Sample records for obesity-induced adipose tissue

  1. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.

    PubMed

    Kawasaki, Noritaka; Asada, Rie; Saito, Atsushi; Kanemoto, Soshi; Imaizumi, Kazunori

    2012-01-01

    Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.

  2. IL-33 induces protective effects in adipose tissue inflammation during obesity in mice

    PubMed Central

    Miller, Ashley M.; Asquith, Darren L.; Hueber, Axel J.; Anderson, Lesley A.; Holmes, William M.; McKenzie, Andrew N.; Xu, Damo; Sattar, Naveed; McInnes, Iain B.; Liew, Foo Y.

    2014-01-01

    Rationale Chronic low-grade inflammation involving adipose tissue likely contributes to the metabolic consequences of obesity. The cytokine IL-33 and its receptor ST2 are expressed in adipose tissue but their role in adipose tissue inflammation during obesity is unclear. Objective To examine the functional role of IL-33 in adipose tissues, and investigate the effects on adipose tissue inflammation and obesity in vivo. Methods and Results We demonstrate that treatment of adipose tissue cultures in vitro with IL-33 induced production of Th2 cytokines (IL-5, IL-13, IL-10), and reduced expression of adipogenic and metabolic genes. Administration of recombinant IL-33 to genetically obese diabetic (ob/ob) mice led to reduced adiposity, reduced fasting glucose and improved glucose and insulin tolerance. IL-33 also induced accumulation of Th2 cells in adipose tissue and polarization of adipose tissue macrophages towards an M2 alternatively activated phenotype (CD206+), a lineage associated with protection against obesity-related metabolic events. Furthermore, mice lacking endogenous ST2 fed HFD had increased body weight and fat mass, impaired insulin secretion and glucose regulation compared to WT controls fed HFD. Conclusions In conclusion, IL-33 may play a protective role in the development of adipose tissue inflammation during obesity. PMID:20634488

  3. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    PubMed

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  5. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    PubMed

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    PubMed

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice.

    PubMed

    Wang, Lijun; Ye, Xiao; Hua, Yanyin; Song, Yingxiang

    2018-05-28

    Adipose tissue fibrosis is a novel mechanism for the development of obesity related insulin resistance. Berberine (BBR) has been shown to relieve several metabolic disorders, including obesity and type 2 diabetes. However, the effects of BBR on obesity related adipose fibrosis remain poorly understood. The objective of this study was to assess the effects of BBR on adipose tissue fibrosis in high fat diet (HFD)-induced obese mice. The results showed that BBR reduced animal body weight and significantly improved glucose tolerance in HFD mice. In addition, BBR treatment markedly attenuated collagen deposition and reversed the up-regulation of fibrosis associated genes in the adipose tissue of HFD mice. Moreover, BBR treatment activated AMP-activated kinase signaling and reduced TGF-β1 and Smad3 phosphorylation. Of note, the inhibitory effects of BBR on adipose tissue fibrosis were significantly blocked by AMPK inhibition with compound C, an AMPK inhibitor. Macrophage infiltration and polarization induced by HFD were also reversed after BBR administration. These findings suggest that BBR displays beneficial effects in the treatment of obesity, in part via improvement of adipose tissue fibrosis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.

    PubMed

    Titos, Esther; Clària, Joan

    2013-12-01

    Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    PubMed

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  10. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. [Role of chronic inflammation in adipose tissue in the pathophysiology of obesity].

    PubMed

    Suganami, Takayoshi; Ogawa, Yoshihiro

    2013-02-01

    Obesity may be viewed as a chronic low-grade inflammatory disease as well as a metabolic disease. Evidence has accumulated suggesting that chronic inflammation in adipose tissue leads to dramatic changes in number and cell type of stromal cells during the course of obesity, which is referred to as"adipose tissue remodeling". Among stromal cells, macrophages in obese adipose tissue are considered to be crucial for adipose tissue inflammation, which results in dysregulated adipocytokine production and ectopic fat accumulation. Understanding the molecular mechanism underlying adipose tissue inflammation would contribute to the identification of novel therapeutic strategies to prevent or treat obesity-induced metabolic derangements.

  12. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  13. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    PubMed

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  14. BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.

    PubMed

    Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi

    2015-01-01

    To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.

  15. Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.

    PubMed

    de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia

    2013-01-01

    Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.

  16. Quantification of Adipose Tissue Leukocytosis in Obesity

    PubMed Central

    Grant, Ryan; Youm, Yun-Hee; Ravussin, Anthony; Dixit, Vishwa Deep

    2014-01-01

    Summary The infiltration of immune cell subsets in adipose tissue termed ‘adipose tissue leukocytosis’ is a critical event in the development of chronic inflammation and obesity-associated comorbidities. Given that a significant proportion of cells in adipose tissue of obese patients are of hematopoietic lineage, the distinct adipose depots represent an uncharacterized immunological organ that can impact metabolic functions. Here, we describe approaches to characterize and isolate leukocytes from the complex adipose tissue microenvironment to aid mechanistic studies to understand the role of specific pattern recognition receptors (PRRs) such as inflammasomes in adipose-immune crosstalk. PMID:23852606

  17. Obesity-induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease

    PubMed Central

    Fuster, Jose J.; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-01-01

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  18. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  19. Interferon beta overexpression attenuates adipose tissue inflammation and high-fat diet-induced obesity and maintains glucose homeostasis.

    PubMed

    Alsaggar, M; Mills, M; Liu, D

    2017-01-01

    The worldwide prevalence of obesity is increasing, raising health concerns regarding obesity-related complications. Chronic inflammation has been characterized as a major contributor to the development of obesity and obesity-associated metabolic disorders. The purpose of the current study is to assess whether the overexpression of interferon beta (IFNβ1), an immune-modulating cytokine, will attenuate high-fat diet-induced adipose inflammation and protect animals against obesity development. Using hydrodynamic gene transfer to elevate and sustain blood concentration of IFNβ1 in mice fed a high-fat diet, we showed that the overexpression of Ifnβ1 gene markedly suppressed immune cell infiltration into adipose tissue, and attenuated production of pro-inflammatory cytokines. Systemically, IFNβ1 blocked adipose tissue expansion and body weight gain, independent of food intake. Possible browning of white adipose tissue might also contribute to blockade of weight gain. More importantly, IFNβ1 improved insulin sensitivity and glucose homeostasis. These results suggest that targeting inflammation represents a practical strategy to block the development of obesity and its related pathologies. In addition, IFNβ1-based therapies have promising potential for clinical applications for the prevention and treatment of various inflammation-driven pathologies.

