated as the difference between these two measures. Echocardiographic examination was also performed for each subject. Multivariate linear regression analysis with stepwise variable selection was used to evaluate parameters associated with increased P-wave dispersion in obese subjects. Maximum P-wave duration and P-wave dispersion were significantly higher in obese adolescents than control subjects (143±19 ms versus 117±20 ms and 49±15 ms versus 29±9 ms, p<0.0001 for both). P-wave dispersion was positively correlated with body mass index, waist and hip circumferences, systolic and diastolic blood pressures, total cholesterol, serum levels of low-density lipoprotein cholesterol, triglycerides, glucose, and insulin, homoeostasis model assessment for insulin resistance score, left ventricular mass, and left atrial dimension. P-wave dispersion was negatively correlated with high-density lipoprotein cholesterol levels. By multiple stepwise regression analysis, left atrial dimension (β: 0.252, p=0.008) and homoeostasis model assessment for insulin resistance (β: 0.205; p=0.009) were independently associated with increased P-wave dispersion in obese adolescents. Insulin resistance is a significant, independent predictor of P-wave dispersion in obese adolescents.

  18. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  19. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway.

    PubMed

    Zhu, Jing; Jin, Jie; Ding, Jiexia; Li, Siying; Cen, Panpan; Wang, Keyi; Wang, Hai; Xia, Junbo

    2018-06-25

    Obesity and its major co-morbidity, type 2 diabetes, have been an alarming epidemic prevalence without an effective treatment available. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. Therefore, inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Here, we identify a small molecule, Ganoderic Acid A (GAA), inhibits the SREBP expression and decreases the cellular levels of cholesterol and fatty acid in vitro. GAA also ameliorates body weight gain and fat accumulation in liver or adipose tissues, and improves serum lipid levels and insulin sensitivity in high fat diet (HFD)-induced obese mice. Consistently, GAA regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Taken together, GAA could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. Copyright © 2018. Published by Elsevier B.V.

  20. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  1. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  2. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  3. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    PubMed

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  4. miRNA Signatures of Insulin Resistance in Obesity.

    PubMed

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  5. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  6. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  7. Skeletal muscle inflammation and insulin resistance in obesity.

    PubMed

    Wu, Huaizhu; Ballantyne, Christie M

    2017-01-03

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.

  8. Skeletal muscle inflammation and insulin resistance in obesity

    PubMed Central

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  9. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  10. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  11. Sleep Architecture and Glucose and Insulin Homeostasis in Obese Adolescents

    PubMed Central

    Koren, Dorit; Levitt Katz, Lorraine E.; Brar, Preneet C.; Gallagher, Paul R.; Berkowitz, Robert I.; Brooks, Lee J.

    2011-01-01

    OBJECTIVE Sleep deprivation is associated with increased risk of adult type 2 diabetes mellitus (T2DM). It is uncertain whether sleep deprivation and/or altered sleep architecture affects glycemic regulation or insulin sensitivity or secretion. We hypothesized that in obese adolescents, sleep disturbances would associate with altered glucose and insulin homeostasis. RESEARCH DESIGN AND METHODS This cross-sectional observational study of 62 obese adolescents took place at the Clinical and Translational Research Center and Sleep Laboratory in a tertiary care children’s hospital. Subjects underwent oral glucose tolerance test (OGTT), anthropometric measurements, overnight polysomnography, and frequently sampled intravenous glucose tolerance test (FSIGT). Hemoglobin A1c (HbA1c) and serial insulin and glucose levels were obtained, indices of insulin sensitivity and secretion were calculated, and sleep architecture was assessed. Correlation and regression analyses were performed to assess the association of total sleep and sleep stages with measures of insulin and glucose homeostasis, adjusted for confounding variables. RESULTS We found significant U-shaped (quadratic) associations between sleep duration and both HbA1c and serial glucose levels on OGTT and positive associations between slow-wave sleep (N3) duration and insulin secretory measures, independent of degree of obesity, pubertal stage, sex, and obstructive sleep apnea measures. CONCLUSIONS Insufficient and excessive sleep was associated with short-term and long-term hyperglycemia in our obese adolescents. Decreased N3 was associated with decreased insulin secretion. These effects may be related, with reduced insulin secretory capacity leading to hyperglycemia. We speculate that optimizing sleep may stave off the development of T2DM in obese adolescents. PMID:21933909

  12. Basal measures of insulin sensitivity and insulin secretion and simplified glucose tolerance tests in dogs.

    PubMed

    Verkest, K R; Fleeman, L M; Rand, J S; Morton, J M

    2010-10-01

    There is need for simple, inexpensive measures of glucose tolerance, insulin sensitivity, and insulin secretion in dogs. The aim of this study was to estimate the closeness of correlation between fasting and dynamic measures of insulin sensitivity and insulin secretion, the precision of fasting measures, and the agreement between results of standard and simplified glucose tolerance tests in dogs. A retrospective descriptive study using 6 naturally occurring obese and 6 lean dogs was conducted. Data from frequently sampled intravenous glucose tolerance tests (FSIGTTs) in 6 obese and 6 lean client-owned dogs were used to calculate HOMA, QUICKI, fasting glucose and insulin concentrations. Fasting measures of insulin sensitivity and secretion were compared with MINMOD analysis of FSIGTTs using Pearson correlation coefficients, and they were evaluated for precision by the discriminant ratio. Simplified sampling protocols were compared with standard FSIGTTs using Lin's concordance correlation coefficients, limits of agreement, and Pearson correlation coefficients. All fasting measures except fasting plasma glucose concentration were moderately correlated with MINMOD-estimated insulin sensitivity (|r| = 0.62-0.80; P < 0.03), and those that combined fasting insulin and glucose were moderately closely correlated with MINMOD-estimated insulin secretion (r = 0.60-0.79; P < 0.04). HOMA calculated using the nonlinear formulae had the closest estimated correlation (r = 0.77 and 0.74) and the best discrimination for insulin sensitivity and insulin secretion (discriminant ratio 4.4 and 3.4, respectively). Simplified sampling protocols with half as many samples collected over 3 h had close agreement with the full sampling protocol. Fasting measures and simplified intravenous glucose tolerance tests reflect insulin sensitivity and insulin secretion derived from frequently sampled glucose tolerance tests with MINMOD analysis in dogs. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues.

    PubMed

    Lee, Robyn K; Hittel, Dustin S; Nyamandi, Vongai Z; Kang, Li; Soh, Jung; Sensen, Christoph W; Shearer, Jane

    2012-04-01

    Obesity is a chronic condition involving the excessive accumulation of adipose tissue that adversely affects all systems in the body. The aim of the present study was to employ an unbiased, genome-wide assessment of transcript abundance in order to identify common gene expression pathways within insulin-sensitive tissues in response to dietary-induced diabetes. Following 20 weeks of chow or high-fat feeding (60% kcal), age-matched mice underwent a euglycemic-hyperinsulinemic clamp to assess insulin sensitivity. High-fat-fed animals were obese and highly insulin resistant, disposing of ∼75% less glucose compared with their chow-fed counterparts. Tissues were collected, and gene expression was examined by microarray in 4 tissues known to exhibit obesity-related metabolic disturbances: white adipose tissue, skeletal muscle, liver, and heart. A total of 463 genes were differentially expressed between diets. Analysis of individual tissues showed skeletal muscle to exhibit the largest number of differentially expressed genes (191) in response to high-fat feeding, followed by adipose tissue (169), liver (115), and heart (65). Analyses revealed that the response of individual genes to obesity is distinct and largely tissue specific, with less than 10% of transcripts being shared among tissues. Although transcripts are largely tissue specific, a systems approach shows numerous commonly activated pathways, including those involved in signal transduction, inflammation, oxidative stress, substrate transport, and metabolism. This suggests a coordinated attempt by tissues to limit metabolic perturbations occurring in early-stage obesity. Many identified genes were associated with a variety of disorders, thereby serving as potential links between obesity and its related health risks.

  14. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  15. Aerobic Exercise and Weight Loss Reduce Vascular Markers of Inflammation and Improve Insulin Sensitivity in Obese Women

    PubMed Central

    Ryan, Alice S.; Ge, Shealinna; Blumenthal, Jacob B.; Serra, Monica C.; Prior, Steven J.; Goldberg, Andrew P.

    2014-01-01

    Background/Objectives To examine the relationships of plasma and tissue markers of systemic and vascular inflammation to obesity and insulin resistance and determine the effects of aerobic exercise training+weight loss (AEX+WL) and weight loss (WL) on these biomarkers. Design Prospective controlled study. Participants Seventy-seven overweight and obese sedentary postmenopausal women. Interventions Six months, 3d/wk AEX+WL (n=37) or WL (n=40). Measurements Total body dual-energy x-ray absorptiometry, abdominal computed tomography scans, hyperinsulinemic-euglycemic clamps, adipose tissue biopsies (n=28), and blood for Homeostasis model assessment-insulin resistance, and soluble forms of intracellular adhesion molecule (sICAM-1) and vascular CAM-1 (sVCAM-1), C-reactive protein (CRP), and serum amyloid A (SAA). Results Body weight, %fat, visceral fat, triglyceride levels and systolic blood pressure decreased comparably after WL and AEX+WL (P<0.05). VO2max increased 16% after AEX+WL (P<0.001). Insulin resistance decreased in both groups (P<0.01). Glucose utilization increased 10% (P< 0.05) after AEX+WL and 8% with WL (P=0.07). AEX+WL and WL decreased CRP by 29% and 21%, (P<0.05). SAA levels decreased two-fold more after AEX+WL (−19%, P<0.05) than with WL (−9%, P=0.08). Plasma sICAM-1 and sVCAM-1 levels did not change; however, women with the greatest reduction in plasma sICAM-1 levels had the greatest reductions in fasting glucose, insulin and insulin resistance (P<0.05). Gluteal ICAM mRNA levels decreased 27% after AEX+WL (P<0.05) and did not change after WL. Conclusion Obesity and insulin resistance worsen markers of systemic and vascular inflammation. A reduction in plasma sICAM-1 is important to improve insulin sensitivity. CRP and SAA and tissue ICAM decrease with exercise and weight loss, suggesting that exercise training is a necessary component of lifestyle modification in obese postmenopausal women. PMID:24635342

  16. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  17. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    PubMed Central

    Picklo, Matthew J.; Thyfault, John P.

    2016-01-01

    Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation. PMID:25761734

  18. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    PubMed Central

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J.; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitored in a metabolic chamber. Mitochondrial function was investigated in brown adipocytes and skeletal muscle in the mice. RESULTS On the high-fat diet, supplementation of butyrate prevented development of insulin resistance and obesity in C57BL/6 mice. Fasting blood glucose, fasting insulin, and insulin tolerance were all preserved in the treated mice. Body fat content was maintained at 10% without a reduction in food intake. Adaptive thermogenesis and fatty acid oxidation were enhanced. An increase in mitochondrial function and biogenesis was observed in skeletal muscle and brown fat. The type I fiber was enriched in skeletal muscle. Peroxisome proliferator–activated receptor-γ coactivator-1α expression was elevated at mRNA and protein levels. AMP kinase and p38 activities were elevated. In the obese mice, supplementation of butyrate led to an increase in insulin sensitivity and a reduction in adiposity. CONCLUSIONS Dietary supplementation of butyrate can prevent and treat diet-induced insulin resistance in mouse. The mechanism of butyrate action is related to promotion of energy expenditure and induction of mitochondria function. PMID:19366864

  19. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  20. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  1. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  2. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  3. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

    PubMed Central

    Stanhope, Kimber L.; Schwarz, Jean Marc; Keim, Nancy L.; Griffen, Steven C.; Bremer, Andrew A.; Graham, James L.; Hatcher, Bonnie; Cox, Chad L.; Dyachenko, Artem; Zhang, Wei; McGahan, John P.; Seibert, Anthony; Krauss, Ronald M.; Chiu, Sally; Schaefer, Ernst J.; Ai, Masumi; Otokozawa, Seiko; Nakajima, Katsuyuki; Nakano, Takamitsu; Beysen, Carine; Hellerstein, Marc K.; Berglund, Lars; Havel, Peter J.

    2009-01-01

    Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle–triglyceride and –cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults. PMID:19381015

  4. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  5. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  6. Insulin-Like Growth Factors and Metabolic Syndrome in Obese Children.

    PubMed

    Inzaghi, Elena; Baldini Ferroli, Barbara; Fintini, Danilo; Grossi, Armando; Nobili, Valerio; Cianfarani, Stefano

    2017-01-01

    Insulin-like growth factor (IGF)-I is related to cardiometabolic risk in adults, whereas the metabolic role of IGF-II is unclear. The aim of this study was to assess IGFs in obese children and correlate them with metabolic syndrome (MetS) components. This is a retrospective study including 574 obese children (11.34 ± 3.16 years). All subjects underwent complete anthropometry and biochemical assessment. In a subgroup of 136 subjects, body composition was evaluated. IGF-I was measured in 300 obese subjects and IGF-II in 77 obese and 15 lean children. 177 subjects were divided according to the presence of 1 or more MetS criteria: group 1, subjects with 1 MetS criterion; group 2, subjects with 2 components; and group 3, subjects with MetS diagnosis. IGF-I, IGF-II, and IGF-I/insulin-like growth factor-binding protein-3 ratio were not different among subjects with an increasing number of MetS criteria and were not associated with single components of MetS as well as with body composition parameters. In children younger than 10 years, IGF-I directly correlated with high-density lipoprotein cholesterol (p < 0.005) even after controlling for confounders. IGF-II was significantly higher in obese children and correlated with parameters of insulin sensitivity (p < 0.05). IGFs were neither related to MetS nor to body composition parameters in obese children. Further studies are needed to clarify the mechanisms underlying the relationship between IGF-II and insulin sensitivity. © 2017 S. Karger AG, Basel.

  7. Pressure to be Thin and Insulin Sensitivity among Adolescents

    PubMed Central

    Schvey, Natasha A.; Shomaker, Lauren B.; Kelly, Nichole R.; Pickworth, Courtney K.; Cassidy, Omni; Galescu, Ovidiu; Demidowich, Andrew P.; Brady, Sheila M.; Tanofsky-Kraff, Marian; Yanovski, Jack A.

    2015-01-01

    Purpose Extant research indicates that some of the comorbidities associated with adult obesity may be adversely affected by the stress resulting from negative body image and weight-related teasing. This study examined the association between weight-related pressure and insulin sensitivity in adolescents, who are vulnerable to both weight-based teasing and the onset of metabolic dysregulation. Methods Participants were 215 adolescent healthy volunteers (55% female; 59% White; 35% overweight/obese; M±SD age = 15.4±1.4y), who completed a self-report measure of pressure to be thin from parents, friends, and romantic partners. Fasting blood samples were obtained to assess serum insulin and glucose, which were used to calculate insulin sensitivity; fat mass (kg) and fat-free mass (%) were measured with air displacement plethysmography. Pubertal stage was determined by physical examination. Results Pressure to be thin was positively associated with fasting insulin (p = .01) and negatively associated with insulin sensitivity (p = .02), after controlling for pubertal stage, sex, race, height, fat-free mass, and adiposity. Pressure to be thin was associated with a greater odds of having hyperinsulinemia (fasting insulin ≥ 15 µIU/mL; Odds Ratio (95% CI): 1.65 (1.08–2.50), p = .02), adjusting for the same covariates. Conclusions Results indicate that adolescents perceiving more pressure to be thin have greater elevations of fasting insulin and poorer insulin sensitivity above and beyond the effect of fat mass. Future research is warranted to elucidate the mechanisms responsible for this relationship. PMID:26707232

  8. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  9. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  10. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Estrogen Receptors

    PubMed Central

    Meyer, Matthias R.; Clegg, Deborah J.; Prossnitz, Eric R.; Barton, Matthias

    2010-01-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension, and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of estrogens are classically mediated by the two nuclear estrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G protein-coupled estrogen receptor, GPER, originally designated as GPR30, also mediates some of the actions attributed to estrogens. Estrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women, but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and estrogen receptors in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in females and males. PMID:21281456

  11. Effect of insulin sensitizer therapy on amino acids and their metabolites.

    PubMed

    Irving, Brian A; Carter, Rickey E; Soop, Mattias; Weymiller, Audrey; Syed, Husnain; Karakelides, Helen; Bhagra, Sumit; Short, Kevin R; Tatpati, Laura; Barazzoni, Rocco; Nair, K Sreekumaran

    2015-06-01

    Prior studies have reported that elevated concentrations of several plasma amino acids (AA), particularly branched chain (BCAA) and aromatic AA predict the onset of type 2 diabetes. We sought to test the hypothesis that circulating BCAA, aromatic AA and related AA metabolites decline in response to the use of insulin sensitizing agents in overweight/obese adults with impaired fasting glucose or untreated diabetes. We performed a secondary analysis of a randomized, double-blind, placebo, controlled study conducted in twenty five overweight/obese (BMI ~30kg/m(2)) adults with impaired fasting glucose or untreated diabetes. Participants were randomized to three months of pioglitazone (45mg per day) plus metformin (1000mg twice per day, N=12 participants) or placebo (N=13). We measured insulin sensitivity by the euglycemic-hyperinsulinemic clamp and fasting concentrations of AA and AA metabolites using ultra-pressure liquid chromatography tandem mass spectrometry before and after the three-month intervention. Insulin sensitizer therapy that significantly enhanced insulin sensitivity reduced 9 out of 33 AA and AA metabolites measured compared to placebo treatment. Moreover, insulin sensitizer therapy significantly reduced three functionally clustered AA and metabolite pairs: i) phenylalanine/tyrosine, ii) citrulline/arginine, and iii) lysine/α-aminoadipic acid. Reductions in plasma concentrations of several AA and AA metabolites in response to three months of insulin sensitizer therapy support the concept that reduced insulin sensitivity alters AA and AA metabolites. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  13. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  14. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects.

    PubMed

    Reyna, Sara M; Tantiwong, Puntip; Cersosimo, Eugenio; Defronzo, Ralph A; Sriwijitkamol, Apiradee; Musi, Nicolas

    2013-01-01

    Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.

  15. Short-Term Exercise Training Improves Insulin Sensitivity but Does Not Inhibit Inflammatory Pathways in Immune Cells from Insulin-Resistant Subjects

    PubMed Central

    Reyna, Sara M.; Tantiwong, Puntip; Cersosimo, Eugenio; DeFronzo, Ralph A.; Sriwijitkamol, Apiradee; Musi, Nicolas

    2013-01-01

    Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals. PMID:23671849

  16. Recovery of insulin sensitivity and optimal body composition after rapid weight loss in obese dogs fed a high-protein medium-carbohydrate diet.

    PubMed

    André, A; Leriche, I; Chaix, G; Thorin, C; Burger, M; Nguyen, P

    2017-06-01

    This study investigated the effects of an experimental high-protein medium-carbohydrate diet (protein level, 46% metabolizable energy, ME). First, postprandial plasma glucose and insulin kinetics were determined in steady-state overweight/obese Beagle dogs (28%-41% excess body weight) for an experimental high-protein medium-carbohydrate diet (protein level, 46% ME) and a commercial high-carbohydrate medium-protein diet (protein level, 24%ME) in obese dogs. Secondly, all the dogs were included in a weight loss programme. They were fed the high-protein medium-carbohydrate diet, and the energy allocation was gradually reduced until they reached their optimal body weight. Insulin sensitivity and body composition were evaluated before and after weight loss using a euglycaemic-hyperinsulinaemic clamp and the deuterium oxide dilution technique respectively. For statistical analysis, linear mixed effect models were used with a significance level of 5%. Postprandial plasma glucose and insulin concentrations were substantially lower with the high-protein medium-carbohydrate diet than the high-carbohydrate medium-protein diet. These differences can be explained mainly by the difference in carbohydrate content between the two diets. Energy restriction (35% lower energy intake than in the obese state) resulted in a 2.23 ± 0.05% loss in body weight/week, and the dogs reached their optimal body weight in 12-16 weeks. Weight loss was associated with a significant increase in insulin sensitivity. The high-protein medium-carbohydrate diet allowed fat-free mass preservation despite a relatively high rate of weekly weight loss. The increase in insulin sensitivity indicated improved control of carbohydrate metabolism, possible due to weight loss and to the nature of the diet. Thus, a high-protein medium-carbohydrate diet is a good nutritional solution for managing the weight of overweight dogs. This diet may improve glycaemic control, which could be beneficial for preventing or

  17. Comprehensive assessment of insulin resistance in non-obese Asian Indian and Chinese men.

    PubMed

    Tan, Hong Chang; Yew, Tong Wei; Chacko, Shaji; Tai, E Shyong; Kovalik, Jean-Paul; Ching, Jianhong; Myo Thant, Sandi; Khoo, Chin Meng

    2018-03-27

    Indian individuals are more insulin resistant (IR) than Chinese individuals, even among those with a non-obese body mass index (BMI). However, BMI often underestimates body fat in Indian individuals, and it remains unclear whether Indians would remain more IR than Chinese individuals when both BMI and body fat are equally matched. Using the hyperinsulinemic-euglycemic clamp with stable-isotope infusion, we comprehensively assessed IR between 13 non-obese Indian men with 13 Chinese men matched for age, BMI and body fat. We further compared the differences in insulin metabolic clearance rate (MCR) between the two groups and its relationship with various metabolic parameters. The response of lipid and amino acid metabolism to insulin stimulation was also evaluated using metabolomic profiling. The rates of endogenous glucose production during fasting were similar, and endogenous glucose production was completely suppressed during insulin clamp for both ethnic groups. Glucose disappearance during insulin clamp was also similar between the two groups, even after accounting for differences in insulin concentration. Metabolomic profiles of amino acids and various acylcarnitines were similar during both fasting and insulin clamp. However, plasma insulin during clamp was significantly higher in Indian men, indicating that insulin MCR was lower. Insulin MCR correlated significantly with total adiposity and skeletal muscle insulin sensitivity. When equally matched for body fat, non-obese Indian men had similar skeletal muscle insulin sensitivity and endogenous glucose production to Chinese men. The effects of insulin on lipid and amino acid metabolism were also similar. Low insulin MCR is associated with greater adiposity and lower skeletal muscle insulin sensitivity. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance.

    PubMed

    Palanivel, R; Fullerton, M D; Galic, S; Honeyman, J; Hewitt, K A; Jorgensen, S B; Steinberg, G R

    2012-11-01

    Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.

  19. Management of obesity in non- insulin- dependent diabetes mellitus.

    PubMed

    Cheah, J S

    1998-12-01

    Obesity is common in non-insulin-dependent diabetes mellitus (NIDDM) patients; in Singapore in a cohort of 314 diabetics, 44.3% were overweight. Management of obesity in diabetics differs from that in non-diabetics in that it is more urgent; weight maintenance is more difficult and hypoglycaemic medication may cause weight changes. However, like in the non-diabetic, management of obesity in the diabetic requires a pragmatic and realistic approach. A team approach is required: the help of a nurse educator, a dietitian, behaviour modification therapist, exercise therapist and others are required. A detailed history, careful physical examination and relevant investigations are required to assess the severity of the diabetic state and to exclude an occasional underlying cause of the obesity in the obese NIDDM patient. Weight loss is urgent in the obese NIDDM patient, especially for those with android obesity. There must be a reduction in energy intake. Weight loss leads to an improvement in glucose tolerance and in insulin sensitivity, as well as to a reduction in lipid levels and to a fall in blood pressure in the hypertensive. Exercise is of limited short-term value measured in terms of weight reduction, except in the younger obese NIDDM patient; but it does allow improvement in overall metabolic control and, long-term, is critical for preferred weight maintenance. The biguanide, Metformin, is the hypoglycaemic drug of choice as it leads to consistent weight reduction. The sulphonylureas may cause weight gain. Insulin should be avoided where possible as it causes further weight gain. Other hypoglycaemic agents include Glucobay (alpha-glucosidase inhibitor) and Troglitazone (insulin sensitizer) which do not alter the weight. Orlistat (lipase inhibitor) is promising as it causes reduction of weight, blood glucose and lipid levels. Anti-obesity drugs (noradrenergic and serotonergic agents) have modest effects on weight reduction in the obese NIDDM patient; a widely

  20. Altered insulin response to an acute bout of exercise in pediatric obesity.

    PubMed

    Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro

    2014-11-01

    Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p < .0167 vs. NW). This insulin drop in Ob was disproportionately more pronounced in the half of Ob children with higher basal insulin (Ob-H). In all groups, high-fat feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations.

  1. Expression of the central obesity and Type 2 Diabetes mellitus genes is associated with insulin resistance in young obese children.

    PubMed

    Skoczen, S; Wojcik, M; Fijorek, K; Siedlar, M; Starzyk, J B

    2015-04-01

    The assessment of the health consequences associated with obesity in young children is challenging. The aims of this study were: (1) to compare insulin resistance indices derived from OGTT in obese patients and healthy control (2) to analyze central obesity and Type 2 Diabetes genes expression in obese children, with special attention to the youngest group (< 10 years old). The study included 49 children with obesity (median age 13.5 years old), and 25 healthy peers. Biochemical blood tests and expression of 11 central obesity and 33 Type 2 Diabetes genes was assessed. A significant difference in insulin resistance between obese and non-obese adolescents was observed in all studied indices (mean values of the insulin levels: 24.9 vs. 9.71 mIU/L in T0, 128 vs. 54.7 mIU/L in T60 and 98.7 vs. 41.1 mIU/L in T120 respectively; AUC: 217 vs. 77.2 ng/ml*h, mean values of B% (state beta cell function), S% (insulin sensitivity), and IR were 255 (±97) vs. 135 (±37.8), 46.6 (±37.3) vs. 84.2 (±29.6) and 3 (±1.55) vs. 1.36 (±0,56); HIS, WBIS and ISIBel median 3.89, 44.7, 0.73 vs. 8.57, 110, 2.25. All comparisons differed significantly p<0.001). Moreover, insulin sensitivity was significantly better in the older obese group (>10 years old): median AUC 239 vs. 104 ng/ml*h, and HIS, WBIS and ISIBel 3.57, 38, 0.67 vs. 6.23, 75.6, 1.87 respectively in the obese older compared to the obese younger subgroup, p<0.05. The expression of 64% of the central obesity genes and 70% of Type 2 Diabetes genes was higher in the obese compared to control groups. The differences were more pronounced in the younger obese group. Insulin resistance may develop in early stage of childhood obesity and in very young children may be associated with higher expression of the central obesity and Type 2 Diabetes genes. © Georg Thieme Verlag KG Stuttgart · New York.

  2. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  3. Dietary fiber, plasma insulin, and obesity.

    PubMed

    Albrink, M J

    1978-10-01

    The relationship between obesity, insulin resistance, and hyperinsulinemia is briefly reviewed. The possibility is considered that excess insulin secretion is the cause rather than the result of insulin resistance and obesity. Glucose administration is one of the most frequently studied of those factors known to stimulate insulin secretion. Much less well documented is the fact that meals of equal protein, fat, and carbohydrate content may cause different responses of plasma glucose and insulin. An experiment is reported in which the effects of a high-carbohydrate, high-fiber meal administered to seven healthy young adults were compared with the effects of a meal equally high in carbohydrate but composed largely of glucose in liquid formula form. The high-fiber meal caused an insulin rise less than half that caused by the liquid formula meal although the plasma glucose response to the two meals was not significantly different. The hypothesis is proposed that a high-carbohydrate, fiber-depleted diet, high in simple sugars, by repeatedly stimulating an excessive insulin response, may lead to insulin resistance and obesity in susceptible individuals and may play a role in the common occurrence of obesity in industrialized societies.

  4. Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics

    PubMed Central

    Ble-Castillo, Jorge L.; Aparicio-Trápala, María A.; Francisco-Luria, Mateo U.; Córdova-Uscanga, Rubén; Rodríguez-Hernández, Arturo; Méndez, José D.; Díaz-Zagoya, Juan C.

    2010-01-01

    Few fiber supplements have been studied for physiological effectiveness. The effects of native banana starch (NBS) and soy milk (control) on body weight and insulin sensitivity in obese type 2 diabetics were compared using a blind within-subject crossover design. Subjects undertook two phases of 4-week supplementation either with NBS or soy milk. Patients on NBS lost more body weight than when they were on control treatment. Plasma insulin and HOMA-I were reduced after NBS consumption, compared with baseline levels, but not significantly when compared to the control treatment. Results support the use of NBS as part of dietary fiber supplementation. PMID:20623003

  5. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors.

    PubMed

    Meyer, M R; Clegg, D J; Prossnitz, E R; Barton, M

    2011-09-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of oestrogens are classically mediated by the two nuclear oestrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G-protein-coupled oestrogen receptor (GPER) originally designated as GPR30 also mediates some of the actions attributed to oestrogens. Oestrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and ERs in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in women and men. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  6. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with (1-/sup 14/C)2-deoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of (1-/sup 14/C)2-deoxyglucose 6-phosphate and blood disappearance rate of (1-/sup 14/C)2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was themore » most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice.« less

  7. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels.

    PubMed

    Jastreboff, Ania M; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M; Sherwin, Robert S; Potenza, Marc N

    2013-02-01

    Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.

  8. Platelet activity in Chinese obese adolescents with and without insulin resistance.

    PubMed

    Lu, Huimin; Lei, Shundong; Zhao, Jiuming; Chen, Ni

    2014-01-01

    To investigate the platelet activity in Chinese obese adolescents with and without insulin resistance. A cross-sectional study was performed in 159 obese Chinese adolescents to investigate their platelet activity using anthropometrics and biochemical parameters, oral glucose tolerance test and platelet testing. An index of insulin sensitivity, homeostasis model assessment of insulin resistance (HOMA-IR), and plasma fibrinogen, prothrombin fragment 1.2 (PT 1.2), fibrinopeptide A (FPA) and the levels of aggregation to collagen 1 μg/ml, adenosine diphosphate (ADP) 10 μmol/L and arachidonic acid (AA) 0.5 mmol/L were measured. Obese adolescents with insulin resistance had significantly higher HOMA-IR, glucose response curve (AUC), insulin AUC, PT 1.2, FPA and fibrinogen and aggregation (to collagen 1 μg/ml, ADP 10 μmol/L and AA 0.5 mmol/L) comparison with obese adolescents without insulin resistance (P < 0.05). Moreover, a positive correlation was found between both aggregation (to collagen, ADP and AA) and HOMA-IR (ρ = 0.716; P < 0.01, ρ = 0.682; P < 0.01 and ρ = 0.699; P < 0.01, respectively), glucose AUC (ρ = 0.479; P < 0.01, ρ = 0.416; P < 0.01 and ρ = 0.458; P < 0.01, respectively) and insulin AUC (ρ = 0.585; P < 0.01, ρ = 0.511; P < 0.01 and ρ = 0.576; P < 0.01, respectively) in obese adolescents with insulin resistance. Insulin resistance is a major determinant of platelet activation in Chinese obese adolescents.

  9. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation.

    PubMed

    Fornari, R; Francomano, D; Greco, E A; Marocco, C; Lubrano, C; Wannenes, F; Papa, V; Bimonte, V M; Donini, L M; Lenzi, A; Aversa, A; Migliaccio, S

    2015-03-01

    Several chronic metabolic alterations are present in obese subjects. While it is well known about the detrimental effect of abdominal adipose tissue on chronic metabolic clinical condition, less is known on the role of lean mass in obese subjects. Thus, the aim of our study was to evaluate the potential correlation of muscle mass, metabolic condition and inflammation status in obese individuals. The study included 426 obese subjects (86 men and 340 female; mean age 44.8 ± 14 years; BMI: 34.9 ± 6.1 kg/m(2)). Exclusion criteria were chronic medical conditions or use of medications affecting bone metabolism, alterations of hormonal and nutritional status, vitamin D supplementation, recent weight loss and prior bariatric surgery. Patients underwent measurements of bone mineral density (lumbar and hip) and body composition (lean mass, total and trunk fat mass) by dual X-ray absorptiometry and were evaluated for hormonal and metabolic profile and inflammatory markers. Higher lean body mass (LM%) was inversely correlated with homeostasis model assessment of insulin resistance (p < 0.0091; r(2) 0.03938) and associated with lower fibrinogen levels (p < 0.0001; r(2) 0.1263). Interestingly, in obese subjects, LM% was associated with higher levels of vitamin D (p < 0.0001, r(2) 0.1140), osteocalcin (p < 0.0001, r(2) 0.2401) and insulin-like growth factor-1 (IGF-1) (p < 0.0002, r(2) 0.1367). Our results show for the first time that in obese patients, higher amounts of lean mass are directly linked to a lower inflammatory profile and to better insulin sensitivity, but also to the presence of higher level of vitamin D and IGF-1. Moreover, these data suggest that higher levels of lean mass in obese people correlate with a better metabolic profile and, thus, strongly suggest the need to develop programs to facilitate an increase in physical activity in obese people.

  10. Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance

    PubMed Central

    Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.

    2011-01-01

    OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175

  11. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance

    PubMed Central

    Palanivel, R.; Fullerton, M. D.; Galic, S.; Honeyman, J.; Hewitt, K. A.; Jorgensen, S. B.; Steinberg, G. R.

    2017-01-01

    Aims/hypothesis Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. Methods We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. Results The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic–euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). Conclusions/interpretation These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity. PMID:22872213

  12. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity

    PubMed Central

    Law, Ivy K.M.; Xu, Aimin; Lam, Karen S.L.; Berger, Thorsten; Mak, Tak W.; Vanhoutte, Paul M.; Liu, Jacky T.C.; Sweeney, Gary; Zhou, Mingyan; Yang, Bo; Wang, Yu

    2010-01-01

    OBJECTIVE The proinflammatory cytokines/adipokines produced from adipose tissue act in an autocrine and/or endocrine manner to perpetuate local inflammation and to induce peripheral insulin resistance. The present study investigates whether lipocalin-2 deficiency or replenishment with this adipokine has any impact on systemic insulin sensitivity and the underlying mechanisms. METHODS AND RESULTS Under conditions of aging or dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO) mice show significantly decreased fasting glucose and insulin levels and improved insulin sensitivity compared with their wild-type littermates. Despite enlarged fat mass, inflammation and the accumulation of lipid peroxidation products are significantly attenuated in the adipose tissues of Lcn2-KO mice. Adipose fatty acid composition of these mice varies significantly from that in wild-type animals. The amounts of arachidonic acid (C20:4 n6) are elevated by aging and obesity and are paradoxically further increased in adipose tissue, but not skeletal muscle and liver of Lcn2-KO mice. On the other hand, the expression and activity of 12-lipoxygenase, an enzyme responsible for metabolizing arachidonic acid, and the production of tumor necrosis factor-α (TNF-α), a critical insulin resistance–inducing factor, are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimulates the expression and activity of 12-lipoxygenase and TNF-α production in fat tissues. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), an arachidonate lipoxygenase inhibitor, prevents TNF-α expression induced by lipocalin-2. Moreover, treatment with TNF-α neutralization antibody or CDC significantly attenuated the differences of insulin sensitivity between wild-type and Lcn2-KO mice. CONCLUSIONS Lipocalin-2 deficiency protects mice from developing aging- and obesity-induced insulin resistance largely by modulating 12-lipoxygenase and TNF-α levels in adipose tissue. PMID:20068130

  13. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    PubMed Central

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  14. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    PubMed

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  15. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    PubMed

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0

  16. Management of obesity in NIDDM (non-insulin-dependent diabetes mellitus).

    PubMed

    Cheah, J S

    1998-08-01

    Obesity is common in NIDDM; in a cohort of 314 diabetics in Singapore, 44.3% are overweight. Management of obesity in diabetics differs from that in non-diabetics in that it is more urgent; weight maintenance is more difficult and hypoglycaemic medication may cause weight changes. Like in the non-diabetic, management of obesity in diabetic requires a pragmatic and realistic approach. A team approach is required: the help of the nurse educator, the dietitian, behaviour modification therapist, exercise therapist etc are required. A detailed history, careful physical examination and relevant investigations are required to assess the severity of the diabetic state and to exclude an occasional underlying cause of the obesity in the obese NIDDM. Weight loss is urgent in the obese NIDDM, especially those with android obesity. There must be a reduction in caloric intake. Weight loss leads to improvement in the glucose tolerance, insulin sensitivity, reduction in lipid levels and fall in blood pressure in the hypertensive. Exercise is of limited value except in the younger obese NIDDM. Metformin is the hypoglycaemic drug of choice as it leads to consistent weight reduction. The sulphonylureas may cause weight gain. Insulin should be avoided where possible as it causes further weight gain. Other hypoglycaemic agents include Glucobay (alpha-glucosidase inhibitor) and Troglitazone (insulin sensitizer) which do not alter the weight. Orlistat (lipase inhibitor) is promising as it causes reduction of weight, blood-glucose and lipid levels. Anti-obesity drugs (noradrenergic and serotonergic agents) have modest effects on weight reduction in the obese NIDDM; a widely use preparation, Dexfenfluramine (Adifax) has been withdrawn because of side effects. Surgery such as gastric plication is the last resort in treating the morbidly obese NIDDM. The discovery of leptin in 1994 has led to intense research into energy homeostasis in obesity; hopefully this will lead to better treatment of

  17. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons.

    PubMed

    Vogeser, Michael; König, Daniel; Frey, Ingrid; Predel, Hans-Georg; Parhofer, Klaus Georg; Berg, Aloys

    2007-09-01

    Lifestyle changes with increased physical activity and balanced energy intake are recognized as the principal interventions in obesity and insulin resistance. Only few prospective studies, however, have so far addressed the potential role of routine biochemical markers of insulin sensitivity in the monitoring of respective interventions. Fasting insulin and glucose was measured in 33 obese individuals undergoing a lifestyle modification program (MOBILIS) at baseline and after 1 year. The HOMA-IR index (homeostasis model of insulin resistance) was calculated as [fasting serum glucose*fasting serum insulin/22.5], with lower values indicating a higher degree of insulin sensitivity. While the median body mass index (BMI) and waist circumference decreased by 10% and 11%, respectively, the HOMA-IR index decreased in an over-proportional manner by 45% within 1 year (BMI baseline, median 35.7, interquartile range (IQR) 33.7-37.7; after 1 year, median 32.2, IQR 29.6-35.1. HOMA-IR baseline, median 2.9, IQR 1.5-4.6; after 1 year 1.6, IQR 0.9-2.7). In contrast to HOMA-IR and fasting serum insulin, no significant changes in fasting serum glucose were observed. Baseline and post-intervention HOMA-IR showed a high degree of inter-individual variation with eight individuals maintaining high HOMA-IR values despite weight loss after 1 year of intervention. Individual changes in the carbohydrate metabolism achieved by a lifestyle intervention program were displayed by fasting serum insulin concentrations and the HOMA-IR but not by fasting glucose measurement alone. Therefore, assessment of the HOMA-IR may help to individualize lifestyle interventions in obesity and to objectify improvements in insulin sensitivity after therapeutic lifestyle changes.

  18. Insulin sensitivity and its relation to hormones in adolescent boys and girls.

    PubMed

    Aldhoon-Hainerová, Irena; Zamrazilová, Hana; Hill, Martin; Hainer, Vojtěch

    2017-02-01

    A subset of obese individuals lacks cardiometabolic impairment. We aimed to analyze hormonal profiles of insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) adolescents and determine hormonal predictors of homeostasis model of insulin resistance (HOMA-IR). A threshold of 3.16 of HOMA-IR was used to classify ISO (<3.16) IRO (≥3.16). In 702 individuals aged 13-18years (55.8% girls) anthropometric and laboratory [blood glucose, insulin, thyrotropin (TSH), free thyroxine (fT4), free triiodothyronine (fT3), sex hormone-binding globulin (SHBG), steroid hormones, luteinizing hormone, follicle stimulating hormone, prolactin, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like-peptide 1glucagon, leptin, resistin, visfatin, leptin, adiponectin and adipsin] assessments were performed. Orthogonal projections to latent structures and Mann-Whitney tests with Bonferroni correction were applied for statistical analysis. 52.6% girls and 42.9% boys were insulin sensitive. In the predictive model of HOMA-IR thyroid function tests, adiponectin, ghrelin and leptin concentrations played an important role in both genders. Prolactin, testosterone and glucagon contributed to the model only in boys, while progesterone and dehydroepiandrosterone sulfate levels only in girls. After Bonferroni correction levels of leptin, adiponectin, leptin/adiponectin ratio, SHBG and fT4/TSH ratio in both genders, testosterone and glucagon levels in boys and levels of TSH and fT3 in girls were related to insulin sensitivity. Metabolic health defined by HOMA-IR is partly predicted by various hormones. Some of them are gender specific. Free T4/TSH and leptin/adiponectin ratios are related to insulin sensitivity in both genders. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The anorexigenic peptide neurotensin relates to insulin sensitivity in obese patients after BPD or RYGB metabolic surgery.

    PubMed

    von Loeffelholz, Christian; Gissey, Lidia Castagneto; Schumann, Tina; Henke, Christine; Kurzbach, Anica; Struck, Joachim; Bergmann, Andreas; Hanefeld, Markolf; Schatz, Ulrike; Bornstein, Stefan R; Casella, Giovanni; Mingrone, Geltrude; Birkenfeld, Andreas L

    2018-05-24

    Neurotensin is a peptide with effects on appetite and intestinal lipid absorption. Experimental data suggest a role in glucose homeostasis, while human data is missing. Here, 20 morbidly obese subjects either underwent biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB) in a randomized fashion. Before and 1 year after surgery, anthropometric data, body composition, clinical biochemistry, insulin sensitivity by means of euglycemic hyperinsulinemic clamps (HEC) and fasting plasma proneurotensin 1-117 were analyzed. Plasma proneurotensin increased significantly more 1 year after BDP than RYGB (P = 0.028), while weight loss was comparable. After metabolic surgery, proneurotensin correlated positively with insulin sensitivity (M-value) (r = 0.55, P < 0.001), while an inverse relationship with fasting glucose, HOMA-IR and HbA1c was observed (P < 0.05 for all components). After adjustment for age and gender, proneurotensin and BMI remained independently related with delta of M-value (β = 0.46 and β = 0.51, P < 0.05, resp.). From these data we conclude that proneurotensin positively correlates with insulin sensitivity uniquely after weight loss induced by metabolic surgery in humans. BDP leads to a stronger increase in the anorexigenic peptide compared to RYGB.

  20. Treatment with a Catalytic Superoxide Dismutase (SOD) Mimetic Improves Liver Steatosis, Insulin Sensitivity, and Inflammation in Obesity-Induced Type 2 Diabetes

    PubMed Central

    Delmastro-Greenwood, Meghan M.; Marré, Meghan L.; O’Connor, Erin C.; Novak, Elizabeth A.; Vincent, Garret; Mollen, Kevin P.; Lee, Sojin; Dong, H. Henry; Piganelli, Jon D.

    2017-01-01

    Oxidative stress and persistent inflammation are exaggerated through chronic over-nutrition and a sedentary lifestyle, resulting in insulin resistance. In type 2 diabetes (T2D), impaired insulin signaling leads to hyperglycemia and long-term complications, including metabolic liver dysfunction, resulting in non-alcoholic fatty liver disease (NAFLD). The manganese metalloporphyrin superoxide dismustase (SOD) mimetic, manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnP), is an oxidoreductase known to scavenge reactive oxygen species (ROS) and decrease pro-inflammatory cytokine production, by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. We hypothesized that targeting oxidative stress-induced inflammation with MnP would assuage liver complications and enhance insulin sensitivity and glucose tolerance in a high-fat diet (HFD)-induced mouse model of T2D. During 12 weeks of feeding, we saw significant improvements in weight, hepatic steatosis, and biomarkers of liver dysfunction with redox modulation by MnP treatment in HFD-fed mice. Additionally, MnP treatment improved insulin sensitivity and glucose tolerance, while reducing serum insulin and leptin levels. We attribute these effects to redox modulation and inhibition of hepatic NF-κB activation, resulting in diminished ROS and pro-inflammatory cytokine production. This study highlights the importance of controlling oxidative stress and secondary inflammation in obesity-mediated insulin resistance and T2D. Our data confirm the role of NF-κB-mediated inflammation in the development of T2D, and demonstrate the efficacy of MnP in preventing the progression to disease by specifically improving liver pathology and hepatic insulin resistance in obesity. PMID:29104232

  1. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  2. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis.

    PubMed

    Verkest, K R; Fleeman, L M; Morton, J M; Ishioka, K; Rand, J S

    2011-07-01

    The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Relationship between insulin sensitivity and the triglyceride-HDL-C ratio in overweight and obese postmenopausal women: a MONET study.