  20. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity

    PubMed Central

    McQuaid, Siobhán E.; Hodson, Leanne; Neville, Matthew J.; Dennis, A. Louise; Cheeseman, Jane; Humphreys, Sandy M.; Ruge, Toralph; Gilbert, Marjorie; Fielding, Barbara A.; Frayn, Keith N.; Karpe, Fredrik

    2011-01-01

    OBJECTIVE Lipotoxicity and ectopic fat deposition reduce insulin signaling. It is not clear whether excess fat deposition in nonadipose tissue arises from excessive fatty acid delivery from adipose tissue or from impaired adipose tissue storage of ingested fat. RESEARCH DESIGN AND METHODS To investigate this we used a whole-body integrative physiological approach with multiple and simultaneous stable-isotope fatty acid tracers to assess delivery and transport of endogenous and exogenous fatty acid in adipose tissue over a diurnal cycle in lean (n = 9) and abdominally obese men (n = 10). RESULTS Abdominally obese men had substantially (2.5-fold) greater adipose tissue mass than lean control subjects, but the rates of delivery of nonesterified fatty acids (NEFA) were downregulated, resulting in normal systemic NEFA concentrations over a 24-h period. However, adipose tissue fat storage after meals was substantially depressed in the obese men. This was especially so for chylomicron-derived fatty acids, representing the direct storage pathway for dietary fat. Adipose tissue from the obese men showed a transcriptional signature consistent with this impaired fat storage function. CONCLUSIONS Enlargement of adipose tissue mass leads to an appropriate downregulation of systemic NEFA delivery with maintained plasma NEFA concentrations. However the implicit reduction in adipose tissue fatty acid uptake goes beyond this and shows a maladaptive response with a severely impaired pathway for direct dietary fat storage. This adipose tissue response to obesity may provide the pathophysiological basis for ectopic fat deposition and lipotoxicity. PMID:20943748

  2. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice.

    PubMed

    Ballak, Dov B; van Essen, Peter; van Diepen, Janna A; Jansen, Henry; Hijmans, Anneke; Matsuguchi, Tetsuya; Sparrer, Helmut; Tack, Cees J; Netea, Mihai G; Joosten, Leo A B; Stienstra, Rinke

    2014-01-01

    Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8). Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking MAP3K8 and WT mice on a high-fat diet (HFD) for 16 weeks. Individuals with a BMI >30 displayed a higher mRNA expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression levels of IL-1β, IL-6 and IL-8, but not TNF -α, in human adipose tissue were associated with higher expression of MAP3K8. Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1β, IL-6 and CXCL1 in adipose tissue in response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1β and its responsive cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.

  3. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  4. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  5. Miglitol prevents diet-induced obesity by stimulating brown adipose tissue and energy expenditure independent of preventing the digestion of carbohydrates.

    PubMed

    Sasaki, Tsutomu; Shimpuku, Mayumi; Kitazumi, Tomoya; Hiraga, Haruna; Nakagawa, Yuko; Shibata, Hiroshi; Okamatsu-Ogura, Yuko; Kikuchi, Osamu; Kim, Hye-jin; Fujita, Yuki; Maruyama, Jun; Susanti, Vina Yanti; Yokota-Hashimoto, Hiromi; Kobayashi, Masaki; Saito, Masayuki; Kitamura, Tadahiro

    2013-01-01

    Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.

  6. Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity.

    PubMed

    Aguilar, David; Fernandez, Maria Luz

    2014-09-01

    It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in preadipocytes revealed that cholesterol accumulation can impair adipocyte differentiation and maturation by affecting multiple transcription factors. Hypercholesterolemia has been observed to cause adipocyte hypertrophy, adipose tissue inflammation, and disruption of endocrine function in animal studies. Moreover, these effects can also be observed in obesity-independent conditions as confirmed by clinical trials. In humans, hypercholesterolemia disrupts adipose hormone secretion of visfatin, leptin, and adiponectin, adipokines that play a central role in numerous metabolic pathways and regulate basic physiologic responses such as appetite and satiety. Remarkably, treatment with cholesterol-lowering drugs has been shown to restore adipose tissue endocrine function. In this review the role of hypercholesterolemia on adipose tissue differentiation and maturation, as well as on hormone secretion and physiologic outcomes, in obesity and non–obesity conditions is presented.

  7. Carotenoids in Adipose Tissue Biology and Obesity.

    PubMed

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  8. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis

    PubMed Central

    Pierce, Joseph R.; Maples, Jill M.

    2015-01-01

    Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m2; n = 10) and obese (BMI: 34.7 ± 3.5 kg/m2; n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown. PMID:25921578

  9. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  10. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    PubMed

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  11. Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation

    PubMed Central

    Bailey-Downs, Lora C.; Tucsek, Zsuzsanna; Toth, Peter

    2013-01-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet–fed obese C57BL/6 mice. High-fat diet–induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet–induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals

  12. Weight loss induced by bariatric surgery restores adipose tissue PNPLA3 expression.

    PubMed

    Wieser, Verena; Adolph, Timon E; Enrich, Barbara; Moser, Patrizia; Moschen, Alexander R; Tilg, Herbert

    2017-02-01

    Obesity and its related co-morbidities such as non-alcoholic fatty liver disease (NAFLD) are increasing dramatically worldwide. The genetic variation in Patatin-like phospholipase domain-containing protein 3 (PNPLA3), which is also called adiponutrin (ADPN), in residue 148 (I148M, rs738409) has been associated with NAFLD. However, the regulation and function of PNPLA3 in metabolic diseases remains unclear. Laparoscopic gastric banding (LAGB) of severely obese patients reduces body weight, liver and adipose tissue inflammation. In this study, we investigated whether weight loss induced by LAGB affected PNPLA3 expression in hepatic and adipose tissue. Liver and subcutaneous adipose tissue samples were collected from 28 severely obese patients before and 6 months after LAGB. PNPLA3 expression was assessed by quantitative real-time PCR. To understand whether inflammatory stimuli regulated PNPLA3 expression, we studied the effect of tumour necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) on PNPLA3 expression in human adipocytes and hepatocytes. PNPLA3 was strongly expressed in the liver and clearly detectable in subcutaneous adipose tissue of obese patients. Weight loss induced by LAGB of severely obese patients led to significantly increased adipose, but not hepatic, tissue expression of PNPLA3. Subcutaneous PNPLA3 expression negatively correlated with body-mass-index, fasting glucose and fasting insulin. TNFα potently suppressed PNPLA3 expression in adipocytes but not hepatocytes. Weight loss induced by LAGB restored adipose tissue PNPLA3 expression which is suppressed by TNFα. Further studies will be required to determine the functional impact of PNPLA3 and its related genetic variation on adipose tissue inflammation and NAFLD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Proliferation and differentiation of adipose tissue in prolonged lean and obese critically ill patients.

    PubMed

    Goossens, Chloë; Vander Perre, Sarah; Van den Berghe, Greet; Langouche, Lies

    2017-12-01

    In prolonged non-obese critically ill patients, preservation of adipose tissue is prioritized over that of the skeletal muscle and coincides with increased adipogenesis. However, we recently demonstrated that in obese critically ill mice, this priority was switched. In the obese, the use of abundantly available adipose tissue-derived energy substrates was preferred and counteracted muscle wasting. These observations suggest that different processes are ongoing in adipose tissue of lean vs. overweight/obese critically ill patients. We hypothesize that to preserve adipose tissue mass during critical illness, adipogenesis is increased in prolonged lean critically ill patients, but not in overweight/obese critically ill patients, who enter the ICU with excess adipose tissue. To test this, we studied markers of adipogenesis in subcutaneous and visceral biopsies of matched lean (n = 24) and overweight/obese (n = 24) prolonged critically ill patients. Secondly, to further unravel the underlying mechanism of critical illness-induced adipogenesis, local production of eicosanoid PPARγ agonists was explored, as well as the adipogenic potential of serum from matched lean (n = 20) and overweight/obese (n = 20) critically ill patients. The number of small adipocytes, PPARγ protein, and CEBPB expression were equally upregulated (p ≤ 0.05) in subcutaneous and visceral adipose tissue biopsies of lean and overweight/obese prolonged critically ill patients. Gene expression of key enzymes involved in eicosanoid production was reduced (COX1, HPGDS, LPGDS, ALOX15, all p ≤ 0.05) or unaltered (COX2, ALOX5) during critical illness, irrespective of obesity. Gene expression of PLA2G2A and ALOX15B was upregulated in lean and overweight/obese patients (p ≤ 0.05), whereas their end products, the PPARγ-activating metabolites 15s-HETE and 9-HODE, were not increased in the adipose tissue. In vitro, serum of lean and overweight/obese prolonged critically ill

  14. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue

    PubMed Central

    Kurokawa, Jun; Nagano, Hiromichi; Ohara, Osamu; Kubota, Naoto; Kadowaki, Takashi; Arai, Satoko; Miyazaki, Toru

    2011-01-01

    Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4-deficient (TLR4−/−) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM-deficient (AIM−/−) than in wild-type (AIM+/+) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM−/− mice, although these mice showed more advanced obesity than AIM+/+ mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM−/− mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders. PMID:21730133

  15. Decreased RB1 mRNA, Protein, and Activity Reflect Obesity-Induced Altered Adipogenic Capacity in Human Adipose Tissue

    PubMed Central

    Moreno-Navarrete, José María; Petrov, Petar; Serrano, Marta; Ortega, Francisco; García-Ruiz, Estefanía; Oliver, Paula; Ribot, Joan; Ricart, Wifredo; Palou, Andreu; Bonet, Mª Luisa; Fernández-Real, José Manuel

    2013-01-01

    Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes. PMID:23315497

  16. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    PubMed Central

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  17. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced inflammation in white adipose tissue and liver.

    PubMed

    Gotoh, Koro; Inoue, Megumi; Masaki, Takayuki; Chiba, Seiichi; Shimasaki, Takanobu; Ando, Hisae; Fujiwara, Kansuke; Katsuragi, Isao; Kakuma, Tetsuya; Seike, Masataka; Sakata, Toshiie; Yoshimatsu, Hironobu

    2012-08-01

    Obesity is associated with systemic low-grade inflammation and obesity-related metabolic disorders. Considering that obesity decreases the expression of proinflammatory cytokines in the spleen, we assessed the role of interleukin (IL)-10, an anti-inflammatory cytokine produced by the spleen, in the pathogenesis of obesity. Changes in obesity-related pathogenesis, including inflammatory responses in multiple organs, were assessed after systemic administration of exogenous IL-10 to splenectomy (SPX)-treated obese wild-type and IL-10 knockout (IL-10KO) mice. Obesity resulted in the inability of the spleen to synthesize cytokines, including IL-10, and proinflammatory cytokines in obesity are then likely to emerge from tissues other than the spleen because serum levels of IL-10, but not proinflammatory cytokines, decreased despite the expression of these cytokines in the spleen being reduced in high fat-induced obese mice. SPX aggravated the inflammatory response in white adipose tissue (WAT) and the liver and suppressed adiposity in WAT. However, it accentuated adiposity in the liver. These SPX-induced changes were inhibited by systemic administration of IL-10. Moreover, SPX had little effect on the inflammatory responses in WAT and the liver of IL-10KO mice. These data show the role of spleen-derived IL-10 in diet-induced changes as a result of inflammatory responses in WAT and the liver.

  18. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    PubMed Central

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data point to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. PMID:23770388

  19. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  20. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  1. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    PubMed

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  2. Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice.

    PubMed

    DeOliveira, Caroline Candida; Paiva Caria, Cintia Rabelo E; Ferreira Gotardo, Erica Martins; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-03-15

    Adenosine receptors are expressed in adipose tissue and control physiological and pathological events such as lipolysis and inflammation. The aim of this study was to evaluate the activity of N 6 -cyclopentyladenosine (CPA), a potent and selective A 1 adenosine receptor agonist; 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine hydrochloride (CGS-21680), an A 2A adenosine receptor agonist; and 5'-N-ethylcarboxamidoadenosine (NECA), a potent non-selective adenosine receptor agonist on adipose tissue inflammatory alterations induced by obesity in mice. Swiss mice were fed with a high-fat diet for 12 weeks and agonists were administered in the last two weeks. Body weight, adiposity and glucose homeostasis were evaluated. Inflammation in adipose tissue was assessed by evaluation of adipokine production and macrophage infiltration. Adenosine receptor signaling in adipose tissue was also evaluated. Mice that received CGS21680 presented an improvement in glucose homeostasis in association with systemically reduced inflammatory markers (TNF-α, PAI-1) and in the visceral adipose tissue (TNF-α, MCP-1, macrophage infiltration). Activation of p38 signaling was found in adipose tissue of this group of mice. NECA-treated mice presented some improvements in glucose homeostasis associated with an observed weight loss. Mice that received CPA presented only a reduction in the ex vivo basal lipolysis rate measured within visceral adipose tissue. In conclusion, administration of the A 2A receptor agonist to obese mice resulted in improvements in glucose homeostasis and adipose tissue inflammation, corroborating the idea that new therapeutics to treat obesity could emerge from these compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy.

    PubMed

    Crew, Rachael C; Mark, Peter J; Waddell, Brendan J

    2018-06-01

    Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.

  4. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  5. Adipose tissue macrophages in the Development of Obesity-induced Inflammation, Insulin Resistance and Type 2 Diabetes

    PubMed Central

    Lee, Jongsoon

    2014-01-01

    It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and Type 2 Diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in Type 2 Diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of Type 2 Diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process. PMID:23397293

  6. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation?

    PubMed

    Cinkajzlová, Anna; Mráz, Miloš; Haluzík, Martin

    2017-05-01

    Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.

  7. Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue

    PubMed Central

    Nagao, Hirofumi; Nishizawa, Hitoshi; Bamba, Takeshi; Nakayama, Yasumune; Isozumi, Noriyoshi; Nagamori, Shushi; Kanai, Yoshikatsu; Tanaka, Yoshimitsu; Kita, Shunbun; Fukuda, Shiro; Funahashi, Tohru; Maeda, Norikazu; Fukusaki, Eiichiro; Shimomura, Iichiro

    2017-01-01

    Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models. PMID:28119455

  8. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance.

    PubMed

    Palanivel, R; Fullerton, M D; Galic, S; Honeyman, J; Hewitt, K A; Jorgensen, S B; Steinberg, G R

    2012-11-01

    Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.

  9. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  10. Altered autophagy in human adipose tissues in obesity

    USDA-ARS?s Scientific Manuscript database

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  11. Systemic inhibition of Janus kinase induces browning of white adipose tissue and ameliorates obesity-related metabolic disorders.