    PubMed

    Karelis, Antony D; Pasternyk, Stephanie M; Messier, Lyne; St-Pierre, David H; Lavoie, Jean-Marc; Garrel, Dominique; Rabasa-Lhoret, Rémi

    2007-12-01

    The objective of this cross-sectional study was to examine the relationship between the triglyceride-HDL-cholesterol ratio (TG:HDL-C) and insulin sensitivity in overweight and obese sedentary postmenopausal women. The study population consisted of 131 non-diabetic overweight and obese sedentary postmenopausal women (age; 57.7+/-5.0 y; body mass index (BMI), 32.2+/-4.3 kg/m2). Subjects were characterized by dividing the entire cohort into tertiles based on the TG:HDL-C (T1<0.86 vs. T2=0.86 to 1.35 vs. T3>1.35, respectively). We measured (i) insulin sensitivity (using the hyperinsulinenic-euglycemic clamp and homeostasis model assessment (HOMA)), (ii) body composition (using dual-energy X-ray absorptiometry), (iii) visceral fat (using computed tomography), (iv) plasma lipids, C-reactive protein, 2 h glucose concentration during an oral glucose tolerance test (2 h glucose), as well as fasting glucose and insulin, (v) peak oxygen consumption, and (vi) lower-body muscle strength (using weight training equipment). Significant correlations were observed between the TG:HDL-C and the hyperinsulinemic-euglycemic clamp (r=-0.45; p<0.0001), as well as with HOMA (r=0.42; p<0.0001). Moreover, the TG:HDL-C significantly correlated with lean body mass, visceral fat, 2 h glucose, C-reactive protein, and muscle strength. Stepwise regression analysis showed that the TG:HDL-C explained 16.4% of the variation in glucose disposal in our cohort, which accounted for the greatest source of unique variance. Other independent predictors of glucose disposal were 2 h glucose (10.1%), C-reactive protein (CRP; 7.6%), and peak oxygen consumption (5.8%), collectively (including the TG:HDL-C) explaining 39.9% of the unique variance. In addition, the TG:HDL-C was the second predictor for HOMA, accounting for 11.7% of the variation. High levels of insulin sensitivity were associated with low levels of the TG:HDL-C. In addition, the TG:HDL-C was a predictor for glucose disposal rates and HOMA values

  4. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  5. Serum complement C3 strongly correlates with whole-body insulin sensitivity in rheumatoid arthritis.

    PubMed

    Ursini, Francesco; D'Angelo, Salvatore; Russo, Emilio; Arturi, Franco; D'Antona, Lucia; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2017-01-01

    Rheumatoid arthritis (RA) is characterised by an excess of cardiovascular diseases (CVD) risk, attributable to a synergy between under-diagnosed traditional risk factors (i.e. insulin resistance) and inflammatory disease activity. The aim of the present study was to evaluate the correlation between inflammatory measures and insulin sensitivity in RA patients. Forty non-diabetic RA patients (19 males) were recruited. All patients underwent anthropometric measurements, laboratory evaluation and oral glucose tolerance test (OGTT). Insulin sensitivity index (ISI) was calculated with the equation proposed by Matsuda et al., from dynamic values of glucose and insulin obtained during OGTT. In the univariate analysis, lnISI correlated inversely with age, BMI, waist circumference, sBP, ESR, lnCRP and complement C3, but not with disease duration, dBP or complement C4. In non-obese patients (BMI <30 kg/m2, n=28), only age, BMI, lnCRP and C3 maintained their correlation with lnISI. In a stepwise multiple regression using lnISI as the dependent variable and BMI, age, lnCRP and complement C3 as predictors, only BMI and C3 entered the equation and accounted for 38.2% of the variance in lnISI. In non-obese patients, only C3 entered the regression equation, accounting for 32.2% of the variance in lnISI. Using a ROC curve, we identified the best cut-off for complement C3 of 1.22 g/L that yielded a sensitivity of 67% and a specificity of 79% for classification of insulin resistant patients. In RA patients, complement C3 correlates strongly with insulin sensitivity, in both obese and non-obese individuals.

  6. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  7. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  8. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low-fat but not a low-carbohydrate diet in obese women.

    PubMed

    Gray, Dona L; O'Brien, Kevin D; D'Alessio, David A; Brehm, Bonnie J; Deeg, Mark A

    2008-04-01

    Although circulating glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a minor high-density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating GPI-PLD levels. The objective of the study was to determine the effect of weight loss and changes in insulin sensitivity on plasma GPI-PLD levels. Forty-two nondiabetic obese women were included in the study, which involved a 3-month dietary intervention randomizing patients to a low-fat or a low-carbohydrate diet. The study's main outcome measures were plasma GPI-PLD levels and insulin sensitivity as estimated by the homeostasis model assessment. The very low carbohydrate diet group lost more weight after 3 months (-7.6 +/- 3.2 vs -4.2 +/- 3.5 kg, P < .01), although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma GPI-PLD levels. However, baseline GPI-PLD levels correlated with the change in insulin sensitivity in response to the low-fat diet, whereas baseline insulin sensitivity correlated with the change in insulin sensitivity in response to the low-carbohydrate diet. Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low-fat diet on insulin sensitivity.

  9. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low fat but not a low carbohydrate diet in obese women

    PubMed Central

    Gray, Dona L.; O’Brien, Kevin D.; D’Alessio, David A.; Brehm, Bonnie J.; Deeg, Mark A.

    2013-01-01

    Context Although circulating glycosylphosphatidylinositol-specific phospholipase D, a minor high density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating glycosylphosphatidylinositol-specific phospholipase D levels. Objective Determine the effect of weight loss and changes in insulin sensitivity on plasma glycosylphosphatidylinositol-specific phospholipase D levels. Participants Forty two non-diabetic obese women. Intervention Three month dietary intervention randomizing patients to a low fat or a low carbohydrate diet. Main outcome measures Plasma glycosylphosphatidylinositol-specific phospholipase D levels and insulin sensitivity as estimated by the homeostasis model assessment. Results The very low carbohydrate diet group lost more weight after 3 months (−7.6 ± 3.2 vs. −4.2 ± 3.5 kg, P < 0.01) although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma glycosylphosphatidylinositol-specific phospholipase D levels. However, baseline glycosylphosphatidylinositol-specific phospholipase D levels correlated with the change in insulin sensitivity in response to the low fat diet while baseline insulin sensitivity correlated the change in insulin sensitivity in response to the low carbohydrate diet. Conclusions Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low fat diet on insulin sensitivity. PMID:18328347

  10. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    PubMed

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  11. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients.

    PubMed

    Jazet, I M; Schaart, G; Gastaldelli, A; Ferrannini, E; Hesselink, M K; Schrauwen, P; Romijn, J A; Maassen, J A; Pijl, H; Ouwens, D M; Meinders, A E

    2008-02-01

    Both energy restriction (ER) per se and weight loss improve glucose metabolism in obese insulin-treated type 2 diabetic patients. Short-term ER decreases basal endogenous glucose production (EGP) but not glucose disposal. In contrast the blood glucose-lowering mechanism of long-term ER with substantial weight loss has not been fully elucidated. The aim of this study was to investigate the effect of loss of 50% of excess weight [50% excess weight reduction (EWR)] on EGP, whole-body insulin sensitivity and the disturbed myocellular insulin-signalling pathway in ten obese insulin-treated type 2 diabetic patients. A euglycaemic-hyperinsulinaemic clamp with stable isotopes ([6,6-(2)H2]glucose and [2H5]glycerol) combined with skeletal muscle biopsies was performed during a very low energy diet (VLED; 1,883 kJ/day) on day 2 and again after 50% EWR. Oral blood glucose-lowering agents and insulin were discontinued 3 weeks prior to the VLED and at the start of the VLED, respectively. Loss of 50% EWR (20.3+/-2.2 kg from day 2 to day of 50% EWR) normalised basal EGP and improved insulin sensitivity, especially insulin-stimulated glucose disposal (18.8+/-2.0 to 39.1+/-2.8 micromol kg fat-free mass(-1) min(-1), p=0.001). The latter was accompanied by improved insulin signalling at the level of the recently discovered protein kinase B/Akt substrates AS160 and PRAS40 along with a decrease in intramyocellular lipid (IMCL) content. Considerable weight loss in obese, insulin-treated type 2 diabetic patients normalises basal EGP and improves insulin sensitivity resulting from an improvement in insulin signal transduction in skeletal muscle. The decrease in IMCL might contribute to this effect.

  12. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  13. Obese adolescent girls with polycystic ovary syndrome (PCOS) have more severe insulin resistance measured by HOMA-IR score than obese girls without PCOS.

    PubMed

    Sawathiparnich, Pairunyar; Weerakulwattana, Linda; Santiprabhob, Jeerunda; Likitmaskul, Supawadee

    2005-11-01

    The prevalence of obesity in Thai children is increasing. These individuals are at increased risks of metabolic syndrome that includes insulin resistance, type 2 diabetes mellitus (T2DM), polycystic ovary syndrome (PCOS), dyslipidemia and hypertension. PCOS has been known to be associated with insulin resistance. To compare the insulin sensitivity between obese adolescent girls with PCOS and those without PCOS. We reviewed demographic and hormonal data of 6 obese adolescent girls with PCOS and compared with 6 age, weight and BMI-matched non-PCOS controls. Each subject underwent an oral glucose tolerance test. Homeostasis model assessment of insulin resistance score (HOMA-IR score) in obese adolescent girls with PCOS was significantly higher than in girls without PCOS with median and range as follows (16.5 [3.8, 21.8] vs. 4.1 [3.3, 6.9], p = 0.04). Our study demonstrates that obese adolescent girls with PCOS have more severe insulin resistance measured by HOMA-IR score than girls without PCOS independent of the degree of obesity. Since insulin resistance is a metabolic precursor of future cardiovascular diseases, obese adolescent girls with PCOS might be at greater risk of developing cardiovascular disease in later adulthood than their non-PCOS counterparts.

  14. [Diagnosis of insulin resistance by indirect methods in obese school children].

    PubMed

    Angulo, Nerkis; de Szarvas, Sobeida Barbella; Mathison, Yaira; Hadad, Erika; González, Dora; Hernández, Ana; Guevara, Harold

    2013-06-01

    Obesity leads to a deterioration of glucose tolerance and the action of insulin. The purpose of this study was to determine insulin resistance (IR) by indirect methods, and its correlation with clinical, anthropometric and biochemical variables in obese normoglycemic school children. This was a descriptive-correlational study of 72 school prepubescent children, who attended the ambulatory "El Concejo" of the University of Carabobo (UC) and at the Gastroenterology and Pediatric Nutrition service of the city hospital "Enrique Tejera" (CHET), in Valencia, Venezuela, between January-April 2011. exogenous obesity. We assessed personal and family history, presence of Acanthosis Nigricans and nutritional and biochemical status. We found a higher percentage of IR, through the use of the QUICKI method (66.7%), followed by the HOMA (55.6%) and basal insulin (45.9%). The mean (chi) indexes of body mass and waist circumference were significantly greater (p < 0.05) in patients with IR, by HOMA and QUICKI techniques. The QUICKI method detected significant differences (p < 0.05) in the values of glycemia, basal insulin and postprandial insulin, among patients with diminished and normal insulin sensitivities. While HOMA, detected these differences (p < 0.05) in the values of glycemia and basal insulin. A statistically significant relationship was observed (p < 0.05), between the presence of Acanthosis Nigricans and IR, by the HOMA, QUICKI and basal insulin methods. In conclusion, the evaluated techniques, QUICKI, HOMA and basal insulin indexes, were most effective for detecting the IR.

  15. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    PubMed

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  16. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods.

    PubMed

    Kurtoğlu, Selim; Hatipoğlu, Nihal; Mazıcıoğlu, Mümtaz; Kendirici, Mustafa; Keskin, Mehmet; Kondolot, Meda

    2010-01-01

    Childhood obesity is associated with an increased risk for insulin resistance. The underlying mechanism for the physiological increase in insulin levels in puberty is not clearly understood. The aim of the present study was to determine the cut-off values for homeostasis model assessment for insulin resistance (HOMA-IR) in obese children and adolescents according to gender and pubertal status. Two hundred and eight obese children and adolescents (141 girls, 127 boys) aged between 5 and 18 years were included in the study. The children were divided into prepubertal and pubertal groups. A standard oral glucose tolerance test (OGTT) was carried out in all children. A total insulin level exceeding 300 μU/mL in the blood samples, collected during the test period, was taken as the insulin resistance criterion. Cut-off values for HOMA-IR were calculated by receiver operating characteristic (ROC) analysis. In the prepubertal period, the rate of insulin resistance was found to be 37% in boys and 27.8% in girls,while in the pubertal period, this rate was 61.7% in boys and 66.7% in girls. HOMA-IR cut-off values for insulin resistance in the prepubertal period were calculated to be 2.67 (sensitivity 88.2%, specificity 65.5%) in boys and 2.22 (sensitivity 100%, specificity 42.3%) in girls, and in the pubertal period, they were 5.22 (sensitivity 56%, specificity 93.3%) in boys and 3.82 (sensitivity 77.1%, specificity 71.4%) in girls. Since gender, obesity and pubertal status are factors affecting insulin resistance, cut-off values which depend on gender and pubertal status, should be used in evaluation of insulin resistance.

  17. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    PubMed

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  18. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature1234

    PubMed Central

    2016-01-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  19. Influence of insulin on beta-endorphin plasma levels in obese and normal weight subjects.

    PubMed

    Brunani, A; Pincelli, A I; Pasqualinotto, L; Tibaldi, A; Baldi, G; Scacchi, M; Fatti, L M; Cavagnini, F

    1996-08-01

    To establish the possible role of hyperinsulinemia in the elevation of plasma beta-endorphin (beta-EP) levels observed in obese patients after an oral glucose load. Oral glucose tolerance test (OGTT) and euglycemic-hyperinsulinemic clamp. Two groups of six (age: 22-39 y, BMI: 30-48 kg/m2) and eight obese men (age: 18-37 y, BMI: 35-45 kg/m2), respectively, and five normal weight healthy men (age: 22-30 y, BMI 22-23 kg/m2). Glucose, insulin and beta-EP levels at baseline and every 30 min until 180 min during the OGTT; glucose, insulin, C-peptide and beta-EP concentrations at baseline and in steady state condition (i.e. during the last 30 min of insulin infusion) in the euglycemic-hyperinsulinemic clamp studies. In the six obese patients undergoing the OGTT a significant elevation of beta-EP plasma levels was observed between 60 and 90 min after glucose ingestion. In the clamp studies no significant differences in beta-EP plasma levels, blood glucose and serum insulin were observed between obese and normal weight subjects both at baseline and at steady state. A markedly diminished insulin sensitivity along with a lower inhibition of C-peptide during insulin infusion was observed in obese patients compared to control subjects. A rise in serum insulin levels unaccompanied by a concomitant increase in blood glucose concentration is unable to elicit a beta-EP response in obese patients.

  20. Fitness, adiposopathy, and adiposity are independent predictors of insulin sensitivity in middle-aged men without diabetes.

    PubMed

    Huth, Claire; Pigeon, Étienne; Riou, Marie-Ève; St-Onge, Josée; Arguin, Hélène; Couillard, Erick; Dubois, Marie-Julie; Marette, André; Tremblay, Angelo; Weisnagel, S John; Lacaille, Michel; Mauriège, Pascale; Joanisse, Denis R

    2016-09-01

    Adiposopathy, or sick fat, refers to adipose tissue dysfunction that can lead to several complications such as dyslipidemia, insulin resistance, and hyperglycemia. The relative contribution of adiposopathy in predicting insulin resistance remains unclear. We investigated the relationship between adiposopathy, as assessed as a low plasma adiponectin/leptin ratio, with anthropometry, body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), inflammation, and fitness level (ergocycle VO2max, mL/kgFFM/min) in 53 men (aged 34-53 years) from four groups: sedentary controls without obesity (body mass index [BMI] <25 kg/m(2)), sedentary with obesity (BMI > 30 kg/m(2)), sedentary with obesity and glucose intolerance, and endurance trained active without obesity. The adiponectin/leptin ratio was the highest in trained men (4.75 ± 0.82) and the lowest in glucose intolerant subjects with obesity (0.27 ± 0.06; ANOVA p < 0.0001) indicating increased adiposopathy in those with obesity. The ratio was negatively associated with adiposity (e.g., waist circumference, r = -0.59, p < 0.01) and positively associated with VO2max (r = 0.67, p < 0.01) and insulin sensitivity (M/I, r = 0.73, p < 0.01). Multiple regression analysis revealed fitness as the strongest independent predictor of insulin sensitivity (partial R (2) = 0.61). While adiposopathy was also an independent and significant contributor (partial R (2) = 0.10), waist circumference added little power to the model (partial R (2) = 0.024). All three variables remained significant independent predictors when trained subjects were excluded from the model. Plasma lipids were not retained in the model. We conclude that low fitness, adiposopathy, as well as adiposity (and in particular abdominal obesity) are independent contributors to insulin resistance in men without diabetes.

  1. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2012-06-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

  2. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

    PubMed Central

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2012-01-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D. PMID:22916045

  3. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature.

    PubMed

    Nommsen-Rivers, Laurie A

    2016-03-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. © 2016 American Society for Nutrition.

  4. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice.

    PubMed

    Evers-van Gogh, Inkie J A; Oteng, Antwi-Boasiako; Alex, Sheril; Hamers, Nicole; Catoire, Milene; Stienstra, Rinke; Kalkhoven, Eric; Kersten, Sander

    2016-03-01

    Obesity is associated with a state of chronic low-grade inflammation that is believed to contribute to the development of skeletal muscle insulin resistance. However, the extent to which local and systemic elevation of cytokines, such as monocyte chemoattractant protein 1 (MCP-1), interferes with the action of insulin and promotes insulin resistance and glucose intolerance in muscle remains unclear. Here, we aim to investigate the effect of muscle-specific overexpression of MCP-1 on insulin sensitivity and glucose tolerance in lean and obese mice. We used Mck-Mcp-1 transgenic (Tg) mice characterised by muscle-specific overexpression of Mcp-1 (also known as Ccl2) and elevated plasma MCP-1 levels. Mice were fed either chow or high-fat diet for 10 weeks. Numerous metabolic variables were measured, including glucose and insulin tolerance tests, muscle insulin signalling and plasma NEFA, triacylglycerol, cholesterol, glucose and insulin. Despite clearly promoting skeletal muscle inflammation, muscle-specific overexpression of Mcp-1 did not influence glucose tolerance or insulin sensitivity in either lean chow-fed or diet-induced obese mice. In addition, plasma NEFA, triacylglycerol, cholesterol, glucose and insulin were not affected by MCP-1 overexpression. Finally, in vivo insulin-induced Akt phosphorylation in skeletal muscle did not differ between Mcp-1-Tg and wild-type mice. We show that increased MCP-1 production in skeletal muscle and concomitant elevated MCP-1 levels in plasma promote inflammation in skeletal muscle but do not influence insulin signalling and have no effect on insulin resistance and glucose tolerance in lean and obese mice. Overall, our data argue against MCP-1 promoting insulin resistance in skeletal muscle and raise questions about the impact of inflammation on insulin sensitivity in muscle.

  5. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats.

    PubMed

    Begg, Denovan P; Mul, Joram D; Liu, Min; Reedy, Brianne M; D'Alessio, David A; Seeley, Randy J; Woods, Stephen C

    2013-03-01

    Diet-induced obesity (DIO) reduces the ability of centrally administered insulin to reduce feeding behavior and also reduces the transport of insulin from the periphery to the central nervous system (CNS). The current study was designed to determine whether reversal of high-fat DIO restores the anorexic efficacy of central insulin and whether this is accompanied by restoration of the compromised insulin transport. Adult male Long-Evans rats were initially maintained on either a low-fat chow diet (LFD) or a high-fat diet (HFD). After 22 weeks, half of the animals on the HFD were changed to the LFD, whereas the other half continued on the HFD for an additional 8 weeks, such that there were 3 groups: 1) a LFD control group (Con; n = 18), 2) a HFD-fed, DIO group (n = 17), and 3) a HFD to LFD, DIO-reversal group (DIO-rev; n = 18). The DIO reversal resulted in a significant reduction of body weight and epididymal fat weight relative to the DIO group. Acute central insulin administration (8 mU) reduced food intake and caused weight loss in Con and DIO-rev but not DIO rats. Fasting cerebrospinal fluid insulin was higher in DIO than Con animals. However, after a peripheral bolus injection of insulin, cerebrospinal fluid insulin increased in Con and DIO-rev rats but not in the DIO group. These data provide support for previous reports that DIO inhibits both the central effects of insulin and insulin's transport to the CNS. Importantly, DIO-rev restored sensitivity to the effects of central insulin on food intake and insulin transport into the CNS.

  6. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults

    PubMed Central

    Marina, Anna; Song, Xiaoling; Callahan, Holly S.; Kratz, Mario; Utzschneider, Kristina M.

    2017-01-01

    Purpose We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition. Methods Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided. Insulin sensitivity was measured by labeled hyperinsulinemic-euglycemic clamps, abdominal fat distribution by MRI, and fasting VLDL fatty acids by gas chromatography. Results The rate of glucose disposal (Rd) during low-and high-dose insulin decreased on the HFD but remained unchanged on the LFD (Rd-low: LFD: 0.12 ± 0.11 vs. HFD: −0.37 ± 0.15 mmol/min, mean ± SE, p < 0.01; Rdhigh: LFD: 0.11 ± 0.37 vs. HFD: −0.71 ± 0.26 mmol/ min, p = 0.08). Hepatic insulin sensitivity did not change. Changes in subcutaneous fat were positively associated with changes in insulin sensitivity on the LFD (r = 0.78, p < 0.01) with a trend on the HFD (r = 0.60, p = 0.07), whereas there was no association with intra-abdominal fat. The LFD led to an increase in VLDL palmitic (16:0), stearic (18:0), and palmitoleic (16:1n7c) acids, while no changes were observed on the HFD. Changes in VLDL n-6 docosapentaenoic acid (22:5n6) were strongly associated with changes in insulin sensitivity on both diets (LFD: r = −0.77; p < 0.01; HFD: r = −0.71; p = 0.02). Conclusions A diet very high in fat and saturated fat adversely affects insulin sensitivity and thereby might contribute to the development of type 2 diabetes. PMID:26615402

  7. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  8. Lipid-anthropometric index optimization for insulin sensitivity estimation

    NASA Astrophysics Data System (ADS)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  9. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    PubMed

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk

    PubMed Central

    Lauretta, Rosa; Lanzolla, Giulia; Vici, Patrizia; Mariani, Luciano; Moretti, Costanzo

    2016-01-01

    Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis. PMID:27725832

  11. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    PubMed

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  12. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial.

    PubMed

    Razny, Urszula; Kiec-Wilk, Beata; Polus, Anna; Goralska, Joanna; Malczewska-Malec, Malgorzata; Wnek, Dominika; Zdzienicka, Anna; Gruca, Anna; Childs, Caroline E; Kapusta, Maria; Slowinska-Solnica, Krystyna; Calder, Philip C; Dembinska-Kiec, Aldona

    2015-12-01

    Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

  13. Modulatory role of D-chiro-inositol (DCI) on LH and insulin secretion in obese PCOS patients.

    PubMed

    Genazzani, Alessandro D; Santagni, Susanna; Rattighieri, Erika; Chierchia, Elisa; Despini, Giulia; Marini, Giulia; Prati, Alessia; Simoncini, Tommaso

    2014-06-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition that affects fertility through oligo-ovulation, hyperandrogenism and polycystic morphology of the ovaries. Since it has been demonstrated a high incidence of insulin resistance in PCOS patients, our study aimed to evaluate the efficacy of the integrative treatment with D-chiro-inositol (DCI) (500 mg die, per os, for 12 weeks) on hormonal parameters and insulin sensitivity in a group of overweight/obese PCOS patients (body mass index; BMI > 26). After the treatment, interval several endocrine parameters improved (luteinizing hormone [LH], LH/follicle stimulating hormone [FSH], androstenedione and insulin), insulin response to oral glucose tolerance test reported the significant improvement of insulin sensitivity as well as the gonadotropin-releasing hormone (GnRH)-induced (10 µg, in bolus) LH response. BMI decreased, though no lifestyle modification was requested. When data were analyzed according to the presence or absence of first-grade diabetic relatives, PCOS patients with diabetic relatives showed greater improvement after DCI administration. In conclusion DCI administration is effective in restoring better insulin sensitivity and an improved hormonal pattern in obese hyperinsulinemic PCOS patients, in particular, in hyperinsulinemic PCOS patients who have diabetic relatives.

  14. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  15. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity.

    PubMed

    Moreno-Navarrete, José María; Serino, Matteo; Blasco-Baque, Vincent; Azalbert, Vincent; Barton, Richard H; Cardellini, Marina; Latorre, Jèssica; Ortega, Francisco; Sabater-Masdeu, Mònica; Burcelin, Rémy; Dumas, Marc-Emmanuel; Ricart, Wifredo; Federici, Massimo; Fernández-Real, José Manuel

    2018-02-01

    To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA 1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA 1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model.

    PubMed

    Ouchfoun, Meriem; Eid, Hoda M; Musallam, Lina; Brault, Antoine; Li, Shilin; Vallerand, Diane; Arnason, John T; Haddad, Pierre S

    2016-04-01

    Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/β) and a decrease in the hepatic content of SREBP-1 (39 %). Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.

  17. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  18. Obesity, insulin resistance, and type 1 diabetes mellitus.

    PubMed

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  19. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds.

    PubMed

    Giannini, Cosimo; Santoro, Nicola; Caprio, Sonia; Kim, Grace; Lartaud, Derek; Shaw, Melissa; Pierpont, Bridget; Weiss, Ram

    2011-08-01

    We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798-12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity.

  20. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial

    USDA-ARS?s Scientific Manuscript database

    The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and se...

  1. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    PubMed

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  2. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults.

    PubMed

    von Frankenberg, Anize D; Marina, Anna; Song, Xiaoling; Callahan, Holly S; Kratz, Mario; Utzschneider, Kristina M

    2017-02-01

    We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition. Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided. Insulin sensitivity was measured by labeled hyperinsulinemic-euglycemic clamps, abdominal fat distribution by MRI, and fasting VLDL fatty acids by gas chromatography. The rate of glucose disposal (Rd) during low- and high-dose insulin decreased on the HFD but remained unchanged on the LFD (Rd-low: LFD: 0.12 ± 0.11 vs. HFD: -0.37 ± 0.15 mmol/min, mean ± SE, p < 0.01; Rd-high: LFD: 0.11 ± 0.37 vs. HFD: -0.71 ± 0.26 mmol/min, p = 0.08). Hepatic insulin sensitivity did not change. Changes in subcutaneous fat were positively associated with changes in insulin sensitivity on the LFD (r = 0.78, p < 0.01) with a trend on the HFD (r = 0.60, p = 0.07), whereas there was no association with intra-abdominal fat. The LFD led to an increase in VLDL palmitic (16:0), stearic (18:0), and palmitoleic (16:1n7c) acids, while no changes were observed on the HFD. Changes in VLDL n-6 docosapentaenoic acid (22:5n6) were strongly associated with changes in insulin sensitivity on both diets (LFD: r = -0.77; p < 0.01; HFD: r = -0.71; p = 0.02). A diet very high in fat and saturated fat adversely affects insulin sensitivity and thereby might contribute to the development of type 2 diabetes. CLINICALTRIALS. NCT00930371.

  3. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    USDA-ARS?s Scientific Manuscript database

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  4. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Red meat, dairy, and insulin sensitivity: a randomized crossover intervention study.

    PubMed

    Turner, Kirsty M; Keogh, Jennifer B; Clifton, Peter M

    2015-06-01

    Epidemiologic studies have linked high consumption of red and processed meat with risk of developing type 2 diabetes, whereas high dairy consumption has been associated with decreased risk, but interventions have been limited. We compared the effects on insulin sensitivity of consuming a diet high in lean red meat with minimal dairy, a diet high in primarily low-fat dairy (from milk, yogurt, or custard) with no red meat, and a control diet that contained neither red meat nor dairy. A randomized crossover study was undertaken with 47 overweight and obese men and women divided into 2 groups as follows: those with normal glucose tolerance and those with impaired fasting glucose or impaired glucose tolerance. Participants followed the 3 weight-stable dietary interventions for 4 wk with glucose, insulin, and C-peptide measured by using oral-glucose-tolerance tests at the end of each diet. Fasting insulin was significantly higher after the dairy diet than after the red meat diet (P < 0.01) with no change in fasting glucose resulting in a decrease in insulin sensitivity after the high-dairy diet (P < 0.05) as assessed by homeostasis model assessment of insulin resistance (HOMA-IR). A significant interaction between diet and sex was observed such that, in women alone, HOMA-IR was significantly lower after the red meat diet than after the dairy diet (1.33 ± 0.8 compared with 1.71 ± 0.8, respectively; P < 0.01). Insulin sensitivity calculated by using the Matsuda method was 14.7% lower in women after the dairy diet than after the red meat diet (P < 0.01) with no difference between diets in men. C-peptide was not different between diets. In contrast to some epidemiologic findings, these results suggest that high consumption of dairy reduces insulin sensitivity compared with a diet high in lean red meat in overweight and obese subjects, some of whom had glucose intolerance. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN

  6. Chromium and polyphenols from cinnamon improve insulin sensitivity.

    PubMed

    Anderson, Richard A

    2008-02-01

    Naturally-occurring compounds that have been shown to improve insulin sensitivity include Cr and polyphenols found in cinnamon (Cinnamomon cassia). These compounds also have similar effects on insulin signalling and glucose control. The signs of Cr deficiency are similar to those for the metabolic syndrome and supplemental Cr has been shown to improve all these signs in human subjects. In a double-blind placebo-controlled study it has been demonstrated that glucose, insulin, cholesterol and HbA1c are all improved in patients with type 2 diabetes following Cr supplementation. It has also been shown that cinnamon polyphenols improve insulin sensitivity in in vitro, animal and human studies. Cinnamon reduces mean fasting serum glucose (18-29%), TAG (23-30%), total cholesterol (12-26%) and LDL-cholesterol (7-27%) in subjects with type 2 diabetes after 40 d of daily consumption of 1-6 g cinnamon. Subjects with the metabolic syndrome who consume an aqueous extract of cinnamon have been shown to have improved fasting blood glucose, systolic blood pressure, percentage body fat and increased lean body mass compared with the placebo group. Studies utilizing an aqueous extract of cinnamon, high in type A polyphenols, have also demonstrated improvements in fasting glucose, glucose tolerance and insulin sensitivity in women with insulin resistance associated with the polycystic ovary syndrome. For both supplemental Cr and cinnamon not all studies have reported beneficial effects and the responses are related to the duration of the study, form of Cr or cinnamon used and the extent of obesity and glucose intolerance of the subjects.

  7. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    PubMed

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  8. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    PubMed

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  10. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study.

    PubMed

    Do, Ron; Bailey, Swneke D; Desbiens, Katia; Belisle, Alexandre; Montpetit, Alexandre; Bouchard, Claude; Pérusse, Louis; Vohl, Marie-Claude; Engert, James C

    2008-04-01

    A genome-wide association study conducted by the Wellcome Trust Case Control Consortium recently associated single nucleotide polymorphisms (SNPs) in the FTO (fatso/fat mass and obesity associated) gene with type 2 diabetes. These associations were shown to be mediated by obesity. Other research groups found similar results in Europeans and Hispanics but not African Americans. The mechanism by which FTO influences obesity and type 2 diabetes is currently unknown. The present study investigated the role of two FTO SNPs (rs17817449 and rs1421085) in adiposity, insulin sensitivity, and body weight regulation, including energy intake and expenditure. We genotyped 908 individuals from the Quebec City metropolitan area that participated in the Quebec Family Study, a long-term study of extensively phenotyped individuals designed to investigate factors involved in adiposity. We found significant associations for both SNPs with several obesity-related phenotypes. In particular, rs17817449 was associated with BMI (P = 0.0014), weight (P = 0.0059), and waist circumference (P = 0.0021) under an additive model. In addition, this FTO SNP influenced fasting insulin (P = 0.011), homeostasis model assessment of insulin resistance (P = 0.038), and an insulin sensitivity index derived from an oral glucose tolerance test (P = 0.0091). Associations were also found with resting metabolic rate (RMR) (P = 0.042) and plasma leptin levels (P = 0.036). Adjustment for BMI abolished the associations with insulin sensitivity, RMR, and plasma leptin levels. These results confirm that genetic variation at the FTO locus contributes to the etiology of obesity, insulin resistance, and increased plasma leptin levels.

  11. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance.

    PubMed

    Pincelli, A I; Brunani, A; Scacchi, M; Dubini, A; Borsotti, R; Tibaldi, A; Pasqualinotto, L; Maestri, E; Cavagnini, F

    2001-01-01

    The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. These data indicate

  12. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  13. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs.

    PubMed

    Verkest, K R; Rand, J S; Fleeman, L M; Morton, J M

    2012-02-01

    Dogs do not appear to progress from obesity-induced insulin resistance to type 2 diabetes mellitus. Both postprandial hyperglycemia and postprandial hypertriglyceridemia have been proposed to cause or maintain beta cell failure and progression to type 2 diabetes mellitus in other species. Postprandial glucose, triglyceride, and insulin concentrations have not been compared in lean and obese dogs. We measured serum glucose, triglyceride, and insulin concentrations in nine naturally occurring obese and nine age- and gender-matched lean dogs. After a 24-h fast, dogs were fed half their calculated daily energy requirement of a standardized diet that provided 37% and 40% of metabolizable energy as carbohydrate and fat, respectively. Fasting and postprandial glucose and triglyceride concentrations were greater in the obese dogs (P < 0.001), although the mean insulin concentration for this group was five times greater than that of the lean group (P < 0.001). Most of the 0.6 mM (11 mg/dL) difference in mean postprandial glucose concentrations between lean and obese dogs was attributable to a subset of persistently hyperglycemic obese dogs with mean postprandial glucose concentrations 1.0 mM (18 mg/dL) greater than that in lean dogs. Persistently hyperglycemic obese dogs had lower triglyceride (P = 0.02 to 0.04) and insulin (P < 0.02) concentrations than other obese dogs. None of the dogs developed clinical signs of diabetes mellitus during follow-up for a median of 2.6 yr. We conclude that pancreatic beta cells in dogs are either not sensitive to toxicity because of mild hyperglycemia or lack another component of the pathophysiology of beta cell failure in type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Analysis of the relationship of leptin, high-sensitivity C-reactive protein, adiponectin, insulin, and uric acid to metabolic syndrome in lean, overweight, and obese young females.

    PubMed

    Abdullah, Abdul Ridha; Hasan, Haydar A; Raigangar, Veena L

    2009-02-01

    Over the last decade there has been a steady rise in obesity and co-morbidity, but little is known about the rate of metabolic dysfunction among young adults in the United Arab Emirates. Various factors have been implicated as biomarkers of metabolic syndrome. The objective of this study was to analyze the relationships of leptin, C-reactive protein (CRP), adiponectin, insulin, and uric acid to the metabolic syndrome components in lean, overweight, and obese young females. This was a cross-sectional study of 69 apparently healthy young females, who were classified according to their body mass index (BMI) (kg/m(2)) into three groups: lean (25 and <30), and obese (>or=30). Estimated biomarkers were: leptin, insulin, adiponectin, high-sensitivity [hs]-CRP, uric acid, blood sugar, high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides (TG). Anthropometric measures, blood pressure, and homeostasis model assessment-insulin resistance (HOMA-IR) were also measured. Serum leptin, hs-CRP, insulin, and uric acid increased significantly (p < 0.01) with increased BMI. Only one significant correlation (p < 0.05) between the biomarkers and the metabolic syndrome components was found in lean subjects (leptin vs. waist circumference r = 0.48) as opposed to six in the obese group (hs-CRP vs. waist circumference and systolic blood pressure [SBP], r = 0.45 and r = -0.41, respectively; insulin vs. diastolic blood pressure [DBP], r = 0.47; adiponectin vs. blood sugar, r = -0.44; and uric acid vs. waist circumference and TG, r = 0.5 and r = 0.51, respectively). Estimation of the levels of studied biomarkers could be an important tool for early detection of metabolic syndrome before the appearance of its frank components. Uric acid seems to be the most reliable biomarker to identify obese subjects with metabolic syndrome.

  15. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  16. Obesity is the main determinant of insulin resistance more than the circulating pro-inflammatory cytokines levels in rheumatoid arthritis patients.

    PubMed

    Castillo-Hernandez, Jesus; Maldonado-Cervantes, Martha Imelda; Reyes, Juan Pablo; Patiño-Marin, Nuria; Maldonado-Cervantes, Enrique; Solorzano-Rodriguez, Claudia; de la Cruz Mendoza, Esperanza; Alvarado-Sanchez, Brenda

    Systemic blockade of TNF-α in Rheumatoid arthritis with insulin resistance seems to produce more improvement in insulin sensitivity in normal weight patients with Rheumatoid arthritis than in obese patients with Rheumatoid arthritis, suggesting that systemic-inflammation and obesity are independent risk factors for insulin resistance in Rheumatoid arthritis patients. To evaluate the insulin resistance in: normal weight patients with Rheumatoid arthritis, overweight patients with Rheumatoid arthritis, obese Rheumatoid arthritis patients, and matched control subjects with normal weight and obesity; and its association with major cytokines involved in the pathogenesis of the disease. Assessments included: body mass index, insulin resistance by Homeostasis Model Assessment, ELISA method, and enzymatic colorimetric assay. Outstanding results from these studies include: (1) In Rheumatoid arthritis patients, insulin resistance was well correlated with body mass index, but not with levels of serum cytokines. In fact, levels of cytokines were similar in all Rheumatoid arthritis patients, regardless of being obese, overweight or normal weight (2) Insulin resistance was significantly higher in Rheumatoid arthritis with normal weight than in normal weight (3) No significant difference was observed between insulin resistances of Rheumatoid arthritis with obesity and obesity (4) As expected, levels of circulating cytokines were significantly higher in Rheumatoid arthritis patients than in obesity. Obesity appears to be a dominant condition above inflammation to produce IR in RA patients. The dissociation of the inflammation and obesity components to produce IR suggests the need of an independent therapeutic strategy in obese patients with RA. Copyright © 2017. Published by Elsevier Editora Ltda.

  17. The role of dietary fat in obesity-induced insulin resistance.

    PubMed

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  18. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  19. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults.

    PubMed

    Pereira, Mark A; Jacobs, David R; Pins, Joel J; Raatz, Susan K; Gross, Myron D; Slavin, Joanne L; Seaquist, Elizabeth R

    2002-05-01

    Epidemiologic studies have found whole-grain intake to be inversely associated with the risk of type 2 diabetes and heart disease. We tested the hypothesis that whole-grain consumption improves insulin sensitivity in overweight and obese adults. This controlled experiment compared insulin sensitivity between diets (55% carbohydrate, 30% fat) including 6-10 servings/d of breakfast cereal, bread, rice, pasta, muffins, cookies, and snacks of either whole or refined grains. Total energy needs were estimated to maintain body weight. Eleven overweight or obese [body mass index (in kg/m(2)): 27-36] hyperinsulinemic adults aged 25-56 y participated in a randomized crossover design. At the end of each 6-wk diet period, the subjects consumed 355 mL (12 oz) of a liquid mixed meal, and blood samples were taken over 2 h. The next day a euglycemic hyperinsulinemic clamp test was administered. Fasting insulin was 10% lower during consumption of the whole-grain than during consumption of the refined-grain diet (mean difference: -15 +/- 5.5 pmol/L; P = 0.03). After the whole-grain diet, the area under the 2-h insulin curve tended to be lower (-8832 pmol.min/L; 95% CI: -18720, 1062) than after the refined-grain diet. The rate of glucose infusion during the final 30 min of the clamp test was higher after the whole-grain diet (0.07 x 10(-4) mmol.kg(-1).min(-1) per pmol/L; 95% CI: 0.003 x 10(-4), 0.144 x 10(-4)). Insulin sensitivity may be an important mechanism whereby whole-grain foods reduce the risk of type 2 diabetes and heart disease.

  20. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    PubMed

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  1. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less

  2. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction

    PubMed Central

    Wang, Cecilia C.L.; Adochio, Rebecca L.; Leitner, J. Wayne; Abeyta, Ian M.; Draznin, Boris; Cornier, Marc-Andre

    2012-01-01

    Objective The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. Materials/Methods Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5 days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5 days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). Results Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3 ± 1.3 kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser 307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. Conclusion Acute caloric restriction with a LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with a HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity. PMID:23174405

  3. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    PubMed

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  4. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  5. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  6. Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism

    PubMed Central

    Dallaire, Patrice; Bellmann, Kerstin; Laplante, Mathieu; Gélinas, Stéphanie; Centeno-Baez, Carolina; Penfornis, Patrice; Peyot, Marie-Line; Latour, Martin G.; Lamontagne, Julien; Trujillo, Maria E.; Scherer, Philipp E.; Prentki, Marc; Deshaies, Yves; Marette, André

    2008-01-01

    OBJECTIVE—Synthetic ligands for peroxisome proliferator–activated receptor-γ (PPAR-γ) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS—iNOS−/− and iNOS+/+ were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS—Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS−/− and obese iNOS+/+ mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS−/− mice. PPAR-γ transcriptional activity was increased in adipose tissue of iNOS−/− mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-γ activity. CONCLUSIONS—Our results identify the iNOS/NO pathway as a critical modulator of PPAR-γ activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-γ agonism in an animal model of obesity and insulin resistance. PMID:18458147

  7. Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE).

    PubMed

    Paulmichl, Katharina; Hatunic, Mensud; Højlund, Kurt; Jotic, Aleksandra; Krebs, Michael; Mitrakou, Asimina; Porcellati, Francesca; Tura, Andrea; Bergsten, Peter; Forslund, Anders; Manell, Hannes; Widhalm, Kurt; Weghuber, Daniel; Anderwald, Christian-Heinz

    2016-09-01

    The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI

  8. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  9. Insulin Sensitivity and Inflammation Mediate the Impact of Fitness on Cerebrovascular Health in Adolescents.

    PubMed

    Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio

    2017-06-01

    To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.

  10. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic-euglycemic clamp.

    PubMed

    Mohd Nor, Noor Shafina; Lee, SoJung; Bacha, Fida; Tfayli, Hala; Arslanian, Silva

    2016-09-01

    There is a need for simple surrogate estimates of insulin sensitivity in epidemiological studies of obese youth because the hyperinsulinemic-euglycemic clamp is not feasible on a large scale. (i) To examine the triglyceride glucose (TyG) index (Ln[fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]) and its relationship to in vivo insulin sensitivity in obese adolescents (OB) along the spectrum of glucose tolerance and (ii) to compare TyG index with triglyceride/high-density lipoprotein TG/HDL and 1/fasting insulin (1/IF ), other surrogates of insulin sensitivity. Cross-sectional data in 225 OB with normal glucose tolerance (NGT), prediabetes (preDM), and type 2 diabetes (T2DM) who had a 3-h hyperinsulinemic-euglycemic clamp and fasting lipid measurement. Insulin-stimulated glucose disposal (Rd) declined significantly across the glycemic groups from OB-NGT to OB-preDM to OB-T2DM with a corresponding increase in TyG index (8.3 ± 0.5, 8.6 ± 0.5, 8.9 ± 0.6, p < 0.0001). The correlation of TyG index to Rd was -0.419 (p < 0.0001). The optimal TyG index for diagnosis of insulin resistance was 8.52 [receiver operating characteristic-area under the ROC curves (ROC-AUC) 0.750, p < 0.0001]. The ROC-AUC for 1/IF was 0.836. In multiple regression analysis, 64.8% of the variance in Rd was explained by TyG index, 1/IF , body mass index (BMI) z-score, glycemic group, and sex. The TyG index affords an easily and widely available simple laboratory method as a surrogate estimate of insulin sensitivity that could be used repeatedly in large-scale observational and/or interventional cohorts of OB. Although not superior to 1/IF , TyG index offers the advantage of having a standardized method of measuring triglyceride and glucose, which is not the case for insulin assays. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    PubMed

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  12. 45Obesity, Insulin Resistance and Free Fatty Acids

    PubMed Central

    Boden, Guenther

    2011-01-01

    Purpose of Review to describe the role of FFA as a cause for insulin resistance in obese people. Recent Findings elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including T2DM, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanism by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL1β, IL6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Summary increased plasma FFA levels are an important cause of obesity associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels. PMID:21297467

  13. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.

    PubMed

    Bagarolli, Renata A; Tobar, Natália; Oliveira, Alexandre G; Araújo, Tiago G; Carvalho, Bruno M; Rocha, Guilherme Z; Vecina, Juliana F; Calisto, Kelly; Guadagnini, Dioze; Prada, Patrícia O; Santos, Andrey; Saad, Sara T O; Saad, Mario J A

    2017-12-01

    Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: Comparison with the hyperinsulinemic–euglycemic clamp

    USDA-ARS?s Scientific Manuscript database

    There is a need for simple surrogate estimates of insulin sensitivity in epidemiological studies of obese youth because the hyperinsulinemic-euglycemic clamp is not feasible on a large scale. Objectives: (i) To examine the triglyceride glucose (TyG) index (Ln[fasting triglycerides (mg/dL)'×'fasting ...

  15. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    PubMed

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season.