    PubMed

    Qurania, Kikid Rucira; Ikeda, Koji; Wardhana, Donytra Arby; Barinda, Agian Jeffilano; Nugroho, Dhite Bayu; Kuribayashi, Yuko; Rahardini, Elda Putri; Rinastiti, Pranindya; Ryanto, Gusty Rizky Teguh; Yagi, Keiko; Hirata, Ken-Ichi; Emoto, Noriaki

    2018-07-07

    Browning of white adipose tissue is a promising strategy to tackle obesity. Recently, Janus kinase (JAK) inhibition was shown to induce white-to-brown metabolic conversion of adipocytes in vitro; however effects of JAK inhibition on browning and systemic metabolic health in vivo remain to be elucidated. Here, we report that systemic administration of JAK inhibitor (JAKi) ameliorated obesity-related metabolic disorders. Administration of JAKi in mice fed a high-fat diet increased UCP-1 and PRDM16 expression in white adipose tissue, indicating the browning of white adipocyte. Food intake was increased in JAKi-treated mice, while the body weight and adiposity was similar between the JAKi- and vehicle-treated mice. In consistent with the browning, thermogenic capacity was enhanced in mice treated with JAKi. Chronic inflammation in white adipose tissue was not ameliorated by JAKi-treatment. Nevertheless, insulin sensitivity was well preserved in JAKi-treated mice comparing with that in vehicle-treated mice. Serum levels of triglyceride and free fatty acid were significantly reduced by JAKi-treatment, which is accompanied by ameliorated hepatosteatosis. Our data demonstrate that systemic administration of JAKi has beneficial effects in preserving metabolic health, and thus inhibition of JAK signaling has therapeutic potential for the treatment of obesity and its-related metabolic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity.

    PubMed

    Toedebusch, Ryan G; Roberts, Michael D; Wells, Kevin D; Company, Joseph M; Kanosky, Kayla M; Padilla, Jaume; Jenkins, Nathan T; Perfield, James W; Ibdah, Jamal A; Booth, Frank W; Rector, R Scott

    2014-05-15

    To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity.

  13. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity

    PubMed Central

    Toedebusch, Ryan G.; Roberts, Michael D.; Wells, Kevin D.; Company, Joseph M.; Kanosky, Kayla M.; Padilla, Jaume; Jenkins, Nathan T.; Perfield, James W.; Ibdah, Jamal A.; Booth, Frank W.

    2014-01-01

    To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity. PMID:24642759

  14. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance

    PubMed Central

    Palanivel, R.; Fullerton, M. D.; Galic, S.; Honeyman, J.; Hewitt, K. A.; Jorgensen, S. B.; Steinberg, G. R.

    2017-01-01

    Aims/hypothesis Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. Methods We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. Results The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic–euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). Conclusions/interpretation These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity. PMID:22872213

  15. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity.

    PubMed

    Murakami, Shigeru

    2017-10-01

    Obesity is caused by an imbalance between energy intake and energy expenditure. It is established that obesity is a state of low-grade chronic inflammation, which is characterized by enlarged hypertrophied adipocytes, increased infiltration by macrophages and marked changes in the secretion of adipokines and free fatty acids. The effects of taurine on the pathogenesis of obesity have been reported in animals and humans. Although the mechanisms underlying the anti-obesity action of taurine remain to be defined, taurine seems to ameliorate obesity through stimulation of energy expenditure, modulation of lipid metabolism, anorexic effect, anti-inflammatory and anti-oxidative effects. Recent studies revealed that taurine supplementation reduces the infiltration of macrophages and modulates the polarization of adipose tissue macrophages in high-fat diet-induced obese mice. In addition, taurine downregulates the production of pro-inflammatory cytokines by adipocytes, suggesting that taurine plays an anti-inflammatory role in adipose tissue. This article reviews the effects and mechanisms of taurine on the development of obesity, focusing on the role of taurine in white adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.

  17. Brown adipose tissue transplantation ameliorates male fertility impairment caused by diet-induced obesity.

    PubMed

    Liu, Hui; Liu, Xiaomeng; Wang, Li; Sheng, Nan

    Populations with obesity or overweight have a high incidence of infertility. We hypothesised that brown adipose tissue (BAT) transplantation can attenuate the impairment of male fertility caused by diet-induced obesity. BATs were transplanted from male donor mice into age and sex matched recipient mice fed high-fat diets (HFD). Sperm motility experiment was conducted after surgical procedure. X-ray computed tomography scanning, biochemical assay, real-time PCR and western blot analysis were performed. BAT transplantation reduced body fat and epididymal fat mass, as well as triglycerides (TG) content in testis and epididymis and total cholesterol (TCHO) contents in epididymis compared with the HFD group. Sperm motility and progressiveness were recovered and mRNA and protein levels of genes related to sperm motility such as cullin 3 (Cul3), peroxisome proliferator activated receptor alpha (PPARα) and its down-stream genes were significantly down-regulated post BAT transplantation. BAT transplantation partially ameliorated impairment of male fertility caused by diet-induced obesity. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  18. The role of pericardial adipose tissue in the heart of obese minipigs.

    PubMed

    Wang, Chia-Yu; Li, Sin-Jin; Wu, Twin-Way; Lin, Han-Jen; Chen, Jyun-Wei; Mersmann, Harry J; Ding, Shih-Torng; Chen, Ching-Yi

    2018-04-23

    Pericardial adipose tissue (PAT) volume is highly associated with the presence and severity of cardiometabolic diseases, but the underlying mechanism is unknown. We previously demonstrated that a high-fat diet (HFD) induced metabolic dysregulation, cardiac fibrosis and accumulation of more PAT in minipigs. This study used our obese minipig model to investigate the characteristics of PAT and omental visceral fat (VAT) induced by a HFD, and the potential link between PAT and HFD-related myocardial fibrosis. Five-month-old Lee-Sung minipigs were made obese by feeding a HFD for 6 months. The HFD induced dyslipidemia, cardiac fibrosis and more fat accumulation in the visceral and pericardial depots. The HFD changes the fatty acid composition in the adipose tissue by decreasing the portion of linoleic acid in the VAT and PAT. No arachidonic acid was detected in the VAT and PAT of control pigs, whereas it existed in the same tissues of obese pigs fed the HFD. Compared with the control pigs, elevated levels of malondialdehyde and TNFα were exhibited in the plasma and PAT of obese pigs. HFD induced greater size of adipocytes in VAT and PAT. Higher levels of GH, leptin, OPG, PDGF, resistin, SAA and TGFβ were observed in obese pig PAT compared to VAT. This study demonstrated the similarities and dissimilarities between PAT and VAT under HFD stimulus. In addition, this study suggested that alteration in PAT contributed to the myocardial damage. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  19. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    PubMed

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Metabolic benefits of inhibition of p38α in white adipose tissue in obesity.

    PubMed

    Zhang, Shengjie; Cao, Hongchao; Li, Yan; Jing, Yanyan; Liu, Shengnan; Ye, Cheng; Wang, Hui; Yu, Shuxian; Peng, Chengyuan; Hui, Lijian; Wang, Yu-Cheng; Zhang, Haibing; Guo, Feifan; Zhai, Qiwei; Wang, Hui; Huang, Ruimin; Zhang, Ling; Jiang, Jingjing; Liu, Wei; Ying, Hao

    2018-05-01

    p38 has long been known as a central mediator of protein kinase A (PKA) signaling in brown adipocytes, which positively regulate the transcription of uncoupling protein 1 (UCP-1). However, the physiological role of p38 in adipose tissues, especially the white adipose tissue (WAT), is largely unknown. Here, we show that mice lacking p38α in adipose tissues display a lean phenotype, improved metabolism, and resistance to diet-induced obesity. Surprisingly, ablation of p38α causes minimal effects on brown adipose tissue (BAT) in adult mice, as evident from undetectable changes in UCP-1 expression, mitochondrial function, body temperature (BT), and energy expenditure. In contrast, genetic ablation of p38α in adipose tissues not only markedly facilitates the browning in WAT upon cold stress but also prevents diet-induced obesity. Consistently, pharmaceutical inhibition of p38α remarkably enhances the browning of WAT and has metabolic benefits. Furthermore, our data suggest that p38α deficiency promotes white-to-beige adipocyte reprogramming in a cell-autonomous manner. Mechanistically, inhibition of p38α stimulates the UCP-1 transcription through PKA and its downstream cAMP-response element binding protein (CREB), which form a positive feedback loop that functions to reinforce the white-to-beige phenotypic switch during cold exposure. Together, our study reveals that inhibition of p38α is able to promote WAT browning and confer metabolic benefits. Our study also indicates that p38α in WAT represents an exciting pharmacological target to combat obesity and metabolic diseases.

  1. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  2. Genipin ameliorates diet-induced obesity via promoting lipid mobilization and browning of white adipose tissue in rats.

    PubMed

    Guan, Lili; Gong, Dezheng; Yang, Sirao; Shen, Nana; Zhang, Sai; Li, Yuchen; Wu, Qiong; Yuan, Bo; Sun, Yiping; Dai, Ning; Zhu, Liang; Zou, Yuan

    2018-04-01

    Genipin is the major active component of Gardeniae fructus and has been shown to ameliorate diabetes and insulin resistance in rat models. In this study, we first investigated the effect of genipin on obesity and the related lipid metabolism mechanisms in diet-induced obese rats. Our results showed that genipin reduced body weight, food intake, and visceral fat mass; ameliorated dyslipidemia, glucose intolerance, insulin intolerance, adipocyte hypertrophy, and hepatic steatosis; and reduced serum tumor necrosis factor-α level in diet-induced obese rats. Quantitative real-time reverse-transcription polymerase chain reaction results further illustrated that genipin promoted lipolysis and β-oxidation of fatty acid by upregulating gene expressions of hormone-sensitive lipase and adipose triglyceride lipase in white adipose tissue (WAT) and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1α in hepatic tissue. Moreover, genipin promoted browning of WAT by upregulating the mRNA and protein levels of uncoupling protein 1 and PRD1-BF1-RIZ1 homologous domain containing 16 in WAT. Additionally, genipin inhibited gene expressions of activin receptor-like kinase 7, tumor necrosis factor-α, and interlukin-6 in WAT. These results indicated that genipin had a potential therapeutic role in obesity, in which regulation of lipid mobilization and browning of WAT were involved. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Adipose tissue transcriptome changes during obesity development in female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P < 0.05) body weight (0 wk, 8.36 ± 0.34 kg; 24 wk, 14.64 ± 0.34 kg), body fat mass (0 wk, 1.36 ± 0.24 kg; 24 wk, 6.52 ± 0.24 kg), adipocyte size (0 wk, 114.66 ± 17.38 μm(2); 24 wk, 320.97 ± 0.18.17 μm(2)), and leptin (0 wk, 0.8 ± 1.0 ng/ml; 24 wk, 12.9 ± 1.0 ng/ml). Microarrays displayed 1,665 differentially expressed genes in adipose tissue as weight increased. Alterations were seen in adipose tissue homeostatic processes including metabolism, oxidative stress, mitochondrial homeostasis, and extracellular matrix. Adipose transcriptome changes highlight the dynamic and adaptive response to ad libitum feeding and obesity development.

  4. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    PubMed Central

    Grove, KL; Fried, SK; Greenberg, AS; Xiao, XQ; Clegg, DJ

    2013-01-01

    Objective A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose tissue and gene expression, comparing differentially expressed genes in diet-induced obese mice with mice maintained on a chow diet. Research Design and Methods We used a microarray approach to determine whether there are sexual dimorphisms in gene expression in age-matched male, female or ovariectomized female (OVX) C57/BL6 mice maintained on a high-fat (HF) diet. We then compared expression of validated genes between the sexes on a chow diet. Results After exposure to a high fat diet for 12 weeks, females gained less weight than males. The microarray analyses indicate in intra-abdominal/gonadal adipose tissue in females 1642 genes differ by at least twofold between the depots, whereas 706 genes differ in subcutaneous/inguinal adipose tissue when compared with males. Only 138 genes are commonly regulated in both sexes and adipose tissue depots. Inflammatory genes (cytokine–cytokine receptor interactions and acute-phase protein synthesis) are upregulated in males when compared with females, and there is a partial reversal after OVX, where OVX adipose tissue gene expression is more ′male-like′. This pattern is not observed in mice maintained on chow. Histology of male gonadal white adipose tissue (GWAT) shows more crown-like structures than females, indicative of inflammation and adipose tissue remodeling. In addition, genes related to insulin signaling and lipid synthesis are higher in females than males, regardless of dietary exposure. Conclusions These data suggest that male and female adipose tissue differ between the sexes regardless of diet. Moreover, HF diet exposure elicits a much greater inflammatory response in males when compared with females

  5. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    PubMed

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring.

    PubMed

    Almeida, Mariana M; Dias-Rocha, Camilla P; Souza, André S; Muros, Mariana F; Mendonca, Leonardo S; Pazos-Moura, Carmen C; Trevenzoli, Isis H

    2017-11-01

    Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.

  7. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function.

    PubMed

    Goossens, Gijs H

    2017-01-01

    The current obesity epidemic poses a major public health issue since obesity predisposes towards several chronic diseases. BMI and total adiposity are positively correlated with cardiometabolic disease risk at the population level. However, body fat distribution and an impaired adipose tissue function, rather than total fat mass, better predict insulin resistance and related complications at the individual level. Adipose tissue dysfunction is determined by an impaired adipose tissue expandability, adipocyte hypertrophy, altered lipid metabolism, and local inflammation. Recent human studies suggest that adipose tissue oxygenation may be a key factor herein. A subgroup of obese individuals - the 'metabolically healthy obese' (MHO) - have a better adipose tissue function, less ectopic fat storage, and are more insulin sensitive than obese metabolically unhealthy persons, emphasizing the central role of adipose tissue function in metabolic health. However, controversy has surrounded the idea that metabolically healthy obesity may be considered really healthy since MHO individuals are at increased (cardio)metabolic disease risk and may have a lower quality of life than normal weight subjects due to other comorbidities. Detailed metabolic phenotyping of obese persons will be invaluable in understanding the pathophysiology of metabolic disturbances, and is needed to identify high-risk individuals or subgroups, thereby paving the way for optimization of prevention and treatment strategies to combat cardiometabolic diseases. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  8. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    PubMed Central

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  9. Adiponectin/resistin interplay in serum and in adipose tissue of obese and normal-weight individuals.