    PubMed

    Alemzadeh, Ramin; Kichler, Jessica; Babar, Ghufran; Calhoun, Mariaelena

    2008-02-01

    Low 25-hydroxyvitamin D (25[OH] D) results in hyperparathyroidism and is among the endocrine derangements of adult obesity. There are differing recommendations on defining low 25(OH) D: hypovitaminosis D (serum 25[OH] D concentration <75 nmol/L) and vitamin D deficiency (serum 25[OH] D concentration <50 nmol/L). We sought to evaluate the prevalence of low levels of 25(OH) D by examining hypovitaminosis D (<75 nmol/L), vitamin D sufficiency (> or =75 nmol/L), vitamin D insufficiency (50-74.9 nmol/L), and vitamin D deficiency (<50 nmol/L) in pediatric obesity and the relationship to other calciotropic hormones and adiposity. Serum 25(OH) D, intact parathyroid hormone (iPTH), ionized calcium, glucose, and insulin levels along with hemoglobin A(1c) (HbA(1c)) and quantitative insulin sensitivity check index (QUICKI) were determined in 127 subjects aged 13.0 +/- 3.0 years (49 Caucasian [C], 39 Hispanic [H], and 39 African American [AA]; 61.2% female; body mass index 36.4 +/- 8.1 kg/m(2)) during fall/winter (F/W) and spring/summer (S/S). Body composition was determined by bioelectrical impedance. Hypovitaminosis D was present in 74% of the cohort, but was more prevalent in the H (76.9%, P < .05) and AA (87.2%, P < .05) groups than in the C group (59.1%). Hypovitaminosis D corresponded to decreased vitamin D intake (P < .005) and was more prevalent in F/W than S/S (98.4% vs 49.2, P < .01). Vitamin D deficiency was identified in 32.3% of the entire cohort and was more prevalent in the H (43.6%, P < .0001) and AA (48.7%, P < .0001) groups than in the C group (10.2%) associated with decreased vitamin D intake (P < .0001). Vitamin D insufficiency was present in 41.7% of the cohort, with similar prevalence among C (48.9%), H (33.3%), and AA (38.5%). Vitamin D insufficiency corresponded to decreased vitamin D intake (P < .005), with similar prevalence in F/W and S/S (45.3% vs 38.1%), whereas vitamin D deficiency was not only accompanied by decreased vitamin D intake (P < .0001

  18. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  19. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males.

    PubMed

    Shaibi, Gabriel Q; Cruz, Martha L; Ball, Geoff D C; Weigensberg, Marc J; Salem, George J; Crespo, Noe C; Goran, Michael I

    2006-07-01

    Insulin resistance is thought to be a core defect in the pathophysiology of obesity-related comorbidities in children, such as type 2 diabetes. Exercise training is known to improve insulin resistance and reduce the risk of type 2 diabetes in adults. However, very little is known regarding the effects of exercise on insulin resistance in youth. Therefore, we examined the effects of a 16-wk resistance training exercise intervention on insulin sensitivity in youth at high risk for developing type 2 diabetes. Twenty-two overweight Latino adolescent males were randomly assigned to either a twice-per-week resistance training group (RT=11) or a nonexercising control group (C=11) for 16 wk. Strength was assessed by one-repetition maximum, body composition was quantified by dual-energy x-ray absorptiometry, and insulin sensitivity was determined by the frequently sampled intravenous glucose tolerance test with minimal modeling. Significant increases in upper- and lower-body strength were observed in the RT compared with the C group. The RT group significantly increased insulin sensitivity compared with the C group (P<0.05), and this increase remained significant after adjustment for changes in total fat mass and total lean tissue mass (P<0.05). Compared with baseline values, insulin sensitivity increased 45.1+/-7.3% in the RT group versus -0.9+/-12.9% in controls (P<0.01). A twice-per-week 16-wk resistance training program can significantly increase insulin sensitivity in overweight Latino adolescent males independent of changes in body composition.

  20. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  1. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.

    PubMed

    Wang, Zhiyong; Shah, O Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.

  2. The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models

    PubMed Central

    Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932

  3. Adipose Dipeptidyl Peptidase-4 and Obesity

    PubMed Central

    Sell, Henrike; Blüher, Matthias; Klöting, Nora; Schlich, Raphaela; Willems, Miriam; Ruppe, Florian; Knoefel, Wolfram Trudo; Dietrich, Arne; Fielding, Barbara A.; Arner, Peter; Frayn, Keith N.; Eckel, Jürgen

    2013-01-01

    OBJECTIVE To study expression of the recently identified adipokine dipeptidyl peptidase-4 (DPP4) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of patients with various BMIs and insulin sensitivities, as well as to assess circulating DPP4 in relation to obesity and insulin sensitivity. RESEARCH DESIGN AND METHODS DPP4 expression was measured in SAT and VAT from 196 subjects with a wide range of BMIs and insulin sensitivities. DPP4 release was measured ex vivo in paired biopsies from SAT and VAT as well as in vivo from SAT of lean and obese patients. Circulating DPP4 was measured in insulin-sensitive and insulin-resistant BMI-matched obese patients. RESULTS DPP4 expression was positively correlated with BMI in both SAT and VAT, with VAT consistently displaying higher expression than SAT. Ex vivo release of DPP4 from adipose tissue explants was higher in VAT than in SAT in both lean and obese patients, with obese patients displaying higher DPP4 release than lean controls. Net release of DPP4 from adipose tissue was also demonstrated in vivo with greater release in obese subjects than in lean subjects and in women than in men. Insulin-sensitive obese patients had significantly lower circulating DPP4 than did obesity-matched insulin-resistant patients. In this experiment, DPP4 positively correlated with the amount of VAT, adipocyte size, and adipose tissue inflammation. CONCLUSIONS DPP4, a novel adipokine, has a higher release from VAT that is particularly pronounced in obese and insulin-resistant patients. Our data suggest that DPP4 may be a marker for visceral obesity, insulin resistance, and the metabolic syndrome. PMID:24130353

  4. Inflammasome is a central player in the induction of obesity and insulin resistance

    PubMed Central

    Stienstra, Rinke; van Diepen, Janna A.; Tack, Cees J.; Zaki, Md. Hasan; van de Veerdonk, Frank L.; Perera, Deshani; Neale, Geoffrey A.; Hooiveld, Guido J.; Hijmans, Anneke; Vroegrijk, Irene; van den Berg, Sjoerd; Romijn, Johannes; Rensen, Patrick C. N.; Joosten, Leo A. B.; Netea, Mihai G.; Kanneganti, Thirumala-Devi

    2011-01-01

    Inflammation plays a key role in the pathogenesis of obesity. Chronic overfeeding leads to macrophage infiltration in the adipose tissue, resulting in proinflammatory cytokine production. Both microbial and endogenous danger signals trigger assembly of the intracellular innate immune sensor Nlrp3, resulting in caspase-1 activation and production of proinflammatory cytokines IL-1β and IL-18. Here, we showed that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance. Furthermore, hepatic triglyceride content, adipocyte size, and macrophage infiltration in adipose tissue were all reduced in mice deficient in inflammasome components. Monocyte chemoattractant protein (MCP)-1 is a key molecule that mediates macrophage infiltration. Indeed, defective inflammasome activation was associated with reduced MCP-1 production in adipose tissue. Furthermore, plasma leptin and resistin that affect energy use and insulin sensitivity were also changed by inflammasome-deficiency. Detailed metabolic and molecular phenotyping demonstrated that the inflammasome controls energy expenditure and adipogenic gene expression during chronic overfeeding. These findings reveal a critical function of the inflammasome in obesity and insulin resistance, and suggest inhibition of the inflammasome as a potential therapeutic strategy. PMID:21876127

  5. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass.

    PubMed

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.

  6. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin.

    PubMed

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.

  7. Reduced sCD36 following weight loss corresponds to improved insulin sensitivity, dyslipidemia and liver fat in obese children.

    PubMed

    Knøsgaard, L; Kazankov, K; Birkebæk, N H; Holland-Fischer, P; Lange, A; Solvig, J; Hørlyck, A; Kristensen, K; Rittig, S; Vilstrup, H; Grønbæk, H; Handberg, A

    2016-09-01

    Childhood obesity is a major health problem with serious long-term metabolic consequences. CD36 is important for the development of obesity-related complications among adults. We aimed to investigate circulating sCD36 during weight loss in childhood obesity and its associations with insulin resistance, dyslipidemia, hepatic fat accumulation and low-grade inflammation. The impact of a 10-week weight loss camp for obese children (N=113) on plasma sCD36 and further after a 12-month follow-up (N=68) was investigated. Clinical and biochemical data were collected, and sCD36 was measured by an in-house assay. Liver fat was estimated by ultrasonography and insulin resistance by the homeostasis model assessment (HOMA-IR). Along with marked weight loss, sCD36 was reduced by 21% (P=0.0013) following lifestyle intervention, and individual sCD36 reductions were significantly associated with the corresponding decreases in HOMA-IR, triglycerides and total cholesterol. The largest sCD36 decrease occurred among children who reduced HOMA-IR and liver fat. After 12 months of follow-up, sCD36 was increased (P=0.014) and the metabolic improvements were largely lost. Weight-loss-induced sCD36 reduction, coincident with improved insulin resistance, circulating lipids and hepatic fat accumulation, proposes that sCD36 may be an early marker of long-term health risk associated with obesity-related complications.

  8. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome.

    PubMed

    Cheang, Kai I; Sistrun, Sakita N; Morel, Kelley S; Nestler, John E

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS ( n = 16) and normal ( n = 15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUC DCI-IPG ), AUC insulin , and AUC DCI-IPG /AUC insulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUC DCI-IPG /AUC insulin at baseline and a significant relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0003), which was not present in controls. Weight loss was similar between PCOS (-4.08 kg) and normal women (-4.29 kg, p = 0.6281). Weight loss in PCOS women did not change the relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0100), and this relationship remained absent in control women. Conclusion. The association between AUC DCI-IPG /AUC insulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  9. Role of intestinal inflammation as an early event in obesity and insulin resistance

    PubMed Central

    Ding, Shengli; Lund, Pauline K.

    2013-01-01

    Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067

  10. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  11. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  13. Insulin action and fibrinolysis influenced by vitamin E in obese Type 2 diabetes mellitus.

    PubMed

    Skrha, J; Sindelka, G; Kvasnicka, J; Hilgertová, J

    1999-04-01

    Increased oxidative stress, hypofibrinolysis and insulin resistance are present in obese Type 2 diabetic patients. It is supposed that treatment with antioxidant alpha-tocopherol (vitamin E) could not only decrease free radical production, but also ameliorate insulin action. We evaluated the effect of 3 months administration of vitamin E (600 mg daily) on insulin action examined by hyperinsulinemic clamp in 11 obese Type 2 diabetic patients. Oxidative stress and fibrinolysis were also determined. The administration of vitamin E caused a decrease of glucose disposal rate (26.6 +/- 9.5 vs 21.3 +/- 7.5 micromol/kg/min, P < 0.02) and of metabolic clearance rate of glucose (3.7 +/- 1.6 vs 2.9 +/- 0.8 ml/kg/min. P < 0.02). A decrease of insulin receptor number was observed on erythrocytes after vitamin E (284 +/- 84 vs 171 +/- 59 pmol/l, P < 0.01). Significantly higher plasma malondialdehyde (MDA) concentration documented an increased oxidative stress in diabetic patients as compared with healthy persons (3.13 +/- 0.68 vs 1.89 +/- 0.18 micromol/l, P<0.001). An inverse relationship was found between MDA concentration and insulin sensitivity expressed by glucose disposal rate (r = -0.73). Vitamin E further worsened the hypofibrinolysis documented by a decrease of tissue plasminogen activator (P < 0.01) without changes in its inhibitor PAI-1. In conclusion. our results demonstrate that higher doses of vitamin E may further deteriorate insulin action and fibrinolysis in obese Type 2 diabetic patients.

  14. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents.

    PubMed

    McCormack, S E; Shaham, O; McCarthy, M A; Deik, A A; Wang, T J; Gerszten, R E; Clish, C B; Mootha, V K; Grinspoon, S K; Fleischman, A

    2013-02-01

    What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly

  15. Improvements in insulin sensitivity are blunted by subclinical hypothyroidism.

    PubMed

    Amati, Francesca; Dubé, John J; Stefanovic-Racic, Maja; Toledo, Frederico G; Goodpaster, Bret H

    2009-02-01

    Exercise- and weight loss-induced improvements in insulin resistance (IR) are variable; some individuals experience robust enhancements in insulin sensitivity, whereas others do not. Thyroid hormone status is related to IR, but it is not clear whether subclinical hypothyroidism may help to explain the variability in improvements in IR with diet and exercise. The purpose of this study was to examine whether thyroid hormone status is related to the improvement in insulin sensitivity and physical fitness after weight loss and exercise training. By retrospective nested case-control analysis, eight subclinical hypothyroid (sHT) subjects and eight matched euthyroid controls underwent a euglycemic hyperinsulinemic clamp and peak oxygen uptake test, before and after a 16-wk program of moderate aerobic exercise combined with diet-induced weight loss. All subjects were middle-aged (57.3 +/- 3.3 yr), were overweight to obese (body mass index = 33.1 +/- 0.8 kg m(-2)), and had impaired glucose tolerance. The improvement in insulin sensitivity was significantly lower (P < 0.05) in the sHT group than in the euthyroid group. Both groups performed similar amounts of regular exercise and lost a significant amount of body weight during the intervention. VO(2peak) tended to improve in the euthyroid group but not in the sHT group. Subclinical hypothyroidism may interfere with beneficial adaptations on muscle metabolism and physical fitness that typically occur with weight loss and increased physical activity. These results may have significant clinical implications because of the high prevalence of both hypothyroidism and insulin resistance in the aging population.

  16. Effect of Oral Glucose Administration on Rebound Growth Hormone Release in Normal and Obese Women: The Role of Adiposity, Insulin Sensitivity and Ghrelin

    PubMed Central

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Context Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. Objective The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. Participants and Methods We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. Results The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH. PMID:25782001

  17. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    USDA-ARS?s Scientific Manuscript database

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial (MT) function and induces insulin resistance ...

  19. Metabolomic Profiling of Amino Acids and β-Cell Function Relative to Insulin Sensitivity in Youth

    PubMed Central

    Michaliszyn, Sara F.; Sjaarda, Lindsey A.; Mihalik, Stephanie J.; Lee, SoJung; Bacha, Fida; Chace, Donald H.; De Jesus, Victor R.; Vockley, Jerry

    2012-01-01

    Context: In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). Objective: The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired β-cell function relative to insulin sensitivity [i.e. disposition index (DI)], a predictor of T2DM development. Design, Setting, and Participants: Metabolomic analysis for fasting plasma AAs was performed by tandem mass spectrometry in 139 normal-weight and obese adolescents with and without dysglycemia. First-phase insulin secretion was evaluated by a hyperglycemic (∼225 mg/dl) clamp and insulin sensitivity by a hyperinsulinemic-euglycemic clamp. DI was calculated as the product of first-phase insulin and insulin sensitivity. Results: DI was positively associated with branched-chain AAs (leucine/isoleucine and valine; r = 0.27 and 0.29, P = 0.001), neutrally transported AAs (phenylalanine and methionine; r = 0.30 and 0.35, P < 0.001), basic AAs (histidine and arginine; r = 0.28 and 0.23, P ≤ 0.007), serine (r = 0.35, P < 0.001), glycine (r = 0.26, P = 0.002), and branched-chain AAs-derived intermediates C3, C4, and C5 acylcarnitine (range r = 0.18–0.19, P ≤ 0.04). Conclusion: In youth, increased plasma AA concentrations are not associated with a heightened metabolic risk profile for T2DM; rather, they are positively associated with β-cell function relative to insulin sensitivity. These contrasting observations between adults and youth may be a reflection of developmental differences along the lifespan dependent on the combined impact of the aging process together with the impact of progressive obesity. PMID:22977272

  20. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  1. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  2. The severity of nocturnal hypoxia but not abdominal adiposity is associated with insulin resistance in non-obese men with sleep apnea.

    PubMed

    Borel, Anne-Laure; Monneret, Denis; Tamisier, Renaud; Baguet, Jean-Philippe; Faure, Patrice; Levy, Patrick; Halimi, Serge; Pépin, Jean-Louis

    2013-01-01

    Beyond obesity, sleep apnea syndrome is frequently associated with excess abdominal adiposity that could contribute to the deteriorated cardiometabolic risk profile of apneic patients. The present study addressed the respective contribution of the severity of sleep apnea syndrome and excess abdominal adiposity to the cardiometabolic risk profile of 38 non obese men with polysomnography-diagnosed sleep apnea syndrome (apnea-hypopnea index >15 events/hour). These otherwise healthy men performed a 75g-oral glucose tolerance test (OGTT) with plasma lipid/inflammatory and redox profiles. Twenty-one apneic men with high-waist circumference (>94 cm) were compared to 17 apneic men with low-waist circumference. Apneic men with high-waist circumference had higher AUC glucose and AUC insulin than apneic men with low-waist circumference. Accordingly, apneic men with high-waist circumference had higher hepatic insulin resistance as reflected by higher HOMA-resistance index, and lower global insulin sensitivity as reflected by lower insulin sensitivity index of Matsuda (derived from OGTT). The sleep structure and the apnea-hypopnea index were not different between the two groups. However, apneic men with high-waist circumference presented with lower mean nocturnal oxyhemoglobin (SpO2). In the 38 men, waist circumference and mean nocturnal SpO2 were inversely correlated (r = -0.43, p = 0.011) and were both associated with plasma glucose/insulin homeostasis indices: the higher the waist circumference, the lower the mean nocturnal SpO2, the lower the insulin-sensitivity. Finally, in multivariable regression model, mean nocturnal SpO2 and not waist circumference was associated with insulin-resistance. Thus, excess abdominal adiposity in non obese apneic men was associated with a deteriorated insulin-sensitivity that could be driven by a more severe nocturnal hypoxemia.

  3. The Severity of Nocturnal Hypoxia but Not Abdominal Adiposity Is Associated with Insulin Resistance in Non-Obese Men with Sleep Apnea

    PubMed Central

    Borel, Anne-Laure; Monneret, Denis; Tamisier, Renaud; Baguet, Jean-Philippe; Faure, Patrice; Levy, Patrick; Halimi, Serge; Pépin, Jean-Louis

    2013-01-01

    Background Beyond obesity, sleep apnea syndrome is frequently associated with excess abdominal adiposity that could contribute to the deteriorated cardiometabolic risk profile of apneic patients. Methods The present study addressed the respective contribution of the severity of sleep apnea syndrome and excess abdominal adiposity to the cardiometabolic risk profile of 38 non obese men with polysomnography-diagnosed sleep apnea syndrome (apnea-hypopnea index >15 events/hour). These otherwise healthy men performed a 75g-oral glucose tolerance test (OGTT) with plasma lipid/inflammatory and redox profiles. Twenty-one apneic men with high-waist circumference (>94 cm) were compared to 17 apneic men with low-waist circumference. Results Apneic men with high-waist circumference had higher AUC glucose and AUC insulin than apneic men with low-waist circumference. Accordingly, apneic men with high-waist circumference had higher hepatic insulin resistance as reflected by higher HOMA-resistance index, and lower global insulin sensitivity as reflected by lower insulin sensitivity index of Matsuda (derived from OGTT). The sleep structure and the apnea-hypopnea index were not different between the two groups. However, apneic men with high-waist circumference presented with lower mean nocturnal oxyhemoglobin (SpO2). In the 38 men, waist circumference and mean nocturnal SpO2 were inversely correlated (r = −0.43, p = 0.011) and were both associated with plasma glucose/insulin homeostasis indices: the higher the waist circumference, the lower the mean nocturnal SpO2, the lower the insulin-sensitivity. Finally, in multivariable regression model, mean nocturnal SpO2 and not waist circumference was associated with insulin-resistance. Conclusion Thus, excess abdominal adiposity in non obese apneic men was associated with a deteriorated insulin-sensitivity that could be driven by a more severe nocturnal hypoxemia. PMID:23951064

  4. Unhealthy Phenotype as Indicated by Salivary Biomarkers: Glucose, Insulin, VEGF-A, and IL-12p70 in Obese Kuwaiti Adolescents

    PubMed Central

    Hartman, Mor-Li; Goodson, J. Max; Shi, Ping; Vargas, Jorel; Yaskell, Tina; Stephens, Danielle; Cugini, Maryann; Hasturk, Hatice; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem; Welty, Francine

    2016-01-01

    Objective. Here, we investigated the relationships between obesity and the salivary concentrations of insulin, glucose, and 20 metabolic biomarkers in Kuwaiti adolescents. Previously, we have shown that certain salivary metabolic markers can act as surrogates for blood concentrations. Methods. Salivary samples of whole saliva were collected from 8,317 adolescents. Salivary glucose concentration was measured by a high-sensitivity glucose oxidase method implemented on a robotic chemical analyzer. The concentration of salivary insulin and 20 other metabolic biomarkers was assayed in 744 randomly selected saliva samples by multiplexed bead-based immunoassay. Results. Obesity was seen in 26.5% of the adolescents. Salivary insulin predicting hyperinsulinemia occurred in 4.3% of normal-weight adolescents, 8.3% of overweight adolescents, and 25.7% of obese adolescents (p < 0.0001). Salivary glucose predicting hyperglycemia was found in only 3% of obese children and was not predictive (p = 0.89). Elevated salivary glucose and insulin occurring together was associated with elevated vascular endothelial growth factor and reduced salivary interleukin-12. Conclusion. Considering the surrogate nature of salivary insulin and glucose, this study suggests that elevated insulin may be a dominant sign of metabolic disease in adolescent populations. It also appears that a proangiogenic environment may accompany elevated glucose in obese adolescents. PMID:27069678

  5. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  6. High intensity interval training improves liver and adipose tissue insulin sensitivity.

    PubMed

    Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R

    2015-12-01

    Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  7. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    PubMed

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  8. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  9. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  10. The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats

    PubMed Central

    Li, Ping-Ping; Shan, Song; Chen, Yue-Teng; Ning, Zhi-Qiang; Sun, Su-Juan; Liu, Quan; Lu, Xian-Ping; Xie, Ming-Zhi; Shen, Zhu-Fang

    2006-01-01

    The aim of this study was to investigate the capacity of chiglitazar to improve insulin resistance and dyslipidemia in monosodium L-glutamate (MSG) obese rats and to determine whether its lipid-lowering effect is mediated through its activation of PPARα. Chiglitazar is a PPARα/γ dual agonist. The compound improved impaired insulin and glucose tolerance; decreased plasma insulin level and increased the insulin sensitivity index and decreased HOMA index. Euglycemic hyperinsulinemic clamp studies showed chiglitazar increased the glucose infusion rate in MSG obese rats. Chiglitazar inhibited alanine gluconeogenesis, lowered the hepatic glycogen level in MSG obese rats. Like rosiglitazone, chiglitazar promoted the differentiation of adipocytes and decreased the maximal diameter of adipocytes. In addition, chiglitazar decreased the fibrosis and lipid accumulation in the islets and increased the size of islets. Chiglitazar reduced plasma triglyceride, total cholesterol (TCHO), nonesterified fatty acids (NEFA) and low density lipoprotein-cholesterol levels; lowered hepatic triglyceride and TCHO contents; decreased muscular NEFA level. Unlike rosiglitazone, chiglitazar showed significant increase of mRNA expression of PPARα, CPT1, BIFEZ, ACO and CYP4A10 in the liver of MSG obese rats. These data suggest that PPARα/γ coagonist, such as chiglitazar, affect lipid homeostasis with different mechanisms from rosiglitazone, chiglitazar may have better effects on lipid homeostasis in diabetic patients than selective PPARγ agonists. PMID:16751799

  11. Insulin sensitivity across the lifespan from obese adolescents to obese adults with impaired glucose tolerance: Who is worse off?

    USDA-ARS?s Scientific Manuscript database

    Youth type 2 diabetes mellitus (T2DM) occurs decades earlier than adult T2DM and is characterized by high therapeutic failure rates and decreased response to insulin sensitizers suggesting a more severe disease process than in adults. To explain these observations, we hypothesized that insulin resis...

  12. Leptin-induced basal Akt phosphorylation and its implication in exercise-mediated improvement of insulin sensitivity.

    PubMed

    Zheng, Xianjie; Niu, Sen

    2018-01-29

    Physical exercise is an efficient therapeutical tool in the management of insulin resistance (IR) and related metabolic diseases. Leptin, the well-known obesity hormone and the absence of which leads to IR, showed controversial effects on IR as research continues. Thus, in this study, a detailed investigation of the effect of leptin on exercise-mediated improvement of insulin sensitivity and its underlying mechanism was carried out. Using a rat model of chronic or acute swimming exercise training, we found that serum leptin increased 1 h after either acute exercise or the last session of chronic exercise, when impaired insulin action was observed in previous reports. However, chronic exercise reducd basal serum leptin levels and promoted insulin sensitivity compared with sedentary controls or rats subjected to one bout of aerobic exercise. Our animal results indicated the potential linkage between leptin and insulin sensitivity, which is further investigated in the skeletal muscle L6 cells. Leptin treatment in L6 cells promoted the basal levels of insulin signaling as well as glucose uptake, while blocking JAK2 signaling with either pharmacological intervention (JAK2 inhibitor AG490) or genetic manipulation (siRNA knockdown) decreased the basal levels of insulin signaling. Furthermore, leptin treatment inhibited insulin-stimulated insulin signaling and glucose uptake, while blocking JAK2 signaling restored leptin-attenuated insulin sensitivity. Taken together, our results demonstrated that reduced serum leptin, at least in part, contributes to exercise-mediated improvement of insulin sensitivity, indicating JAK2 as a potent therapeutical target of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Increased lipolysis, diminished adipose tissue insulin sensitivity and impaired B-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance (IGT)

    USDA-ARS?s Scientific Manuscript database

    Despite evidence of insulin resistance and B-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and B-cell function remains unknown. We investigated whole-body lipolysis, ATIS and B-cell function relative to ATIS [adip...

  14. Modulatory effects of alpha-lipoic acid (ALA) administration on insulin sensitivity in obese PCOS patients.

    PubMed

    Genazzani, A D; Shefer, K; Della Casa, D; Prati, A; Napolitano, A; Manzo, A; Despini, G; Simoncini, T

    2018-05-01

    To evaluate the efficacy of alpha-lipoic acid (ALA) administration on hormonal and metabolic parameters of obese PCOS patients. A group of 32 obese PCOS patients were selected after informed consent. 20 patients referred to have first grade relatives with diabetes type I or II. Hormonal and metabolic parameters as well as OGTT were evaluated before and after 12 weeks of ALA integrative administration (400 mg per os every day). ALA administration significantly decreased insulin, glucose, BMI and HOMA index. Hyperinsulinemia and insulin response to OGTT decreased both as maximal response (Δmax) and as AUC. PCOS with diabetes relatives showed the decrease also of triglyceride and GOT. Interestingly in all PCOS no changes occurred on all hormonal parameters involved in reproduction such as LH, FSH, and androstenedione. ALA integrative administration at a low dosage as 400 mg daily improved the metabolic impairment of all PCOS patients especially in those PCOS with familiar diabetes who have a higher grade of risk of NAFLD and predisposition to diabetes.

  15. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    PubMed

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  16. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  17. Insulin sensitivity is reduced in children with high body-fat regardless of BMI.

    PubMed

    Fairchild, Timothy J; Klakk, Heidi; Heidemann, Malene; Grøntved, Anders; Wedderkopp, Niels

    2018-02-23

    To examine the association between insulin sensitivity and adiposity in children stratified according to their body mass index (BMI: normal weight, NW; overweight or obese, OW/OB) and body-fat percentage (BF%: adipose or NonAdipose), and determine whether cardiorespiratory fitness (CRF) ameliorates any deleterious associations. This prospective cohort study comprises a cross-sectional and longitudinal analyses of data collected at baseline and 2 years later on children (7.7-13.4 years) attending public school in Denmark. Levels of CRF were measured using the Andersen test, whereas BF% was measured by dual-energy X-ray absorptiometry (DXA). Fasting plasma glucose and insulin concentrations were measured and the homoeostatic model assessment of insulin resistance (HOMA-IR) used to assess insulin sensitivity. Approximately 8% of children classified as normal weight by BMI had high BF% (NW + Adipose). Children with high BF% had significantly higher insulin (NW + adipose: 32.3%; OW/OB + Adipose: 52.2%) and HOMA-IR scores (NW + Adipose: 32.3%; OW/OB + Adipose: 55.3%) than children classified as NW without high BF% (reference group; NW + NonAdipose). Adjusting for CRF reduced this difference, but did not completely ameliorate these associations. Longitudinally, children with high BF% (OW/OB + Adipose or NW + Adipose) had significantly worse insulin sensitivity 2 years later than NW + NonAdipose children (All p < 0.001). The few children (n = 14) who improved their BMI or BF% during the 2 years follow-up, no longer had significantly worse insulin sensitivity than children with NW + NonAdipose. High BF% in children is associated with significantly lower insulin sensitivity even when BMI is considered NW. Longitudinally, insulin sensitivity is lower in children with high BF% with or without high BMI. The CRF was a significant covariate in these models, but CRF did not completely ameliorate the effects of high BF% on

  18. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  19. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Elevated fasting insulin levels increase the risk of abdominal obesity in Korean men.

    PubMed

    Park, Sung Keun; Oh, Chang-Mo; Jung, Taegi; Choi, Young-Jun; Chung, Ju Youn; Ryoo, Jae-Hong

    2017-04-01

    This study was designed to investigate whether an elevated fasting insulin level predicts abdominal obesity. A cohort study was conducted with 13,707 non-obese Korean men. They were categorized into 4 groups according to the quartile of fasting insulin level, and followed up from 2005 to 2010. Incidence rates of obesity were compared among the 4 groups during follow-up, and a Cox proportional hazards model was used to calculate hazard ratios (HRs) for abdominal obesity according to fasting insulin level. The overall incidence rate of obesity was 16.2%, but the rate increased in proportion to the fasting insulin level (quartiles 1-4: 9.8%, 12.4%, 16.9%, 25.5%, P<0.001). When HR of the 1st quartile was regarded as the reference, HRs for abdominal obesity increased proportionally to baseline fasting insulin level in an unadjusted model. However, after adjustment for covariates, including baseline waist circumference (WC), only in the quartile 4 group was the statistical significance of the association maintained [quartile 2-4; abdominal obesity: 0.89 (0.76-1.02), 1.00 (0.86-1.14) and 1.24 (1.08-1.43), P for trend <0.001]. Although the risk of incident abdominal obesity was highest in the group with the highest fasting insulin levels, an overall proportional relationship between fasting insulin level and incident abdominal obesity was not found. Additionally, this association was largely accounted for by baseline WC. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  2. Insulin Resistance, Metabolic Syndrome, and Polycystic Ovary Syndrome in Obese Youth.

    PubMed

    Platt, Adrienne M

    2015-07-01

    School nurses are well aware of the childhood obesity epidemic in the United States, as one in three youth are overweight or obese. Co-morbidities found in overweight or obese adults were not commonly found in youth three decades ago but are now increasingly "normal" as the obesity epidemic continues to evolve. This article is the second of six related articles discussing the co-morbidities of childhood obesity and discusses the complex association between obesity and insulin resistance, metabolic syndrome, and polycystic ovary syndrome. Insulin resistance increases up to 50% during puberty, which may help to explain why youth are more likely to develop co-morbidities as teens. Treatment of these disorders is focused on changing lifestyle habits, as a child cannot change his or her pubertal progression, ethnicity, or family history. School nurses and other personnel can assist youth with insulin resistance, metabolic syndrome, and polycystic ovary syndrome by supporting their efforts to make changes, reinforcing that insulin resistance is not necessarily type 2 diabetes even if the child is taking medication, and intervening with negative peer pressure. © 2015 The Author(s).

  3. [Studies of diet management and insulin resistance in obese pregnant women].

    PubMed

    Takeda, S; Saitoh, M; Kinoshita, K; Sakamoto, S

    1992-02-01

    In an attempt to determine the principles of diet management in obese pregnant women, the association between maternal weight gain during pregnancy (Group I; weight reduction, Group II; +0-4 kg, Group III; +5-9 kg, Group IV; +10 kg-) and the incidence of the complications was investigated in 151 obese pregnant women. Studies on glucose tolerance and insulin binding to erythrocytes were also undertaken. 1) In Group I, the incidences of C/S, forceps delivery, prolonged labor and complication of PIH were lower than those of other groups. There were no heavy-for-dates and light-for-dates babies in Group I, differing from the other three groups. 2) Plasma levels of glucose and insulin were high in obese pregnant women on 75 g OGTT in the second trimester. The binding sites of insulin to erythrocytes were significantly decreased in obese pregnant women. In conclusion, the risks of pregnancy complicated by obesity were high. Insulin resistance was a characteristic of obese pregnant women. The results of this study suggested that the nutritional requirements for very obese pregnant women should be restricted to maintaining the same weight or losing weight during the course of pregnancy to minimize maternal and perinatal risks.

  4. A Twenty-First Century Cancer Epidemic Caused by Obesity: The Involvement of Insulin, Diabetes, and Insulin-Like Growth Factors

    PubMed Central

    Westley, Rosalyne L.; May, Felicity E. B.

    2013-01-01

    Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented. PMID:23983688

  5. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  6. Pre-Training Muscle Characteristics of Subjects Who Are Obese Determine How Well Exercise Training Will Improve Their Insulin Responsiveness.

    PubMed

    Stuart, Charles A; Lee, Michelle L; South, Mark A; Howell, Mary E A; Cartwright, Brian M; Ramsey, Michael W; Stone, Michael H

    2017-03-01

    Stuart, CA, Lee, ML, South, MA, Howell, MEA, Cartwright, BM, Ramsey, MW, and Stone, MH. Pre-training muscle characteristics of subjects who are obese determine how well exercise training will improve their insulin responsiveness. J Strength Cond Res 31(3): 798-808, 2017-Only half of prediabetic subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pretraining characteristics favoring a positive response to exercise training. Thirty nondiabetic subjects who were obese volunteered for 8 weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition, and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow-twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and glucose transporter type 4 (GLUT4) expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole-body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not

  7. The effects of short-term overfeeding on insulin action in lean and reduced-obese individuals.

    PubMed

    Cornier, Marc-Andre; Bergman, Bryan C; Bessesen, Daniel H

    2006-09-01

    Insulin resistance is clearly associated with obesity. However, the role of excess energy intake per se as opposed to increased fat mass in the development of insulin resistance has not been clearly defined. It may be that the nutrient load provided by short-term overfeeding is sufficient to induce measurable changes in insulin action in skeletal muscle and the liver. We examined the effects of 3 days of overfeeding on insulin action and glucose kinetics in 13 lean (body mass index, 20.9 +/- 2.4 kg/m(2); 6 men, 7 women) and 9 reduced-obese (RO) (body mass index, 29.1 +/- 2.2 kg/m(2); 4 men, 5 women) individuals. A two-step euglycemic hyperinsulinemic clamp study (5 and 40 mU m(-2) min(-1)) with a primed, constant infusion of [6,6-(2)H(2)]glucose was performed after 3 days of a weight-maintenance diet and again after 3 days of overfeeding by 50% (50% carbohydrate, 30% fat, 20% protein). At baseline, lean individuals were more insulin sensitive, as measured by glucose infusion rate, than RO individuals (12.08 +/- 0.8 vs 7.62 +/- 1.0 mg x kg(-1) x min(-1), P < .01) with lean women being more insulin sensitive than lean men (P < .01). Overfeeding resulted in a reduction in glucose infusion rate in lean women (13.37 +/- 1.3 to 11.42 +/- 1.0 mg x kg(-1) x min(-1), P < .05), but no change was noted in lean men or RO individuals. Basal and insulin-stimulated glucose disposal remained unchanged with overfeeding in all groups. Low-dose insulin suppression of endogenous glucose production was impaired after overfeeding in lean women (euenergetic, 1.92 +/- 0.36 to 0.36 +/- 0.16 mg x kg(-1) x min(-1); overfeeding: 2.13 +/- 0.17 to 0.86 +/- 0.12 mg x kg(-1) x min(-1); P = .04) but remained unchanged in the other groups. These findings demonstrate that insulin action is reduced in lean, obese-resistant women after short-term overfeeding primarily because of an inhibition of insulin-mediated suppression of endogenous glucose production, whereas short-term overfeeding does not

  8. High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: a randomized controlled trial.

    PubMed

    De Strijcker, Dorien; Lapauw, Bruno; Ouwens, D Margriet; Van de Velde, Dominique; Hansen, Dominique; Petrovic, Mirko; Cuvelier, Claude; Tonoli, Cajsa; Calders, Patrick

    2018-06-01

    To evaluate the effect of high intensity training (HIT) on physical fitness, basal respiratory exchange ratio (bRER), insulin sensitivity and muscle histology in overweight/obese men compared to continuous aerobic training (CAT). 16 male participants with overweight/obesity (age: 42-57 years, body mass index: 28-36 kg/m2) were randomized to HIT (n=8) or CAT (n=8) for 10 weeks, twice a week. HIT was composed of 10 minutes high intensity, 10 minutes continuous aerobic, 10 minutes high intensity exercises. CAT was composed of three times 10 minutes continuous exercising. Changes in anthropometry, physical and metabolic fitness were evaluated. Muscle histology (mitochondria and lipid content) was evaluated by transmission electron microscopy (TEM). HIT showed a significant increase for peak VO2 (P=0.01), for insulin sensitivity (AUC glucose (P<0,001), AUC insulin (P<0,001), OGTT composite score (P=0.007)) and a significant decrease of bRER (P<0.001) compared to CAT. Muscle mitochondrial content was significantly increased after HIT at the subsarcolemmal (P=0.004 number and P=0.001 surface) as well as the intermyofibrillar site (P<0.001 number and P=0.001 surface). High intensity training elicits stronger beneficial effects on physical fitness, basal RER, insulin sensitivity, and muscle mitochondrial content, as compared to continuous aerobic training.

  9. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  10. Pre-Training Muscle Characteristics of Subjects Who Are Obese Determine How Well Exercise Training Will Improve Their Insulin Responsiveness

    PubMed Central

    Stuart, Charles A.; Lee, Michelle L.; South, Mark A.; Howell, Mary E.A.; Cartwright, Brian M.; Ramsey, Michael W.; Stone, Michael H.

    2016-01-01

    Only half of pre-diabetic, subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pre-training characteristics favoring a positive response to exercise training. Thirty non-diabetic, subjects who are obese volunteered for eight weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and GLUT4 expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pre-training baseline. PMID:27379957

  11. Limited Weight Loss or Simply No Weight Gain following Lifestyle-Only Intervention Tends to Redistribute Body Fat, to Decrease Lipid Concentrations, and to Improve Parameters of Insulin Sensitivity in Obese Children

    PubMed Central

    2011-01-01

    Objectives. To investigate whether lifestyle-only intervention in obese children who maintain or lose a modest amount of weight redistributes parameters of body composition and reverses metabolic abnormalities. Study Design. Clinical, anthropometric, and metabolic parameters were assessed in 111 overweight or obese children (CA of 11.3 ± 2.8 years; 63 females and 48 males), during 8 months of lifestyle intervention. Patients maintained or lost weight (1–5%) (group A; n: 72) or gained weight (group B). Results. Group A patients presented with a decrease in systolic blood pressure (SBP) and diastolic blood pressure (DBP) ( and , resp.), BMI (), z-score BMI (), waist circumference (), fat mass (), LDL-C (), Tg/HDL-C ratio (), fasting and postprandial insulin (), and HOMA (), while HDL-C () and QUICKI increased (). Conversely, group B patients had an increase in BMI (), waist circumference (), SBP (), and in QUICKI (), while fat mass (), fasting insulin (), and HOMA () decreased. Lean mass, DBP, lipid concentrations, fasting and postprandial glucose, postprandial insulin, and ultrasensitive C-reactive protein (CRP) remained stable. Conclusions. Obese children who maintain or lose a modest amount of weight following lifestyle-only intervention tend to redistribute their body fat, decrease blood pressure and lipid levels, and to improve parameters of insulin sensitivity. PMID:21603203

  12. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents.

    PubMed

    Habib, Salem A; Saad, Entsar A; Elsharkawy, Ashraf A; Attia, Zeinab R

    2015-09-01

    To investigate the inter-relationships between adipocytokines, oxidative stress, insulin, Zn and Cu and obesity among Egyptian obese non-diabetic children and adolescents. 72 obese children and adolescents of both sexes (5-17 years) were recruited for the study. 40 healthy normal non-obese persons of matched ages and sexes were used as control group. Lipid profile, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and leptin levels were measured. Malondialdehyde (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were estimated. Micronutrients (Zn and Cu) concentrations in addition to insulin and fasting blood sugar (FBS) levels were also evaluated. Estimation of insulin resistance (homeostatic model assessment (HOMA-IR)) was derived from FBS measurements. Significant elevations (P<0.001) in TNF-α, IL-6, leptin, MDA, Cu and FBS levels and significant decreases (P<0.001) in GSH, Zn levels and SOD activity were detected among obese individuals as compared with control group. Insulin and triglyceride levels were significantly increased in obese male children and HDL-cholesterol level was increased significantly in obese adolescent females compared to controls. However, total cholesterol and LDL-cholesterol levels were significantly high in all obese cases as compared with controls. Insulin resistance was detected in 100% of the patients. We concluded that obesity with pro-inflammatory adipocytokines and hypozincemia together by many mechanisms participate in excessive oxidative stress and are highly associated with inflammation and the development of obesity-related complications. Obesity represents a critical risk factor for development of insulin resistance status. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    PubMed Central

    2012-01-01

    Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs), for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL)-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI), doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2). The study included non-DM2 controls (n = 15), and DM2 subjects randomized to PL (n = 13) or doxycycline 100 mg twice daily (MMPI; n = 11). All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P < 0.05) and myeloperoxidase (P = 0.01) in the MMPI but not PL group. The MMPI also significantly increased skeletal muscle activated/total insulin signaling mediators: 3’phosphoinositide kinase-1 (PDK1) (p < 0.03), protein kinase B (PKB/Akt) (p < 0.004), and glycogen synthase kinase 3ß (GSK3ß) (p < 0.03). Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491 PMID:23025537

  14. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  15. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  16. Assessment of the Dynamic Insulin Secretion and Sensitivity Test (DISST) Pre and Post Gastric bypass Surgery.

    PubMed

    Wilson, John; Docherty, Paul; Stubbs, Richard; Chase, J Geoffrey; Krebs, Jeremy

    2018-06-11

    To compare the dynamic insulin secretion and sensitivity test (DISST) with the euglycaemic clamp in individuals undergoing open Roux-en-Y gastric bypass (RYGB) surgery prior-to and one month after surgery. Insulin sensitivity in individuals with obesity undergoing RYGB was studied with DISST and a euglycaemic hyperinsulinaemic clamp. Eleven participants, including nine females, mean(SD) age 51.2(12.1)yrs, with a preoperative BMI of 48.7(9.5)kg/m 2 were studied. Weight reduced from a mean(SD) of 133.8(29.8)kg to 123.8(28.9)kg post-surgery (p<0.001). The mean(SD) insulin sensitivity index (ISI-DISST) was 3.07×10 -4 (2.18)L.pmol -1 .min -1 preoperatively and 2.36 ×10 -4 (0.78)L.pmol -1 .min -1 postoperatively (p=0.37). The mean(SD) clamp ISI was 2.14 ×10 -2 (1.80)mg.L.kg -1 .min -1 .pmol -1 and 2.00×10 -2 .(0.76)mg.L.kg -1 .min -1 .pmol -1 postoperatively (p=0.86). Correlation between ISI-DISST and ISI-Clamp preoperatively was r=0.81(95%CI 0.37-0.95) and post-operatively r=0.47(95%CI 0-0.88). Bland-Altman analysis demonstrates systematic bias between the two tests, where DISST underestimated insulin sensitivity compared with the clamp by 0.96×10 -2 .mg.L.kg -1 .min -1 .pmol -1 (95%CI -2.24 to 0.32). There was a strong correlation between DISST and the clamp preoperatively and DISST can be used to estimate insulin sensitivity in individuals with morbid obesity. After RYGB surgery, DISST had a weaker correlation with the clamp suggesting the fundamental physiological determinants of insulin sensitivity being measured by each method change in different ways with changes in glucose homeostasis following RYGB surgery. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Influence of moderate chronic wine consumption on insulin sensitivity and other correlates of syndrome X in moderately obese women.