    PubMed

    Jonas, Marta Izabela; Kurylowicz, Alina; Bartoszewicz, Zbigniew; Lisik, Wojciech; Jonas, Maurycy; Domienik-Karlowicz, Justyna; Puzianowska-Kuznicka, Monika

    2017-01-01

    The interplay between adiponectin and resistin, the two adipokines of opposite effects, may determine the metabolic profile of obese individuals and development of obesity-related complications. The current study was conducted to assess how adiponectin/resistin interplay in sera and adipose tissues may influence the metabolic profile of obese and normal-weight subjects. Concentrations of adiponectin and resistin were measured on protein level by immunoassay in visceral and subcutaneous adipose tissues from 50 obese (body mass index > 40 kg/m 2 ) and 28 normal-weight (body mass index 20-24.9 kg/m 2 ) individuals. Simultaneously expression of ADIPOQ and RETN (encoding adiponectin and resistin, respectively) was assessed on mRNA level by real-time PCR. ADIPOQ mRNA (P = 0.0001) and adiponectin protein (P = 0.0013) levels were lower, while RETN mRNA (P = 0.0338) and resistin (P < 0.0001)-higher in subcutaneous adipose tissues of obese subjects. ADIPOQ and RETN mRNA levels did not correlate with protein concentrations in the investigated adipose tissues. In obesity adiponectin serum concentrations correlated positively with ADIPOQ mRNA in subcutaneous adipose tissue (P = 0.005) and negatively with protein levels in visceral adipose tissue (P = 0.001). Obesity was associated with higher adiponectin-resistin index value in sera (P < 0.0001) and decreased in subcutaneous adipose tissue (P < 0.001), but only adiponectin-resistin index measured in sera was significantly higher in obese with the metabolic syndrome (P = 0.04). Obesity affects synthesis of adiponectin and resistin mainly in subcutaneous adipose tissue. The adiponectin-resistin index assessed in the adipose tissues has a different prognostic value compared to the adiponectin-resistin index in serum and does not reflect a metabolic risk in obese individuals.

  10. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice.

    PubMed

    Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan

    2017-10-26

    Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  11. Epicardial adipose tissue, hepatic steatosis and obesity.

    PubMed

    Cikim, A Sertkaya; Topal, E; Harputluoglu, M; Keskin, L; Zengin, Z; Cikim, K; Ozdemir, R; Aladag, M; Yologlu, S

    2007-06-01

    Hepatic steatosis is a common companion of obesity. Moreover, the measurement of epicardial adipose tissue (EAT) has been reported to be related with both obesity and insulin resistance. Therefore, we aimed to evaluate the relationship between hepatic steatosis, EAT and insulin resistance in obese patients. Sixty-three obese subjects were enrolled in the study. Patients were divided into 3 groups according to body mass index (BMI) as follows: 20 patients with 30 < or = BMI < 35 kg/m2 (Group 1, mean age 39.3+/-12.9 yr), 25 patients with 35 < or = BMI < 40 kg/m2 (Group 2, mean age 41.7+/-9.3 yr), and 18 patients with BMI > or = 40 kg/m2 (Group 3, mean age 36.8+/-13.9 yr). EAT and grade of hepatic steatosis were assessed sonographically. Anthropometrical measurements were assessed with the foot-to-foot bioelectrical impedance analysis. Insulin resistance was assessed according to basal insulin, quantitative insulin sensitivity check index (QUICKI) and homeostasis model assessment (HOMA) equations. Although EAT was similarly higher in both groups 2 and 3, these groups were found to be similar in terms of the grade of hepatic steatosis. Both EAT and the grade of hepatic steatosis were correlated with whole body fat mass, abdominal adiposity, insulin resistance, and triglyceridemia but waist circumference was the only factor affecting EAT thickness. Highly sensitive C-reactive protein (hsCRP) was the only metabolic parameter that was significantly higher in Group 3 than in Group 1 (p=0.02). Hepatic steatosis should be assessed as a valuable predictor that reflects the increments of whole body fat mass as well as abdominal adiposity. However, in an attempt to demonstrate marginal differences between patients with similar obesity levels, epicardial adipose tissue appears to be a more sensitive marker compared to hepatic steatosis.

  12. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation

    PubMed Central

    2011-01-01

    Background This study evaluated the relationship between ulcerative colitis and obesity, which are both chronic diseases characterized by inflammation and increases in immune cells and pro-inflammatory cytokines. Methods Mice with chronic ulcerative colitis induced by 2 cycles of dextran sodium sulfate (DSS) in the first and fourth week of the experiment were fed a high-fat diet (HFD) to induce obesity by 8 weeks. The animals were divided into 4 \\ groups (control, colitis, HFD and colitis + HFD). Results Obesity alone did not raise histopathology scores, but the combination of obesity and colitis worsened the scores in the colon compared to colitis group. Despite the reduction in weight gain, there was increased inflammatory infiltrate in both the colon and visceral adipose tissue of colitis + HFD mice due to increased infiltration of macrophages, neutrophils and lymphocytes. Intravital microscopy of VAT microvasculature showed an increase in leukocyte adhesion and rolling and overexpression of adhesion molecules compared to other groups. Moreover, circulating lymphocytes, monocytes and neutrophils in the spleen and cecal lymph nodes were increased in the colitis + HFD group. Conclusion Our results demonstrated the relationship between ulcerative colitis and obesity as aggravating factors for each disease, with increased inflammation in the colon and adipose tissue and systemic alterations observed in the spleen, lymph nodes and bloodstream. PMID:22073943

  13. The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

    PubMed Central

    Sakurai, Takuya; Ogasawara, Junetsu; Kizaki, Takako; Ishibashi, Yoshinaga; Takahashi, Motoko; Kobayashi, Osamu; Nagasawa, Junichi; Takahashi, Kazuto; Ishida, Hitoshi; Ohno, Hideki

    2013-01-01

    Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT. PMID:24369466

  14. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation.

    PubMed

    Engin, Atilla

    2017-01-01

    Obesity is characterized by a state of chronic, low-grade inflammation. However, excessive fatty acid release may worsen adipose tissue inflammation and contributes to insulin resistance. In this case, several novel and highly active molecules are released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines. Most likely cytokines that are released by inflammatory cells infiltrating obese adipose tissue are such as tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2) and IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation. In this process, toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress through hyperactivation of c-Jun N-terminal Kinase (JNK) -Activator Protein 1 (AP1) and inhibitor of nuclear factor kappa-B kinase beta (IKKbeta)-nuclear factor kappa B (NF-kappaB) pathways play an important role, and may also affect vascular endothelial function by modulating vascular nitric oxide and superoxide release. Additionally, systemic oxidative stress, macrophage recruitment, increase in the expression of NOD-like receptor (NLR) family protein (NLRP3) inflammasone and adipocyte death are predominant determinants in the pathogenesis of obesity-associated adipose tissue inflammation. In this chapter potential involvement of these factors that contribute to the adverse effects of obesity are reviewed.

  15. Targeting obesity-related adipose tissue dysfunction to prevent cancer development and progression

    PubMed Central

    Gucalp, Ayca; Iyengar, Neil M.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    The incidence of obesity, a leading modifiable risk factor for common solid tumors, is increasing. Effective interventions are needed to minimize the public health implications of obesity. Although the mechanisms linking increased adiposity to malignancy are incompletely understood, growing evidence points to complex interactions among multiple systemic and tissue-specific pathways including inflamed white adipose tissue. The metabolic and inflammatory consequences of white adipose tissue dysfunction collectively provide a plausible explanation for the link between overweight/obesity and carcinogenesis. Gaining a better understanding of these underlying molecular pathways and developing risk assessment tools that identify at-risk populations will be critical in implementing effective and novel cancer prevention and management strategies. PMID:26970134

  16. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    PubMed Central

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  17. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity.

    PubMed

    Pérez-Sotelo, Diego; Roca-Rivada, Arturo; Larrosa-García, María; Castelao, Cecilia; Baamonde, Iván; Baltar, Javier; Crujeiras, Ana Belen; Seoane, Luisa María; Casanueva, Felipe F; Pardo, María

    2017-02-01

    The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In

  18. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153

  19. Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice.

    PubMed

    Marques, Ana Patrícia; Cunha-Santos, Janete; Leal, Helena; Sousa-Ferreira, Lígia; Pereira de Almeida, Luís; Cavadas, Cláudia; Rosmaninho-Salgado, Joana

    2018-03-01

    During the development of obesity the expansion of white adipose tissue (WAT) leads to a dysregulation and an excessive remodeling of extracellular matrix (ECM), leading to fibrosis formation. These ECM changes have high impact on WAT physiology and may change obesity progression. Blocking WAT fibrosis may have beneficial effects on the efficacy of diet regimen or therapeutical approaches in obesity. Since dipeptidyl peptidase IV (DPP-IV) inhibitors prevent fibrosis in tissues, such as heart, liver and kidney, the objective of this study was to assess whether vildagliptin, a DPP-IV inhibitor, prevents fibrosis in WAT in a mouse model of obesity, and to investigate the mechanisms underlying this effect. We evaluated the inhibitory effect of vildagliptin on fibrosis markers on WAT of high-fat diet (HFD)-induced obese mice and on 3T3-L1 cell line of mouse adipocytes treated with a fibrosis inducer, transforming growth factor beta 1 (TGFβ1). Vildagliptin prevents the increase of fibrosis markers in WAT of HFD-fed mice and reduces blood glucose, serum triglycerides, total cholesterol and leptin levels. In the in vitro study, the inhibition of DPP-IV with vildagliptin, neuropeptide Y (NPY) treatment and NPY Y 1 receptor activation prevents ECM deposition and fibrosis markers increase induced by TGFβ1 treatment. Vildagliptin prevents fibrosis formation in adipose tissue in obese mice, at least partially through NPY and NPY Y 1 receptor activation. This study highlights the importance of vildagliptin in the treatment of fibrosis that occur in obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adipose Tissue and Adipokines: The Association with and Application of Adipokines in Obesity

    PubMed Central

    Khan, Muhammad; Joseph, Frank

    2014-01-01

    2014 marks the 20th anniversary of adipokines. Through the identification of leptin, our perceived understanding of adipose tissue was changed instantaneously. From a simple dormant site of energy storage, adipose tissue is now recognized as an integral hub of various hormones known as adipokines. Although great strides have been made in characterizing these hormones in health, research also shows they are significantly implicated in a series of pathologies. One such condition is obesity. Defined as an excess of adipose tissue, obesity remains one of the greatest healthcare epidemics of the 21st century. With no definitive treatment, attention has shifted to understanding the role of adipokines in obesity. This review provides an introduction to the salient obesity-related adipokines and their possible application as a treatment for obesity. PMID:25309775

  1. Influence of PAI-1 on adipose tissue growth and metabolic parameters in a murine model of diet-induced obesity.

    PubMed

    Morange, P E; Lijnen, H R; Alessi, M C; Kopp, F; Collen, D; Juhan-Vague, I

    2000-04-01

    An increased plasma plasminogen activator inhibitor-1 (PAI-1) level is a risk factor for myocardial infarction, particularly when associated with visceral obesity. Although the link between PAI-1 and obesity is well documented, little is known about the physiological relevance of PAI-1 production by adipose tissue. Therefore, we have compared adipose tissue development and insulin resistance plasma parameters in PAI-1-deficient mice (PAI-1(-/-)) and wild-type littermates (PAI-1(+/+)) in a model of nutritionally induced obesity. After 17 weeks of consuming a high-fat diet (HFD), PAI-1(+/+) mice showed marked obesity, with a 52% increase in body weight compared with mice that were kept on a standard fat diet (P<0.0001). This weight gain was accompanied by adipocyte hypertrophy and an increase in the number of stroma cells in the gonadal fat pad, expressed as stroma cells/adipocytes (0.67+/-0.05 versus 0.43+/-0. 02; P<0.001). In plasma, the HFD induced a marked increase in PAI-1 antigen (5.1+/-0.56 versus 2+/-0.22 ng/mL; P<0.001), fasting insulinemia (1.1+/-0.21 versus 0.21+/-0.04 ng/mL; P<0.001), and glycemia (7.4+/-0.5 versus 5+/-0.3 mmol/L; P<0.001), whereas plasma triglyceride levels were not affected. When we compared PAI-1(-/-) and PAI-1(+/+) mice on the HFD, PAI-1(-/-) mice gained weight faster than did PAI-1(+/+) mice, with a significant difference in body weight between 3 and 8 weeks of the diet (32+/-1.7 versus 26+/-1.6 g at 6 weeks; P<0.05). After 17 weeks of the HFD, its effect on weight gain and the number and size of adipocytes was similar in PAI-1(+/+) and PAI-1(-/-) mice. By contrast, the increase in the number of stroma cells presented by PAI-1(+/+) mice was not observed in PAI-1(-/-) mice. In obese PAI-1(-/-) mice, tissue-type PA activity and antigen levels in the gonadal fat pad were significantly higher than in obese PAI-1(+/+) mice (230+/-50 versus 47+/-20 arbitrary units/g, P<0.01; 40+/-13 versus 17+/-13 ng/g, P<0.05, respectively), whereas

  2. Reduced Adipose Tissue Oxygenation in Human Obesity

    PubMed Central

    Pasarica, Magdalena; Sereda, Olga R.; Redman, Leanne M.; Albarado, Diana C.; Hymel, David T.; Roan, Laura E.; Rood, Jennifer C.; Burk, David H.; Smith, Steven R.

    2009-01-01

    OBJECTIVE— Based on rodent studies, we examined the hypothesis that increased adipose tissue (AT) mass in obesity without an adequate support of vascularization might lead to hypoxia, macrophage infiltration, and inflammation. RESEARCH DESIGN AND METHODS— Oxygen partial pressure (AT pO2) and AT temperature in abdominal AT (9 lean and 12 overweight/obese men and women) was measured by direct insertion of a polarographic Clark electrode. Body composition was measured by dual-energy X-ray absorptiometry, and insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Abdominal subcutaneous tissue was used for staining, quantitative RT-PCR, and chemokine secretion assay. RESULTS— AT pO2 was lower in overweight/obese subjects than lean subjects (47 ± 10.6 vs. 55 ± 9.1 mmHg); however, this level of pO2 did not activate the classic hypoxia targets (pyruvate dehydrogenase kinase and vascular endothelial growth factor [VEGF]). AT pO2 was negatively correlated with percent body fat (R = −0.50, P < 0.05). Compared with lean subjects, overweight/obese subjects had 44% lower capillary density and 58% lower VEGF, suggesting AT rarefaction (capillary drop out). This might be due to lower peroxisome proliferator–activated receptor γ1 and higher collagen VI mRNA expression, which correlated with AT pO2 (P < 0.05). Of clinical importance, AT pO2 negatively correlated with CD68 mRNA and macrophage inflammatory protein 1α secretion (R = −0.58, R = −0.79, P < 0.05), suggesting that lower AT pO2 could drive AT inflammation in obesity. CONCLUSIONS— Adipose tissue rarefaction might lie upstream of both low AT pO2 and inflammation in obesity. These results suggest novel approaches to treat the dysfunctional AT found in obesity. PMID:19074987

  3. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity

    PubMed Central

    Trim, William; Turner, James E.; Thompson, Dylan

    2018-01-01

    Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350

  4. Effects of Rapid Weight Loss on Systemic and Adipose Tissue Inflammation and Metabolism in Obese Postmenopausal Women.