    PubMed

    Cordain, L; Melby, C L; Hamamoto, A E; O'Neill, D S; Cornier, M A; Barakat, H A; Israel, R G; Hill, J O

    2000-11-01

    Epidemiologic studies indicate that alcohol consumption is associated with improved insulin sensitivity; however, scant experimental evidence confirms this observation. To determine the effects of regular moderate wine consumption on insulin sensitivity, 20 overweight women (body mass index [BMI], 29.8 +/- 2.2 kg/m2) participated in a 20-week free-living randomized crossover trial. The subjects, serving as their own controls, consumed wine (190 mL red wine, 13% vol/vol ethanol, 5 days per week) for 10 weeks and abstained for 10 weeks or vice versa. The dependent variables (body weight, BMI, percent body fat, blood pressure, fasting blood glucose and insulin, blood lipids, dietary intake, and insulin sensitivity by intravenous glucose tolerance test [IVGTT]) were measured at the pretest, at the 10-week crossover, and at the 20-week completion of the study. Data were analyzed at the pretest and at completion of the wine drinking and abstention periods of the study using ANOVA by order of treatment. Fasting glucose remained unchanged (mean +/- SD; P > .05) throughout the experiment (pretest, drinking, and abstention, 91.1 +/- 9.2, 91.6 +/- 9.1, and 88.5 +/- 11.2 mg/dL), as did the measures of insulin sensitivity, fasting insulin (pretest, drinking, and abstention, 8.6 +/- 3.3, 8.6 +/- 4.1, and 9.1 +/- 4.7 microU/mg) and the insulin sensitivity index (3.60 +/- 2.96, 3.25 +/- 2.17, and 3.30 +/- 1.84). Body composition and blood lipids also remained unchanged (P > .05) during treatment. Moderate wine consumption at this dose in overweight women did not improve or impair insulin sensitivity, nor did it change any of the known correlates of insulin sensitivity, including body weight and composition, blood lipids, and blood pressure.

  18. The value of different insulin resistance indices in assessment of non-alcoholic fatty liver disease in overweight/obese children.

    PubMed

    El-Karaksy, Hanaa M; El-Raziky, Mona S; Fouad, Hanan M; Anwar, Ghada M; El-Mougy, Fatma M; El-Koofy, Nehal M; El-Hennawy, Ahmad M

    2015-01-01

    The aim of the present study was to determine the association between insulin resistance (IR) and both non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) in a group of Egyptian overweight/obese children and adolescents and to evaluate different IR indices in detection of NAFLD. The study included 76 overweight/obese children aged 2-15 years; 52.6% were males. Laboratory analysis included fasting blood glucose, serum insulin, lipid profile, liver biochemical profile, and liver ultrasound. IR was calculated using the following indices; the homeostasis model assessment method (HOMA-IR), the quantitative insulin-sensitivity check index (QUICKI) and hepatic insulin sensitivity. The National Cholesterol Education Program Adult Treatment Panel III criteria were used to estimate prevalence of MetS. Liver biopsy was done when medically indicated and accepted by parents. IR was detected in 43.4% and 34.2% by using QUICKI and HOMA, respectively. MetS was detected in 36.8% and NAFLD was detected in 45.5% among those performing liver biopsy. Cases with NAFLD had more frequent IR than children with normal histology. QUICKI showed significant difference between normal subjects and both steatosis and non-alcoholic steatohepatitis; while HOMA-IR was sensitive in cases with NASH only. MetS was present in 100% of patients with NASH and in 75% of those with steatosis and they were all obese. Patients with NASH had significantly higher ALT than those with normal histology. IR was significantly associated with NAFLD. QUICKI is considered more sensitive than HOMA-IR in differentiating simple steatosis from normal liver histology. Copyright © 2013 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Adiposity and family history of type 2 diabetes in an admixed population of adolescents: Associations with insulin sensitivity, beta-cell function, and hepatic insulin extraction in BRAMS study.

    PubMed

    Camilo, Daniella F; Vasques, Ana Carolina J; Hayashi, Keila; Tura, Andrea; da Silva, Cleliani de Cassia; Zambon, Mariana P; Antônio, Maria Ângela R de G Monteiro; Geloneze, Bruno

    2018-03-01

    Insulin resistance and beta-cell dysfunction manifest differently across racial/ethnic groups, and there is a lack of knowledge regarding the pathophysiology of type 2 diabetes mellitus (T2DM) for ethnically admixed adolescents. This study aimed to investigate the influence of adiposity and family history (FH) of T2DM on aspects of insulin sensitivity, beta-cell function, and hepatic insulin extraction in Brazilian adolescents. A total of 82 normoglycemic adolescents were assessed. The positive FH of T2DM was defined as the presence of at least one known family member with T2DM. The hyperglycemic clamp test consisted of a 120-min protocol. Insulin secretion and beta-cell function were obtained from C-peptide deconvolution. Analysis of covariance considered pubertal stage as a covariate. Both lean and overweight/obese adolescents had similar glycemic profiles and disposition indexes. Overweight/obese adolescents had about 1/3 the insulin sensitivity of lean adolescents (1.1 ± 0.2 vs. 3.4 ± 0.3 mg·kg·min·pmol ∗ 1000), which was compensated by an increase around 2.5 times in basal (130 ± 7 vs. 52 ± 10 pmol·l·min) and total insulin secretion (130,091 ± 12,230 vs. 59,010 ± 17,522 pmol·l·min), and in the first and second phases of insulin secretion; respectively (p < 0.001). This increase was accompanied by a mean reduction in hepatic insulin extraction of 35%, and a 2.7-time increase in beta-cell glucose sensitivity (p < 0.05). The positive FH of T2DM was not associated with derangements in insulin sensitivity, beta-cell function, and hepatic insulin extraction. In an admixed sample of adolescents, the hyperglycemic clamp test demonstrated that adiposity had a strong influence, and FH of T2DM had no direct influence, in different aspects of glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Insulin sensitizing drugs for weight loss in women of reproductive age who are overweight or obese: systematic review and meta-analysis.

    PubMed

    Nieuwenhuis-Ruifrok, A E; Kuchenbecker, W K H; Hoek, A; Middleton, P; Norman, R J

    2009-01-01

    Women of reproductive age, who are overweight or obese, are prone to infertility. Weight loss in these women leads to increased fecundity, higher chances of conception after infertility treatment and improved pregnancy outcome. In spite of the advantages, most patients have difficulty in losing weight and often regain lost weight over time. This review assesses whether treatment with insulin sensitizing drugs contributes to weight loss, compared with diet or a lifestyle modification programme. After a systematic search of the literature, only randomized controlled trials (RCTs), investigating the effect of insulin sensitizing drugs on weight loss compared with placebo and diet and/or a lifestyle modification programme, were included. Subjects were restricted to women of reproductive age. The main outcome measure was change in body mass index (BMI). Only 14 trials, unintentionally all but two on women with polycystic ovary syndrome (PCOS) only, were included in the analysis. Treatment with metformin showed a statistically significant decrease in BMI compared with placebo (weighted mean difference, -0.68; 95% CI -1.13 to -0.24). There was some indication of greater effect with high-dose metformin (>1500 mg/day) and longer duration of therapy (>8 weeks). Limitations were power, low use of intention-to-treat analysis and heterogeneity of the studies. A structured lifestyle modification programme to achieve weight loss should still be the first line treatment in obese women with or without PCOS. Adequately powered RCTs are required to confirm the findings of this review and to assess whether the addition of high-dose metformin therapy to a structured lifestyle modification programme might contribute to more weight loss.

  1. Childhood obesity and insulin resistance in a Yucatan mini-piglet model: putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development.

    PubMed

    Sébert, S P; Lecannu, G; Kozlowski, F; Siliart, B; Bard, J M; Krempf, M; Champ, M M-J

    2005-03-01

    To explore metabolic and cellular modifications induced during childhood obesity, in a novel animal model of obese mini-piglets. A total of 10 four-month old Yucatan mini-pigs were followed from prepuberty to adulthood. Animals were divided into two groups. The first one had been overfed (OF) a western-type diet and the second one had been normally fed a control recommended human-type diet (NF). Plasma insulin-like growth factor 1 (IGF-1), insulin, leptin, nonesterified fatty acids, triglycerides (TGs) and glucose were determined at sexual maturity and at young adulthood. Quantitative gene expressions of peroxysome-proliferator-activated receptors (PPARs), glucose transporter 4, insulin receptor, IGF-1, leptin and interleukin-6 (IL-6) in skeletal muscle, adipose tissue and liver were also measured at both stages. Adult insulin sensitivity was measured via euglycaemic-hyperinsulinaemic clamps. Increased body weight in adult OF pigs was associated with increased body size and low insulin sensitivity. Sexually mature OF pigs had higher IGF-1 plasma concentrations than their lean littermates (P < 0.05). In the OF group, TGs and glucose were both decreased (P < 0.05). Muscle PPARgamma and alpha in OF pubescent pigs as compared to NF pigs were 11 times higher and 20 times lower, respectively (P < 0.01). Obesity and insulin resistance induced by overfeeding mini-pigs during development and puberty were not associated with the cluster of metabolic modifications frequently observed in their adult littermates. Increased IGF-1 concentrations and modifications of skeletal muscle PPAR (alpha and gamma) expressions may help the young obese pig to partially regulate its glycaemia and triglyceridaemia through an increase of fat mass, which maintains its high insulin sensitivity.

  2. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  3. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  4. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors.

    PubMed

    Sutton, Gregory M; Trevaskis, James L; Hulver, Matthew W; McMillan, Ryan P; Markward, Nathan J; Babin, M Josephine; Meyer, Emily A; Butler, Andrew A

    2006-05-01

    Loss of brain melanocortin receptors (Mc3rKO and Mc4rKO) causes increased adiposity and exacerbates diet-induced obesity (DIO). Little is known about how Mc3r or Mc4r genotype, diet, and obesity affect insulin sensitivity. Insulin resistance, assessed by insulin and glucose tolerance tests, Ser(307) phosphorylation of insulin receptor substrate 1, and activation of protein kinase B, was examined in control and DIO wild-type (WT), Mc3rKO and Mc4rKO C57BL/6J mice. Mc4rKO mice were hyperphagic and had increased metabolic efficiency (weight gain per kilojoule consumed) relative to WT; both parameters increased further on high-fat diet. Obesity of Mc3rKO was more dependent on fat intake, involving increased metabolic efficiency. Fat mass of DIO Mc3rKO and Mc4rKO was similar, although Mc4rKO gained weight more rapidly. Mc4rKO develop hepatic insulin resistance and severe hepatic steatosis with obesity, independent of diet. DIO caused further deterioration of insulin action in Mc4rKO of either sex and, in male Mc3rKO, compared with controls, associated with increased fasting insulin, severe glucose intolerance, and reduced insulin signaling in muscle and adipose tissue. DIO female Mc3rKO exhibited very modest perturbations in glucose metabolism and insulin sensitivity. Consistent with previous data suggesting impaired fat oxidation, both Mc3rKO and Mc4rKO had reduced muscle oxidative metabolism, a risk factor for weight gain and insulin resistance. Energy expenditure was, however, increased in Mc4rKO compared with Mc3rKO and controls, perhaps due to hyperphagia and metabolic costs associated with rapid growth. In summary, DIO affects insulin sensitivity more severely in Mc4rKO compared with Mc3rKO, perhaps due to a more positive energy balance.

  5. Insulin Resistance and Hunger in Childhood Obesity: A Patient and Physician's Perspective.

    PubMed

    Scinta, Wendy; Bayes, Harold; Smith, Nicole

    2017-10-01

    This article is co-authored by the mother of a child with obesity and insulin resistance, who gives her perspective. It is also co-authored by the treating Obesity Medicine clinician and an investigator in obesity clinical research (both certified in Obesity Medicine), who give their perspectives. The discussion focuses upon the potential clinical use of metformin in managing young patients with obesity and insulin resistance. The article integrates what is scientifically known about the mechanisms of actions of metformin and how these mechanisms are reflected in the clinical response of young patients.

  6. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  7. Effects of losartan on whole-body, skeletal muscle, and vascular insulin responses in obesity/insulin resistance without hypertension

    PubMed Central

    Lteif, AA; Chisholm, RL; Gilbert, K; Considine, RV; Mather, KJ

    2011-01-01

    Aims Renin-angiotensin system antagonists have been found to improve glucose metabolism in obese hypertensive and type 2 diabetic subjects. The mechanism of these effects is not well understood. We hypothesized that the angiotensin receptor antagonist losartan would improve insulin-mediated vasodilation, and thereby improve insulin-stimulated glucose uptake in skeletal muscle of insulin resistant subjects. Materials and Methods We studied subjects with obesity and insulin resistance but without hypertension, hypercholesterolemia or dysglycemia (age 39.0±9.6 yrs [mean±SD], BMI 33.2±5.9 kg/m2, BP 115.8±12.2/70.9±7.2 mmHg, LDL 2.1±0.5 mmol/L). Subjects were randomized to 12 weeks’ double-blind treatment with losartan 100 mg once daily (n=9) or matching placebo (n=8). Before and after treatment, under hyperinsulinemic euglycemic clamp conditions we measured whole-body insulin stimulated glucose disposal, insulin-mediated vasodilation, and insulin-stimulated leg glucose uptake by the limb balance technique. Results Whole-body insulin-stimulated glucose disposal was not significantly increased by losartan. Insulin-mediated vasodilation was augmented following both treatments (increase in leg vascular conductance: pre-treatment 0.7±0.3 L*min−1*mmHg−1[losartan, mean ±SEM] and 0.9±0.3 [placebo], post-treatment 1.0±0.4 [losartan] and 1.3±0.6 [placebo]) but not different between treatment groups (p=0.53). Insulin’s action to augment NO production and to augment endothelium-dependent vasodilation were also not improved. Leg glucose uptake was not significantly changed by treatments, and not different between groups (p=0.11). Conclusions These findings argue against the hypothesis that losartan might improve skeletal muscle glucose metabolism by improving insulin-mediated vasodilation in normotensive insulin resistant obese subjects. The metabolic benefits of angiotensin receptor blockers may require the presence of hypertension in addition to obesity

  8. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, Motohiro; Yahagi, Naoya, E-mail: nyahagi-tky@umin.ac.jp; Laboratory of Molecular Physiology on Energy Metabolism, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets,more » leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.« less

  9. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    PubMed

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  11. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  12. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  13. Obesity-related insulin resistance in adolescents: a systematic review and meta-analysis of observational studies.

    PubMed

    Thota, P; Perez-Lopez, F R; Benites-Zapata, V A; Pasupuleti, V; Hernandez, A V

    2017-03-01

    Insulin resistance is common among obese adolescents; however, the extent of this problem is not clear. We conducted a systematic review of PubMed-Medline, CINAHL, The Web of Science, EMBASE and Scopus for observational studies evaluating components defining insulin resistance (insulin, C-peptide and homeostatic model assessment-insulin resistance [HOMA-IR]) in obese adolescents (12-18 years) versus non-obese adolescents. Our systematic review and meta-analysis followed the PRISMA guidelines. Data were combined using a random-effects model and summary statistics were calculated using the mean differences (MDs). 31 studies were included (n = 8655). In 26 studies, fasting insulin levels were higher in obese adolescents when compared to non-obese adolescents (MD = 64.11 pmol/L, 95%CI 49.48-78.75, p < 0.00001). In three studies, fasting C-peptide levels were higher in obese adolescents when compared to non-obese adolescents (MD = 0.29 nmol/L, 95%CI 0.22-0.36, p < 0.00001). In 24 studies, HOMA-IR values were higher in obese adolescents when compared to non-obese adolescents (MD = 2.22, 95%CI 1.78-2.67, p < 0.00001). Heterogeneity of effects among studies was moderate to high. Subgroup analyses showed similar results to the main analyses. Circulating insulin and C-peptide levels and HOMA-IR values were significantly higher in obese adolescents compared to those non-obese.

  14. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    PubMed

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  15. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  16. Insulin sensitivity and brain reward activation in overweight Hispanic girls: a pilot study

    PubMed Central

    Adam, Tanja C.; Tsao, Sinchai; Page, Kathleen A.; Hu, Houchun; Hasson, Rebecca E.; Goran, Michael I.

    2014-01-01

    Background Insulin resistance is a link between obesity and the associated disease risk. In addition to its role as an energy regulatory signal to the hypothalamus, insulin also modulates food reward. Objective To examine the relationship of insulin sensitivity (SI) and fasting insulin with cerebral activation in response to food and non-food cues in children. Methods Twelve overweight Hispanic girls (age: 8–11) participated in two study visits, a frequently sampled intravenous glucose tolerance test and a functional neuroimaging (fMRI) session (GE HDxt 3.0Tesla)) with visual stimulation tasks. Blocks of images (high calorie (HC), low calorie (LC) and non-food (NF)) were presented in randomized order. Results Comparing HC with NF, SI was inversely associated with activation in the anterior cingulate (r2 = 0.65; p < 0.05), the insula (r2 = 0.69; p < 0.05), the orbitofrontal cortex (r2 = 0.74; p < 0.05), and the frontal and rolandic operculum (r2 = 0.76; p < 0.001). Associations remained significant after adjustment for BMI. Association of fasting insulin and cerebral activation dissapeared after adjustment for waist circumference. Conclusion In addition to weight loss insulin sensitivity may pose an important target to regulate neural responses to food cues in the prevention of excessive weight gain. PMID:24357646

  17. γ-Glutamyltransferase Fractions in Obese Subjects with Type 2 Diabetes: Relation to Insulin Sensitivity and Effects of Bariatric Surgery.

    PubMed

    Franzini, Maria; Musetti, Veronica; Guarino, Daniela; Caponi, Laura; Paolicchi, Aldo; Emdin, Michele; Ferrannini, Ele; Nannipieri, Monica

    2018-05-01

    Gamma-glutamyltranspeptidase (GGT) levels are an independent risk marker for the development of type 2 diabetes (T2DM). We investigated the relationship between the newly identified serum GGT fractions and glucose metabolism in obese subjects before and after bariatric surgery. Twenty-nine T2DM subjects, wait-listed for Roux-en-Y gastric bypass (RYGB; n = 21) or laparoscopic sleeve gastrectomy (LSG; n = 8), received a 5-h mixed meal test before (T0), 15 days (T15), and 1 year after surgery (T365). Insulin sensitivity was assessed by the OGIS index and β-cell function by C-peptide analysis; fractional GGT (b-, s-, m-, and f-GGT) analysis was performed by gel-filtration chromatography. At T15, total GGT activity decreased by 40% after LSG (p = 0.007) but remained unchanged after RYGB. At T365, all patients showed a reduction in total GGT, in particular b-GGT (≥ 60%) and m-GGT (≥ 50%). In patients with biopsy-proven steatohepatitis (n = 10), total, b-, s-, and m-GGT fractions at T0 were significantly higher than in patients with low-grade steatosis (p = 0.016, 0.0003, and 0.005, respectively); at T365, there was a significant fall in total GGT as well as in each fraction in both groups. In a multiple regression model, b-GGT was the only fraction related to insulin sensitivity (p = 0.016; β coeff. = - 14.0) independently of BMI, fasting glucose, and triglycerides. While GGT activity is generally associated with impaired glucose metabolism, fractional GGT analysis showed that the b-GGT fraction specifically and independently tracks with insulin resistance.

  18. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  19. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Insulin sensitivity affects corticolimbic brain responses to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Alsaadi, Hanin M; Van Vugt, Dean A

    2015-11-01

    This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.

  1. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction.

    PubMed

    Kirk, Erik; Reeds, Dominic N; Finck, Brian N; Mayurranjan, S Mitra; Mayurranjan, Mitra S; Patterson, Bruce W; Klein, Samuel

    2009-05-01

    We determined the effects of acute and chronic calorie restriction with either a low-fat, high-carbohydrate (HC) diet or a low-carbohydrate (LC) diet on hepatic and skeletal muscle insulin sensitivity. Twenty-two obese subjects (body mass index, 36.5 +/- 0.8 kg/m2) were randomized to an HC (>180 g/day) or LC (<50 g/day) energy-deficit diet. A euglycemic-hyperinsulinemic clamp, muscle biopsy specimens, and magnetic resonance spectroscopy were used to determine insulin action, cellular insulin signaling, and intrahepatic triglyceride (IHTG) content before, after 48 hours, and after approximately 11 weeks (7% weight loss) of diet therapy. At 48 hours, IHTG content decreased more in the LC than the HC diet group (29.6% +/- 4.8% vs 8.9% +/- 1.4%; P < .05) but was similar in both groups after 7% weight loss (LC diet, 38.0% +/- 4.5%; HC diet, 44.5% +/- 13.5%). Basal glucose production rate decreased more in the LC than the HC diet group at 48 hours (23.4% +/- 2.2% vs 7.2% +/- 1.4%; P < .05) and after 7% weight loss (20.0% +/- 2.4% vs 7.9% +/- 1.2%; P < .05). Insulin-mediated glucose uptake did not change at 48 hours but increased similarly in both groups after 7% weight loss (48.4% +/- 14.3%; P < .05). In both groups, insulin-stimulated phosphorylation of c-Jun-N-terminal kinase decreased by 29% +/- 13% and phosphorylation of Akt and insulin receptor substrate 1 increased by 35% +/- 9% and 36% +/- 9%, respectively, after 7% weight loss (all P < .05). Moderate calorie restriction causes temporal changes in liver and skeletal muscle metabolism; 48 hours of calorie restriction affects the liver (IHTG content, hepatic insulin sensitivity, and glucose production), whereas moderate weight loss affects muscle (insulin-mediated glucose uptake and insulin signaling).

  2. Insulin and leptin relations in obesity: a multimedia approach.

    PubMed

    Yokaichiya, Daniela K; Galembeck, Eduardo; Torres, Bayardo B; Da Silva, José Antônio; de Araujo, Daniele R

    2008-09-01

    Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data from some of the most recent publications on obesity, especially those concerning the roles of insulin and leptin in this metabolic disturbance. The most notable characteristic of this software is the use of animations representing the cellular response together with the presentation of recently discovered mechanisms on the participation of insulin and leptin in processes leading to obesity. The software was field tested in the Biochemistry of Nutrition web-based course. After using the software and discussing its contents in chatrooms, students were asked to answer an evaluation survey about the whole activity and the usefulness of the software within the learning process. The teaching assistants (TA) evaluated the software as a tool to help in the teaching process. The students' and TAs' satisfaction was very evident and encouraged us to move forward with the software development and to improve the use of this kind of educational tool in biochemistry classes.

  3. Effect of FTO rs9939609 variant on insulin resistance in obese female adolescents.

    PubMed

    Iskandar, Kristy; Patria, Suryono Yudha; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina; Susilowati, Rina

    2018-05-15

    FTO rs9939609 variant has been shown to be associated with insulin resistance in Caucasian children. However, studies in Asia show inconsistent findings. We investigated the association between FTO rs9939609 polymorphisms and insulin resistance in obese female adolescents in Indonesia, a genetically distinct group within Asia. A total of 78 obese female adolescents participated in this study. The risk allele (A) frequency of FTO rs9939609 variant in Indonesian obese female adolescence was 44.2%. The frequency of insulin resistance was higher in the subjects with AA (54.6%) or AT (59.6%) than the subject with TT genotype (50%), but did not statistically different (p = 0.81 and p = 0.47, respectively). The insulin resistance rate was also higher in the risk allele (A) than the non-risk allele (T) subjects (0.58 vs. 0.55), but did not statistically different (p = 0.75). There was no association between FTO rs9939609 variant and body mass index, fasting glucose level, fasting insulin level, homeostatic model assessment of insulin resistance, and waist circumference (p > 0.05). In conclusion, FTO rs9939609 variant may not be associated with insulin resistance in Indonesian obese female adolescents. A multicenter study with a larger sample size is needed to clarify these findings.

  4. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats

    PubMed Central

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-01-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling. PMID:22234336

  5. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  7. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women

    PubMed Central

    Zaki, Moushira; Basha, Walaa; Reyad, Hanaa; Mohamed, Ramy; Hassan, Naglaa; Kholousi, Shams

    2018-01-01

    BACKGROUND: Myeloperoxidase (MPO) is an enzyme involved in the pathogenesis of several diseases. AIM: The current study aimed to investigate serum MPO levels in obese Egyptian women and assess its relation with insulin resistance (IR) and other biochemical risk parameters. METHODS: The study included 80 obese women and 50 age-and-sex-matched healthy controls. Insulin resistance (IR) was evaluated by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Serum MPO, fasting glucose, insulin and blood lipids and anthropometry were measured. Obese cases were divided into three groups based on MPO tertiles. ROC analysis was performed to obtain the optimal cut-off values of MPO to predicate IR in obese women. RESULTS: The mean serum MPO was significantly higher in obese cases than controls. Cases in the highest MPO tertile had higher HOMA-IR, blood lipids and pressure levels compared with those in the lower tertile. The cutoff point of MPO was > 87.8 (ng/mL) and area under curves was 0.82 (p < 0.01) for diagnosis of IR. MPO levels were higher in obese Egyptian women than healthy controls. CONCLUSION: Elevation of MPO was associated with abnormal metabolic parameters. MPO might be used as an earlier biomarker for IR and metabolic disturbance in obese women. PMID:29731928

  8. Does enhanced insulin sensitivity improve sleep measures in patients with obstructive sleep apnea: A randomized, placebo-controlled pilot study

    PubMed Central

    Liu, Alice; Kim, Sun H.; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Cardell, James; Xu, Shiming; Patel, Shailja; Tomasso, Vanessa; Mojaddidi, Hafasa; Grove, Kaylene; Tsao, Philip S.; Kushida, Clete A.; Reaven, Gerald M.

    2016-01-01

    Background High fasting insulin levels have been reported to predict development of observed apneas, suggesting that insulin resistance may contribute to the pathogenesis of obstructive sleep apnea (OSA). The study aim was to determine whether enhancing insulin sensitivity in individuals with OSA would improve sleep measures. Patients/Methods Insulin-resistant, nondiabetic individuals with untreated OSA were randomized (2:1) to pioglitazone (45mg/day) or placebo for 8 weeks in this single-blind study. All individuals had repeat measurements pertaining to sleep (overnight polysomnography and Functional Outcomes of Sleep Questionnaire) and insulin action (insulin suppression test). Results Forty-five overweight/obese men and women with moderate/severe OSA were randomized to pioglitazone (n=30) or placebo (n=15). Although insulin sensitivity increased 31% among pioglitazone-treated as compared to no change among individuals receiving placebo ((p<0.001 for between-group difference), no improvements in quantitative or qualitative sleep measurements were observed. Conclusions Pioglitazone administration increased insulin sensitivity in otherwise untreated individuals with OSA, without any change in polysomnographic sleep measures over an 8-week period. These findings do not support a causal role for insulin resistance in the pathogenesis of OSA. PMID:27544837

  9. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1.

    PubMed

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-12-02

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation.

    PubMed

    Kosmala, Wojciech; Jedrzejuk, Diana; Derzhko, Roksolana; Przewlocka-Kosmala, Monika; Mysiak, Andrzej; Bednarek-Tupikowska, Grazyna

    2012-05-01

    Obesity predisposes to left ventricular (LV) dysfunction and heart failure; however, the risk of these complications has not been assessed in patients with a normal body mass index (BMI) but increased body fat content (normal-weight obesity, NWO). We hypothesized that LV performance in NWO may be impaired and sought to investigate potential contributors to cardiac functional abnormalities. One hundred sixty-eight subjects (age, 38±7 years) with BMI <25kg/m(2) and no history of any disease affecting the myocardium were classified on the basis of body fat content into 2 groups: with NWO and without NWO. Echocardiographic indices of LV systolic and diastolic function, including myocardial velocities and deformation, serological fibrosis markers, indicators of proinflammatory activation, and metabolic control, were evaluated. Subjects with NWO demonstrated impaired LV systolic and diastolic function, increased fibrosis intensity (assessed by procollagen type I carboxy-terminal propeptide [PICP]), impaired insulin sensitivity, and increased proinflammatory activation as compared with individuals with normal body fat. The independent correlates of LV systolic and diastolic function variables were as follows: for strain, IL-18 (β=-0.17, P<0.006), C-reactive protein (β=-0.20, P<0.002) and abdominal fat deposit (β=-0.20, P<0.003); for tissue S velocity, PICP (β=-0.21, P<0.002) and abdominal fat deposit (β=-0.43, P<0.0001); for tissue E velocity, abdominal fat deposit (β=-0.30, P<0.0001), PICP (β=-0.31, P<0.0001) and homeostasis model assessment of insulin resistance index (HOMA IR; β=-0.20, P<0.002); and for E/e'-PICP, IL-18 (both β=0.18, P<0.01) and HOMA IR (β=0.16, P<0.04). In patients with NWO, subclinical disturbances of LV function are independently associated with the extent of abdominal fat deposit, profibrotic state (as reflected by circulating PICP), reduced insulin sensitivity, and proinflammatory activation.

  11. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity

    PubMed Central

    Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic

  12. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    PubMed

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic

  13. The early origins of obesity and insulin resistance: timing, programming and mechanisms.

    PubMed

    Nicholas, L M; Morrison, J L; Rattanatray, L; Zhang, S; Ozanne, S E; McMillen, I C

    2016-02-01

    Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.

  14. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    PubMed

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  15. The metabolic phenotype of Prader-Willi syndrome (PWS) in childhood: heightened insulin sensitivity relative to body mass index.

    PubMed

    Haqq, Andrea M; Muehlbauer, Michael J; Newgard, Christopher B; Grambow, Steven; Freemark, Michael

    2011-01-01

    Insulin sensitivity is higher in patients with Prader-Willi syndrome (PWS) than in body mass index-matched obese controls (OCs). Factors contributing to the heightened insulin sensitivity of PWS remain obscure. We compared the fasting levels of various hormones, cytokines, lipids, and liver function tests in 14 PWS patients and 14 OCs with those in 14 age- and gender-matched lean children (LC). We hypothesized that metabolic profiles of children with PWS are comparable with those of LC, but different from those of OCs. Leptin levels were comparable in PWS patients and OCs, suggesting comparable degrees of adiposity. Glucose levels were comparable among groups. However, fasting insulin concentrations and homeostasis model assessment insulin resistance index were lower in PWS patients than in OCs (P < 0.05) and similar to LC. Moreover, high-density lipoprotein levels were lower and triglycerides higher in OCs (P < 0.05) but not PWS patients. Total adiponectin, high-molecular-weight (HMW) adiponectin and the HMW to total adiponectin ratio were higher in PWS patients (P < 0.05) than in OCs and similar to LC. High-sensitivity C-reactive protein and IL-6 levels were higher in OCs than in PWS patients or LC (P < 0.05). Nevertheless, PAI-1 levels were elevated in both OC and PWS patients. There were no group differences in glucagon-like peptide-1, macrophage chemoattractant protein-1, TNFα, IL-2, IL-8, IL-10, IL-12p40, IL-18, resistin, total or low-density lipoprotein cholesterol, aspartate aminotransferase, or alanine aminotransferase. The heightened insulin sensitivity of PWS patients relative to OCs is associated with higher levels of adiponectin and lower levels of high-sensitivity C-reactive protein and IL-6. Future studies will determine whether PWS children are protected from obesity comorbidities such as type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease.

  16. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  17. Aerobic exercise + weight loss decreases skeletal muscle myostatin expression and improves insulin sensitivity in older adults.

    PubMed

    Ryan, A S; Li, G; Blumenthal, J B; Ortmeyer, H K

    2013-07-01

    To determine whether aerobic exercise training + weight loss (AEX + WL) would affect the expression of myostatin and its relationship with insulin sensitivity in a longitudinal, clinical intervention study. Thirty-three obese sedentary postmenopausal women and men (n = 17 and 16, age: 61 ± 1 years, body mass index: 31 ± 1 kg/m(2) , VO2 max: 21.9 ± 1.0 mL/kg/min, X ± Standard error of the mean (SEM)) completed 6 months of 3 days/week AEX + WL. During an 80 mU m(-2) min(-1) hyperinsulinemic-euglycemic clamp, we measured glucose utilization (M), myostatin, myogenin, and MyoD gene expression by real-time RT-PCR in vastus lateralis muscle at baseline and 2 h. Body weight (-8%) and fat mass (-17%) decreased after AEX + WL (P < 0.001). Fat-free mass (FFM) and mid-thigh muscle area by computed tomography did not change but muscle attenuation increased (P < 0.05). VO2 max increased 14% (P < 0.001). AEX + WL increased M by 18% (P < 0.01). Myostatin gene expression decreased 19% after AEX + WL (P < 0.05). Basal mRNA myostatin levels were negatively associated with M before the intervention (r = -0.43, P < 0.05). Insulin infusion increased myoD and myogenin expression before and after AEX + WL (both P < 0.001) but basal levels did not change. The insulin effect on myostatin expression was associated with the change in M after AEX + WL (r = 0.56, P < 0.005). Exercise and weight loss results in a downregulation of myostatin mRNA and an improvement in insulin sensitivity in obese older men and women. Copyright © 2012 The Obesity Society.

  18. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity.

    PubMed

    Pereira, Sandra; Breen, Danna M; Naassan, Anthony E; Wang, Penny Y T; Uchino, Hiroshi; Fantus, I George; Carpentier, André C; Gutierrez-Juarez, Roger; Brindley, David N; Lam, Tony K T; Giacca, Adria

    2015-02-01

    Free fatty acids (FFAs) cause insulin resistance and are often elevated in obesity. Chronic ingestion of diets rich in saturated fat induces more insulin resistance than diets rich in unsaturated fat, however, it remains unclear whether different FFAs cause distinct levels of insulin resistance in the short-term, which is relevant to the feeding and fasting cycle. Protein kinase C (PKC)-δ is implicated in hepatic insulin resistance. Therefore, we investigated the effects of short-term elevation of fatty acids with different degrees of unsaturation on hepatic insulin action and liver PKC-δ membrane translocation, a marker of activation. Triglyceride emulsions of Soybean Oil+Heparin (polyunsaturated (POLY)), Olive Oil+Heparin (monounsaturated (MONO)), Lard Oil+Heparin (saturated (SATU)), or saline (SAL) were infused intravenously for 7h to elevate plasma FFA concentrations ~3-4 fold in rats. During the last 2h of infusion, a hyperinsulinemic-euglycemic clamp with tritiated glucose methodology was performed to examine hepatic and peripheral insulin sensitivity. Surprisingly, SATU, MONO, and POLY impaired peripheral insulin sensitivity (glucose utilization divided by insulin) to a similar extent. Furthermore, all lipids induced a similar degree of hepatic insulin resistance compared to SAL. Although there were changes in hepatic content of lipid metabolites, there were no significant differences in liver PKC-δ membrane translocation across fat groups. In summary, in the short-term, FFAs with different degrees of unsaturation impair peripheral insulin sensitivity and induce hepatic insulin resistance as well as hepatic PKC-δ translocation to the same extent. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulebyakin, Konstantin; Penkov, Dmitry; IFOM – the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to searchmore » new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. - Highlights: • A novel model of liver-specific Prep1 knockout is established. • Ablation of Prep1 in hepatocytes increases insulin sensitivity. • Prep1 controls hepatic insulin sensitivity by regulating localization of FOXO1. • Prep1 regulates

  20. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice.

    PubMed

    Sasaki, Rie; Nishimura, Natsumi; Hoshino, Hiromi; Isa, Yasuka; Kadowaki, Maho; Ichi, Takahito; Tanaka, Akihito; Nishiumi, Shin; Fukuda, Itsuko; Ashida, Hitoshi; Horio, Fumihiko; Tsuda, Takanori

    2007-12-03

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine expression is one of the most important targets for the prevention of obesity and improvement of insulin sensitivity. In this study, we have demonstrated that anthocyanin (cyanidin 3-glucoside; C3G) which is a pigment widespread in the plant kingdom, ameliorates hyperglycemia and insulin sensitivity due to the reduction of retinol binding protein 4 (RBP4) expression in type 2 diabetic mice. KK-A(y) mice were fed control or control +0.2% of a C3G diet for 5 weeks. Dietary C3G significantly reduced blood glucose concentration and enhanced insulin sensitivity. The adiponectin and its receptors expression were not responsible for this amelioration. C3G significantly upregulated the glucose transporter 4 (Glut4) and downregulated RBP4 in the white adipose tissue, which is accompanied by downregulation of the inflammatory adipocytokines (monocyte chemoattractant protein-1 and tumor necrosis factor-alpha) in the white adipose tissue of the C3G group. These findings indicate that C3G has significant potency in an anti-diabetic effect through the regulation of Glut4-RBP4 system and the related inflammatory adipocytokines.

  1. Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects.

    PubMed

    Lara-Castro, Cristina; Newcomer, Bradley R; Rowell, Jennifer; Wallace, Penny; Shaughnessy, Sara M; Munoz, A Julian; Shiflett, Alanna M; Rigsby, Dana Y; Lawrence, Jeannine C; Bohning, Daryl E; Buchthal, Steven; Garvey, W Timothy

    2008-01-01

    The study aimed to analyze the effects of a short-term very low-calorie diet (VLCD) on intramyocellular lipid (IMCL), total body fat, and insulin sensitivity in a group of obese nondiabetic and type 2 diabetic subjects. Seven untreated type 2 diabetic and 5 obese nondiabetic individuals were studied before and after a 6-day VLCD using proton magnetic resonance spectroscopy to quantify IMCL, dual-energy x-ray absorptiometry to assess body fat, and hyperinsulinemic-euglycemic clamps to measure peripheral insulin sensitivity. In both groups, decrements in total body fat mass and body mass index were small but statistically significant. In contrast, the diet resulted in a pronounced reduction in IMCL compared with baseline values in nondiabetic subjects (56% decrease) and type 2 diabetic subjects (40% decrease) (P < .05), and this was accompanied by an overall 9.3% increase in maximally stimulated glucose disposal rate (P < .01). Intramyocellular lipid was significantly correlated with insulin sensitivity (r = -0.69, P < .01) and waist circumference (r = 0.72 and 0.83, baseline and postdiet, respectively; both P < .01), but neither IMCL nor insulin sensitivity was related to measures of general adiposity such as body mass index, percentage of body fat, or total body fat (P = not significant). In conclusion, short-term VLCD is accompanied by small decrements in general adiposity, marked decrease in IMCL, and an increase in insulin sensitivity in nondiabetic and type 2 diabetic subjects. Therefore, rapid amelioration of insulin resistance by VLCD can be partially explained by loss of IMCL both in nondiabetic and type 2 diabetic subjects in the absence of substantial changes in total body fat. These observations are consistent with the idea that insulin resistance is more directly related to IMCL rather than to body fat per se.

  2. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3.

    PubMed

    Yang, Xiaoping; Li, Shi-Yan; Dong, Feng; Ren, Jun; Sreejayan, Nair

    2006-07-01

    Low-molecular weight organic chromium complexes are thought to play a key role in carbohydrate and lipid metabolism and therefore have been gaining popularity as nutritional supplement for patients with diabetes and concomitant lipid disorders. The aim of the present study was to evaluate the effects of a novel synthetic chromium (d-phenylalanine)(3) complex on insulin-sensitivity, plasma lipid-profile and oxidant stress in a mouse model of type II diabetes. Plasma glucose levels following intraperitoneal insulin-challenge (1U/kg) to obese ob/ob(+/+) mice treated with Cr(d-Phe)(3) (150 microg/kg/day for 6 weeks) were significantly lower compared to vehicle-control (control: 175.8+/-43.2mg/dL versus Cr(d-Phe)(3) 115.3+/-18.0mg/dL, p<0.01, n=12). Total serum cholesterol to high-density lipoprotein ratio was significantly reduced following Cr(d-Phe)(3)-treatment (control: 2.19+/-0.08 versus Cr(d-Phe)(3) 1.63+/-0.05; p<0.05). Hepatic oxidant stress, assessed as malondialdehyde equivalents and protein-carbonyl content were significantly attenuated following Cr(d-Phe)(3) treatment. The complex also inhibited lipid-peroxidation in vitro, in a concentration dependent manner. Taken together, these data suggest that Cr(d-Phe)(3) may be of potential value in the therapy or prophylaxis of insulin-resistance and dyslipidemia associated with obesity.

  3. Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis

    PubMed Central

    Murray, Kevin J.; Rendahl, Aaron K.; Geor, Raymond J.; Schultz, Nichol E.; McCue, Molly E.

    2018-01-01

    Background Metabolomics, the study of small‐molecule metabolites, has increased understanding of human metabolic diseases, but has not been used to study equine metabolic syndrome (EMS). Objectives (1) To examine the serum metabolome of Welsh Ponies with and without insulin dysregulation before and during an oral sugar test (OST). (2) To identify differences in metabolites in ponies with insulin dysregulation, obesity, or history of laminitis. Animals Twenty Welsh Ponies (mean ± SD; 13.8 ± 9.0 years) classified as non‐insulin dysregulated [CON] (n = 10, insulin < 30 mU/L) or insulin dysregulated [ID] (n = 10, insulin > 60 mU/L) at 75 minutes after administration of Karo syrup, obese (n = 6) or nonobese (n = 14), and history of laminitis (n = 9) or no history of laminitis (n = 11). Methods Case‐control study. Metabolomic analysis was performed on serum obtained at 0 minutes (baseline) and 75 minutes during the OST. Data were analyzed with multivariable mixed linear models with significance set at P ≤ .05. Results Metabolomic analysis of 646 metabolites (506 known) detected significant metabolite differences. At baseline, 55 metabolites (insulin response), 91 metabolites (obesity status), and 136 metabolites (laminitis history) were different. At 75 minutes, 51 metabolites (insulin response), 102 metabolites (obesity status), and 124 metabolites (laminitis history) were different. Conclusions and Clinical Importance Use of metabolomics could have diagnostic utility for early detection of EMS and provide new knowledge regarding the pathophysiology of metabolic perturbations associated with this condition that might lead to improved clinical management. PMID:29572947

  4. Resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin.

    PubMed

    Yuan, Hong; Weng, Chunyan; Yang, Youbo; Huang, Lihua; Xing, Xiaowei

    2013-12-01

    The metabolic syndrome (MS) is a cluster of metabolic disorders arising from insulin resistance, characterized by the presence of central obesity, impaired fasting glucose level, dyslipidemia and hypertension. As the first-line medication, metformin is commonly used for MS to reduce insulin resistance. Comparing with rosiglitazone, metformin does not increase cardiovascular mortality risk in patients with MS. However, metformin is not good enough in improving insulin sensitivity. Its molecular mechanism is still not clear. Recent studies have demonstrated that resistin, an adipokine, could induce IR by both AMPK-dependent and AMPK-independent pathways. Though there were conflicting findings of resistin in metabolic syndrome or type 2 diabetes mellitus in different studies, resistin was significant decreased in the rosiglitazone treated patients than in the metformin-treated patients in most of studies. Here, we hypothesized that resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin. This hypothesis could explain why rosiglitazone is superior to metformin in enhancement of insulin sensitivity. Copyright © 2013. Published by Elsevier Ltd.

  5. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    PubMed

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  6. Acute effect of the dual angiotensin-converting enzyme and neutral endopeptidase 24-11 inhibitor mixanpril on insulin sensitivity in obese Zucker rat

    PubMed Central

    Arbin, V; Claperon, N; Fournié-Zaluski, M -C; Roques, B P; Peyroux, J

    2001-01-01

    The aim of this study was to determine whether acute dual angiotensin-converting enzyme (ACE)/neutral endopeptidase 24-11 (NEP) inhibition could improve whole body insulin-mediated glucose disposal (IMGD) more than ACE inhibition alone and whether this effect was mediated by the kinin-nitric oxide (NO) pathway activation.We therefore compared in anaesthetized obese (fa/fa) Zucker rats (ZOs) the effects of captopril (2 mg kg−1, i.v.+2 mg kg−1 h−1), retrothiorphan (25 mg kg−1, i.v. +25 mg  kg−1 h−1), a selective NEP inhibitor, and mixanpril (25 mg kg−1, i.v.+25 mg kg−1 h−1), a dual ACE/NEP inhibitor, on IMGD using hyperinsulinaemic euglycaemic clamp technique. The role of the kinin-NO pathway in the effects of mixanpril was tested using a bradykinin B2 receptor antagonist (Hoe-140, 300 μg kg−1) and a NO-synthase inhibitor (Nω-nitro-L-arginine methyl ester, L-NAME, 10 mg kg−1 i.v. +10 mg kg−1 h−1) as pretreatments.Insulin sensitivity index (ISI) was lower in ZO controls than in lean littermates. Increases in ISI were observed in captopril- and retrothiorphan-treated ZOs. In mixanpril-treated ZOs, ISI was further increased, compared to captopril- and retrothiorphan-treated ZOs.In ZOs, Hoe-140 and L-NAME alone did not significantly alter and slightly reduced the ISI respectively. Hoe-140 and L-NAME markedly inhibited the ISI improvement induced by mixanpril.These results show that in obese insulin-resistant Zucker rats, under acute conditions, NEP or ACE inhibition can improve IMGD and that dual ACE/NEP inhibition improves IMGD more effectively than does either single inhibition. This effect is linked to an increased activation of the kinin-NO pathway. PMID:11399666

  7. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    PubMed

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity].

    PubMed

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Klimashevskyĭ, V M; Hula, N M

    2014-01-01

    We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  9. Defective calcium inactivation causes long QT in obese insulin-resistant rat.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Castranova, Vincent; Frisbee, Jefferson C; Yu, Han-Gang

    2012-02-15

    The majority of diabetic patients who are overweight or obese die of heart disease. We suspect that the obesity-induced insulin resistance may lead to abnormal cardiac electrophysiology. We tested this hypothesis by studying an obese insulin-resistant rat model, the obese Zucker rat (OZR). Compared with the age-matched control, lean Zucker rat (LZR), OZR of 16-17 wk old exhibited an increase in QTc interval, action potential duration, and cell capacitance. Furthermore, the L-type calcium current (I(CaL)) in OZR exhibited defective inactivation and lost the complete inactivation back to the closed state, leading to increased Ca(2+) influx. The current density of I(CaL) was reduced in OZR, whereas the threshold activation and the current-voltage relationship of I(CaL) were not significantly altered. L-type Ba(2+) current (I(BaL)) in OZR also exhibited defective inactivation, and steady-state inactivation was not significantly altered. However, the current-voltage relationship and activation threshold of I(BaL) in OZR exhibited a depolarized shift compared with LZR. The total and membrane protein expression levels of Cav1.2 [pore-forming subunit of L-type calcium channels (LTCC)], but not the insulin receptors, were decreased in OZR. The insulin receptor was found to be associated with the Cav1.2, which was weakened in OZR. The total protein expression of calmodulin was reduced, but that of Cavβ2 subunit was not altered in OZR. Together, these results suggested that the 16- to 17-wk-old OZR has 1) developed cardiac hypertrophy, 2) exhibited altered electrophysiology manifested by the prolonged QTc interval, 3) increased duration of action potential in isolated ventricular myocytes, 4) defective inactivation of I(CaL) and I(BaL), 5) weakened the association of LTCC with the insulin receptor, and 6) decreased protein expression of Cav1.2 and calmodulin. These results also provided mechanistic insights into a remodeled cardiac electrophysiology under the condition of

  10. Fasting and post-prandial adipose tissue lipoprotein lipase and hormone-sensitive lipase in obesity and type 2 diabetes.

    PubMed

    Costabile, G; Annuzzi, G; Di Marino, L; De Natale, C; Giacco, R; Bozzetto, L; Cipriano, P; Santangelo, C; Masella, R; Rivellese, A A

    2011-05-01

    Fasting and post-prandial abnormalities of adipose tissue (AT) lipoprotein lipase (LPL) and hormone- sensitive lipase (HSL) activities may have pathophysiological relevance in insulin-resistant conditions. The aim of this study was to evaluate activity and gene expression of AT LPL and HSL at fasting and 6 h after meal in two insulin-resistant groups - obese with Type 2 diabetes and obese without diabetes - and in non-diabetic normal-weight controls. Nine obese subjects with diabetes, 10 with obesity alone, and 9 controls underwent measurements of plasma levels of glucose, insulin, and triglycerides before and after a standard fat-rich meal. Fasting and post-prandial (6 h) LPL and HSL activities and gene expressions were determined in abdominal subcutaneous AT needle biopsies. The diabetic obese subjects had significantly lower fasting and post-prandial AT heparin-releasable LPL activity than only obese and control subjects (p<0.05) as well as lower mRNA LPL levels. HSL activity was significantly reduced in the 2 groups of obese subjects compared to controls in both fasting condition and 6 h after the meal (p<0.05), while HSL mRNA levels were not different. There were no significant changes between fasting and 6 h after meal measurements in either LPL or HSL activities and gene expressions. Lipolytic activities in AT are differently altered in obesity and Type 2 diabetes being HSL alteration associated with both insulin-resistant conditions and LPL with diabetes per se. These abnormalities are similarly observed in the fasting condition and after a fat-rich meal.

  11. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp.

    PubMed

    Guerrero-Romero, Fernando; Simental-Mendía, Luis E; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Ramos-Zavala, María G; Hernández-González, Sandra O; Jacques-Camarena, Omar; Rodríguez-Morán, Martha

    2010-07-01

    To meet the worldwide challenge of emerging diabetes, accessible and inexpensive tests to identify insulin resistance are needed. To evaluate the sensitivity and specificity of the product of fasting, we compared the triglycerides and glucose (TyG) index, a simple measure of insulin resistance, with the euglycemic-hyperinsulinemic clamp test. We conducted a cross-sectional study of the general population and outpatients of the Internal Medicine Department at the Medical Unit of High Specialty of the Specialty Hospital at the West National Medical Center in Guadalajara, Mexico. Eleven nonobese healthy subjects, 34 obese normal glucose tolerance individuals, 22 subjects with prediabetes, and 32 diabetic patients participated in the study. We performed a euglycemic-hyperinsulinemic clamp test. Sensitivity and specificity of the TyG index [Ln(fasting triglycerides) (mg/dl) x fasting glucose (mg/dl)/2] were measured, as well as the area under the curve of the receiver operating characteristic scatter plot and the correlation between the TyG index and the total glucose metabolism (M) rates. Pearson's correlation coefficient between the TyG index and M rates was -0.681 (P < 0.005). Correlation between the TyG index and M rates was similar between men (-0.740) and women (-0.730), nonobese (-0.705) and obese (-0.710), and nondiabetic (-0.670) and diabetic (-0.690) individuals. The best value of the TyG index for diagnosis of insulin resistance was 4.68, which showed the highest sensitivity (96.5%) and specificity (85.0%; area under the curve + 0.858). The TyG index has high sensitivity and specificity, suggesting that it could be useful for identification of subjects with decreased insulin sensitivity.

  12. Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance

    PubMed Central

    Amati, Francesca; Dubé, John J.; Alvarez-Carnero, Elvis; Edreira, Martin M.; Chomentowski, Peter; Coen, Paul M.; Switzer, Galen E.; Bickel, Perry E.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.

    2011-01-01

    OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. PMID

  13. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes.

    PubMed

    Valitsky, Michael; Hoffman, Amnon; Unterman, Terry; Bar-Tana, Jacob

    2017-12-01

    Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D. Copyright © 2017 the American Physiological Society.

  14. Cassia Cinnamon Supplementation Reduces Peak Blood Glucose Responses but Does Not Improve Insulin Resistance and Sensitivity in Young, Sedentary, Obese Women.

    PubMed

    Gutierrez, Jean L; Bowden, Rodney G; Willoughby, Darryn S

    2016-01-01

    Cassia cinnamon has been suggested to lower blood glucose (BG) and serum insulin (SI) due to an improvement in insulin resistance (IR) and sensitivity (IS). This study compared the effects Cassia cinnamon had on calculated IR and IS values and BG and SI in response to an oral glucose tolerance test (OGTT) in young, sedentary, and obese women. On three separate days, 10 women had a fasted venous blood sample obtained. Participants were given 5 g of encapsulated placebo (PLC) or 5 g of encapsulated Cassia cinnamon bark (CASS). Three hours after the initial blood sample, another blood sample was obtained to calculate values for IS and IR. The participants then completed an OGTT by consuming a 75 g glucose solution. Blood was obtained 30, 60, 90, and 120 min following glucose ingestion. IS and IR were not significantly different between placebo and Cassia (p > .05). The peak BG concentration in response to the OGTT was significantly lower at the 30 min time point for CASS, as compared to PLC (140 ± 5.8 and 156 ± 5.2 mg/dL, p = .025); however, there was no significant difference between treatments for SI (p > .05). The area-under-the-curve responses for BG and SI were not significantly different between PLC and CASS (p > .05). This study suggests that a 5 g dose of Cassia cinnamon may reduce the peak BG response and improve glucose tolerance following an OGTT, but with no improvement in IS and IR in young, sedentary, obese women.

  15. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    PubMed Central

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI < 24.9) and 10 overweight/obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (p<0.05) with mother’s first trimester body fat mass (%). Conclusions Our data suggest a positive association between maternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  16. Insulin and Leptin Relations in Obesity: A Multimedia Approach

    ERIC Educational Resources Information Center

    Yokaichiya, Daniela K.; Galembeck, Eduardo; Torres, Bayardo B.; Da Silva, Jose Antonio; de Araujo, Daniele R.

    2008-01-01

    Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data…

  17. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats.

    PubMed

    Kramer, D; Shapiro, R; Adler, A; Bush, E; Rondinone, C M

    2001-11-01

    Thiazolidinediones (TZDs), a class of antidiabetic agents, are specific agonists of peroxisome proliferator activator receptor (PPARgamma). However, their mechanisms of action, and the in vivo target tissues that mediate insulin sensitization are not well understood. The aim of this study was to investigate the role of glucose transporters (GLUT-1 and GLUT-4) in the TZD insulin-sensitizer action. The effects of rosiglitazone treatment were studied using Zucker (fa/fa) rats after 7 days of oral dosing (3.6 mg/kg/d). Rosiglitazone lowered (approximate 80%) basal plasma insulin levels in obese rats and substantially corrected (approximately 50%) insulin resistance based upon results from hyperinsulinemic euglycemic clamp studies. GLUT-4 protein levels were reduced (approximately 75%) in adipose tissue of obese rats and treatment with rosiglitazone normalized them. Interestingly, GLUT-1 protein content was increased in adipose tissue ( thick approximate 150%) and skeletal muscle (approximately 50%) of obese rats and treatment with rosiglitazone increased it even more by 5.5-fold in fat and by 2.5-fold in muscle. Consistent with these results, basal (GLUT-1-mediated) transport rate of 3-O-methyl-D-glucose into isolated epitrochlearis muscle was elevated in response to rosiglitazone. Incubation of fully differentiated 3T3-L1 adipocytes with the drug for 7 days increased the levels of GLUT-1 protein, but did not affect GLUT-4 levels. In conclusion, rosiglitazone may improve insulin resistance in vivo by normalizing GLUT-4 protein content in adipose tissue and increasing GLUT-1 in skeletal muscle and fat. While the drug has a direct effect on GLUT-1 protein expression in vitro without a direct effect on GLUT-4 suggests that direct and indirect effects of rosiglitazone on glucose transporters may have an important role in improving insulin resistance in vivo. Copyright 2001 by W.B. Saunders Company

  18. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Rapid insulin sensitivity test (RIST).

    PubMed

    Lautt, W W; Wang, X; Sadri, P; Legare, D J; Macedo, M P

    1998-12-01

    A rapid insulin sensitivity test (RIST) was recently introduced to assess insulin action in vivo (H. Xie, L. Zhu, Y.L. Zhang, D.J. Legare, and W.W. Lautt. J. Pharmacol. Toxicol. Methods, 35: 77-82. 1996). This technical report describes the current recommended standard operating procedure for the use of the RIST in rats based upon additional experience with approximately 100 tests. We describe the manufacture and use of an arterial-venous shunt that allows rapid multiple arterial samples and intravenous administration of drugs. The RIST procedure involves determination of a stable arterial glucose baseline to define the ideal euglycemic level to be maintained following a 5-min infusion of insulin, with the RIST index being the amount of glucose required to be infused to maintain euglycemia over the test period. Insulin administration by a 5-min infusion is preferable to a 30-s bolus administration. No significant difference was determined between the use of Toronto pork-beef or human insulin. Four consecutive RISTs were carried out in the same animal over 4-5 h with no tendency for change with time. The RIST index is sufficiently sensitive and reproducible to permit establishment of insulin dose-response curves and interference of insulin action by elimination of hepatic parasympathetic nerves, using atropine. This technical report provides the current recommended standard operating procedure for the RIST.

  20. Improvement of Type 2 Diabetes Mellitus in Obese and Non-Obese Patients after the Duodenal Switch Operation

    PubMed Central

    Frenken, M.; Cho, E. Y.; Karcz, W. K.; Grueneberger, J.; Kuesters, S.

    2011-01-01

    Introduction. Type 2 diabetes mellitus (T2DM) is one of the most important obesity-related comorbidities. This study was undertaken to characterise the effect of the biliopancreatic diversion with duodenal switch (BPD-DS) in morbidly obese and nonmorbidly obese diabetic patients. Methods. Outcome of 74 obese diabetic patients after BPD-DS and 16 non-obese diabetic patients after BPD or gastric bypass surgery was evaluated. Insulin usage, HbA1c-levels, and index of HOMA-IR (homeostasis model assessment of insulin resistence) were measured. Results. A substantial fraction of patients is free of insulin and shows an improved insulin sensitivity early after the operation, another fraction gets free of insulin in a 12-month period after the operation and a small fraction of long-term insulin users will not get free of insulin but nevertheless shows an improved metabolic status (less insulin needed, normal HbA1c-levels). Conclusion. BPD-DS leads to an improvement of T2DM in obese and non-obese patients. Nevertheless, more data is needed to clarify indications and mechanisms of action and to adjust our operation techniques to the needs of non-obese diabetic patients. PMID:21461399

  1. Improvement of type 2 diabetes mellitus in obese and non-obese patients after the duodenal switch operation.

    PubMed

    Frenken, M; Cho, E Y; Karcz, W K; Grueneberger, J; Kuesters, S

    2011-01-01

    Introduction. Type 2 diabetes mellitus (T2DM) is one of the most important obesity-related comorbidities. This study was undertaken to characterise the effect of the biliopancreatic diversion with duodenal switch (BPD-DS) in morbidly obese and nonmorbidly obese diabetic patients. Methods. Outcome of 74 obese diabetic patients after BPD-DS and 16 non-obese diabetic patients after BPD or gastric bypass surgery was evaluated. Insulin usage, HbA(1c)-levels, and index of HOMA-IR (homeostasis model assessment of insulin resistence) were measured. Results. A substantial fraction of patients is free of insulin and shows an improved insulin sensitivity early after the operation, another fraction gets free of insulin in a 12-month period after the operation and a small fraction of long-term insulin users will not get free of insulin but nevertheless shows an improved metabolic status (less insulin needed, normal HbA(1c)-levels). Conclusion. BPD-DS leads to an improvement of T2DM in obese and non-obese patients. Nevertheless, more data is needed to clarify indications and mechanisms of action and to adjust our operation techniques to the needs of non-obese diabetic patients.

  2. Effects of Short-Term Very Low Calorie Diet on Intramyocellular Lipid and Insulin Sensitivity in Non-diabetics and Type 2 Diabetic Patients

    PubMed Central

    Lara-Castro, Cristina; Newcomer, Bradley R; Rowell, Jennifer; Wallace, Penny; Shaughnessy, Sara M; Munoz, A Julian; Shiflett, Alanna M; Rigsby, Dana Y; Lawrence, Jeannine C; Bohning, Daryl E; Buchthal, Steven; Garvey, W Timothy

    2008-01-01

    Objective To study the effects of a short-term very-low calorie diet (VLCD) on intramyocellular lipid (IMCL), total body fat, and insulin sensitivity in a group of obese non-diabetic and Type 2 Diabetic (T2DM) patients. Research Methods and Procedures Seven untreated T2DM and 5 obese non-diabetic individuals were studied before and after a 6-day VLCD using proton-magnetic resonance spectroscopy to quantify IMCL, DXA to assess body fat, and hyperinsulinemic-euglycemic clamps to measure peripheral insulin sensitivity. Results In both groups, decrements in total body fat mass and BMI were small but statistically significant. In contrast, the diet resulted in a pronounced reduction in IMCL compared to baseline values in non-diabetics (56% decrease) and T2DM (40% decrease), P<0.05, and this was accompanied by an overall 9.3% increase in maximally-stimulated glucose disposal rate (P<0.01). IMCL was significantly correlated with insulin sensitivity, (r=−0.69; P<0.01) and waist circumference (r = 0.72 and 0.83, baseline and post-diet respectively, both P < 0.01), but neither IMCL nor insulin sensitivity was related to measures of general adiposity such as BMI, % body fat, or total body fat (P=NS). Conclusions Short-term VLCD is accompanied by small decrements in general adiposity, marked decrease in IMCL, and an increase in insulin sensitivity in non-diabetic and T2DM subjects. Therefore, rapid amelioration of insulin resistance by VLCD can be partially explained by loss of IMCL in both non-diabetics and in T2DM in the absence of substantial changes in total body fat. These observations are consistent with the idea that insulin resistance is more directly related to IMCL rather than body fat per se. PMID:18078853

  3. One day of mixed meal overfeeding reduces hepatic insulin sensitivity and increases VLDL particle but not VLDL-triglyceride secretion in overweight and obese men.

    PubMed

    Smith, Gordon I; Magkos, Faidon; Reeds, Dominic N; Okunade, Adewole L; Patterson, Bruce W; Mittendorfer, Bettina

    2013-08-01

    The exact mechanisms responsible for increased plasma triglyceride (TG) concentration in obese people are unclear, and it is not known whether excess energy intake per se is involved in the pathophysiology of this abnormality. The purpose of our study was to examine how excess energy intake from a balanced diet for 1 day affects very-low-density lipoprotein (VLDL)-TG kinetics and its putative regulators hepatic insulin sensitivity and plasma free fatty acid availability. We used stable isotope-labeled tracer methods to evaluate glucose and lipid kinetics in 8 overweight and obese men (age, 38 ± 3 years; body mass index, 33.7 ± 1.7 kg/m(2); means ± SEM) on 2 occasions (randomized crossover design): once, the day after they consumed a balanced diet that provided an amount of energy that matched their energy expenditure, and another time, the day after they consumed a balanced diet that provided 30% excess calories. Eight healthy, lean men (34 ± 1 years; 22.5 ± 0.6 kg/m(2)) were studied under isocaloric conditions only to provide a reference for normal lipid kinetics. VLDL-TG and VLDL-apolipoprotein B-100 (apoB-100) concentrations and secretion rates were significantly greater (P < .01) in overweight/obese compared with lean men. Hypercaloric, compared with isocaloric, feeding in overweight/obese men increased glucose rate of appearance in plasma (904 ± 21 vs 873 ± 26 μmol/min), the hepatic insulin resistance index (10.9 ± 2.2 vs 8.3 ± 1.8), and VLDL-apoB-100 concentration and secretion rate (1.91 ± 0.24 vs. 1.53 ± 0.13 nmol/min), whereas VLDL-apoB-100 plasma clearance rate, VLDL-TG secretion and plasma clearance rates, and free fatty acid rate of appearance in plasma were not affected by overfeeding. One day of moderate overfeeding (30% excess energy intake) stimulates hepatic glucose and VLDL-apo B-100 secretion rates but has no effect on hepatic and adipose tissue fatty acid metabolism in overweight/obese men.

  4. Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease.

    PubMed

    Yang, Hye Ran; Chang, Eun Jae

    2016-01-01

    The aim of this study was to evaluate the influence of body composition, especially distribution of body fat, and insulin resistance on nonalcoholic fatty liver disease (NAFLD) in obese children. One hundred obese children (66 boys, 34 girls) with (n=60) and without NAFLD (n=40) were assessed. Anthropometry, laboratory tests, abdominal ultrasonography, and dual energy x-ray absorption metry (DXA) were evaluated in all subjects. Subject age and measurements of liver enzymes, γ- glutamyl transpeptidase (γGT), uric acid, high-density lipoprotein cholesterol, and insulin resistance were significantly different between the non-NAFLD group and NAFLD group. Body fat and trunk fat percentage were significantly different between the two groups (p<0.001 and p=0.003), whereas extremity fat percentage was not (p=0.683). Insulin resistance correlated significantly with body fat and trunk fat percentages, age, liver enzymes, γGT, and uric acid in obese children. Multiple logistic regression analysis indicated that insulin resistance and trunk fat percentage significantly affected the development of NAFLD in obese children. Body fat, especially abdominal fat, influences the development of insulin resistance and subsequent NAFLD in obese children. Therefore, body composition measurement using DXA, in conjunction with biochemical tests, may be beneficial in evaluating obese children with NAFLD.

  5. Vitamin D deficiency and insulin resistance as risk factors for dyslipidemia in obese children.

    PubMed

    Erol, Meltem; Bostan Gayret, Özlem; Hamilçıkan, Şahin; Can, Emrah; Yiğit, Özgu L

    2017-04-01

    Dyslipidemia is one of the major complications of obesity; vitamin D deficiency and insulin resistance are attending metabolic complications in dyslipidemic obese children. Objective. To determine if vitamin D deficiency and insulin resistance are risk factors for dyslipidemia in obese children. This study was conducted in the Department of Pediatrics at Bagcilar Training and Research Hospital in Istanbul, Turkey between 2014 and 2015. Obese patients whose age range was 8-14 were included in the study. The serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol, fasting glucose, insulin, alanine aminotransferase, vitamin D levels were measured; a liver ultrasonography was performed. Homeostatic model assessment (HOMA-IR), was used to calculate insulin resistance. 108 obese children were included; 39 (36.11%) had dyslipidemia. The average fasting blood glucose (88.74 ± 7.58 vs. 95.31 ± 6.82; p= 0.0001), insulin level (14.71 ± 12.44 vs. 24.39 ± 15.02; p= 0.0001) and alanine aminotransferase level (23.45 ± 11.18 vs. 30.4 ± 18.95; p= 0.018) were significantly higher in the children with dyslipidemia. In the dyslipidemic obese children, the average hepatosteatosis rate and HOMA-IR level were higher; 28 (71.9%) had hepatosteatosis, 37 (94.87%) had insulin resistance; the vitamin D levels were <20 ng/ml in 69.3%. Vitamin D deficiency was significantly more common (p= 0.033). The multivariate regression analysis confirmed that the increase in the HOMA-IR level (p= 0.015) and the low vitamin D level (p= 0.04) were important risk factors for dyslipidemia. Obese children in our region exhibit low vitamin D and increased HOMA-IR levels, which are efficient risk factors of dyslipidemia.

  6. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity.

    PubMed

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H; Bouwman, Freek G; Moors, Chantalle C; Boekschoten, Mark V; Afman, Lydia A; Müller, Michael; Mariman, Edwin C; Blaak, Ellen E

    2012-04-01

    Dietary fat quality may influence skeletal muscle lipid processing and fat accumulation, thereby modulating insulin sensitivity. The objective was to examine the acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA processing and postprandial insulin sensitivity in obese, insulin-resistant men. In a single-blind, randomized, crossover study, 10 insulin-resistant men consumed 3 high-fat mixed meals (2.6 MJ), which were high in SFAs, MUFAs, or PUFAs. Fasting and postprandial skeletal muscle FA processing was examined by measuring differences in arteriovenous concentrations across the forearm muscle. [²H₂]Palmitate was infused intravenously to label endogenous triacylglycerol and FFAs in the circulation, and [U-¹³C]palmitate was added to the meal to label chylomicron-triacylglycerol. Skeletal muscle biopsy samples were taken to assess intramuscular lipid metabolism and gene expression. Insulin and glucose responses (AUC) after the SFA meal were significantly higher than those after the PUFA meal (P = 0.006 and 0.033, respectively). Uptake of triacylglycerol-derived FAs was lower in the postprandial phase after the PUFA meal than after the other meals (AUC₆₀₋₂₄₀; P = 0.02). The fractional synthetic rate of the triacylglycerol, diacylglycerol, and phospholipid pool was higher after the MUFA meal than after the SFA meal. PUFA induced less transcriptional downregulation of oxidative pathways than did the other meals. PUFAs reduced triacylglycerol-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity, a more transcriptional oxidative phenotype, and altered intramyocellular lipid partitioning and may therefore be protective against the development of insulin resistance.

  7. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  8. Glucose alteration and insulin resistance in asymptomatic obese children and adolescents.

    PubMed

    Assunção, Silvana Neves Ferraz de; Boa Sorte, Ney Christian Amaral; Alves, Crésio de Aragão Dantas; Mendes, Patricia S Almeida; Alves, Carlos Roberto Brites; Silva, Luciana Rodrigues

    Obesity is associated with the abnormal glucose metabolism preceding type 2 diabetes mellitus. Thus, further investigation on the prediction of this lethal outcome must be sought. The objective was the profile glycemic assessment of asymptomatic obese children and adolescents from Salvador, Brazil. A fasting venous blood sample was obtained from 90 consecutive obese individuals aged 8-18 years, of both sexes, for laboratory determinations of glycated hemoglobin, basal insulin, and the Homeostasis Model Assessment Insulin Resistance index. The clinical evaluation included weight, height, waist circumference, assessment of pubertal development, and acanthosis nigricans research. The body mass index/age indicator was used for the severity of overweight assessment. Glycemic alterations were evidenced clinically and biochemically, although these individuals had no complaints or symptoms related to blood sugar levels. Quantitative and qualitative variables were respectively expressed measures of central tendency/dispersion and simple/relative frequency, using the SPSS, version 20.0. A p-value <0.05 was considered significant. Notably, this study found a high prevalence of glucose and insulin disorders in asymptomatic obese children and adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  10. Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns

    PubMed Central

    Papakyriakou, Panagiotis; Panagiotou, Themistoklis N.

    2015-01-01

    The prevalence of type 2 diabetes (T2D) is rapidly increasing. This is strongly related to the contemporary lifestyle changes that have resulted in increased rates of overweight individuals and obesity. Central (intra-abdominal) obesity is observed in the majority of patients with T2D. It is associated with insulin resistance, mainly at the level of skeletal muscle, adipose tissue and liver. The discovery of macrophage infiltration in the abdominal adipose tissue and the unbalanced production of adipocyte cytokines (adipokines) was an essential step towards novel research perspectives for a better understanding of the molecular mechanisms governing the development of insulin resistance. Furthermore, in an obese state, the increased cellular uptake of non-esterified fatty acids is exacerbated without any subsequent β-oxidation. This in turn contributes to the accumulation of intermediate lipid metabolites that cause defects in the insulin signaling pathway. This paper examines the possible cellular mechanisms that connect central obesity with defects in the insulin pathway. It discusses the discrepancies observed from studies organized in cell cultures, animal models and humans. Finally, it emphasizes the need for therapeutic strategies in order to achieve weight reduction in overweight and obese patients with T2D. PMID:26170839

  11. Peri-muscular adipose tissue may play a unique role in determining insulin sensitivity/resistance in women with polycystic ovary syndrome.

    PubMed

    Morrison, Shannon A; Goss, Amy M; Azziz, Ricardo; Raju, Dheeraj A; Gower, Barbara A

    2017-01-01

    Do the determinants of insulin sensitivity/resistance differ in women with and without polycystic ovary syndrome (PCOS)? Peri-muscular thigh adipose tissue is uniquely associated with insulin sensitivity/resistance in women with PCOS, whereas adiponectin and thigh subcutaneous adipose are the main correlates of insulin sensitivity/resistance in women without PCOS. In subject populations without PCOS, insulin sensitivity/resistance is determined by body fat distribution and circulating concentrations of hormones and pro-inflammatory mediators. Specifically, visceral (intra-abdominal) adipose tissue mass is adversely associated with insulin sensitivity, whereas thigh subcutaneous adipose appears protective against metabolic disease. Adiponectin is an insulin-sensitizing hormone produced by healthy subcutaneous adipose that may mediate the protective effect of thigh subcutaneous adipose. Testosterone, which is elevated in PCOS, may have an adverse effect on insulin sensitivity/resistance. Cross-sectional study of 30 women with PCOS and 38 women without PCOS; data were collected between 2007 and 2011. Participants were group-matched for obesity, as reflected in BMI (Mean ± SD; PCOS: 31.8 ± 6.0 kg/m 2 ; without PCOS: 31.5 ± 5.0 kg/m 2 ). The whole-body insulin sensitivity index (WBISI) was assessed using a mixed-meal tolerance test; Homeostasis Model Assessment-Insulin resistance (HOMA-IR) was determined from fasting insulin and glucose values. Adipose tissue distribution was determined by computed tomography (CT) scan. Partial correlation analysis, adjusting for total fat mass, was used to identify correlates of WBISI and HOMA-IR within each group of women from measures of body composition, body fat distribution, reproductive-endocrine hormones and adipokines/cytokines. Stepwise multiple linear regression analysis was used to identify the variables that best predicted WBISI and HOMA-IR. Among women with PCOS, both WBISI and HOMA-IR were best predicted by peri

  12. Effect of android to gynoid fat ratio on insulin resistance in obese youth.

    PubMed

    Aucouturier, Julien; Meyer, Martine; Thivel, David; Taillardat, Michel; Duché, Pascale

    2009-09-01

    Upper body fat distribution is associated with the early development of insulin resistance in obese children and adolescents. To determine if an android to gynoid fat ratio is associated with the severity of insulin resistance in obese children and adolescents, whereas peripheral subcutaneous fat may have a protective effect against insulin resistance. The pediatric department of University Hospital, Clermont-Ferrand, France. A retrospective analysis using data from medical consultations between January 2005 and January 2007. Data from 66 obese children and adolescents coming to the hospital for medical consultation were used in this study. Subjects were stratified into tertiles of android to gynoid fat ratio determined by dual-energy x-ray absorptiometry. Insulin resistance was assessed by the homeostasis model of insulin resistance (HOMA-IR) index. There were no differences in weight, body mass index, and body fat percentage between tertiles. Values of HOMA-IR were significantly increased in the 2 higher tertiles (mean [SD], tertile 2, 2.73 [1.41]; tertile 3, 2.89 [1.28]) compared with the lower tertile (tertile 1, 1.67 [1.24]) of android to gynoid fat ratio (P < .001). The HOMA-IR value was significantly associated with android to gynoid fat ratio (r = 0.35; P < .01). Android fat distribution is associated with an increased insulin resistance in obese children and adolescents. An android to gynoid fat ratio based on dual-energy x-ray absorptiometry measurements is a useful and simple technique to assess distribution of body fat associated with an increased risk of insulin resistance.

  13. Main characteristics of metabolically obese normal weight and metabolically healthy obese phenotypes.

    PubMed

    Teixeira, Tatiana F S; Alves, Raquel D M; Moreira, Ana Paula B; Peluzio, Maria do Carmo G

    2015-03-01

    In this review, the influence of fat depots on insulin resistance and the main characteristics of metabolically obese normal-weight and metabolically healthy obese phenotypes are discussed. Medline/PubMed and Science Direct were searched for articles related to the terms metabolically healthy obesity, metabolically obese normal weight, adipose tissue, and insulin resistance. Normal weight and obesity might be heterogeneous in regard to their effects. Fat distribution and lower insulin sensitivity are the main factors defining phenotypes within the same body mass index. Although these terms are interesting, controversies about them remain. Future studies exploring these phenotypes will help elucidate the roles of adiposity and/or insulin resistance in the development of metabolic alterations. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats☆

    PubMed Central

    Castro, Gisele; C. Areias, Maria Fernanda; Weissmann, Lais; Quaresma, Paula G.F.; Katashima, Carlos K.; Saad, Mario J.A.; Prada, Patricia O.

    2013-01-01

    Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala. PMID:24251109

  15. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  16. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    PubMed Central

    Lopez, Pablo HH; Aja, Susan; Aoki, Kazuhiro; Seldin, Marcus M; Lei, Xia; Ronnett, Gabriele V; Wong, G William; Schnaar, Ronald L

    2017-01-01

    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity. PMID:27683310

  17. Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women.

    PubMed

    Mishra, Sameeksha; Gupta, Vani; Mishra, Supriya; Sachan, Rekha; Asthana, Akash

    2017-12-01

    Obesity is regulated by different metabolic factors like leptin, adiponectin insulin and neuropeptide orexin-A. The aim of this study is to assess the role of these hormones and their interrelationship with obesity in north Indian women. A total of 168 obese women with Body Mass Index (BMI)>30kg/m 2 and 150 lean women (BMI<25kg/m 2 ) as control were recruited in this study. Women with obesity were further subdivided into two groups according to their BMI, 71 overweight women with the BMI 25-29.9kg/m 2 (mean±S.D: 27.87±0.71) and the 97 obese women with BMI>30kg/m 2 (34.68±1.90). Orexin -A, leptin and adiponectin were estimated using quantitative sandwich enzyme linked immunoassay and insulin was estimated by using an immuno-radiometric assay. Orexin -A and adiponectin level were significantly lower however, leptin and inulin level were significantly higher in obese women as compared with control group. Further, the one- way group analysis showed that the orexin -A and adiponectin level were significantly lower but leptin and insulin level was significantly higher in obese women as compared to overweight and control group respectively. Result showed that the level of adiponectin, leptin, orexin-A and insulin play an important role in the regulation of energy expenditure. In obesity, the activity of these peptides is disturbed. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. Food fried in extra-virgin olive oil improves postprandial insulin response in obese, insulin-resistant women.

    PubMed

    Farnetti, Sara; Malandrino, Noemi; Luciani, Davide; Gasbarrini, Giovanni; Capristo, Esmeralda

    2011-03-01

    The benefits of low glycemic load (GL) diets on clinical outcome in several metabolic and cardiovascular diseases have extensively been demonstrated. The GL of a meal can be affected by modulating the bioavailability of carbohydrates or by changing food preparation. We investigated the effect on plasma glucose and insulin response in lean and obese women of adding raw or fried extra-virgin olive oil to a carbohydrate-containing meal. After an overnight fast, 12 obese insulin-resistant women (body mass index [BMI], 32.8 ± 2.2 kg/m(2)) and five lean subjects (BMI, 22.2 ± 1.2 kg/m(2)) were randomly assigned to receive two different meals (designated A and B). Meal A was composed of 60 g of pasta made from wheat flour and 150 g of grilled courgettes with 25 g of uncooked oil. Meal B included 15 g of oil in the 150 g of deep-fried courgettes and 10 g of oil in the 60 g of stir-fried pasta. Both meals included 150 g of apple. Blood samples were collected at baseline and every 30 minutes over a 3-hour post-meal period and were tested for levels of glucose, insulin, C-peptide, and triglycerides. The area under the curve (AUC) values were calculated. In obese women the AUCs for C-peptide were significantly higher after meal A than after meal B at 120 minutes (W [Wilcoxon sign rank test] = 27.5, P = .0020), 150 minutes (W = 26.5, P = .0039), and 180 minutes (W = 26.5, P = .0039). No differences were found in lean subjects. This study demonstrated that in obese, insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal.

  19. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents.

    PubMed

    Juárez-López, Carlos; Klünder-Klünder, Miguel; Medina-Bravo, Patricia; Madrigal-Azcárate, Adrián; Mass-Díaz, Eliezer; Flores-Huerta, Samuel

    2010-06-07

    Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated. Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors. Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.

  20. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin

  1. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  2. Skin disorders in overweight and obese patients and their relationship with insulin.

    PubMed

    Plascencia Gómez, A; Vega Memije, M E; Torres Tamayo, M; Rodríguez Carreón, A A

    2014-03-01

    The prevalence of obesity has increased worldwide in recent years. Some authors have described skin conditions associated with obesity, but there is little evidence on the association between insulin levels and such disorders. To describe the skin disorders present in overweight and obese patients and analyze their association with insulin levels. The study included nondiabetic male and female patients over 6 years of age who were seen at our hospital between January and April 2011. All the patients were evaluated by a dermatologist, who performed a physical examination, including anthropometry, and reviewed their medical history and medication record; fasting blood glucose and insulin were also measured. The patients were grouped according to degree of overweight or obesity and the data were compared using analysis of variance or the χ(2) test depending on the type of variable. The independence of the associations was assessed using regression analysis. In total, 109 patients (95 adults and 13 children, 83.5% female) were studied. The mean (SD) age was 38 (14) years and the mean body mass index was 39.6±8 kg/m(2). The skin conditions observed were acanthosis nigricans (AN) (in 97% of patients), skin tags (77%), keratosis pilaris (42%), and plantar hyperkeratosis (38%). Statistically significant associations were found between degree of obesity and AN (P=.003), skin tags (P=.001), and plantar hyperkeratosis. Number of skin tags, AN neck severity score, and AN distribution were significantly and independently associated with insulin levels. AN and skin tags should be considered clinical markers of hyperinsulinemia in nondiabetic, obese patients. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  3. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    PubMed

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-09

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. Copyright © 2016. Published by Elsevier Inc.

  4. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  5. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  7. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    PubMed

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  8. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  9. Use of the triglyceride to HDL cholesterol ratio for assessing insulin sensitivity in overweight and obese children in rural Appalachia

    PubMed Central

    Bridges, Kristie Grove; Jarrett, Traci; Thorpe, Anthony; Baus, Adam; Cochran, Jill

    2015-01-01

    Background Studies have suggested that triglyceride to HDL-cholesterol ratio (TRG/HDL) is a surrogate marker of insulin resistance (IR), but information regarding its use in pediatric patients is limited. Objective This study investigated the ability of TRG/HDL ratio to assess IR in obese and overweight children. Subjects The sample consisted of de-identified electronic medical records of patients aged 10–17 years (n = 223). Materials and methods Logistic regression was performed using TRG/HDL ratio as a predictor of hyperinsulinemia or IR defined using homeostasis model assessment score. Results TRG/HDL ratio had limited ability to predict hyperinsulinemia (AUROC 0.71) or IR (AUROC 0.72). Although females had higher insulin levels, male patients were significantly more likely to have hypertriglyceridemia and impaired fasting glucose. Conclusions TRG/HDL ratio was not adequate for predicting IR in this population. Gender differences in the development of obesity-related metabolic abnormalities may impact the choice of screening studies in pediatric patients. PMID:26352085

  10. Metabolically healthy obese individuals present similar chronic inflammation level but less insulin-resistance than obese individuals with metabolic syndrome

    PubMed Central

    Penas Steinhardt, Alberto; López, Ariel Pablo; González, Claudio Daniel; Vilariño, Jorge; Frechtel, Gustavo Daniel; Cerrone, Gloria Edith

    2017-01-01

    The Metabolic Syndrome (MetS) is a cluster of cardiometabolic risk factors, usually accompanied by the presence of insulin resistance (IR) and a systemic subclinical inflammation state. Metabolically healthy obese (MHO) individuals seem to be protected against cardiometabolic complications. The aim of this work was to characterize phenotypically the low-grade inflammation and the IR in MHO individuals in comparison to obese individuals with MetS and control non obese. We studied two different populations: 940 individuals from the general population of Buenos Aires and 518 individuals from the general population of Venado Tuerto; grouped in three groups: metabolically healthy non-obese individuals (MHNO), MHO and obese individuals with MetS (MSO). Inflammation was measured by the levels of hs-CRP (high-sensitivity C reactive protein), and we found that MHO presented an increase in inflammation when compared with MHNO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but they did not differ from MSO. To evaluate IR we analyzed the HOMA (Homoeostatic Model Assessment) values, and we found differences between MHO and MSO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but not between MHNO and MHO. In conclusion, MHO group would be defined as a subgroup of obese individuals with an intermediate phenotype between MHNO and MSO individuals considering HOMA, hs-CRP and central obesity. PMID:29284058

  11. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2009-11-01

    Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

  12. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration.

    PubMed

    Spielman, Lindsay J; Little, Jonathan P; Klegeris, Andis

    2014-08-15

    Obesity is a growing epidemic that contributes to several brain disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Obesity could promote these diseases through several different mechanisms. Here we review evidence supporting the involvement of two recently recognized factors linking obesity with neurodegeneration: the induction of pro-inflammatory cytokines and onset of insulin and insulin-like growth factor 1 (IGF-1) resistance. Excess peripheral pro-inflammatory mediators, some of which can cross the blood brain barrier, may trigger neuroinflammation, which subsequently exacerbates neurodegeneration. Insulin and IGF-1 resistance leads to weakening of neuroprotective signaling by these molecules and can contribute to onset of neurodegenerative diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sexual dimorphism in interleukin 17A and adipocytokines and their association with insulin resistance among obese adolescents in Yogyakarta, Indonesia.

    PubMed

    Susilowati, Rina; Sulistyoningrum, Dian Caturini; Witari, Ni Putu Diah; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina

    2016-12-01

    Pro-inflammatory cytokines interleukin 17A (IL-17), leptin, and adiponectin have been associated with obesity and insulin resistance. Moreover, differences in sex and ethnicity as well as plasma concentration of adipocytokines and cytokines have been associated with the risk of insulin resistance. This study was conducted to elucidate whether sex differences exist in the risk of insulin resistance in Indonesian adolescents and to determine how plasma leptin, adiponectin, and IL-17 predict insulin resistance. The study participants were 69 obese-overweight boys, 53 obese-overweight girls, 59 non-obese boys, and 50 non-obese girls aged 15-18 years. Insulin resistance was determined using the homeostatic model assessment of insulin resistance index. Plasma IL-17, leptin, and adiponectin were measured using ELISA. Data were analysed using one-way ANOVA and linear regression analysis. Odd ratios [ORs; 95% confidence intervals (CIs)] were analysed to estimate the risk of insulin resistance; the significance level was set at 95%. The OR (95% CI) for insulin resistance was higher in obese-overweight boys than in obese-overweight girls. The plasma IL-17 was higher in boys, whereas plasma adiponectin and leptin were significantly higher in girls. In all participants, obesity status and plasma leptin were the most efficient predictors of insulin resistance, whereas the IL-17 could not significantly predict insulin resistance. Sexual dimorphism exists in IL17 as well as leptin and adiponectin in adolescents. Plasma IL-17 cannot be used to predict insulin resistance in adolescents of both sex.

  14. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  15. High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women.

    PubMed

    Smith, Gordon I; Yoshino, Jun; Kelly, Shannon C; Reeds, Dominic N; Okunade, Adewole; Patterson, Bruce W; Klein, Samuel; Mittendorfer, Bettina

    2016-10-11

    High-protein (HP) intake during weight loss (WL) therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Soluble receptor for advanced glycation end products as a potential biomarker to predict weight loss and improvement of insulin sensitivity by a very low calorie diet of obese human subjects.

    PubMed

    Hagen, Imke; Schulte, Dominik M; Müller, Nike; Martinsen, Jessica; Türk, Kathrin; Hedderich, Jürgen; Schreiber, Stefan; Laudes, Matthias

    2015-06-01

    Obesity is associated with low-grade systemic inflammation which is thought to trigger the development of comorbidities such as type 2 diabetes. The soluble receptor for advanced glycation end products (sRAGE) belongs to the innate immune system and has been linked to obesity, recently. The aim of the present study was to examine whether serum sRAGE concentrations are related to the grade of weight loss and improvement of insulin resistance due to a very low calorie diet (VLCD). 22 severe obese subjects (Median Body Mass Index (BMI): 44.5kg/m(2)) were included in a dietary intervention study of 6month, consisting of a very low calorie formula diet phase (VLCD: 800kcal/d) for 12 weeks and a following 12 week weight maintenance phase. Fasting glucose, fasting insulin, adiponectin, leptin and sRAGE were determined from sera. Insulin sensitivity was estimated by Homeostasis Model Assessment (HOMA) index and leptin-to-adiponectin-ratio (LAR). Mean body weight reduction by VLCD accounted to 21.7kg with a significant improvement of insulin resistance. At baseline, sRAGE serum levels were significantly inversely related to BMI (rS=-0.642, p=0.001) and HOMA (rS=-0.419, p=0.041). Of interest, sRAGE serum levels at baseline were significantly lower in study subjects with greater reduction of BMI (p=0.017). In addition, a significantly greater HOMA reduction was observed in subjects with lower sRAGE serum levels at baseline (p=0.006). Finally, correlation analysis revealed, that changes of sRAGE serum levels were significantly correlated to changes of BMI (rS=-0.650, p=0.022) during intervention. Anti-inflammatory sRAGE might be a potential future biomarker to predict weight loss and improvement of insulin resistance by a VLCD whereby lower baseline sRAGE serum levels indicate a better outcome of the dietary intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Resistant starch can improve insulin sensitivity independently of the gut microbiota.

    PubMed

    Bindels, Laure B; Segura Munoz, Rafael R; Gomes-Neto, João Carlos; Mutemberezi, Valentin; Martínez, Inés; Salazar, Nuria; Cody, Elizabeth A; Quintero-Villegas, Maria I; Kittana, Hatem; de Los Reyes-Gavilán, Clara G; Schmaltz, Robert J; Muccioli, Giulio G; Walter, Jens; Ramer-Tait, Amanda E

    2017-02-07

    Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice with and without a microbiota. RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS. This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods.

  18. Defective Insulin Signalling, Mediated by Inflammation, Connects Obesity to Alzheimer Disease; Relevant Pharmacological Therapies and Preventive Dietary Interventions.

    PubMed

    Rodriguez-Casado, Arantxa; Toledano-Díaz, Adolfo; Toledano, Adolfo

    2017-01-01

    Recent evidence suggests that obesity, besides being a risk factor for cardiovascular events, also increases the risk of Alzheimer's disease. Insulin resistance is common in all cases of obesity and appears to be the linkage between both diseases. Obesity, often associated with excessive fat and sugar intake, represents a preclinical stage toward insulin resistance during which nutrition intervention is likely to have maximum effect. In this way, healthy lifestyles lifetime to prevent obesity-related modifiable risk factors such as inflammation, oxidative stress and metabolic disorders could be simultaneously beneficial for preserving cognition and controlling the Alzheimer's disease. This review relates extensive research literature on facts linking nutrients and dietary patterns to obesity and Alzheimer's disease. In addition briefly presents molecular mechanisms involved in obesity- induced insulin resistance and the contribution of peripheral inflammatory and defective insulin signalling pathways, as well as ectopic lipids accumulation to Alzheimer's development through brain inflammation, neuronal insulin resistance, and cognitive dysfunction seen in Alzheimer's disease. The work relates current and emerging pharmacological and non-pharmacological therapies for the management of obesity, insulin resistance and Alzheimer's considering them as disorders with common molecular features. The findings of this review validate the importance of some nutritional interventions as possible approach to prevent or delay simultaneously progression of Alzheimer's disease and obesity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty.

    PubMed

    Tobisch, B; Blatniczky, L; Barkai, L

    2015-02-01

    The prevalence of obesity with concomitant increasing risk for having cardiometabolic diseases is rising in the childhood population. Insulin resistance has a key role in metabolic changes in these children. Insulin levels elevate as puberty commences in every individual. Children with increased risk for cardiometabolic diseases show significant differences in insulin levels even before the onset of puberty compared with those without risks. The pattern of appearance of dyslipidaemia also varies in children with risk factors even in the pre-pubertal group from those without risk. Children with metabolic syndrome display considerably pronounced changes in their metabolic parameters before the onset of puberty, which become more pronounced as puberty passes. Insulin resistance (IR) has a key role in the metabolic changes in obese children. In commencing puberty, the insulin levels elevate. It is not clear, however, how insulin levels develop if the metabolic syndrome appears. Metabolic changes were assessed in obese children before, during and after puberty to analyse the relationship between IR and puberty in subjects with and without metabolic syndrome. Three hundred thirty-four obese children (5-19 years) attended the study. The criteria of the International Diabetes Federation were used to assess the presence of cardiometabolic risks (CMRs). Subjects with increased CMR were compared with those without risk (nCMR). Pubertal staging, lipid levels, plasma glucose and insulin levels during oral glucose tolerance test were determined in each participant. IR was expressed by homeostasis model assessment (HOMA-IR) and the ratio of glucose and insulin areas under the curve (AUC-IR). Significantly higher AUC-IR were found in pre-pubertal CMR children compared with nCMR subjects (11.84 ± 1.03 vs. 8.00 ± 0.69; P < 0.01), but no difference was discovered during and after puberty. HOMA-IR differs between CMR and nCMR only in post-puberty (6.03 ± 1.26 vs. 2

  20. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.

    PubMed

    Heianza, Yoriko; Sun, Dianjianyi; Li, Xiang; DiDonato, Joseph A; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-06-02

    Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (p interaction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. NCT00072995. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  1. Assessment of insulin sensitivity by the hyperinsulinemic euglycemic clamp: Comparison with the spectral analysis of photoplethysmography.

    PubMed

    De Souza, Aglecio Luiz; Batista, Gisele Almeida; Alegre, Sarah Monte

    2017-01-01

    We compare spectral analysis of photoplethysmography (PTG) with insulin resistance measured by the hyperinsulinemic euglycemic clamp (HEC) technique. A total of 100 nondiabetic subjects, 43 men and 57 women aged 20-63years, 30 lean, 42 overweight and 28 obese were enrolled in the study. These patients underwent an examination with HEC, and an examination with the PTG spectral analysis and calculation of the PTG Total Power (PTG-TP). Receiver-operating characteristic (ROC) curves were constructed to determine the specificity and sensitivity of PTG-TP in the assessment of insulin resistance. There is a moderate correlation between insulin sensitivity (M-value) and PTG-TP (r=- 0.64, p<0.0001). The ROC curves showed that the most relevant cutoff to the whole study group was a PTG-TP>406.2. This cut-off had a sensitivity=95.7%, specificity =84,4% and the area under the ROC curve (AUC)=0.929 for identifying insulin resistance. All AUC ROC curve analysis were significant (p<0.0001). The use of the PTG-TP marker measured from the PTG spectral analysis is a useful tool in screening and follow up of IR, especially in large-scale studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Dynamic insulin sensitivity index: importance in diabetes.

    PubMed

    Pillonetto, Gianluigi; Caumo, Andrea; Cobelli, Claudio

    2010-03-01

    The classical minimal model (MM) index of insulin sensitivity, S(I), does not account for how fast or slow insulin action takes place. In a recent work, we proposed a new dynamic insulin sensitivity index, S(I)(D), which is able to take into account the dynamics of insulin action as well. The new index is a function of two MM parameters, namely S(I) and p(2), the latter parameter governing the speed of rise and decay of insulin action. We have previously shown that in normal glucose tolerant subjects S(I)(D) provides a more comprehensive picture of insulin action on glucose metabolism than S(I). The aim of this study is to show that resorting to S(I)(D) rather S(I) is even more appropriate when studying diabetic patients who have a low and slow insulin action. We analyzed insulin-modified intravenous glucose tolerance test studies performed in 10 diabetic subjects and mixed meal glucose tolerance test studies exploiting the triple tracer technique in 14 diabetic subjects. We derived both S(I) and S(I)(D) resorting to Bayesian and Fisherian identification strategies. The results show that S(I)(D) is estimated more precisely than S(I) when using the Bayesian approach. In addition, the less labor-intensive Fisherian approach can still be used to obtain reliable point estimates of S(I)(D) but not of S(I). These results suggest that S(I)(D) yields a comprehensive, precise, and cost-effective assessment of insulin sensitivity in subjects with impaired insulin action like impaired glucose tolerant subjects or diabetic patients.

  3. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity

    PubMed Central

    Kelly, Karen R.; Brooks, Latina M.; Solomon, Thomas P. J.; Kashyap, Sangeeta R.; O'Leary, Valerie B.; Kirwan, John P.

    2009-01-01

    Aging and obesity are characterized by decreased β-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% V̇o2 max) combined with a eucaloric (EX, n = 10) or hypocaloric (EX-HYPO, pre: 1,945 ± 190, post: 1,269 ± 70, kcal/day; n = 9) diet on the GIP response to glucose in older (66.8 ± 1.5 yr), obese (34.4 ± 1.7 kg/m2) adults with impaired glucose tolerance. In addition to GIP, plasma PYY3–36, insulin, and glucose responses were measured during a 3-h, 75-g oral glucose tolerance test. Both interventions led to a significant improvement in V̇o2 max (P < 0.05). Weight loss (kg) was significant in both groups but was greater after EX-HYPO (−8.3 ± 1.1 vs. −2.8 ± 0.5, P = 0.002). The glucose-stimulated insulin response was reduced after EX-HYPO (P = 0.02), as was the glucose-stimulated GIP response (P < 0.05). Furthermore, after the intervention, changes in insulin (ΔI0–30/ΔG0–30) and GIP (Δ0–30) secretion were correlated (r = 0.69, P = 0.05). The PYY3–36 (Δ0–30) response to glucose was increased after both interventions (P < 0.05). We conclude that 1) a combination of caloric restriction and exercise reduces the GIP response to ingested glucose, 2) GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions, and 3) the increased PYY3–36 response represents an improved capacity to regulate satiety and potentially body weight in older, obese, insulin-resistant adults. PMID:19351807

  4. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity.

    PubMed

    Kelly, Karen R; Brooks, Latina M; Solomon, Thomas P J; Kashyap, Sangeeta R; O'Leary, Valerie B; Kirwan, John P

    2009-06-01

    Aging and obesity are characterized by decreased beta-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% Vo(2 max)) combined with a eucaloric (EX, n = 10) or hypocaloric (EX-HYPO, pre: 1,945 +/- 190, post: 1,269 +/- 70, kcal/day; n = 9) diet on the GIP response to glucose in older (66.8 +/- 1.5 yr), obese (34.4 +/- 1.7 kg/m(2)) adults with impaired glucose tolerance. In addition to GIP, plasma PYY(3-36), insulin, and glucose responses were measured during a 3-h, 75-g oral glucose tolerance test. Both interventions led to a significant improvement in Vo(2 max) (P < 0.05). Weight loss (kg) was significant in both groups but was greater after EX-HYPO (-8.3 +/- 1.1 vs. -2.8 +/- 0.5, P = 0.002). The glucose-stimulated insulin response was reduced after EX-HYPO (P = 0.02), as was the glucose-stimulated GIP response (P < 0.05). Furthermore, after the intervention, changes in insulin (DeltaI(0-30)/DeltaG(0-30)) and GIP (Delta(0-30)) secretion were correlated (r = 0.69, P = 0.05). The PYY(3-36) (Delta(0-30)) response to glucose was increased after both interventions (P < 0.05). We conclude that 1) a combination of caloric restriction and exercise reduces the GIP response to ingested glucose, 2) GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions, and 3) the increased PYY(3-36) response represents an improved capacity to regulate satiety and potentially body weight in older, obese, insulin-resistant adults.

  5. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  6. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease.

    PubMed

    Ryan, Marno C; Itsiopoulos, Catherine; Thodis, Tania; Ward, Glenn; Trost, Nicholas; Hofferberth, Sophie; O'Dea, Kerin; Desmond, Paul V; Johnson, Nathan A; Wilson, Andrew M

    2013-07-01

    Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the population and signifies increased risk of liver fibrosis and cirrhosis, type 2 diabetes, and cardiovascular disease. Therapies are limited. Weight loss is of benefit but is difficult to maintain. We aimed at examining the effect of the Mediterranean diet (MD), a diet high in monounsaturated fatty acids, on steatosis and insulin sensitivity, using gold standard techniques. Twelve non-diabetic subjects (6 Females/6 Males) with biopsy-proven NAFLD were recruited for a randomised, cross-over 6-week dietary intervention study. All subjects undertook both the MD and a control diet, a low fat-high carbohydrate diet (LF/HCD), in random order with a 6-week wash-out period in- between. Insulin sensitivity was determined with a 3-h hyperinsulinemic-euglycemic clamp study and hepatic steatosis was assessed with localized magnetic resonance (1)H spectroscopy ((1)H-MRS). At baseline, subjects were abdominally obese with elevated fasting concentrations of glucose, insulin, triglycerides, ALT, and GGT. Insulin sensitivity at baseline was low (M=2.7 ± 1.0 mg/kg/min(-1)). Mean weight loss was not different between the two diets (p=0.22). There was a significant relative reduction in hepatic steatosis after the MD compared with the LF/HCD: 39 ± 4% versus 7 ± 3%, as measured by (1)H-MRS (p=0.012). Insulin sensitivity improved with the MD, whereas after the LF/HCD there was no change (p=0.03 between diets). Even without weight loss, MD reduces liver steatosis and improves insulin sensitivity in an insulin-resistant population with NAFLD, compared to current dietary advice. This diet should be further investigated in subjects with NAFLD. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity

    PubMed Central

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B

    2014-01-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. PMID:24947364

  8. Association between insulin resistance and preeclampsia in obese non-diabetic women receiving metformin.

    PubMed

    Balani, Jyoti; Hyer, Steve; Syngelaki, Argyro; Akolekar, Ranjit; Nicolaides, Kypros H; Johnson, Antoinette; Shehata, Hassan

    2017-12-01

    To examine whether the reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is mediated by changes in insulin resistance. This was a secondary analysis of obese pregnant women in a randomised trial (MOP trial). Fasting plasma glucose and insulin were measured in 384 of the 400 women who participated in the MOP trial. Homeostasis model assessment of insulin resistance (HOMA-IR) was compared in the metformin and placebo groups and in those that developed preeclampsia versus those that did not develop preeclampsia. At 28 weeks, median HOMA-IR was significantly lower in the metformin group. Logistic regression analysis demonstrated that there was a significant contribution in the prediction of preeclampsia from maternal history of chronic hypertension and gestational weight gain, but not HOMA-IR either at randomisation ( p  = 0.514) or at 28 weeks ( p  = 0.643). Reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is unlikely to be due to changes in insulin resistance.

  9. Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy Iranian adults: Tehran Lipid and Glucose Study.

    PubMed

    Tohidi, Maryam; Ghasemi, Asghar; Hadaegh, Farzad; Derakhshan, Arash; Chary, Abdolreza; Azizi, Fereidoun

    2014-04-01

    Increased insulin concentration is a surrogate for insulin resistance and early assessment of fasting insulin may help in identifying those who are potentially at high risk of type 2 diabetes, hypertension, and cardiovascular disease. The aim of this study was to determine age- and sex-related reference values for serum insulin and insulin resistance/sensitivity indices in Iranian subjects. Serum insulin levels were measured by electrochemiluminescence immunoassay in 5786 participants of the Tehran Lipid and Glucose Study. After application of exclusion criteria, 309 non-obese healthy subjects (124 men and 185 women), aged 24-83 y, were included. The International Federation of Clinical Chemistry guidelines (non-parametric method) and the robust method were used for determining reference values. Overall 95% reference values for fasting insulin were 1.61-11.37, 2.34-11.98, and 2.11-12.49 μU/mL in men, women, and total population respectively. Mean fasting insulin concentration showed a decreasing trend with age in both genders (p for trend ≤0.001). Age, waist circumference, and systolic blood pressures were biological determinants of fasting insulin in both genders; in addition, insulin was modulated by triglycerides in men and fasting glucose in women. Reference intervals for HOMA1-IR, HOMA2-IR, and QUICKI were 0.63-2.68, 0.40-1.80, and 0.33-0.42, respectively. This study presents the first set of reference values for fasting serum insulin to be 2-12 μU/mL for both genders in a healthy sample of Iranian adults along with the reference values for insulin resistance/sensitivity indices. These values could be used for identifying subjects with insulin resistance in epidemiological and clinical research. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  11. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    PubMed

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  12. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans

    PubMed Central

    Newsom, Sean A.; Brozinick, Joseph T.; Kiseljak-Vassiliades, Katja; Strauss, Allison N.; Bacon, Samantha D.; Kerege, Anna A.; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.; Perreault, Leigh

    2016-01-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = −0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901

  13. Fatty liver disease, glucose tolerance and insulin resistance in obese adolescents.

    PubMed

    Slyper, A H; Rosenberg, H; Kabra, A; Huang, W-M; Blech, B; Matsumura, M M

    2015-12-01

    Adult studies suggest that intra-hepatic fat predicts 2-h blood glucose levels and type 2 diabetes, and may have a role in the development of insulin resistance. Our study objective was to explore relationships between intra-hepatic fat and (i) blood glucose levels and (ii) insulin resistance determined by homeostasis model assessment (HOMA) in a group of obese adolescents. Subjects were 61 obese non-diabetic male and female volunteers aged 12-18 years inclusive with a body mass index >95th percentile for age and 2-h blood glucose <200 mg dL(-1) . Each subject underwent 2-h glucose tolerance testing and measurement of haemoglobin A1c, ultrasensitive C-reactive protein and fasting insulin. Visceral, subcutaneous abdominal and intra-hepatic fat were determined by magnetic resonance imaging. Intra-hepatic fat was measured by gradient echo chemical shift imaging. Alanine aminotransferase levels and hepatic phase difference were not significant correlates of fasting or 2-h glucose. In a multiple regression model including hepatic phase difference and visceral fat volume, visceral fat volume was the sole predictor of HOMA. This study provides no support to the notion that intra-hepatic fat has a role in the regulation of fasting blood glucose, 2-h postprandial blood glucose or systemic insulin resistance. © 2014 World Obesity.

  14. Relation of insulin resistance to neurocognitive function and electroencephalography in obese children.

    PubMed

    Akın, Onur; Eker, İbrahim; Arslan, Mutluay; Yavuz, Süleyman Tolga; Akman, Sevil; Taşçılar, Mehmet Emre; Ünay, Bülent

    2017-10-26

    Childhood obesity may lead to neuronal impairment in both the peripheral and the central nervous system. This study aimed to investigate the impact of obesity and insulin resistance (IR) on the central nervous system and neurocognitive functions in children. Seventy-three obese children (38 male and 35 female) and 42 healthy children (21 male and 21 female) were recruited. Standard biochemical indices and IR were evaluated. The Wechsler Intelligence Scale for Children-Revised (WISC-R) and electroencephalography (EEG) were administered to all participants. The obese participants were divided into two groups based on the presence or absence of IR, and the data were compared between the subgroups. Only verbal scores on the WISC-R in the IR+ group were significantly lower than those of the control and IR- groups. There were no differences between the groups with respect to other parameters of the WISC-R or the EEG. Verbal scores of the WISC-R were negatively correlated with obesity duration and homeostatic model assessment-insulin resistance (HOMA-IR) values. EEGs showed significantly more frequent 'slowing during hyperventilation' (SDHs) in obese children than non-obese children. Neurocognitive functions, particularly verbal abilities, were impaired in obese children with IR. An early examination of cognitive functions may help identify and correct such abnormalities in obese children.

  15. Fasting insulin sensitivity indices are not better than routine clinical variables at predicting insulin sensitivity among Black Africans: a clamp study in sub-Saharan Africans

    PubMed Central

    2014-01-01

    Background We aimed to evaluate the predictive utility of common fasting insulin sensitivity indices, and non-laboratory surrogates [BMI, waist circumference (WC) and waist-to-height ratio (WHtR)] in sub-Saharan Africans without diabetes. Methods We measured fasting glucose and insulin, and glucose uptake during 80/mU/m2/min euglycemic clamp in 87 Cameroonians (51 men) aged (SD) 34.6 (11.4) years. We derived insulin sensitivity indices including HOMA-IR, quantitative insulin sensitivity check index (QUICKI), fasting insulin resistance index (FIRI) and glucose-to-insulin ratio (GIR). Indices and clinical predictors were compared to clamp using correlation tests, robust linear regressions and agreement of classification by sex-specific thirds. Results The mean insulin sensitivity was M = 10.5 ± 3.2 mg/kg/min. Classification across thirds of insulin sensitivity by clamp matched with non-laboratory surrogates in 30-48% of participants, and with fasting indices in 27-51%, with kappa statistics ranging from −0.10 to 0.26. Fasting indices correlated significantly with clamp (/r/=0.23-0.30), with GIR performing less well than fasting insulin and HOMA-IR (both p < 0.02). BMI, WC and WHtR were equal or superior to fasting indices (/r/=0.38-0.43). Combinations of fasting indices and clinical predictors explained 25-27% of variation in clamp values. Conclusion Fasting insulin sensitivity indices are modest predictors of insulin sensitivity measured by euglycemic clamp, and do not perform better than clinical surrogates in this population. PMID:25106496

  16. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome.

    PubMed

    Malin, Steven K; Huang, Hazel; Mulya, Anny; Kashyap, Sangeeta R; Kirwan, John P

    2013-09-01

    Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P<0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P<0.001) and decreased HOMA-IR by 15% (P<0.05). Training decreased plasma DPP-4 by 10% (421.8±30.1 vs. 378.3±32.5ng/ml; P<0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r=-0.59; P<0.04), HOMA-IR (r=0.59; P<0.04) and fat oxidation (r=-0.54; P<0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r=-0.64; P<0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance.

    PubMed

    Frank, Nicholas; Elliott, Sarah B; Brandt, Laura E; Keisler, Duane H

    2006-05-01

    To compare obese horses with insulin resistance (IR) with nonobese horses and determine whether blood resting glucose, insulin, leptin, and lipid concentrations differed between groups and were correlated with combined glucose-insulin test (CGIT) results. 7 obese adult horses with IR (OB-IR group) and 5 nonobese mares. Physical measurements were taken, and blood samples were collected after horses had acclimated to the hospital for 3 days. Response to insulin was assessed by use of the CGIT, and maintenance of plasma glucose concentrations greater than the preinjection value for > or = 45 minutes was used to define IR. Area under the curve values for glucose (AUC(g)) and insulin (AUC(i)) concentrations were calculated. Morgan, Paso Fino, Quarter Horse, and Tennessee Walking Horse breeds were represented in the OB-IR group. Mean neck circumference and BCS differed significantly between groups and were positively correlated with AUC values. Resting insulin and leptin concentrations were 6 and 14 times as high, respectively, in the OB-IR group, compared with the nonobese group, and were significantly correlated with AUC(g) and AUC(i). Plasma nonesterified fatty acid, very low-density lipoprotein, and high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly higher (86%, 104%, and 29%, respectively) in OB-IR horses, and HDL-C concentrations were positively correlated with AUC values. Measurements of neck circumference and resting insulin and leptin concentrations can be used to screen obese horses for IR. Dyslipidemia is associated with IR in obese horses.

  18. Obese children experience higher plantar pressure and lower foot sensitivity than non-obese.

    PubMed

    da Rocha, Emmanuel Souza; Bratz, Denise Tiane Klein; Gubert, Larissa Colaço; de David, Ana; Carpes, Felipe P

    2014-08-01

    Children obesity is a risk factor for several dysfunctions and diseases, with negative effects on the morphology of the locomotor system, plantar pressure and body stability. A relationship between postural control and sensorimotor information has been assumed. However, there is few data on the effects of children obesity on the availability of sensorial information from the foot during standing. Twenty obese and twenty non-obese children were evaluated for foot sensitivity and plantar pressure during unipedal and bipedal stance. Data were compared between obese and non-obese participants, between foot regions and between legs. Obese children experiences higher plantar pressure and have lower foot sensitivity than non-obese. Additionally, obese children had similar sensitivity for different foot regions, as compared to the non-obese. Children obesity negatively influences foot sensitivity. Bipedal stance seemed more sensitive to differentiate between obese and non-obese. Higher plantar pressure and lower foot sensitivity in obese children may affect performance of weight bearing activities, contribute to higher risk of foot injuries and have potential implication for children footwear design and clinical physical examination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Common Genetic Variation in the Human FNDC5 Locus, Encoding the Novel Muscle-Derived ‘Browning’ Factor Irisin, Determines Insulin Sensitivity

    PubMed Central

    Staiger, Harald; Böhm, Anja; Scheler, Mika; Berti, Lucia; Machann, Jürgen; Schick, Fritz; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Weigert, Cora; Krook, Anna; Häring, Hans-Ulrich; de Angelis, Martin Hrabě

    2013-01-01

    Aims/hypothesis Recently, the novel myokine irisin was described to drive adipose tissue ‘browning’, to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs) in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release). Methods A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. Results After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344’s effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. Conclusions/interpretation This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin. PMID:23637927

  20. Prevention of diabetes and cardiovascular disease in women with PCOS: treatment with insulin sensitizers.

    PubMed

    Sharma, Susmeeta T; Nestler, John E

    2006-06-01

    Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in United States, affecting 6-10% of females in the reproductive age group. Recent studies have shown that insulin resistance plays an important role in the pathogenesis of PCOS. Traditionally, management of PCOS consisted mainly of ovulation induction, treatment of acne and hirsutism, and prevention of endometrial cancer. However, with mounting evidence showing that PCOS is associated with dysmetabolic syndrome and an increased risk for developing diabetes and heart disease, this can no longer be our sole focus. Current data support a strong recommendation that women with PCOS should undergo comprehensive evaluation for diabetes and recognized cardiovascular risk factors and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many obese women with PCOS find weight loss difficult to achieve and maintain, and this is not an option for lean women with PCOS. For these reasons, insulin-sensitizing drugs are proving to be a promising and unique therapeutic option for chronic treatment of PCOS.

  1. Add on Exenatide Treatment is Beneficial in Poorly Controlled Obese Type 2 Diabetics under Intensive Insulin Regimens.

    PubMed

    Sönmez, Alper; Dinç, Mustafa; Taşlıpınar, Abdullah; Aydoğdu, Aydogan; Meriç, Coskun; Başaran, Yalcin; Haymana, Cem; Demir, Orhan; Yılmaz, İlker; Azal, Ömer

    2017-04-01

    Background: Intensive insulin treatment is bothersome in obese patients with type 2 diabetes mellitus. High insulin dosages further increase weight gain and the risk of hypoglycemia. Glucagon like peptide-1 receptor agonists decrease the insulin need, cause weight loss and reduce the risk of hypoglycemia. There is limited data about the effect of exenatide on obese diabetics under intensive insulin regimens. Methods: This retrospective case series report the clinical outcomes of 23 obese (13 morbidly obese) patients with uncontrolled type 2 diabetes mellitus (Age=59±10.44 years, body mass index 41.1±6.8 kg/m 2 , HbA1c 9.9±1.5%), under high dose (94.1±39.6 unit) intensive insulin. Exenatide twice daily was added for a mean follow-up period of 11.22±7.01 (3-30) months. Intensive insulin regimens were continued in 7 patients while the others were switched to basal insulin during the follow-up. Results: During the follow-up, mean HbA1c levels of the patients significantly improved (p=0.019), along with the significant decrease in body mass index and the total insulin need (p<0.001 for both). Baseline insulin dosages were significantly higher in the intensive regimen group (p=0.013) while other demographical and clinical characteristics were similar. No significant difference was present between the groups regarding the alterations of HbA1c, body mass index and the reduction in total insulin dosages. Conclusion: Add on exenatide appears to be a rational treatment modality in uncontrolled obese patients with type 2 diabetes mellitus despite intensive insulin regimens. Further prospective randomized studies with longer follow-up periods are recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study.

    PubMed

    Brochu, Martin; Mathieu, Marie-Eve; Karelis, Antony D; Doucet, Eric; Lavoie, Marie-Eve; Garrel, Dominique; Rabasa-Lhoret, Rémi

    2008-05-01

    Some insulin-resistant obese postmenopausal (PM) women are characterized by an android body fat distribution type and higher levels of lean body mass (LBM) compared to insulin-sensitive obese PM women. This study investigates the independent contribution of LBM to the detrimental effect of visceral fat (VF) levels on the metabolic profile. One hundred and three PM women (age: 58.0+/-4.9 years) were studied and categorized in four groups on the basis of their VF (higher vs. lower) and lean BMI (LBMI=LBM (kg)/height (m2); higher vs. lower). Measures included: fasting lipids, glucose homeostasis (by euglycemic/hyperinsulinemic clamp technique and 2-h oral glucose tolerance test (OGTT)), C-reactive protein (CRP) levels, fat distribution (by computed tomography (CT) scan), and body composition (by dual-energy X-ray absorptiometry). Women in the higher VF/higher LBMI group had lower glucose disposal and higher plasma insulin levels compared to the other groups. They also had higher plasma CRP levels than the women in the lower VF/lower LBMI group. VF was independently associated with insulin levels, measures of glucose disposal, and CRP levels (P<0.05). LBMI was also independently associated with insulin levels, glucose disposal, and CRP levels (P<0.05). Finally, significant interactions were observed between LBMI and VF levels for insulin levels during the OGTT and measures of glucose disposal (P<0.05). In conclusion, VF and LBMI are both independently associated with alterations in glucose homeostasis and CRP levels. The contribution of VF to insulin resistance seems to be exacerbated by increased LBM in PM women.

  3. The effect of dietary fiber and other factors on insulin response: role in obesity.

    PubMed

    Ullrich, I H; Albrink, M J

    1985-07-01

    Epidemiologic evidence favors the hypothesis that obesity may result from the fiber-depleted diet of industrialized societies. Since hyperinsulinemia is a universal characteristic and perhaps causal of obesity, the possibility is considered that dietary factors causing excess insulin secretion might lead to obesity. Dietary glucose causes a slightly greater insulin rise than cooked starch containing an equal amount of carbohydrate, and high fiber starchy foods cause a much lesser insulin response than does glucose in solution. Doubling the dose of carbohydrate in a meal causes only a small increase in glucose response but a large increase in insulin response. Dietary fiber could act by displacing some of the carbohydrate that would normally be absorbable in the small intestine, or could translocate the carbohydrate to a point lower in the intestinal tract where less effect on insulin secretion would be observed. Evidence is presented that a higher fiber diet is associated with a higher concentration of fasting circulating free fatty acids, a lesser post-cibal decrease in circulating free fatty acids and triglycerides and less chronic increase in fasting triglycerides than a low fiber diet. These differences are associated with a lesser insulin response to high fiber meals. The extreme fluctuations between the fed and fasted states seen with low fiber diets are thus dampened by high fiber diets. The less complete inhibition of lipolysis during the fed state, and more intense lipolysis during fasting, suggested by the above data, might tend to prevent obesity. The mechanisms of the lesser insulin response to high rather than low fiber meals are not known, but the possibility that dietary fiber decreases the GIP response is considered.

  4. Insulin administered by needle-free jet injection corrects marked hyperglycaemia faster in overweight or obese patients with diabetes.

    PubMed

    de Wit, H M; Engwerda, E E C; Tack, C J; de Galan, B E

    2015-11-01

    To test whether jet injection of insulin resulted in faster correction of marked hyperglycaemia than when insulin is injected by a conventional pen in patients with diabetes. Adult, overweight or obese (BMI ≥25 and ≤40 kg/m(2)) patients with type 1 diabetes (n = 10) or insulin-treated type 2 diabetes (n = 10) were enrolled in a randomized, controlled, crossover study. On two separate occasions, patients were instructed to reduce insulin dose(s) to achieve marked hyperglycaemia (18-23 mmol/l). Subsequently, insulin aspart was administered either by jet injection or by conventional pen, in a dose based on estimated individual insulin sensitivity. Pharmacodynamic and pharmacokinetic profiles were derived from plasma glucose and insulin levels, measured for 6 h after injection. After conventional injection, plasma glucose concentration dropped by ≥10 mmol/l after 192.5 ± 13.6 min. The jet injector advanced this time to 147.9 ± 14.4 min [difference 44.6 (95% confidence interval 4.3, 84.8); P = 0.03], except in 3 patients who failed to reach this endpoint. The time advantage exceeded 1.5 h in patients with a BMI above the median. Jet injection also reduced the hyperglycaemic burden during the first 2 h (2042 ± 37.2 vs 2168 ± 26.1 mmol/min; P = 0.01) and the time to peak insulin levels (40.5 ± 3.2 vs 76.8 ± 7.7 min; P < 0.001), but did not increase the risk for hypoglycaemia. Administration of rapid-acting insulin by jet injection results in faster correction of marked hyperglycaemia in overweight or obese patients with insulin-requiring diabetes. © 2015 John Wiley & Sons Ltd.

  5. Effects of short-term training on insulin sensitivity and skeletal muscle glucose metabolism in standardbred horses.

    PubMed

    Stewart-Hunt, L; Geor, R J; McCutcheon, L J

    2006-08-01

    still evident after 5 days of inactivity. Insulin resistance in equids has been associated with obesity and predisposition to laminitis. Regular physical activity may mitigate risk of these conditions via enhancement of insulin sensitivity and/or control of bodyweight.

  6. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2008-09-01

    Exaggerated and prolonged postprandial triglyceride concentrations are associated with numerous conditions related to insulin resistance, including obesity, type 2 diabetes, and the metabolic syndrome. Although dietary fats profoundly affect postprandial hypertriglyceridemia, limited data exist regarding their effects on postprandial glucose homeostasis. We sought to determine whether postprandial glucose homeostasis is modulated distinctly by high-fat meals enriched in saturated fatty acids (SFAs) or monounsaturated fatty acids (MUFAs). Normotriglyceridemic subjects with normal fasting glucose and normal glucose tolerance were studied. Blood samples were collected over the 8 h after ingestion of a glucose and triglyceride tolerance test meal (GTTTM) in which a panel of dietary fats with a gradual change in the ratio of MUFAs to SFAs was included. On 5 separate occasions, basal and postprandial concentrations of glucose, insulin, triglyceride, and free fatty acids (FFAs) were measured. High-fat meals increased the postprandial concentrations of insulin, triglycerides, and FFAs, and they enhanced postprandial beta cell function while decreasing insulin sensitivity (as assessed with different model-based and empirical indexes: insulinogenic index, insulinogenic index/homeostasis model assessment of insulin resistance, area under the curve for insulin/area under the curve for glucose, homeostasis model assessment for beta cell function, and GTTTM-determined insulin sensitivity, oral glucose insulin sensitivity, and the postprandial Belfiore indexes for glycemia and blood FFAs. These effects were significantly ameliorated, in a direct linear relation, when MUFAs were substituted for SFAs. The data presented here suggest that beta cell function and insulin sensitivity progressively improve in the postprandial state as the proportion of MUFAs with respect to SFAs in dietary fats increases.

  7. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  8. Loss of prion protein is associated with the development of insulin resistance and obesity.

    PubMed

    de Brito, Giovanna; Lupinacci, Fernanda C; Beraldo, Flávio H; Santos, Tiago G; Roffé, Martín; Lopes, Marilene H; de Lima, Vladmir C; Martins, Vilma R; Hajj, Glaucia N

    2017-08-17

    Prion protein (PrP C ) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrP C in the response to insulin and obesity development. Two independent PrP C knockout (KO) and one PrP C overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrP C KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrP C KO mice and increased in TG20 animals. PrP C KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrP C reflects susceptibility to the development of insulin resistance and metabolic syndrome. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Association of serum leptin and adiponectin with anthropomorphic indices of obesity, blood lipids and insulin resistance in a Sub-Saharan African population.

    PubMed

    Ayina, Clarisse Noël A; Noubiap, Jean Jacques N; Etoundi Ngoa, Laurent Serge; Boudou, Philippe; Gautier, Jean François; Mengnjo, Michel Karngong; Mbanya, Jean Claude; Sobngwi, Eugene

    2016-05-17

    -IR disappeared; BMI and WC were significantly associated with leptin (β = 0.18, p = 0.04 & β = 0.19, p = 0.02 respectively). This study, which includes a population who was not receiving potentially confounding medications, confirms the associations previously observed of adiponectin with reduced adiposity especially central adiposity and improved insulin sensitivity. Confirmatory associations were also observed between leptin and obesity, blood lipids and insulin resistance for the first time in an African population. Gender was significant covariate interacting with insulin sensitivity/insulin resistance and obesity indexes associations in this population.

  10. Effect of fat loss on arterial elasticity in obese adolescents with clinical insulin resistance: RESIST study.

    PubMed

    Ho, Mandy; Gow, Megan; Baur, Louise A; Benitez-Aguirre, Paul Z; Tam, Charmaine S; Donaghue, Kim C; Craig, Maria E; Cowell, Chris T; Garnett, Sarah P

    2014-10-01

    Reduced arterial elasticity contributes to an obesity-related increase in cardiovascular risk in adults. To evaluate the effect of fat loss on arterial elasticity in obese adolescents at risk of type 2 diabetes. A secondary data analysis of the RESIST study was performed in two hospitals in Sydney, Australia. The study included 56 subjects (ages, 10 to 17 y; 25 males) with prediabetes and/or clinical features of insulin resistance. A 12-month lifestyle plus metformin intervention. Arterial elasticity and systemic vascular resistance were measured using radial tonometry pulse contour analysis, percentage body fat (%BF) was measured by dual-energy x-ray absorptiometry, and insulin sensitivity index was derived from an oral glucose tolerance test and lipids. Adolescents (n = 31) with decreased %BF (mean change [range], -4.4% [-18.3 to -0.01%]) after the intervention had significant increases in the mean large arterial elasticity index (mean change [95%CI], 5.1 [1.9 to 8.2] mL/mm Hg * 10; P = .003) and insulin sensitivity index (0.5 [0.1 to 0.9]; P = .010) and a decrease in systemic vascular resistance (-82 [-129 to -35] dyne * s * cm(-5); P = .001). There were no significant changes in these parameters in adolescents who increased their %BF. Nor was there any significant change in the mean small arterial elasticity index in either group. Long-term follow-up of these adolescents is warranted to assess whether the observed changes in vascular elasticity will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  11. Leptin Receptor Gene Variant rs11804091 Is Associated with BMI and Insulin Resistance in Spanish Female Obese Children: A Case-Control Study

    PubMed Central

    Rupérez, Azahara I.; Gil-Campos, Mercedes; Leis, Rosaura; Cañete, Ramón; Tojo, Rafael

    2017-01-01

    Leptin is an endocrine hormone that has a critical role in body weight homoeostasis and mediates its effects via the leptin receptor (LEPR). Common polymorphisms in the genes coding leptin receptors have been associated with metabolic abnormalities. We assessed the association of 28 LEPR polymorphisms with body mass index (BMI) and their relationship with obesity-related phenotypes, inflammation and cardiovascular disease risk biomarkers. A multicentre case-control study was conducted in 522 children (286 with obesity and 236 with normal-BMI). All anthropometric, metabolic factors and biomarkers were higher in children with obesity except apolipoprotein (Apo)-AI, cholesterol, high-density lipoprotein cholesterol (HDL-c), and adiponectin, which were lower in the obesity group; and glucose, low-density lipoprotein cholesterol (LDL-c), and matrix metalloproteinase-9 that did not differ between groups. We identified the associations between rs11208659, rs11804091, rs10157275, rs9436303 and rs1627238, and BMI in the whole population, as well as the association of rs11804091, rs10157275, and rs1327118 with BMI in the female group, although only the rs11804091 remained associated after Bonferroni correction (p = 0.038). This single nucleotide polymorphisms (SNP) was also associated with insulin (p = 0.004), homeostasis model assessment for insulin resistance (HOMA-IR) (p = 0.006), quantitative insulin sensitivity check index (QUICKI) (p = 0.005) and adiponectin (p = 0.046) after adjusting for age, Tanner stage and BMI. Our results show a sex-specific association between the rs11804091 and obesity suggesting an influence of this SNP on insulin resistance. PMID:28771179

  12. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  13. Pigment epithelium-derived factor, insulin sensitivity, and adiposity in polycystic ovary syndrome: impact of exercise training.

    PubMed

    Joham, Anju E; Teede, Helena J; Hutchison, Samantha K; Stepto, Nigel K; Harrison, Cheryce L; Strauss, Boyd J; Paul, Eldho; Watt, Matthew J

    2012-12-01

    Pigment epithelium-derived factor (PEDF) is upregulated in obese rodents and is involved in the development of insulin resistance (IR). We aim to explore the relationships between PEDF, adiposity, insulin sensitivity, and cardiovascular risk factors in obese women with polycystic ovary syndrome (PCOS) and weight-matched controls and to examine the impact of endurance exercise training on PEDF. This prospective cohort intervention study was based at a tertiary medical center. Twenty obese PCOS women and 14 non-PCOS weight-matched women were studied at baseline. PEDF, cardiometabolic markers, detailed body composition, and euglycemic-hyperinsulinemic clamps were performed and measures were repeated in 10 PCOS and 8 non-PCOS women following 12 weeks of intensified aerobic exercise. Mean glucose infusion rate (GIR) was 31.7% lower (P = 0.02) in PCOS compared to controls (175.6 ± 96.3 and 257.2 ± 64.3 mg.m(-2).min(-1)) at baseline, yet both PEDF and BMI were similar between groups. PEDF negatively correlated to GIR (r = -0.41, P = 0.03) and high-density lipoprotein (HDL) (r = -0.46, P = 0.01), and positively to cardiovascular risk factors, systolic (r = 0.41, P = 0.02) and diastolic blood pressure (r = 0.47, P = 0.01) and triglycerides (r = 0.49, P = 0.004). The correlation with GIR was not significant after adjusting for fat mass (P = 0.07). Exercise training maintained BMI and increased GIR in both groups; however, plasma PEDF was unchanged. In summary, PEDF is not elevated in PCOS, is not associated with IR when adjusted for fat mass, and is not reduced by endurance exercise training despite improved insulin sensitivity. PEDF was associated with cardiovascular risk factors, suggesting PEDF may be a marker of cardiovascular risk status.

  14. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance.

    PubMed

    Baranova, Ancha; Gowder, Shobha J; Schlauch, Karen; Elariny, Hazem; Collantes, Rochelle; Afendy, Arian; Ong, Janus P; Goodman, Zachary; Chandhoke, Vikas; Younossi, Zobair M

    2006-09-01

    Adipose tissue is an active endocrine organ that secretes a variety of metabolically important substances including adipokines. These factors affect insulin sensitivity and may represent a link between obesity, insulin resistance, type 2 diabetes (DM), and nonalcoholic fatty liver disease (NAFLD). This study uses real-time polymerase chain reaction (PCR) quantification of mRNAs encoding adiponectin, leptin, and resistin on snap-frozen samples of intra-abdominal adipose tissue of morbidly obese patients undergoing bariatric surgery. Morbidly obese patients undergoing bariatric surgery were studied. Patients were classified into two groups: Group A (with insulin resistance) (N=11; glucose 149.84 +/- 40.56 mg/dL; serum insulin 8.28 +/- 3.52 microU/mL), and Group B (without insulin resistance) (N=10; glucose 102.2 +/- 8.43 mg/dL; serum insulin 3.431 +/- 1.162 microU/mL). Adiponectin mRNA in intra-abdominal adipose tissue and serum adiponectin levels were significantly lower in Group A compared to Group B patients (P<0.016 and P<0.03, respectively). Although serum resistin was higher in Group A than in Group B patients (P<0.005), resistin gene expression was not different between the two groups. Finally, for leptin, neither serum level nor gene expression was different between the two groups. Serum adiponectin level was the only predictor of nonalcoholic steatohepatitis (NASH) in this study (P=0.024). Obese patients with insulin resistance have decreased serum adiponectin and increased serum resistin. Additionally, adiponectin gene expression is also decreased in the adipose tissue of these patients. This low level of adiponectin expression may predispose patients to the progressive form of NAFLD or NASH.

  15. White blood cells levels and PCOS: direct and indirect relationship with obesity and insulin resistance, but not with hyperandogenemia.

    PubMed

    Papalou, Olga; Livadas, Sarantis; Karachalios, Athanasios; Tolia, Nikoleta; Kokkoris, Panayiotis; Tripolitakis, Konstantinos; Diamanti-Kandarakis, Evanthia

    2015-01-01

    To study white blood cells count (WBC) in women suffering from PCOS and compare these results with age and BMI-matched healthy women. The specific aim of this study was to assess the possible correlations of WBC with the major components of PCOS, obesity, insulin resistance and hyperandrogenism. Anthropometrical, metabolic and hormonal data were analyzed from 203 women with PCOS (NIH criteria) and 76 age-matched controls. In the total population studied (N=279), WBC was significantly higher (P=0.003) in the PCOS group compared with age-matched healthy women and was positively correlated with BMI (r=0.461, p<0.001), total testosterone (r= 0.210, p<0.001), insulin (r=0.271, p<0.001), triglycerides (r=0.285, p<0.001), HOMA score (r=0.206, p=0.001), FAI (r=0.329, p<0.001) and negatively correlated with SHBG (r=-0.300, p<0.001) and HDL (r=-0.222, p<0.001). Due to the fact that WHR was only available in the group of PCOS women, the role of central adiposity is assessed only in this group. Multiple regression analysis in the PCOS group, including WHR, revealed BMI, SHBG and TGL as the main predicting factors of WBC. Multinomial logistic regression analysis was also conducted and overweight/obesity was the sole independent risk factor for elevated WBC (higher tertile) (OR:0.907 CI:0.85-0.96, p=0.002). After dividing the sample based on BMI in the lean subgroups, WBC did not differ significantly between PCOS and controls, while multiple regression analysis indicated SHBG as the main predicting factor of WBC. Finally, we picked out the group of overweight/obese (BMI ≥25 kg/m2) women with PCOS and conducted another classification based on HOMA score (HOMA-IR≤2: insulin-sensitive women, HOMA-IR>2: insulin-resistant women) in the group of overweight and obese women with PCOS separately. In overweight women with PCOS, WBC, although higher in the group of insulin-resistant, did not differ significantly between the two groups, while in the subcategory of overweight women WBC

  16. Association between gamma glutamyl transferase and insulin resistance markers in healthy obese children.

    PubMed

    Kaushik, Girdhar Gopal; Sharm, Sonali; Sharma, Reenu; Mittal, Prerna

    2009-10-01

    To study the relationship of gamma glutamyl transferase (GGT) with insulin resistance markers [fasting insulin and Homeostasis Model Assessment of-insulin resistance (HOMA-IR)] and to assess the role of GGT as a determinant of insulin resistance in healthy obese children. Fifty healthy obese children (boys and girls with mean age 9.2 +/- 0.73 and 8.8 +/- 0.74 years) born to diabetic mothers were studied. In all the subjects, anthropometric measurements viz, BMI and body weight were studied. The biochemical parameters analysed in fasting samples of subjects were plasma glucose, plasma insulin, serum GGT and calculation of HOMA-IR. The fifty studied subjects belonged to age group 8 to12 years. The difference in mean age of boys and girls was not significant (p = 0.09). Body weight values in all subjects ranged from 20 to 78 kgs and BMI values ranged from 14.5 to 42.1 Kg/m2. No significant difference was observed between body weight and BMI values when compared between boys and girls. A similar trend was observed in the values of biochemical parameters viz, fasting glucose, fasting insulin and HOMA-IR levels when compared between boys and girls (p = 0.72, p = 0.80, p = 0.59). Serum GGT correlated significantly with age, body weight, BMI, fasting insulin and HOMA-IR levels. HOMA-IR values also showed significant correlation with body weight, BMI, fasting glucose and fasting insulin levels. The association of GGT with fasting insulin and HOMA-IR levels was considerably significant compared to its association with other variables. The serum activity of GGT remained correlated with HOMA-IR even after removing the effect of BMI, weight and age on GGT values. The results showed that GGT is a determinant of HOMA-IR independently of age, BMI and weight. A correlation exists between GGT and insulin resistance markers. The observed correlation indicates that monitoring GGT and fasting insulin levels in obese children might serve to help prevent the development of diabetes in

  17. beta-Cell function and insulin sensitivity in adolescents from an OGTT

    USDA-ARS?s Scientific Manuscript database

    Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose-tolerance tes...

  18. Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels

    PubMed Central

    Binder, Elke; Bermúdez-Silva, Francisco J.; André, Caroline; Elie, Melissa; Romero-Zerbo, Silvana Y.; Leste-Lasserre, Thierry; Belluomo, llaria; Duchampt, Adeline; Clark, Samantha; Aubert, Agnes; Mezzullo, Marco; Fanelli, Flaminia; Pagotto, Uberto; Layé, Sophie; Mithieux, Gilles; Cota, Daniela

    2013-01-01

    Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in

  19. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    PubMed

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  20. Early insulin sensitivity after restrictive bariatric surgery, inconsistency between HOMA-IR and steady-state plasma glucose levels.

    PubMed

    van Dielen, Francois M H; Nijhuis, Jeroen; Rensen, Sander S M; Schaper, Nicolaas C; Wiebolt, Janneke; Koks, Afra; Prakken, Fred J; Buurman, Wim A; Greve, Jan Willem M

    2010-01-01

    The low-grade inflammatory condition present in morbid obesity is thought to play a causative role in the pathophysiology of insulin resistance (IR). Bariatric surgery fails to improve this inflammatory condition during the first months after surgery. Considering the close relation between inflammation and IR, we conducted a study in which insulin sensitivity was measured during the first months after bariatric surgery. Different methods to measure IR shortly after bariatric surgery have given inconsistent data. For example, the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) levels have been reported to decrease rapidly after bariatric surgery, although clamp techniques have shown sustained insulin resistance. In the present study, we evaluated the use of steady-state plasma glucose (SSPG) levels to assess insulin sensitivity 2 months after bariatric surgery. Insulin sensitivity was measured using HOMA-IR and SSPG levels in 11 subjects before surgery and at 26% excess weight loss (approximately 2 months after restrictive bariatric surgery). The SSPG levels after 26% excess weight loss did not differ from the SSPG levels before surgery (14.3 +/- 5.4 versus 14.4 +/- 2.7 mmol/L). In contrast, the HOMA-IR values had decreased significantly (3.59 +/- 1.99 versus 2.09 +/- 1.02). During the first months after restrictive bariatric surgery, we observed a discrepancy between the HOMA-IR and SSPG levels. In contrast to the HOMA-IR values, the SSPG levels had not improved, which could be explained by the ongoing inflammatory state after bariatric surgery. These results suggest that during the first months after restrictive bariatric surgery, HOMA-IR might not be an adequate marker of insulin sensitivity. Copyright 2010 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  1. Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity

    PubMed Central

    Kuhajda, Francis P.; Tu, Yajun; Han, Wan Fang; Medghalchi, Susan M.; El Meskini, Rajaa; Landree, Leslie E.; Peterson, Jonathan M.; Daniels, Khadija; Wong, Kody; Wydysh, Edward A.; Townsend, Craig A.; Ronnett, Gabriele V.

    2011-01-01

    Storage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice. FSG67 administered intraperitoneally decreased body weight and energy intake, without producing conditioned taste aversion. Daily FSG67 (5 mg/kg, 15.3 μmol/kg) produced gradual 12% weight loss in DIO mice beyond that due to transient 9- to 10-day hypophagia (6% weight loss in pair-fed controls). Continued FSG67 maintained the weight loss despite return to baseline energy intake. Weight was lost specifically from fat mass. Indirect calorimetry showed partial protection by FSG67 against decreased rates of oxygen consumption seen with hypophagia. Despite low respiratory exchange ratio due to a high-fat diet, FSG67-treated mice showed further decreased respiratory exchange ratio, beyond pair-fed controls, indicating enhanced fat oxidation. Chronic FSG67 increased glucose tolerance and insulin sensitivity in DIO mice. Chronic FSG67 decreased gene expression for lipogenic enzymes in white adipose tissue and liver and decreased lipid accumulation in white adipose, brown adipose, and liver tissues without signs of damage. RT-PCR showed decreased gene expression for orexigenic hypothalamic neuropeptides AgRP or NPY after acute and chronic systemic FSG67. FSG67 given intracerebroventricularly (100 and 320 nmol icv) produced 24-h weight loss and feeding suppression, indicating contributions from direct central nervous system sites of action. Together, these data point to GPAT as a new potential therapeutic target for the management of obesity and its comorbidities. PMID:21490364

  2. Effect of metformin compared with hypocaloric diet on serum C-reactive protein level and insulin resistance in obese and overweight women with polycystic ovary syndrome.

    PubMed

    Esfahanian, Fatemeh; Zamani, Mohammad Mahdi; Heshmat, Ramin; Moini nia, Fatemeh

    2013-04-01

    The aim of the present study was to investigate the efficacy of Metformin compared with a hypocaloric diet on C-reactive protein (CRP) level and markers of insulin resistance in obese and overweight women with polycystic ovary syndrome (PCOS). Forty women with body mass index ≥ 27 and PCOS were randomly allocated to receive either Metformin or hypocaloric diet and were assessed before and after a treatment period of 12 weeks. High-sensitivity CRP (hs-CRP) and markers of insulin resistance (IR), homeostasis model assessment-IR, quantitative insulin-sensitivity check index and fasting glucose to insulin ratio were evaluated in each patient. A total of 10 subjects did not complete the trial (three patients in the Metformin group and seven patients in the diet group) and a total of 30 subjects completed the trial (17 subjects in the Metformin group and 13 subjects in the diet group). Serum concentration of hs-CRP significantly decreased in both the Metformin (5.29 ± 2.50 vs 3.81 ± 1.99, P = 0.008) and diet groups (6.08 ± 2.14 vs 4.27 ± 1.60, P = 0.004). There were no significant differences in mean hs-CRP decrement between the two groups. Decrease in hs-CRP levels was significantly correlated with waist circumference in the diet group (r = 0.8, P < 0.001). The effect of a hypocaloric diet with 5-10% weight reduction on markers of insulin resistance (homeostasis model assessment-IR, fasting glucose to insulin ratio, quantitative insulin-sensitivity check index) was better than Metformin therapy (P = 0.001). Although weight reduction has equal efficacy with Metformin in decreasing serum hs-CRP levels, it was significantly more effective in improving insulin resistance in obese and overweight PCOS women. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  3. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    PubMed

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  4. Comparison of insulin sensitivity, glucose sensitivity, and first phase insulin secretion in patients treated with repaglinide or gliclazide.

    PubMed

    Wu, Chung-Ze; Pei, Dee; Hsieh, An-Tsz; Wang, Kun; Lin, Jiunn-Diann; Lee, Li-Hsiu; Chu, Yi-Min; Hsiao, Fone-Ching; Pei, Chun; Hsia, Te-Lin

    2010-03-01

    The traditional sulfonylureas with long half-lives have sustained stimulatory effects on insulin secretion compared to the short-acting insulin secretagogue. In this study, we used the frequently sampled intravenous glucose tolerance test (FSIGT) to evaluate the insulin sensitivity (IS), glucose sensitivity (SG), and acute insulin response after glucose load (AIRg) after 4 months treatment with either gliclazide or repaglinide. The design of study was randomizedcrossover. We enrolled 20 patients with new-onset type 2 diabetes (mean age, 49.3 years). Totally three FSIGTs were performed, one before and one after each of the two treatment periods as aforementioned. No significant differences in fasting plasma glucose, insulin, body mass index, blood pressure, glycated hemoglobin, or lipids were noted between the two treatments. After the repaglinide treatment, higher AIRg, lower IS, and lower SG were noted, but they did not reach statistical significance. The disposal index (DI) was also not significantly different between the two treatments. In conclusion, since non-significantly higher DI, AIRg, lower IS and SG were noted after repaglinide treatment, it might be a better treatment for diabetes, relative to gliclazide.

  5. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  6. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    PubMed

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index insulin levels, as well as 17 lean healthy women. Lean PCOS women were reassessed after 8 days of diazoxide and after 1 month of leuprolide, which suppresses LH. Androgen levels and insulin-stimulated glucose disposal (metabolic insulin sensitivity), determined by euglycemic-hyperinsulinemic clamp (M-value). Mean M-value of lean PCOS women (48.5 micromol/kg.min) was similar to lean control subjects (52.9 micromol/kg.min). They also had comparable anthropometric measures, lipids, fibrinogen, and plasminogen activator inhibitor 1. The LH did not change significantly after diazoxide, but was almost suppressed after leuprolide in the PCOS group. Androstenedione decreased significantly after diazoxide and even more after leuprolide. However, free T significantly decreased only after diazoxide in lean PCOS women. Diazoxide also increased SHBG significantly in this group. In women with typical PCOS and normal insulin levels and metabolic insulin sensitivity, reducing insulin secretion significantly decreased androgen and increased SHBG levels. These results suggest that insulin contributes to hyperandrogenemia even in PCOS women with normal metabolic insulin sensitivity, which might be due to increased sensitivity of their androgenic insulin pathway.

  7. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study.

    PubMed

    Liu, Jia; Wang, Ying; Hu, Yanjin; Leng, Song; Wang, Guang

    2016-07-01

    To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. IL-34 is associated with obesity, chronic inflammation, and insulin resistance.

    PubMed

    Chang, Eun-Ju; Lee, Seul Ki; Song, Young Sook; Jang, Yeon Jin; Park, Hye Soon; Hong, Joon Pio; Ko, A Ra; Kim, Dae Yeon; Kim, Jong-Hyeok; Lee, Yeon Ji; Heo, Yoon-Suk

    2014-07-01

    IL-34 is a recently identified alternative ligand for colony-stimulating factor-1 (CSF-1) receptor. IL-34 and CSF-1 are regulators of differentiation, proliferation, and survival in mononuclear phagocytes. Here, we investigated the IL-34 serum concentration and expression in human adipose tissues and any associations with insulin resistance. We recruited 19 nondiabetic obese women, 9 type 2 diabetic women, and 27 normal-weight women. Metabolic parameters, abdominal fat distribution, serum IL-34 concentration, and IL-34 mRNA expression were measured in abdominal sc adipose tissue (SAT) and visceral adipose tissue (VAT). In addition, the expression/secretion and putative effects of IL-34 were assessed in human differentiated adipocytes. Serum IL-34 concentration was measured before and 5 to 9 months after laparoscopic Roux-en-Y gastric bypass surgery was performed on the 20 obese patients. Regardless of diabetes status, obese patients demonstrated significantly higher serum IL-34 concentrations than controls. Serum IL-34 was significantly and positively correlated with insulin resistance-related metabolic parameters. IL-34 mRNA was significantly higher in VAT than SAT. IL-34 was expressed in adipocytes as well as nonadipocytes, and expression was significantly higher during adipogenesis. In differentiated adipocytes, the expression/secretion of IL-34 was enhanced by TNFα and IL-1β. In addition, IL-34 augmented fat accumulation and inhibited the stimulatory effects of insulin on glucose transport. Moreover, serum IL-34 was significantly decreased after Roux-en-Y gastric bypass-induced weight loss. The present study demonstrates, for the first time, that IL-34 is expressed in human adipose tissues and the circulating concentration is significantly elevated in obese patients. This suggests that IL-34 is associated with insulin resistance.

  9. Combining insulin with metformin or an insulin secretagogue in non-obese patients with type 2 diabetes: 12 month, randomised, double blind trial

    PubMed Central

    Tarnow, Lise; Frandsen, Merete; Nielsen, Bente B; Hansen, Birgitte V; Pedersen, Oluf; Parving, Hans-Henrik; Vaag, Allan A

    2009-01-01

    Objectives To study the effect of insulin treatment in combination with metformin or an insulin secretagogue, repaglinide, on glycaemic regulation in non-obese patients with type 2 diabetes. Design Randomised, double blind, double dummy, parallel trial. Setting Secondary care in Denmark between 2003 and 2006. Participants Non-obese patients (BMI ≤27) with preserved beta cell function. Interventions After a four month run-in period with repaglinide plus metformin combination therapy, patients with a glycated haemoglobin (HbA1c) concentration of 6.5% or more were randomised to repaglinide 6 mg or metformin 2000 mg. All patients also received biphasic insulin aspart 70/30 (30% soluble insulin aspart and 70% intermediate acting insulin aspart) 6 units once a day before dinner for 12 months. Insulin dose was adjusted aiming for a fasting plasma glucose concentration of 4.0-6.0 mmol/l. The target of HbA1c concentration was less than 6.5%. Treatment was intensified to two or three insulin injections a day if glycaemic targets were not reached. Main outcome measure HbA1c concentration. Results Of the 459 patients who were eligible, 102 were randomised, and 97 completed the trial. Patients had had type 2 diabetes for approximately 10 years. At the end of treatment, HbA1c concentration was reduced by a similar amount in the two treatment groups (insulin plus metformin: mean (standard deviation) HbA1c 8.15% (1.32) v 6.72% (0.66); insulin plus repaglinide: 8.07% (1.49) v 6.90% (0.68); P=0.177). Total daily insulin dose and risk of hypoglycaemia were also similar in the two treatment groups. Weight gain was less with metformin plus biphasic insulin aspart 70/30 than with repaglinide plus biphasic insulin aspart 70/30 (difference in mean body weight between treatments −2.51 kg, 95% confidence interval −4.07 to −0.95). Conclusions In non-obese patients with type 2 diabetes and poor glycaemic regulation on oral hypoglycaemic agents, overall glycaemic regulation with

  10. Bicycling but not walking is independently associated with fasting insulin in abdominally obese women.

    PubMed

    Hemmingsson, Erik; Ekelund, Ulf; Udden, Joanna

    2011-08-01

    The impact of walking and bicycling on insulin resistance (IR) in women with abdominal obesity is unclear. Pooled analysis of data from a randomized trial on physically active commuting (bicycling + walking vs walking only) in women with abdominal obesity [n = 98; age:47.3 ± 7.6 yrs; waist circumference (WC):103.1 ± 7.8 cm]. Bicycling and walking data were collected during 7 consecutive days by trip meters (Trelock FC-410) and pedometers (Yamax digiwalker SW-200) at baseline, 2, 4, and 6 months. Owing to a skew distribution we analyzed bicycling as a binary dummy variable with a 10 km/week cut-off. Fasting serum insulin and homeostatic model assessment - insulin resistance (HOMA-IR) were assessed at baseline and 6 months, as were body mass index (BMI), WC, and dual x-ray absorptiometry (DXA)-assessed % whole-body fat. Increased bicycling by 10 km/wk was associated with reductions in fasting serum insulin at follow-up independent of age, treatment allocation, baseline phenotype, Δ walking, and Δ % body fat (β = -10.9, P = .042), but not HOMA-IR (β = -2.0, P = .13). Increased walking was not associated with fasting serum insulin (P = .33) or HOMA-IR (P = .44) at follow-up, after adjustment for the same covariates and Δ bicycling. Increased bicycling but not walking was associated with reduced insulin levels at follow-up. Bicycling may be more effective than walking for reducing insulin levels in abdominally obese women.

  11. Greater physical activity levels during pregnancy are associated with lower inflammation and insulin resistance in obese women

    USDA-ARS?s Scientific Manuscript database

    Compared to lean pregnant women, obese women develop greater insulin resistance and systemic inflammation during pregnancy. Identifying lifestyle factors that can reduce the metabolic effect of obesity during pregnancy is critical to protect both the mother and the fetus from insulin resistance and ...

  12. Effects of Exercise Training and Weight Loss on Plasma Fetuin-A Levels and Insulin Sensitivity in Overweight Older Men.

    PubMed

    Blumenthal, Jacob B; Gitterman, Anna; Ryan, Alice S; Prior, Steven J

    2017-01-01

    Aerobic exercise training and weight loss (AEX+WL) improves insulin sensitivity in overweight adults; however, the underlying pathways are incompletely understood. Fetuin-A, a hepatokine that inhibits insulin signaling, may be involved in the salutary effects of AEX+WL. Therefore, we examined the effects of 6-month AEX+WL on plasma fetuin-A levels (36-48 hours after the last bout of exercise), aerobic capacity (VO 2max ), body composition, glucose tolerance, and insulin sensitivity (M) in 16 sedentary, overweight-obese older men (age = 60 ± 2 years, BMI = 31 ± 1 kg/m 2 ) with no history of cardiovascular disease or diabetes. At baseline, fetuin-A levels correlated directly with adiposity and had a borderline inverse correlation with M. After AEX+WL, body weight decreased by ~10 kg, while both VO 2max and M increased by 16% ( P < 0.005 for all). Contrary to our hypothesis, plasma fetuin-A levels increased after AEX+WL (1.16 ± 0.10 g/L versus 1.70 ± 0.19 g/L, P = 0.006). This increase was unrelated to changes in body composition or glucose metabolism, but directly correlated with changes in VO 2max ( r = 0.57, P < 0.05). Thus, in overweight-to-obese older men, AEX+WL appears to increase plasma fetuin-A levels. Although not associated with improvements in insulin sensitivity, this increase in fetuin-A was related to improvements in aerobic capacity and could be representative of the cardioprotective effects of AEX+WL in older men.

  13. Insulin-induced capillary recruitment is impaired in both lean and obese women with PCOS.

    PubMed

    Ketel, I J G; Serné, E H; Ijzerman, R G; Korsen, T J M; Twisk, J W; Hompes, P G A; Smulders, Y M; Homburg, R; Vorstermans, L; Stehouwer, C D A; Lambalk, C B

    2011-11-01

    Insulin resistance, i.e. impaired insulin-mediated glucose uptake (IMGU), is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). Insulin-induced capillary recruitment (IICR) is considered a significant determinant of IMGU. We investigated whether IICR is a determinant IMGU in obese and lean women with and without PCOS. The study included 36 women with PCOS (20 lean, BMI 21.9 ± 2.3 kg/m(2) and 16 obese, BMI 35.9 ± 6.0 kg/m(2)) and 27 age-matched healthy controls (14 lean, BMI 22.2 ± 1.8 kg/m(2) and 13 obese, BMI 40.5 ± 7.0 kg/m(2)). IICR was evaluated by capillary microscopy during an isoglycemic-hyperinsulinemic clamp. IMGU was expressed as M/I value. The M/I value was significantly lower in obese PCOS women compared with obese controls [0.5 (0.2-1.1) versus 0.8 (0.3-1.4) (mg kg(-1) min(-1) pmol l(-1)) × 100, P < 0.01], whereas the small difference between lean PCOS and lean control women was non-significant [1.5 (0.5-2.6) versus 1.7 (1.0-3.7) (mg kg(-1) min(-1) pmol l(-1)) × 100, P = 0.17]. Hyperinsulinemia increased capillary recruitment in lean controls (53.5 ± 20.3 versus 64.9 ± 27.4 n/mm(2), P < 0.05), but not in either PCOS group nor in obese controls. IICR and androgens were a determinant of M/I value only in lean women with or without PCOS. PCOS per se is associated with impaired IICR. Obese women with PCOS, in part independent of obesity, demonstrated a profound insulin resistance, whereas the difference between lean PCOS women and healthy controls was small and statistically non-significant. IICR was a determinant of IMGU in lean, but not in obese, women regardless of the presence of PCOS.

  14. Biomarkers and insulin sensitivity in women with Polycystic Ovary Syndrome: Characteristics and predictive capacity.

    PubMed

    Cassar, Samantha; Teede, Helena J; Harrison, Cheryce L; Joham, Anju E; Moran, Lisa J; Stepto, Nigel K

    2015-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with metabolic complications. Metabolic biomarkers with roles in obesity, glycaemic control and lipid metabolism are potentially relevant in PCOS. The aim was to investigate metabolic biomarkers in lean and overweight women with and without PCOS and to determine whether any biomarker was able to predict insulin resistance in PCOS. Cross-sectional study. Eighty-four women (22 overweight and 22 lean women with PCOS, 18 overweight and 22 lean women without PCOS) were recruited from the community and categorized based on PCOS and BMI status. Primary outcomes were metabolic biomarkers [ghrelin, resistin, visfatin, glucagon-like peptide-1 (GLP-1), leptin, plasminogen activator inhibitor -1 (PAI-1), glucose-dependent insulinotropic polypeptide (GIP) and C-Peptide] measured using the Bio-Plex Pro Diabetes assay and insulin sensitivity as assessed by glucose infusion rate on euglycaemic-hyperinsulinaemic clamp. The biomarkers C-peptide, leptin, ghrelin and visfatin were different between overweight and lean women, irrespective of PCOS status. The concentration of circulating biomarkers did not differ between women with PCOS diagnosed by the Rotterdam criteria or National Institute of Health criteria. PAI-1 was the only biomarker that significantly predicted insulin resistance in both control women (P = 0.04) and women with PCOS (P = 0.01). Biomarkers associated with metabolic diseases appear more strongly associated with obesity rather than PCOS status. PAI-1 may also be a novel independent biomarker and predictor of insulin resistance in women with and without PCOS. © 2014 John Wiley & Sons Ltd.

  15. Reactive oxygen species enhance insulin sensitivity

    PubMed Central

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.; Febbraio, Mark A.; Crack, Peter J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    SUMMARY Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo. PMID:19808019

  16. Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary schoolchildren. The healthy growth study.

    PubMed

    Moschonis, George; Androutsos, Odysseas; Hulshof, Toine; Dracopoulou, Maria; Chrousos, George P; Manios, Yannis

    2018-04-02

    To explore the associations of vitamin D status and obesity with insulin resistance (IR) in children. A sample of 2282 schoolchildren (9-13 years old) in Greece was examined. Sociodemographic, anthropometric (weight, height), biochemical (fasting plasma glucose, serum insulin and 25(OH)D), pubertal status and physical activity data were collected, using standard methods. The "Vitamin D Standardization Program" protocol was applied to standardize serum 25(OH)D values. The prevalence of vitamin D insufficiency (serum 25(OH)D < 50 nmol/L) was higher in obese children compared to their over- and normal-weight counterparts (60.5% vs 51.6% and 51%, P = .017). Furthermore, children with IR (both obese and non-obese) had higher prevalence of vitamin D insufficiency compared to non-obese, non-insulin resistant children (66% and 59.2% vs 49.8%, P < .05), possibly indicating that IR is associated with vitamin D insufficiency, independently of obesity. In line with the above, the results from logistic regression analyses controlled for several potential confounders, showed a 1.48 (95% C.I: 1.2-1.84) higher likelihood for vitamin D insufficiency for insulin resistant children compared to the non-insulin resistant ones, while no significant association was observed with obesity. The present study revealed a high prevalence of vitamin D insufficiency among schoolchildren in Greece, particularly among obese and insulin resistant ones. In addition, it highlighted that the significant association of vitamin D insufficiency with IR is possibly independent of obesity. Further clinical trials are needed to confirm this possible independent association but also explore the potential beneficial effect of vitamin D supplementation on IR and possibly on weight management too. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women123

    PubMed Central

    Albu, Jeanine B; Kenya, Sonjia; He, Qing; Wainwright, Marsha; Berk, Evan S; Heshka, Stanley; Kotler, Donald P; Engelson, Ellen S

    2009-01-01

    Background Obesity and insulin resistance are growing problems in HIV-positive (HIV+) women receiving highly active antiretroviral therapy (HAART). Objective The objective was to determine the contribution of adipose tissue (AT) enlargement and distribution to the presence of insulin resistance in obese HIV+ women. Design Whole-body intermuscular AT (IMAT), visceral AT (VAT), subcutaneous AT (SAT), and SAT distribution (leg versus upper body) were measured by whole-body magnetic resonance imaging. Insulin sensitivity (SI) was measured with an intravenous glucose tolerance test in obese HIV+ women recruited because of their desire to lose weight (n = 17) and in obese healthy controls (n = 32). Results The HIV+ women had relatively less whole-body SAT and more VAT and IMAT than did the controls (P < 0.05 for all). A significant interaction by HIV status was observed for the relation of total SAT with SI (P < 0.001 for the regression’s slope interactions after adjustment for age, height, and weight). However, relations of IMAT, VAT, and SAT distribution (leg SAT as a percentage of total SAT; leg SAT%) with SI did not differ significantly between groups. For both groups combined, the best model predicting a low SI included significant contributions by both high IMAT and low leg SAT%, independent of age, height, and weight, and no interaction between groups was observed (overall r2 = 0.44, P = 0.0003). Conclusion In obese HIV+ women, high whole-body IMAT and low leg SAT% distribution are independently associated with insulin resistance. PMID:17616768

  18. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance.

    PubMed

    García-Cardona, M C; Huang, F; García-Vivas, J M; López-Camarillo, C; Del Río Navarro, B E; Navarro Olivos, E; Hong-Chong, E; Bolaños-Jiménez, F; Marchat, L A

    2014-11-01

    Epigenetic alterations have been suggested to be associated with obesity and related metabolic disorders. Here we examined the correlation between obesity and insulin resistance with the methylation frequency of the leptin (LEP) and adiponectin (ADIPOQ) promoters in obese adolescents with the aim to identify epigenetic markers that might be used as tools to predict and follow up the physiological alterations associated with the development of the metabolic syndrome. One hundred and six adolescents were recruited and classified according to body mass index and homeostasis model of assessment-insulin resistance index. The circulating concentrations of leptin, adiponectin and of several metabolic markers of obesity and insulin resistance were determined by standard methods. The methylation frequency of the LEP and ADIPOQ promoters was determined by methylation-specific PCR (MS-PCR) in DNA obtained from peripheral blood samples. Obese adolescents without insulin resistance showed higher and lower circulating levels of, respectively, leptin and adiponectin along with increased plasmatic concentrations of insulin and triglycerides. They also exhibited the same methylation frequency than lean subjects of the CpG sites located at -51 and -31 nt relative to the transcription start site of the LEP gene. However, the methylation frequency of these nucleotides dropped markedly in obese adolescents with insulin resistance. We found the same inverse relationship between the combined presence of obesity and insulin resistance and the methylation frequency of the CpG site located at -283 nt relative to the start site of the ADIPOQ promoter. These observations sustain the hypothesis that epigenetic modifications might underpin the development of obesity and related metabolic disorders. They also validate the use of blood leukocytes and MS-PCR as a reliable and affordable methodology for the identification of epigenetic modifications that could be used as molecular markers to

  19. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  20. Insulin resistance and self-perceived scholastic competence in inner-city, overweight and obese, African American children.

    PubMed

    Fyfe, Molly; Raman, Aarthi; Sharma, Sushma; Hudes, Mark L; Fleming, Sharon E

    2011-01-10

    scholastic competence is a predictor of future achievement, yet there is little research about health factors that influence the development of self-perceived scholastic competence (SPSC). This study examined the relationship of insulin resistance and body fatness with SPSC in low-income, overweight and obese, African American children. data were analyzed from a convenience sample of 9-10years old African American children (89 boys and 113 girls) enrolled in a type 2 diabetes prevention study. Health variables analyzed for their influence on SPSC (Harter scale) included insulin resistance (Homeostatic model-derived insulin sensitivity, HOMA-IR) and body fatness (% body fat). Adjustments were made for self-esteem (Global Self Worth). there was a significant gender by insulin resistance interaction effect on the child's SPSC, so separate regression models were developed for each gender. In boys, neither insulin resistance nor body fatness was related to SPSC. In girls, however, insulin resistance was negatively related to SPSC scores, and the significance of the relationship increased further after adjusting for body fatness. Body fatness alone was not significantly related to SPSC in girls, but after adjusting for insulin resistance, body fatness was positively related to SPSC. Thus, insulin resistance and body fatness mutually suppressed SPSC in girls. high SPSC was associated with lower insulin resistance and, with insulin resistance held constant, with higher body fatness in girls but not in boys. These relationships were not influenced by self-esteem in these children. 2010 Elsevier Inc. All rights reserved.

  1. Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice.

    PubMed

    Rancoule, C; Attané, C; Grès, S; Fournel, A; Dusaulcy, R; Bertrand, C; Vinel, C; Tréguer, K; Prentki, M; Valet, P; Saulnier-Blache, J S

    2013-06-01

    Lysophosphatidic acid (LPA) is a lipid mediator produced by adipocytes that acts via specific G-protein-coupled receptors; its synthesis is modulated in obesity. We previously reported that reducing adipocyte LPA production in high-fat diet (HFD)-fed obese mice is associated with improved glucose tolerance, suggesting a negative impact of LPA on glucose homeostasis. Here, our aim was to test this hypothesis. First, glucose tolerance and plasma insulin were assessed after acute (30 min) injection of LPA (50 mg/kg) or of the LPA1/LPA3 receptor antagonist Ki16425 (5 mg kg(-1) day(-1), i.p.) in non-obese mice fed a normal diet (ND) and in obese/prediabetic (defined as glucose-intolerant) HFD mice. Glucose and insulin tolerance, pancreas morphology, glycogen storage, glucose oxidation and glucose transport were then studied after chronic treatment (3 weeks) of HFD mice with Ki16425. In ND and HFD mice, LPA acutely impaired glucose tolerance by inhibiting glucose-induced insulin secretion. These effects were blocked by pre-injection of Ki16425 (5 mg/kg, i.p.). Inhibition of glucose-induced insulin secretion by LPA also occurred in isolated mouse islets. Plasma LPA was higher in HFD mice than in ND mice and Ki16425 transiently improved glucose tolerance. The beneficial effect of Ki16425 became permanent after chronic treatment and was associated with increased pancreatic islet mass and higher fasting insulinaemia. Chronic treatment with Ki16425 also improved insulin tolerance and increased liver glycogen storage and basal glucose use in skeletal muscle. Exogenous and endogenous LPA exerts a deleterious effect on glucose disposal through a reduction of plasma insulin; pharmacological blockade of LPA receptors improves glucose homeostasis in obese/prediabetic mice.

  2. Hyperinsulinemia in the physiologic range is not superior to short-term fasting in suppressing insulin secretion in obese men.

    PubMed

    Pincelli, A I; Brunani, A; Caumo, A; Scacchi, M; Pasqualinotto, L; Tibaldi, A; Dubini, A; Bonadonna, S; Cavagnini, F

    2001-01-01

    The negative-feedback control exerted by plasma insulin on beta-cell insulin release in normal-weight and obese subjects is still a matter of debate. Subjects submitted to a euglycemic insulin clamp undergo a suppression of insulin secretion that is due to both the infused insulin and the 2- to 3-hour fast during the procedure. We elected to elucidate the role of physiologic hyperinsulinemia per se in the insulin negative autofeedback in obese men. Ten men with massive uncomplicated obesity (age, 18 to 37 years; body mass index [BMI], 41 +/- 1.15 kg/m2) and 6 normal-weight healthy men (age, 22 to 30 years; BMI, 22 +/- 0.28 kg/m2) underwent 2 studies in random order: (1) a euglycemic-hyperinsulinemic glucose clamp with an insulin infusion rate of 1 mU/kg/min and (2) a control study with saline infusion. Serum C-peptide concentrations were significantly higher in obese versus control subjects at baseline (2.54 +/- 0.178 v 1.63 +/- 0.256 ng/mL, P < .05). Exogenous insulin infusion significantly suppressed serum C-peptide at steady state ([SS] last 30 minutes of insulin or saline infusion) in controls (mean of the last 4 measurements from 120 minutes to 150 minutes, 0.86 +/- 0.306 ng/mL, P < .05 vbaseline) but not in obese patients (2.03 +/- 0.26 ng/mL, nonsignificant [NS] v baseline). During the saline infusion studies, C-peptide levels slightly and similarly declined over time in both groups (2.71 +/- 0.350 at baseline v 2.31 +/- 0.300 ng/mL at SS in obese patients, NS, and 1.96 +/- 0.189 v 1.62 +/- 0.150 ng/mL in controls, NS). This study shows that in obese men hyperinsulinemia within the postprandial range is not superior to a 2.5-hour fast for the suppression of beta-cell activity, suggesting an impairment of the insulin negative autofeedback in this clinical condition.

  3. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    PubMed

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  4. Common genetic variation in the SERPINF1 locus determines overall adiposity, obesity-related insulin resistance, and circulating leptin levels.

    PubMed

    Böhm, Anja; Ordelheide, Anna-Maria; Machann, Jürgen; Heni, Martin; Ketterer, Caroline; Machicao, Fausto; Schick, Fritz; Stefan, Norbert; Fritsche, Andreas; Häring, Hans-Ulrich; Staiger, Harald

    2012-01-01

    Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements) and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05) in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI) and spectroscopy (MRS). After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094) and fasting leptin concentrations (p = 0.0035) as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182) and clamp-derived insulin sensitivity (p = 0.0251). The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8). Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436), and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all). In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity, obesity-related insulin resistance, and circulating leptin

  5. The Roles of IL-6, IL-10, and IL-1RA in Obesity and Insulin Resistance in African-Americans

    PubMed Central

    Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale

    2011-01-01

    Objective: The aim of the study was to investigate the associations between IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, measures of obesity, and insulin resistance in African-Americans. Research Design and Methods: Nondiabetic participants (n = 1025) of the Howard University Family Study were investigated for associations between serum IL (IL-1RA, IL-6, IL-10), measures of obesity, and insulin resistance, with adjustment for age and sex. Measures of obesity included body mass index, waist circumference, hip circumference, waist-to-hip ratio, and percent fat mass. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Data were analyzed with R statistical software using linear regression and likelihood ratio tests. Results: IL-1RA and IL-6 were associated with measures of obesity and insulin resistance, explaining 4–12.7% of the variance observed (P values < 0.001). IL-1RA was bimodally distributed and therefore was analyzed based on grouping those with low vs. high IL-1RA levels. High IL-1RA explained up to 20 and 12% of the variance in measures of obesity and HOMA-IR, respectively. Among the IL, only high IL-1RA improved the fit of models regressing HOMA-IR on measures of obesity. In contrast, all measures of obesity improved the fit of models regressing HOMA-IR on IL. IL-10 was not associated with obesity measures or HOMA-IR. Conclusions: High IL-1RA levels and obesity measures are associated with HOMA-IR in this population-based sample of African-Americans. The results suggest that obesity and increased levels of IL-1RA both contribute to the development of insulin resistance. PMID:21956416

  6. Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice

    PubMed Central

    Soufi, Nisreen; Chambers, Kari T.; Chen, Zhouji; Schweitzer, George G.; McCommis, Kyle S.; Erion, Derek M.; Graham, Mark J.; Su, Xiong; Finck, Brian N.

    2014-01-01

    Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling. PMID:24595352

  7. Laparoscopic sleeve gastrectomy improves body composition and alleviates insulin resistance in obesity related acanthosis nigricans.

    PubMed

    Zhang, Yi; Zhu, Cuiling; Wen, Xin; Wang, Xingchun; Li, Liang; Rampersad, Sharvan; Lu, Liesheng; Zhou, Donglei; Qian, Chunhua; Cui, Ran; Zhang, Manna; Yang, Peng; Qu, Shen; Bu, Le

    2017-11-07

    Acanthosis nigricans (AN) has a close relationship with obesity. It is believed that obesity and AN have the common pathophysiological basis such as hyperinsulinism. This study is aimed to observe the effect of laparoscopic sleeve gastrectomy (LSG) on body composition and insulin resistance in Chinese obese patients with acanthosis nigricans. A total of 37 obese patients who underwent LSG in our hospital were selected for analysis. They were divided into simple obesity (OB n = 14) and obesity with acanthosis nigricans (AN n = 23) group respectively. Body composition was measured by dual-energy X-ray absorptiometry (DEXA). Anthropometric measurements and glucolipid metabolism before and 3 months post LSG were collected for analysis. Patients with AN got noticeable improvement in skin condition and their AN score was significantly decreased (3.52 ± 0.79 vs. 1.48 ± 0.73, P < 0.001).Alleviated insulin resistance and more trunk fat loss than limbs' were observed in both groups (P value < 0.01). In AN group, preoperative android fat mass (FM) was positively correlated with fasting insulin and natural logarithm of HOMA-IR (LNIR) (r = 0.622, 0.608, respectively; all P < 0.01). Besides, changes in android FM and visceral adipose tissue (VAT) also showed significantly positive correlation with changes in LNIR (r = 0.588, r = 0.598, respectively; all P < 0.01). LSG had a positive impact on body composition and skin condition in Chinese obese patients with AN. Loss of android FM and VAT might result in the alleviation of insulin resistance in AN patients. Android fat distribution seems to be a potential indicator of postoperative metabolic benefits for obese patients with AN.

  8. Insulin sensitivity and carotid intima-media thickness: relationship between insulin sensitivity and cardiovascular risk study.

    PubMed

    Kozakova, Michaela; Natali, Andrea; Dekker, Jacqueline; Beck-Nielsen, Henning; Laakso, Markku; Nilsson, Peter; Balkau, Beverley; Ferrannini, Ele

    2013-06-01

    Despite a wealth of experimental data in animal models, the independent association of insulin resistance with early carotid atherosclerosis in man has not been demonstrated. We studied a European cohort of 525 men and 655 women (mean age, 44 ± 8 years) free of conditions known to affect carotid wall (diabetes mellitus, hypertension, and dyslipidemia). All subjects received an oral glucose tolerance test, a euglycemic hyperinsulinemic clamp (M/I as a measure of insulin sensitivity), and B-mode carotid ultrasound. In 833 participants (380 men), the carotid ultrasound was repeated after 3 years. In men, baseline intima-media thickness in the common carotid artery (CCA-IMT) was significantly higher (P<0.05) in the lowest M/I tertile, whereas in women CCA-IMT was higher (P<0.0005) in the highest fasting plasma glucose tertile (after adjustment for established risk factors). In multiple regression models, with CCA-IMT as the dependent variable and with risk factors and univariate metabolic correlates as independent variables, circulating free fatty acids and the leptin:adiponectin ratio replaced M/I as independent metabolic determinants of CCA-IMT in men. The strongest metabolic determinant of CCA-IMT in women was fasting plasma glucose. Three-year CCA-IMT changes were not associated with any cardio-metabolic risk factor. In young-to-middle aged apparently healthy people, the association of CCA-IMT with insulin sensitivity and its metabolic correlates differs between men and women. Lower insulin sensitivity is associated with higher IMT only in men; this association seems to be mediated by circulating free fatty acids and adipocytokines. In women, CCA-IMT is independently associated with fasting plasma glucose.

  9. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  10. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  11. Insulin resistance influences weight loss in non-obese women who followed a home-based exercise program and slight caloric restriction.

    PubMed

    Mediano, Mauro Felippe Felix; Sichieri, Rosely

    2011-06-01

    This study aimed to evaluate the influence of insulin resistance status on weight changes in non-obese women who followed a home-based exercise program and slight caloric restriction over a period of 12 months. Middle-aged (25-45 year), non-obese (body mass index of 23-29.9 kg/m(2)) women were randomly assigned to control (CG) or home-based exercise group (HB). The HB group received a booklet explaining the physical exercises to be practiced at home at least three times per week (40 min/session). Both groups were required to follow a small energy restriction of 100-300 calories per day. For the analysis, women were stratified in two groups according to baseline insulin sensitivity: NIR (non-insulin resistant; n = 121) and IR (insulin resistant; n = 64). Women classified as IR at baseline had greater weight loss after 12 months of follow-up (-1.6 kg vs. -1.1 kg; p = 0.01), and HB exercise helped to reduce weight only among NIR women (-1.5 vs. -0.7; p = 0.04); no differences were observed between intervention groups for IR women (-1.5 vs. -1.7; p = 0.24). There were no differences between IR and NIR groups for lipid profile after adjustment for weight changes. Insulin resistance facilitated weight loss, and home-based exercise promoted greater weight loss only in non-insulin resistance women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  13. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    PubMed

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to

  14. Baroreflex sensitivity in children and adolescents: physiology, hypertension, obesity, diabetes mellitus.

    PubMed

    Honzíková, N; Závodná, E

    2016-12-13

    The increased prevalence of obesity in children and its complications have led to a greater interest in studying baroreflex sensitivity (BRS) in children. This review of BRS in children and adolescents includes subtopics on: 1. Resting values of BRS and their reproducibility, 2. Genetics of BRS, 3. The role of a primarily low BRS and obesity in the development of hypertension, and 4. Association of diabetes mellitus, BRS, and obesity. The conclusions specific to this age follow from this review: 1. The mean heart rate (HR) influences the measurement of BRS. Since the mean HR decreases during adolescence, HR should be taken into account. 2. A genetic dependency of BRS was found. 3. Low BRS values may precede pathological blood-pressure elevation in children with white-coat hypertension. We hypothesize that low BRS plays an active role in the emergence of hypertension in youth. A contribution of obesity to the development of hypertension was also found. We hypothesize that both factors, a primarily low BRS and obesity, are partially independent risk factors for hypertension in youths. 4. In diabetics, a low BRS compared to healthy children can be associated with insulin resistance. A reversibility of the BRS values could be possible after weight loss.

  15. Evaluation of waist-to-height ratio as a predictor of insulin resistance in non-diabetic obese individuals. A cross-sectional study.

    PubMed

    Jamar, Giovana; Almeida, Flávio Rossi de; Gagliardi, Antonio; Sobral, Marianna Ribeiro; Ping, Chao Tsai; Sperandio, Evandro; Romiti, Marcelo; Arantes, Rodolfo; Dourado, Victor Zuniga

    2017-01-01

    Insulin resistance (IR) and progressive pancreatic β-cell dysfunction have been identified as the two fundamental features in the pathogenesis of obesity and non-insulin-dependent diabetes mellitus. We aimed to investigate correlations between anthropometric indices of obesity and IR in non-diabetic obese individuals, and the cutoff value from receiver operating characteristic (ROC) curve analysis. Cross-sectional study conducted in a private clinic. We included obese individuals (body mass index, BMI ≥ 30 kg/m2) with no diabetes mellitus (fasting glucose levels ≤ 126 mg/dl). The participants were evaluated for the presence of cardiovascular risk factors and through anthropometric measurements and biochemical tests. Furthermore, IR was assessed indirectly using the homeostatic model assessment (HOMA)-IR and HOMA-β indexes. The area underthe curve (AUC) of the variables was compared.The sensitivity, specificity and cutoff of each variable for diagnosing IR were calculated. The most promising anthropometric parameters for indicating IR in non-diabetic obese individuals were waist-to-height ratio (WHtR), waist circumference (WC) and BMI. WHtR proved to be an independent predictor of IR, with risk increased by 0.53% in HOMA-IR, 5.3% in HOMA-β and 1.14% in insulin. For HOMA-IR, WHtR had the highest AUC value (0.98), followed by WC (0.93) and BMI (0.81). For HOMA-β, WHtR also had the highest AUC value (0.83), followed by WC (0.75) and BMI (0.73).The optimal WHtR cutoff was 0.65 for HOMA-IR and 0.67 for HOMA-β. Among anthropometric obesity indicators, WHtR was most closely associated with occurrences of IR and predicted the onset of diabetes in obese individuals.

  16. Supervised exercise training counterbalances the adverse effects of insulin therapy in overweight/obese subjects with type 2 diabetes.

    PubMed

    Balducci, Stefano; Zanuso, Silvano; Cardelli, Patrizia; Salerno, Gerardo; Fallucca, Sara; Nicolucci, Antonio; Pugliese, Giuseppe

    2012-01-01

    To examine the effect of supervised exercise on traditional and nontraditional cardiovascular risk factors in sedentary, overweight/obese insulin-treated subjects with type 2 diabetes from the Italian Diabetes Exercise Study (IDES). The study randomized 73 insulin-treated patients to twice weekly supervised aerobic and resistance training plus structured exercise counseling (EXE) or to counseling alone (CON) for 12 months. Clinical and laboratory parameters were assessed at baseline and at the end of the study. The volume of physical activity was significantly higher in the EXE versus the CON group. Values for hemoglobin A(1c), BMI, waist circumference, high-sensitivity C-reactive protein, blood pressure, LDL cholesterol, and the coronary heart disease risk score were significantly reduced only in the EXE group. No major adverse events were observed. In insulin-treated subjects with type 2 diabetes, supervised exercise is safe and effective in improving glycemic control and markers of adiposity and inflammation, thus counterbalancing the adverse effects of insulin on these parameters.

  17. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    PubMed

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Duration of rise in free fatty acids determines salicylate's effect on hepatic insulin sensitivity

    PubMed Central

    Pereira, Sandra; Yu, Wen Qin; Frigolet, María E; Beaudry, Jacqueline L; Shpilberg, Yaniv; Park, Edward; Dirlea, Cristina; Nyomba, B L Grégoire; Riddell, Michael C; Fantus, I George; Giacca, Adria

    2013-01-01

    We have shown in rats that sodium salicylate (SS), which inhibits IkBa kinase B (IKKB), prevents hepatic and peripheral insulin resistance caused by short-term (7 h) i.v. administration of Intralipid and heparin (IH). We wished to further determine whether this beneficial effect of SS persisted after prolonged (48 h) IH infusion, which better mimics the chronic free fatty acid (FFA) elevation of obesity. Hence, we performed hyperinsulinemic euglycemic clamps with tritiated glucose methodology to determine hepatic and peripheral insulin sensitivity in rats infused with saline, IH, IH and SS, or SS alone. SS prevented peripheral insulin resistance (P<0.05) caused by prolonged plasma FFA elevation; however, it did not prevent hepatic insulin resistance. In skeletal muscle, protein levels of phospho-IkBa were augmented by prolonged IH administration and this was prevented by SS, suggesting that IH activates while SS prevents the activation of IKKB. Markers of IKKB activation, namely protein levels of phospho-IkBa and IkBa, indicated that IKKB is not activated in the liver after prolonged FFA elevation. Phosphorylation of serine 307 at insulin receptor substrate (IRS)-1, which is a marker of proximal insulin resistance, was not altered by IH administration in the liver, suggesting that this is not a site of hepatic insulin resistance in the prolonged lipid infusion model. Our results suggest that the role of IKKB in fat-induced insulin resistance is time and tissue dependent and that hepatic insulin resistance induced by prolonged lipid elevation is not due to an IRS-1 serine 307 kinase. PMID:23328071

  19. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Insulin Sensitivity as a Key Mediator of Growth Hormone Actions on Longevity

    PubMed Central

    Panici, Jacob A.; Bonkowski, Michael S.; Hughes, Larry F.; Bartke, Andrzej

    2009-01-01

    Reduced insulin sensitivity and glucose intolerance have been long suspected of having important involvement in aging. Here we report that in studies of calorie restriction (CR) effects in mutant (Prop1df and growth hormone receptor knockout [GHRKO]) and normal mice, insulin sensitivity was strongly associated with longevity. Of particular interest was enhancement of the already increased insulin sensitivity in CR df/df mice in which longevity was also further extended and the lack of changes in insulin sensitivity in calorically restricted GHRKO mice in which there was no further increase in average life span. We suggest that enhanced insulin sensitivity, in conjunction with reduced insulin levels, may represent an important (although almost certainly not exclusive) mechanism of increased longevity in hypopituitary, growth hormone (GH)-resistant, and calorie-restricted animals. We also report that the effects of GH treatment on insulin sensitivity may be limited to the period of GH administration. PMID:19304940

  1. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  2. Epicardial adipose tissue, hepatic steatosis and obesity.

    PubMed

    Cikim, A Sertkaya; Topal, E; Harputluoglu, M; Keskin, L; Zengin, Z; Cikim, K; Ozdemir, R; Aladag, M; Yologlu, S

    2007-06-01

    Hepatic steatosis is a common companion of obesity. Moreover, the measurement of epicardial adipose tissue (EAT) has been reported to be related with both obesity and insulin resistance. Therefore, we aimed to evaluate the relationship between hepatic steatosis, EAT and insulin resistance in obese patients. Sixty-three obese subjects were enrolled in the study. Patients were divided into 3 groups according to body mass index (BMI) as follows: 20 patients with 30 < or = BMI < 35 kg/m2 (Group 1, mean age 39.3+/-12.9 yr), 25 patients with 35 < or = BMI < 40 kg/m2 (Group 2, mean age 41.7+/-9.3 yr), and 18 patients with BMI > or = 40 kg/m2 (Group 3, mean age 36.8+/-13.9 yr). EAT and grade of hepatic steatosis were assessed sonographically. Anthropometrical measurements were assessed with the foot-to-foot bioelectrical impedance analysis. Insulin resistance was assessed according to basal insulin, quantitative insulin sensitivity check index (QUICKI) and homeostasis model assessment (HOMA) equations. Although EAT was similarly higher in both groups 2 and 3, these groups were found to be similar in terms of the grade of hepatic steatosis. Both EAT and the grade of hepatic steatosis were correlated with whole body fat mass, abdominal adiposity, insulin resistance, and triglyceridemia but waist circumference was the only factor affecting EAT thickness. Highly sensitive C-reactive protein (hsCRP) was the only metabolic parameter that was significantly higher in Group 3 than in Group 1 (p=0.02). Hepatic steatosis should be assessed as a valuable predictor that reflects the increments of whole body fat mass as well as abdominal adiposity. However, in an attempt to demonstrate marginal differences between patients with similar obesity levels, epicardial adipose tissue appears to be a more sensitive marker compared to hepatic steatosis.

  3. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  4. Effects of fasting on insulin action and glucose kinetics in lean and obese men and women.

    PubMed

    Bergman, Bryan C; Cornier, Marc-Andre; Horton, Tracy J; Bessesen, Daniel H

    2007-10-01

    The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P < 0.001). After the 12- but not the 48-h fast, insulin-stimulated AKT Ser(473) phosphorylation was greater in lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.

  5. Neural Correlates of Stress- and Food Cue–Induced Food Craving in Obesity

    PubMed Central

    Jastreboff, Ania M.; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M.; Sherwin, Robert S.; Potenza, Marc N.

    2013-01-01

    OBJECTIVE Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. RESEARCH DESIGN AND METHODS Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. RESULTS Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. CONCLUSIONS These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity. PMID:23069840

  6. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.

    PubMed

    Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-11-01

    The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.

  7. Immunity as a link between obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Type-2 diabetes mellitus (T2DM) is a major health problem in the United States and worldwide. Obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and T2DM. A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesit...

  8. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma.

    PubMed

    Forno, Erick; Han, Yueh-Ying; Muzumdar, Radhika H; Celedón, Juan C

    2015-08-01

    Obesity increases both the risk of asthma and asthma severity and is a well-known risk factor for insulin resistance and the metabolic syndrome (MS) in children and adolescents. We aimed to examine the association among obesity, insulin sensitivity, MS, and lung function in US adolescents with and without asthma. We performed a cross-sectional study of 1429 adolescents aged 12 to 17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adjusted regression was used to assess the relationships among obesity, insulin sensitivity/resistance, MS, and lung function in children with and without asthma. Insulin resistance was negatively associated with FEV1 and forced vital capacity (FVC) in adolescents with and without asthma, whereas MS was associated with lower FEV1/FVC ratios, with a more pronounced decrease found among asthmatic patients; these associations were driven by overweight/obese adolescents. Higher body mass index was associated with a decrease in FEV1/FVC ratios among adolescents with insulin resistance. Compared with healthy participants, adolescents with MS had an approximately 2% decrease in FEV1/FVC ratios, adolescents with asthma had an approximately 6% decrease, and those with MS and asthma had approximately 10% decreased FEV1/FVC ratios (P < .05). Insulin resistance and MS are associated with worsened lung function in overweight/obese adolescents. Asthma and MS synergistically decrease lung function, as do obesity and insulin resistance. These factors might contribute to the pathogenesis of asthma severity in obese patients and warrant further investigation. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  10. Effect of hypothyroidism on insulin sensitivity and glucose tolerance in dogs.

    PubMed

    Hofer-Inteeworn, Natalie; Panciera, David L; Monroe, William E; Saker, Korinn E; Davies, Rebecca Hegstad; Refsal, Kent R; Kemnitz, Joseph W

    2012-04-01

    To determine the effects of hypothyroidism on insulin sensitivity, glucose tolerance, and concentrations of hormones counter-regulatory to insulin in dogs. 8 anestrous mixed-breed bitches with experimentally induced hypothyroidism and 8 euthyroid control dogs. The insulin-modified frequently sampled IV glucose tolerance test and minimal model analysis were used to determine basal plasma insulin and glucose concentrations, acute insulin response to glucose, insulin sensitivity, glucose effectiveness, and disposition index. Growth hormone response was assessed by stimulation and suppression tests. Additionally, basal serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentrations and urine cortisol-to-creatinine concentration ratios were measured and dual energy x-ray absorptiometry was performed to evaluate body composition. Insulin sensitivity was lower in the hypothyroid group than in the euthyroid group, whereas acute insulin response to glucose was higher. Glucose effectiveness and disposition index were not different between groups. Basal serum GH and IGF-1 concentrations as well as abdominal fat content were high in hypothyroid dogs, but urine cortisol-to-creatinine concentration ratios were unchanged. Hypothyroidism appeared to negatively affect glucose homeostasis by inducing insulin resistance, but overall glucose tolerance was maintained by increased insulin secretion in hypothyroid dogs. Possible factors affecting insulin sensitivity are high serum GH and IGF-1 concentrations and an increase in abdominal fat. In dogs with diseases involving impaired insulin secretion such as diabetes mellitus, concurrent hypothyroidism can have important clinical implications.

  11. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8±2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7±2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Results: Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. Conclusions: In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance. Conflict of interest:None declared. PMID:23367495

  12. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease.

    PubMed

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8 ± 2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7 ± 2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance.

  13. Insulin response to a spontaneously ingested standard meal during the development of obesity in GTG-injected mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1996-04-01

    (1) To determine glucose and insulin levels in response to ingestion of a standard meal during the development of gold-thioglucose (GTG)-induced obesity. (2) To examine whether the pancreatic beta-cells of GTG-injected mice possess sufficient insulin secretory capacity to compensate for the increasing tissue insulin resistance that occurs with the development of this obesity. The insulin secretory response to a standard meal of chow was examined in chronically catheterised conscious mice 2, 5 and 10 weeks after induction of obesity by a single injection of GTG. At 2 weeks after administration of GTG both the basal insulinaemia and the incremental area under the curve (iAUC) of insulin release after a chow meal were increased compared with age-matched lean control mice (2 week control: 1004 +/- 316 min/microU/ml; 2 week GTG: 1968 +/- 300 min/microU/ml; P < 0.05). By 5 weeks, the GTG-injected mice were approximately 42% heavier than their lean controls and showed a marked glucose intolerance. This was accompanied by hyperinsulinaemia in both the basal state and also in response to ingestion of the chow meal as indicated by the increase in the iAUC of insulin (5 week control: 1113 +/- 331 min/microU/ml; 5 week GTG: 2682 +/- 295 min/microU/ml; P < 0.05). At 10 weeks after GTG administration body weight was further increased, as was the degree of glucose intolerance. Plasma insulin levels, in both the basal state and in response to the ingestion of chow, were also further elevated by 10 weeks following GTG injection (10 week control: 1234 +/- 311 min/microU/ml; 10 week GTG: 6640 +/- 1198 min/microU/ml; P < 0.05). It is apparent that the secretion of insulin in response to a standard chow meal increases progressively with the development of obesity. This finding, in conjunction with an earlier study showing that the insulin secretory response to intravenously administered glucose becomes impaired in the latter stages of the development of obesity in GTG-injected mice

  14. Early decrease of insulin sensitivity in offspring of individuals with type 2 diabetes. The Mexican Diabetes Prevention Study.

    PubMed

    Pérez-Fuentes, Ricardo; Baez-Duarte, Blanca G; Zamora-Ginez, Irma; Ruiz-Vivanco, Guadalupe; Pulido-Pérez, Patricia; Nieva-Vázquez, Adriana; Gonzalez-Mejia, M Elba; Torres-Rasgado, Enrique

    2014-04-01

    Defects in insulin sensitivity (IS) and insulin secretion have been recognized as risk factors for type 2 diabetes (T2D) and its complications. We undertook this study to establish the relationship between healthy type 2 diabetic offspring (OFD) from a Mexican population with IS. A total of 602 Mexican subjects, 359 first-degree offspring of T2D (OFD+) and 243 first-degree non-offspring of T2D (OFD-) were classified as young adults (age range, 18-44 years) and middle-aged adults (age range, 45-65 years). Groups were clinically and biochemically characterized. Quantitative insulin sensitivity check index (QUICKI) was used to estimate IS and the homeostasis model assessment B (HOMA-B) was used to estimate B cell function. IS decreased significantly (p <0.05) in OFD+ middle-aged (QUICKI 0.330 ± 0.03) compared with OFD- (0. 370 ± 0.03). Middle-aged adults (OFD+) had the highest prevalence of increased fasting insulin levels (FIL) (13.6%) and decreased IS (22.9%) compared with OFD- groups (3.2%). A binary regression analysis showed the association of OFD+ with increased FIL (odds ratio [OR], 3.71; 95% confidence interval [95% CI], 1.68-8.2; p = 0.001), and QUICKI (OR, 10.87; 95% CI, 2.36-44.69; p <0.01) adjusted by gender, age, and obesity. Our results suggest that decreased IS itself could be recognized as one of the earliest detectable abnormalities in middle-aged adults. Moreover, prevalence increases with age and is associated with type 2 diabetic offspring, regardless of obesity. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  15. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  17. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients.

    PubMed

    Jaganjac, Morana; Almuraikhy, Shamma; Al-Khelaifi, Fatima; Al-Jaber, Mashael; Bashah, Moataz; Mazloum, Nayef A; Zarkovic, Kamelija; Zarkovic, Neven; Waeg, Georg; Kafienah, Wael; Elrayess, Mohamed A

    2017-08-01

    Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). This study investigated whether impaired adipogenesis of omental (OM) adipose tissues and elevated 4-hydroxynonenal (4-HNE) accumulation contribute to this process, and if combined metformin and insulin treatment in T2DM patients could rescue this phenotype. OM adipose tissues were obtained from forty clinically well characterized obese individuals during weight reduction surgery. Levels of 4-HNE protein adducts, adipocyte size and number of macrophages were determined within these tissues by immunohistochemistry. Adipogenic capacity and gene expression profiles were assessed in preadipocytes derived from these tissues in relation to insulin resistance and in response to 4-HNE, metformin or combined metformin and insulin treatment. Preadipocytes isolated from insulin resistant (IR) and T2DM individuals exhibited lower adipogenesis, marked by upregulation of anti-adipogenic genes, compared to preadipocytes derived from insulin sensitive (IS) individuals. Impaired adipogenesis was also associated with increased 4-HNE levels, smaller adipocytes and greater macrophage presence in the adipose tissues. Within the T2DM group, preadipocytes from combined metformin and insulin treated subset showed better in vitro adipogenesis compared to metformin alone, which was associated with less presence of macrophages and 4-HNE in the adipose tissues. Treatment of preadipocytes in vitro with 4-HNE reduced their adipogenesis and increased proliferation, even in the presence of metformin, which was partially rescued by the presence of insulin. This study reveals involvement of 4-HNE in the impaired OM adipogenesis-associated with insulin resistance and T2DM and provides a proof of concept that this impairment can be reversed by the synergistic action of insulin and metformin. Further studies are

  18. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    PubMed

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  19. Circulating Branched-chain Amino Acid Concentrations Are Associated with Obesity and Future Insulin Resistance in Children and Adolescents

    PubMed Central

    McCormack, Shana E.; Shaham, Oded; McCarthy, Meaghan A.; Deik, Amy A.; Wang, Thomas J.; Gerszten, Robert E.; Clish, Clary B.; Mootha, Vamsi K.; Grinspoon, Steven K.; Fleischman, Amy

    2012-01-01

    Background Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. Objective To determine whether pediatric obesity is associated with elevations in fasting circulating concentrations of branched-chain amino acids (isoleucine, leucine, and valine), and whether these elevations predict future insulin resistance. Research Design and Methods Sixty-nine healthy subjects, ages 8 to18 years, were enrolled as a cross-sectional cohort. A subset who were pre- or early-pubertal, ages 8 to 13 years, were enrolled in a prospective longitudinal cohort for 18 months (n=17 with complete data). Results Elevations in the concentrations of BCAA’s were significantly associated with BMI Z-score (Spearman’s Rho 0.27, p=0.03) in the cross-sectional cohort. In the subset of subjects followed longitudinally, baseline BCAA concentrations were positively associated with HOMA-IR measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex, and pubertal stage (p=0.046). Conclusions Elevations in the concentrations of circulating branched-chain amino acids are significantly associated with obesity in children and adolescents, and may independently predict future insulin resistance. PMID:22961720

  20. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  1. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  2. Cardiovascular fitness, insulin resistance and metabolic syndrome in severely obese prepubertal Italian children.

    PubMed

    Brufani, Claudia; Grossi, Armando; Fintini, Danilo; Fiori, Rossana; Ubertini, Graziamaria; Colabianchi, Diego; Ciampalini, Paolo; Tozzi, Alberto; Barbetti, Fabrizio; Cappa, Marco

    2008-01-01

    To evaluate if insulin resistance (IR) and metabolic syndrome (MS) were associated with poor cardiovascular fitness in very obese prepubertal Italian subjects. Children referred to the Endocrinology and Diabetes Unit of Bambino Gesù Children's Hospital underwent an OGTT with glucose and insulin assays. QUICKI, ISI and HOMA-IR were calculated. Total and HDL cholesterol, triglycerides and percentage of body fat (DEXA) were determined. Cardiovascular fitness (maximal treadmill time) was evaluated using a treadmill protocol. The MS was defined as having 3 or more of following risk factors: obesity, impaired glucose tolerance, high blood pressure, low HDL-cholesterol, high triglycerides. Fifty-five very obese prepubertal Italian children were enrolled in the study. Unadjusted correlation revealed maximal treadmill time negatively related to fasting insulin (r = -0.53, p < 0.0001) and HOMA-IR (r = -0.57, p < 0.0001) and positively to QUICKI (r = 0.51, p < 0.0001) and ISI (r = 0.46, p = 0.0035). These relationships remained significant when in multivariate analysis age, gender, BMI SD and body composition were accounted for (all p < 0.01). The presence of the MS was independently associated with maximal treadmill time. Poorcardiovascular fitness, IR and MS were independently related, suggesting that the relationship between fitness and insulin action develops early in life. Copyright 2008 S. Karger AG, Basel.

  3. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects.

    PubMed

    Rizkalla, S W; Baigts, F; Fumeron, F; Rabillon, B; Bayn, P; Ktorza, A; Spielmann, D; Apfelbaum, M

    1986-09-01

    The effects of simple carbohydrates on erythrocyte insulin receptors, plasma insulin and plasma glucose were studied during four hypocaloric, hyperproteic, diets. One diet contained no carbohydrate; the other three contained 36 g of either glucose, galactose or fructose. These diets were given for a 14-day period to groups of moderately obese subjects. The hypocaloric carbohydrate-free diet produced a decrease in plasma insulin and glucose concentrations concomitant with an increase in the number of insulin receptors. A similar increase in insulin receptor number was found when the diet was supplemented with glucose or galactose, but not with fructose. The presence of fructose in the diet prevented any increase in insulin receptor number.

  4. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity.

    PubMed

    Kemp, David E; Ismail-Beigi, Faramarz; Ganocy, Stephen J; Conroy, Carla; Gao, Keming; Obral, Sarah; Fein, Elizabeth; Findling, Robert L; Calabrese, Joseph R

    2012-02-01

    This study was conducted to examine the safety and efficacy of pioglitazone, a thiazolidinedione insulin sensitizer, in adult outpatients with major depressive disorder. In a 12-week, open-label, flexible-dose study, 23 patients with major depressive disorder received pioglitazone monotherapy or adjunctive therapy initiated at 15 mg daily. Subjects were required to meet criteria for abdominal obesity (waist circumference>35 in. in women and >40 in. in men) or metabolic syndrome. The primary efficacy measure was the change from baseline to Week 12 on the Inventory of Depressive Symptomatology (IDS) total score. Partial responders (≥25% decrease in IDS total score) were eligible to participate in an optional extension phase for an additional three months. Pioglitazone decreased depression symptom severity from a total IDS score of 40.3±1.8 to 19.2±1.8 at Week 12 (p<.001). Among partial responders (≥25% decrease in IDS total score), an improvement in depressive symptoms was maintained during an additional 3-month extension phase (total duration=24 weeks) according to IDS total scores (p<.001). Patients experienced a reduction in insulin resistance from baseline to Week 12 according to the log homeostasis model assessment (-0.8±0.75; p<.001) and a significant reduction in inflammation as measured by log highly- sensitive C-reactive protein (-0.87±0.72; p<.001). During the current episode, the majority of participants (74%, n=17), had already failed at least one antidepressant trial. The most common side effects were headache and dizziness; no patient discontinued due to side effects. These data are limited by a small sample size and an open-label study design with no placebo control. Although preliminary, pioglitazone appears to reduce depression severity and improve several markers of cardiometabolic risk, including insulin resistance and inflammation. Larger, placebo-controlled studies are indicated. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    PubMed

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy.

    PubMed

    Forbes, Shareen; Barr, Sarah M; Reynolds, Rebecca M; Semple, Scott; Gray, Calum; Andrew, Ruth; Denison, Fiona C; Walker, Brian R; Norman, Jane E

    2015-11-01

    Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case-control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic-euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6-9) and body fat distribution by MRI in late pregnancy (n = 10/group). Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy.

  7. Nutritional Approaches for Managing Obesity-Associated Metabolic Diseases

    PubMed Central

    Botchlett, Rachel; Woo, Shih-Lung; Liu, Mengyang; Pei, Ya; Guo, Xin; Li, Honggui; Wu, Chaodong

    2017-01-01

    Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscle, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in the control of the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis. PMID:28400405

  8. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight.

    PubMed

    Shamansurova, Zulaykho; Tan, Paul; Ahmed, Basma; Pepin, Emilie; Seda, Ondrej; Lavoie, Julie L

    2016-10-01

    We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(P)RR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (P)RR gene would prevent weight gain and insulin resistance. An adipose tissue-specific (P)RR knockout (KO) mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (P)RR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND) diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD) to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. KO mice had lower body weights compared to wild-types (WT). Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (P)RR. (P)RR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes.

  9. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  10. Relationship of obesity and insulin resistance with the cerebrovascular reactivity: a case control study

    PubMed Central

    2014-01-01

    Background Obesity is associated with increased risk for stroke. The breath-holding index (BHI) is a measure of vasomotor reactivity of the brain which can be measured with the transcranial Doppler (TCD). We aim to evaluate obesity as an independent factor for altered cerebrovascular reactivity. Methods Cerebrovascular hemodynamics (mean flow velocities MFV, pulsatility index, PI, resistance index, RI, and BHI) was determined in 85 non-obese (Body Mass Index, BMI ≤27 kg/m2) and 85 obese subjects (BMI ≥35 kg/m2) without diabetes mellitus and hypertension. Anthropometric and metabolic variables, and scores to detect risk for obstructive sleep apnea (OSA) were analyzed for their association with the cerebrovascular reactivity. Results The BHI was significantly lower in subjects with obesity according to BMI and in subjects with abdominal obesity, but the PI and RI were not different between groups. There was a linear association between the BMI, the HOMA-IR, the Matsuda index, the waist circumference, and the neck circumference, with the cerebrovascular reactivity. After adjusting for insulin resistance, neck circumference, and abdominal circumference, obesity according to BMI was negatively correlated with the cerebrovascular reactivity. Conclusions We found a diminished vasomotor reactivity in individuals with obesity which was not explained by the presence of insulin resistance. PMID:24383894

  11. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status

    PubMed Central

    Rock, Cheryl L.; Flatt, Shirley W.; Pakiz, Bilge; Quintana, Elizabeth L.; Heath, Dennis D.; Rana, Brinda K.; Natarajan, Loki

    2018-01-01

    Background Obesity is a risk factor for postmenopausal breast cancer incidence and pre- and postmenopausal breast cancer mortality, which may be explained by several metabolic and hormonal factors (sex hormones, insulin resistance, and inflammation) that are biologically related. Differential effects of dietary composition on weight loss and these metabolic factors may occur in insulin-sensitive vs. insulin-resistant obese women. Objective To examine the effect of diet composition on weight loss and metabolic, hormonal and inflammatory factors in overweight/obese women stratified by insulin resistance status in a 1-year weight loss intervention. Methods and Results Nondiabetic women who were overweight/obese (n = 245) were randomly assigned to a lower fat (20% energy), higher carbohydrate (65% energy) diet; a lower carbohydrate (45% energy), higher fat (35% energy) diet; or a walnut-rich (18% energy), higher fat (35% energy), lower carbohydrate (45% energy) diet. All groups lost weight at follow-up (P < 0.0001), with mean (SEM) percent loss of 9.2 (1.1)% in lower fat, 6.5 (0.9)% in lower carbohydrate, and 8.2 (1.0)% in walnut-rich groups at 12 months. The diet × time × insulin resistance status interaction was not statistically significant in the model for overall weight loss, although insulin sensitive women at 12 months lost more weight in the lower fat vs. lower carbohydrate group (7.5 kg vs 4.3 kg, P = 0.06), and in the walnut-rich vs. lower carbohydrate group (8.1 kg vs 4.3 kg, P = 0.04). Sex hormone binding globulin increased within each group except in the lower carbohydrate group at 12 months (P < 0.01). C-reactive protein and interleukin-6 decreased at follow-up in all groups (P < 0.01). Conclusions Findings provide some support for differential effects of diet composition on weight loss depending on insulin resistance status. Prescribing walnuts is associated with weight loss comparable to a standard lower fat diet in a behavioral weight loss

  12. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status.

    PubMed

    Rock, Cheryl L; Flatt, Shirley W; Pakiz, Bilge; Quintana, Elizabeth L; Heath, Dennis D; Rana, Brinda K; Natarajan, Loki

    2016-11-01

    Obesity is a risk factor for postmenopausal breast cancer incidence and premenopausal and postmenopausal breast cancer mortality, which may be explained by several metabolic and hormonal factors (sex hormones, insulin resistance, and inflammation) that are biologically related. Differential effects of dietary composition on weight loss and these metabolic factors may occur in insulin-sensitive vs. insulin-resistant obese women. To examine the effect of diet composition on weight loss and metabolic, hormonal and inflammatory factors in overweight/obese women stratified by insulin resistance status in a 1-year weight loss intervention. Nondiabetic women who were overweight/obese (n=245) were randomly assigned to a lower fat (20% energy), higher carbohydrate (65% energy) diet; a lower carbohydrate (45% energy), higher fat (35% energy) diet; or a walnut-rich (18% energy), higher fat (35% energy), lower carbohydrate (45% energy) diet. All groups lost weight at follow-up (P<0.0001), with mean (SEM) percent loss of 9.2(1.1)% in lower fat, 6.5(0.9)% in lower carbohydrate, and 8.2(1.0)% in walnut-rich groups at 12months. The diet×time×insulin resistance status interaction was not statistically significant in the model for overall weight loss, although insulin sensitive women at 12months lost more weight in the lower fat vs. lower carbohydrate group (7.5kg vs. 4.3kg, P=0.06), and in the walnut-rich vs. lower carbohydrate group (8.1kg vs. 4.3kg, P=0.04). Sex hormone binding globulin increased within each group except in the lower carbohydrate group at 12months (P<0.01). C-reactive protein and interleukin-6 decreased at follow-up in all groups (P<0.01). Findings provide some support for differential effects of diet composition on weight loss depending on insulin resistance status. Prescribing walnuts is associated with weight loss comparable to a standard lower fat diet in a behavioral weight loss intervention. Weight loss itself may be the most critical factor for reducing

  13. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    PubMed

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose < or =215 mg/dL. Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p < .002), whereas conventional

  14. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    PubMed

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  15. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  16. Differences in taste sensitivity between obese and non-obese children and adolescents.

    PubMed

    Overberg, Johanna; Hummel, Thomas; Krude, Heiko; Wiegand, Susanna

    2012-12-01

    Taste sensitivity varies between individuals. Several studies describe differences between obese and non-obese subjects concerning their taste perception. However, data are partly contradictory and insufficient. Therefore, in this study taste sensitivity of obese and non-obese children/adolescents was analysed. In a cross-sectional study gustatory sensitivity of n=99 obese subjects (body mass index (BMI) >97th percentile) and n=94 normal weight subjects (BMI <90th percentile), 6-18 years of age, was compared. Sensitivity for the taste qualities sweet, sour, salty, umami and bitter was analysed by means of impregnated 'taste strips' in different concentrations. A total score was determined for all taste qualities combined as well as for each separately. Furthermore, the possible influence of sex, age and ethnicity on taste perception was analysed. An intensity rating for sweet was performed on a 5-point rating scale. Obese subjects showed-compared to the control group-a significantly lower ability to identify the correct taste qualities regarding the total score (p<0.001). Regarding individual taste qualities there was a significantly lower detection rate for salty, umami and bitter by obese subjects. Furthermore, the determinants age and sex had a significant influence on taste perception: older age and female sex was associated with better ability to identify taste qualities. Concerning the sweet intensity rating obese children gave significantly lower intensity ratings to three of the four concentrations. Obese and non-obese children and adolescents differ in their taste perception. Obese subjects could identify taste qualities less precisely than children and adolescents of normal weight.

  17. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    PubMed Central

    Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A.; Rice, Ken; Morris, Andrew P.; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E.; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U.; Appel, Emil V.; Grarup, Niels; Lewis, Joshua P.; Montasser, May E.; Landenvall, Claes; Staiger, Harald; Luan, Jian’an; Frayling, Timothy M.; Weedon, Michael N.; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L.; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O.; Kizer, Jorge R.; Koistinen, Heikki A.; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K.; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I.; Siscovick, David S.; Zmuda, Joseph M.; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J.; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A.; Wareham, Nicholas J.; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O’Connell, Jeff R.; Boehnke, Michael; Bergman, Richard N.; Collins, Francis S.; Mohlke, Karen L.; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M.; Kuusisto, Johanna; Laakso, Markku; Meigs, James B.; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C.

    2016-01-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10−11), rs12454712 (BCL2; P = 2.7 × 10−8), and rs10506418 (FAM19A2; P = 1.9 × 10−8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. PMID:27416945

  18. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism.

    PubMed

    Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle

    2018-04-01

    Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.

  19. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse.

    PubMed

    Muñoz, S; Franckhauser, S; Elias, I; Ferré, T; Hidalgo, A; Monteys, A M; Molas, M; Cerdán, S; Pujol, A; Ruberte, J; Bosch, F

    2010-11-01

    In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.

  20. Impaired Local Production of Proresolving Lipid Mediators in Obesity and 17-HDHA as a Potential Treatment for Obesity-Associated Inflammation

    PubMed Central

    Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K.; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E.; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N.; Stulnig, Thomas M.

    2013-01-01

    Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3–derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3–derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications. PMID:23349501

  1. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation.

    PubMed

    Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N; Stulnig, Thomas M

    2013-06-01

    Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3-derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3-derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications.

  2. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats.

    PubMed

    Lee, Yoon Hee; Jin, Bora; Lee, Sung Hyun; Song, MiKyung; Bae, HyeonHui; Min, Byung Jae; Park, Juyeon; Lee, Donghun; Kim, Hocheol

    2016-10-25

    It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD), high-fat diet (HFD), high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat), high-fat diet with 0.2% HT048 ( w / w ; HFD + 0.2% HT048), and high-fat diet with 0.6% HT048 ( w / w ; HFD + 0.6% HT048). It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  3. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity1234

    PubMed Central

    Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-01-01

    Background: The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. Objective: We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Design: Plasma sterols were measured by gas chromatography–mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (SI) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. Results: The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol–cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with SI and negatively associated with obesity, whereas lathosterol correlations were the opposite. Conclusions: Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve SI and to decrease cholesterol overproduction in LIR and OIR

  4. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    muscle in vivo by activation of the insulin signaling cascade to glucose transport through the enzymes IRS1, PI3K, Akt2, AS160/TBC1D4 and RAC1, and to glycogen synthesis through Akt2, inhibition of GSK3 and activation of glycogen synthase (GS) via dephosphorylation of serine residues in both the NH2-terminal (site 2+2a) and the COOH-terminal end (site 3a+3b). In type 2 diabetes, obesity and PCOS, there is, although with some variation from study to study, defects in insulin signaling through IRS1, PI3K, Akt2 and AS160/TBC1D4, which can explain reduced insulin action on glucose transport. In type 2 diabetes an altered intracellular distribution of SNAP23 and impaired activation of RAC1 also seem to play a role for reduced insulin action on glucose transport. In all common metabolic disorders, we observed an impaired insulin activation of GS, which seems to be caused by attenuated dephosphorylation of GS at site 2+2a, whereas as the inhibition of GSK3 and the dephosphorylation of GS at its target sites, site 3a+3a, appeared to be completely normal. In individuals with inherited insulin resistance, we observed largely the same defects in insulin action on IRS1, PI3K, Akt2 and GS, as well as a normal inhibition of GSK3 and dephosphorylation of GS at site 3a+3b. In these individuals, however, a markedly reduced insulin clearance seems to partially rescue insulin signaling to glucose transport and GS. Adiponectin is thought to improve insulin sensitivity primarily by increasing lipid oxidation through activation of the enzyme AMPK, and possibly via cross-talking of adiponectin with insulin signaling, and hence glucose transport and glycogen synthesis. We demonstrated a strong correlation between plasma adiponectin and insulin action on glucose disposal and glycogen synthesis in obesity, type 2 diabetes and PCOS. In individuals with inherited insulin resistance, plasma adiponectin was normal, but the correlation of adiponectin with insulin-stimulated glucose uptake and glycogen

  5. Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats.

    PubMed

    Smith, Wayne; Norton, Gavin R; Woodiwiss, Angela J; Lochner, Amanda; du Toit, Eugene F

    2016-07-01

    Clinical data advocating an adverse effect of obesity on left ventricular (LV) systolic function independent of comorbidities is controversial. We hypothesized that in obesity with prediabetic insulin resistance, circulating fatty acids (FAs) become a valuable fuel source in the maintenance of normal systolic function. Male Wistar rats were fed a high caloric diet for 32 weeks to induce obesity. Myocardial LV systolic function was assessed using echocardiography and isolated heart preparations. Aortic output was reduced in obese rat hearts over a range of filling pressures (for example: 15 cmH2O, obese: 32.6 ± 1.2 ml/min vs control: 46.2 ± 0.9 ml/min, P < .05) when perfused with glucose alone. Similarly, the slope of the LV end-systolic pressure-volume relationship decreased, and there was a right shift in the LV end-systolic stress-strain relationship as determined in Langendorff perfused, isovolumic rat heart preparations in the presence of isoproterenol (10(-8)M) (LV systolic stress-strain relationship and a reduced load-independent intrinsic systolic myocardial function, obese: 791 ± 62 g/cm(2) vs control: 1186 ± 74 g/cm(2), P < .01). The addition of insulin to the perfusion buffer improved aortic output, whereas the addition of FAs completely normalized aortic output. LV function was maintained in obese animals in vivo during an inotropic challenge. Elevated circulating FA levels may be important to maintain myocardial systolic function in the initial stages of obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Insulin sensitizers in adolescents with polycystic ovary syndrome.

    PubMed

    LE, Trang N; Wickham, Edmond P; Nestler, John E

    2017-10-01

    Polycystic ovary syndrome (PCOS) is the most common disorder of androgen excess in women of reproductive age. The diagnosis of PCOS can be more challenging in adolescents than in adult women given significant overlap between normal puberty and the signs of PCOS, including acne, menstrual irregularity, and polycystic ovarian morphology. Optimal treatments for adult women with PCOS vary depending on patient risk factors and reproductive goals, but mainly include hormonal contraception and insulin sensitizers. There is continued interest in targeting the intrinsic insulin resistance that contributes to metabolic and hormonal derangements associated with PCOS. The vast majority of published data on insulin sensitizing PCOS treatments are reported in adult women; these have included weight loss, metformin, thiazolidinediones, and the inositols. Furthermore, there is also a small but growing body of evidence in support of the use of insulin sensitizers in adolescents, with or without oral contraceptives. Discussion of the available treatments, including benefits, potential side effects, and incorporation of patient and family preferences is critical in developing a plan of care aimed at achieving patient-important improvements in PCOS signs and symptoms while addressing the longer-term cardiometabolic risks associated with the syndrome.

  7. Effects of exercise and lifestyle modification on fitness, insulin resistance, skeletal muscle oxidative phosphorylation and intramyocellular lipid content in obese children and adolescents.

    PubMed

    McCormack, S E; McCarthy, M A; Harrington, S G; Farilla, L; Hrovat, M I; Systrom, D M; Thomas, B J; Torriani, M; McInnis, K; Grinspoon, S K; Fleischman, A

    2014-08-01

    Obesity is associated with poor fitness and adverse metabolic consequences in children. To investigate how exercise and lifestyle modification may improve fitness and insulin sensitivity in this population. Randomized controlled trial, 21 obese (body mass index ≥ 95% percentile) subjects, ages 10 to 17 years. Subjects were given standardized healthful lifestyle advice for 8 weeks. In addition, they were randomized to an in-home supervised exercise intervention (n = 10) or control group (n = 11). Fasting laboratory studies (insulin, glucose, lipid profile) and assessments of fitness, body composition, skeletal muscle oxidative phosphorylation and intramyocellular lipid content (IMCL), were performed at baseline and study completion. Subjects were 13.0 ± 1.9 (standard deviation) years old, 72% female and 44% non-white. Exercise improved fitness (P = 0.03) and power (P = 0.01), and increased IMCL (P = 0.02). HOMA-IR decreased among all subjects in response to lifestyle modification advice (P = 0.01), regardless of exercise training assignment. In univariate analysis in all subjects, change in cardiovascular fitness was associated with change in HOMA-IR. In exploratory analyses, increased IMCL was associated with greater resting energy expenditure (r = 0.78, P = 0.005) and a decrease in fasting respiratory quotient (r = -0.70, P = 0.02) (n = 11). Change in fitness was found to be related to change in insulin resistance in response to lifestyle modification and exercise in obese children. IMCL increased with exercise in these obese children, which may reflect greater muscle lipid oxidative capacity. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  8. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    PubMed Central

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  9. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    PubMed

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  10. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in

  11. Insulin resistance and polycystic ovary syndrome.

    PubMed

    Galluzzo, Aldo; Amato, Marco Calogero; Giordano, Carla

    2008-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in humans, affecting approximately 7-8% of women of reproductive age. Despite the criteria adopted, PCOS is considered to be a predominantly hyperandrogenetic syndrome and the evaluation of metabolic parameters and insulin sensitivity is not mandatory. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Acknowledging the strong impact of insulin-resistance in the genesis of PCOS could be helpful not only to make the diagnosis more robust, but also for conferring better cardiovascular risk prevention. Several current studies support a strong recommendation that women with PCOS should undergo comprehensive evaluation for the metabolic syndrome and recognized cardiovascular risk factors, and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many of these women do not lose weight easily. Insulin-sensitizing drugs are discussed as a promising and unique therapeutic option for the chronic treatment of PCOS.

  12. Impact of exercise training without caloric restriction on inflammation, insulin resistance and visceral fat mass in obese adolescents.

    PubMed

    Mendelson, M; Michallet, A-S; Monneret, D; Perrin, C; Estève, F; Lombard, P R; Faure, P; Lévy, P; Favre-Juvin, A; Pépin, J-L; Wuyam, B; Flore, P

    2015-08-01

    Exercise training has been shown to improve cardiometabolic health in obese adolescents. Evaluate the impact of a 12-week exercise-training programme (without caloric restriction) on obese adolescents' cardiometabolic and vascular risk profiles. We measured systemic markers of oxidation, inflammation, metabolic variables and endothelial function in 20 obese adolescents (OB) (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 age- and gender-matched normal-weight adolescents (NW). Body composition was assessed by magnetic resonance imagery. Peak aerobic capacity and maximal fat oxidation were evaluated during specific incremental exercise tests. OB participated in a 12-week exercise-training programme. OB presented lower peak aerobic capacity (24.2 ± 5.9 vs. 39.8 ± 8.3 mL kg(-1)  min(-1) , P < 0.05) and maximal fat oxidation compared with NW (P < 0.05). OB displayed greater F2t-Isoprostanes (20.5 ± 6.7 vs. 13.4 ± 4.2 ng mmol(-1) creatinine), Interleukin-1 receptor antagonist (IL-1Ra) (1794.8 ± 532.2 vs. 835.1 ± 1027.4 pg mL(-1) ), Tumor Necrosis Factor-α (TNF-α) (2.1 ± 1.2 vs. 1.5 ± 1.0 pg mL(-1) ), Soluble Tumor Necrosis Factor-α Type II Receptor (sTNFαRII), leptin, insulin, homeostasis model assessment of insulin resistance, version 2 (HOMA2-IR), high-sensitive C-reactive protein, triglycerides and lower adiponectin and high-density lipoprotein cholesterol (all P < 0.05). After exercise training, despite lack of weight loss, VO2peak (mL.kg(-1) .min(-1) ) and maximal fat oxidation increased (P < 0.05). IL-1Ra and IFN-gamma-inducible protein 10 (IP-10) decreased (P < 0.05). Insulin and HOMA2-IR decreased (14.8 ± 1.5 vs. 10.2 ± 4.2 μUI mL(-1) and 1.9 ± 0.8 vs. 1.3 ± 0.6, respectively, P < 0.05). Change in visceral fat mass was inversely associated with change in maximal fat oxidation (r = -0.54; P = 0.024). The

  13. Physical Training Improves Insulin Resistance Syndrome Markers in Obese Adolescents.

    ERIC Educational Resources Information Center

    Kang, Hyun-Sik; Gutin, Bernard; Barbeau, Paule; Owens, Scott; Lemmon, Christian R.; Allison, Jerry; Litaker, Mark S.; Le, Ngoc-Anh

    2002-01-01

    Tested the hypothesis that physical training (PT), especially high-intensity PT, would favorably affect components of the insulin resistance syndrome (IRS) in obese adolescents. Data on teens randomized into lifestyle education (LSE) alone, LSE plus moderate -intensity PT, and LSE plus high-intensity PT indicated that PT, especially high-intensity…

  14. Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.

    PubMed

    Rigano, K S; Gehring, J L; Evans Hutzenbiler, B D; Chen, A V; Nelson, O L; Vella, C A; Robbins, C T; Jansen, H T

    2017-05-01

    Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.

  15. Adiponectin improves insulin sensitivity via activation of autophagic flux.

    PubMed

    Ahlstrom, Penny; Rai, Esther; Chakma, Suharto; Cho, Hee Ho; Rengasamy, Palanivel; Sweeney, Gary

    2017-11-01

    Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance. © 2017 Society for Endocrinology.

  16. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    PubMed

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  18. Randomized trial on the effects of a 7-d low-glycemic diet and exercise intervention on insulin resistance in older obese humans123

    PubMed Central

    Solomon, Thomas PJ; Haus, Jacob M; Kelly, Karen R; Cook, Marc D; Riccardi, Michelle; Rocco, Michael; Kashyap, Sangeeta R; Barkoukis, Hope

    2009-01-01

    Background: The optimal combination of diet and exercise that produces the greatest reversal of obesity-related insulin resistance is unknown. Objectives: We examined the effects of a combined 7-d low–glycemic index (low-GI) diet and exercise training intervention on insulin sensitivity in older obese humans. Design: Participants [n = 32; mean (±SEM) age: 66 ± 1 y; body mass index (in kg/m2): 33.8 ± 0.7] were randomly assigned to a parallel, double-blind, controlled-feeding trial and underwent supervised aerobic exercise (EX; 60 min/d at 80–85% maximum heart rate) in combination with either a low-GI (LoGI + EX: 41.1 ± 0.4) or a high-GI (HiGI + EX: 80.9 ± 0.6) diet. All meals were provided and were isocaloric to individual energy requirements. Insulin sensitivity and hepatic glucose production were assessed with a 40–mU ⋅ m−2 · min−1 hyperinsulinemic euglycemic clamp combined with a [6,6-2H2]-glucose infusion. Results: After the intervention, small decreases were observed in body weight (−1.6 ± 0.2 kg; P < 0.0001) and fat mass (−1.7 ± 0.9%; P = 0.004) in both groups. Maximal aerobic capacity (V̇O2max) also improved slightly (0.06 ± 0.02 L/min; P = 0.004). Resting systolic blood pressure, fasting glucose, insulin, triglycerides, and cholesterol all decreased after the study (all P < 0.05). Larger changes in systolic blood pressure and V̇O2max were seen in the LoGI + EX group. Insulin-stimulated glucose disposal (P < 0.001), insulin suppression of hepatic glucose production (P = 0.004), and postabsorptive fat oxidation (P = 0.03) improved equally in both groups after the intervention. Conclusions: These findings suggest that the metabolic improvements after short-term exercise training in older obese individuals are dependent on increased physical activity and are not influenced by a low-GI diet. However, a low-GI diet has added benefit in alleviating hypertension, thus reducing the risk of diabetic and vascular complications. PMID:19793849

  19. Statin Intake Is Associated With Decreased Insulin Sensitivity During Cardiac Surgery

    PubMed Central

    Sato, Hiroaki; Carvalho, George; Sato, Tamaki; Hatzakorzian, Roupen; Lattermann, Ralph; Codere-Maruyama, Takumi; Matsukawa, Takashi; Schricker, Thomas

    2012-01-01

    OBJECTIVE Surgical trauma impairs intraoperative insulin sensitivity and is associated with postoperative adverse events. Recently, preprocedural statin therapy is recommended for patients with coronary artery disease. However, statin therapy is reported to increase insulin resistance and the risk of new-onset diabetes. Thus, we investigated the association between preoperative statin therapy and intraoperative insulin sensitivity in nondiabetic, dyslipidemic patients undergoing coronary artery bypass grafting. RESEARCH DESIGN AND METHODS In this prospective, nonrandomized trial, patients taking lipophilic statins were assigned to the statin group and hypercholesterolemic patients not receiving any statins were allocated to the control group. Insulin sensitivity was assessed by the hyperinsulinemic-normoglycemic clamp technique during surgery. The mean, SD of blood glucose, and the coefficient of variation (CV) after surgery were calculated for each patient. The association between statin use and intraoperative insulin sensitivity was tested by multiple regression analysis. RESULTS We studied 120 patients. In both groups, insulin sensitivity gradually decreased during surgery with values being on average ∼20% lower in the statin than in the control group. In the statin group, the mean blood glucose in the intensive care unit was higher than in the control group (153 ± 20 vs. 140 ± 20 mg/dL; P < 0.001). The oscillation of blood glucose was larger in the statin group (SD, P < 0.001; CV, P = 0.001). Multiple regression analysis showed that statin use was independently associated with intraoperative insulin sensitivity (β = −0.16; P = 0.03). CONCLUSIONS Preoperative use of lipophilic statins is associated with increased insulin resistance during cardiac surgery in nondiabetic, dyslipidemic patients. PMID:22829524

  20. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.