    PubMed

    Alemán, José O; Iyengar, Neil M; Walker, Jeanne M; Milne, Ginger L; Da Rosa, Joel Correa; Liang, Yupu; Giri, Dilip D; Zhou, Xi Kathy; Pollak, Michael N; Hudis, Clifford A; Breslow, Jan L; Holt, Peter R; Dannenberg, Andrew J

    2017-06-01

    Obesity is associated with subclinical white adipose tissue inflammation, as defined by the presence of crown-like structures (CLSs) consisting of dead or dying adipocytes encircled by macrophages. In humans, bariatric surgery-induced weight loss leads to a decrease in CLSs, but the effects of rapid diet-induced weight loss on CLSs and metabolism are unclear. To determine the effects of rapid very-low-calorie diet-induced weight loss on CLS density, systemic biomarkers of inflammation, and metabolism in obese postmenopausal women. Prospective cohort study. Rockefeller University Hospital, New York, NY. Ten obese, postmenopausal women with a mean age of 60.6 years (standard deviation, ±3.6 years). Effects on CLS density and gene expression in abdominal subcutaneous adipose tissue, cardiometabolic risk factors, white blood count, circulating metabolites, and oxidative stress (urinary isoprostane-M) were measured. Obese subjects lost approximately 10% body weight over a mean of 46 days. CLS density increased in subcutaneous adipose tissue without an associated increase in proinflammatory gene expression. Weight loss was accompanied by decreased fasting blood levels of high-sensitivity C-reactive protein, glucose, lactate, and kynurenine, and increased circulating levels of free fatty acids, glycerol, β -hydroxybutyrate, and 25 hydroxyvitamin D. Levels of urinary isoprostane-M declined. Rapid weight loss stimulated lipolysis and an increase in CLS density in subcutaneous adipose tissue in association with changes in levels of circulating metabolites, and improved systemic biomarkers of inflammation and insulin resistance. The observed change in levels of metabolites ( i.e. , lactate, β -hydroxybutyrate, 25 hydroxyvitamin D) may contribute to the anti-inflammatory effect of rapid weight loss.

  5. Effects of Rapid Weight Loss on Systemic and Adipose Tissue Inflammation and Metabolism in Obese Postmenopausal Women

    PubMed Central

    Iyengar, Neil M.; Walker, Jeanne M.; Milne, Ginger L.; Da Rosa, Joel Correa; Liang, Yupu; Giri, Dilip D.; Zhou, Xi Kathy; Pollak, Michael N.; Hudis, Clifford A.; Breslow, Jan L.; Holt, Peter R.; Dannenberg, Andrew J.

    2017-01-01

    Context: Obesity is associated with subclinical white adipose tissue inflammation, as defined by the presence of crown-like structures (CLSs) consisting of dead or dying adipocytes encircled by macrophages. In humans, bariatric surgery-induced weight loss leads to a decrease in CLSs, but the effects of rapid diet-induced weight loss on CLSs and metabolism are unclear. Objective: To determine the effects of rapid very-low-calorie diet-induced weight loss on CLS density, systemic biomarkers of inflammation, and metabolism in obese postmenopausal women. Design: Prospective cohort study. Setting: Rockefeller University Hospital, New York, NY. Participants: Ten obese, postmenopausal women with a mean age of 60.6 years (standard deviation, ±3.6 years). Main Outcome Measures: Effects on CLS density and gene expression in abdominal subcutaneous adipose tissue, cardiometabolic risk factors, white blood count, circulating metabolites, and oxidative stress (urinary isoprostane-M) were measured. Results: Obese subjects lost approximately 10% body weight over a mean of 46 days. CLS density increased in subcutaneous adipose tissue without an associated increase in proinflammatory gene expression. Weight loss was accompanied by decreased fasting blood levels of high-sensitivity C-reactive protein, glucose, lactate, and kynurenine, and increased circulating levels of free fatty acids, glycerol, β-hydroxybutyrate, and 25 hydroxyvitamin D. Levels of urinary isoprostane-M declined. Conclusion: Rapid weight loss stimulated lipolysis and an increase in CLS density in subcutaneous adipose tissue in association with changes in levels of circulating metabolites, and improved systemic biomarkers of inflammation and insulin resistance. The observed change in levels of metabolites (i.e., lactate, β-hydroxybutyrate, 25 hydroxyvitamin D) may contribute to the anti-inflammatory effect of rapid weight loss. PMID:29264516

  6. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.

    PubMed

    Queipo-Ortuño, María Isabel; Escoté, Xavier; Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J; Vendrell, Joan

    2012-01-01

    FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.

  7. FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels

    PubMed Central

    Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J.; Vendrell, Joan

    2012-01-01

    Background FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. Objective In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. Methods The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. Results In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. Conclusion The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity. PMID:23139800

  8. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    PubMed Central

    2012-01-01

    Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts

  9. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  10. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity.

    PubMed

    Zhang, Jing; Zhang, Lei; Zhang, Shu; Yu, Qilin; Xiong, Fei; Huang, Kun; Wang, Cong-Yi; Yang, Ping

    2017-10-15

    Obesity has emerged as an imminent global public health concern over the past several decades. It has now become evident that obesity is characterized by the persistent and low-grade inflammation in the adipose tissue, and serves as an independent risk factor for many metabolic disorders such as diabetes and cardiovascular disease. Particularly, adipocytes originated from obese mice and humans likely predominate necrosis upon stressful insults, leading to passive release of cellular contents including the high mobility group box 1 (HMGB1) into the extracellular milieu. Extracellular HMGB1 acts as an innate alarmin to stimulate the activation of resident immune cells in the adipose tissue. Upon activation, those resident immune cells actively secrete additional HMGB1, which in turn activates/recruits additional immune cells, and induces adipocyte death. This review summarizes those novel discoveries in terms of HMGB1 in the initiation and maintenance of chronic inflammatory state in adipose tissue in obesity, and discusses its potential application in clinical settings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice.

    PubMed

    Li, Jibiao; Matye, David J; Wang, Yifeng; Li, Tiangang

    2017-04-01

    Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states. © 2017 Federation of European Biochemical Societies.

  12. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressionsmore » of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.« less

  13. PINK1-Parkin alleviates metabolic stress induced by obesity in adipose tissue and in 3T3-L1 preadipocytes.

    PubMed

    Cui, Chen; Chen, Shihong; Qiao, Jingting; Qing, Li; Wang, Lingshu; He, Tianyi; Wang, Chuan; Liu, Fuqiang; Gong, Lei; Chen, Li; Hou, Xinguo

    2018-04-06

    Mitochondria play an important role in cellular metabolism and are closely related with metabolic stress. Recently, several studies have shown that mitophagy mediated by PTEN-induced putative kinase 1 (PINK1) and Parkin may play a critical role in clearing the damaged mitochondria and maintaining the overall balance of intracellular mitochondria in quality and quantity. A previous study showed that PINK1 and Parkin were overexpressed in adipose tissue in obese subjects. However, it is still unclear whether a direct relationship exists between obesity and mitophagy. In this study, we created a high-fat-diet (HFD)-induced obese mouse model and examined the expression of PINK1 and Parkin in adipose tissue using western blot and real-time quantitative PCR. After we confirmed that there is an interesting difference between regular-chow-fed mice and HFD-induced obese mice in the expression of PINK1 and Parkin in vivo, we further tested the expression of PINK1 and Parkin in 3T3-L1 preadipocytes in vitro by treating cells with palmitic acid (PA) to induce metabolic stress. To better understand the role of PINK1 and Parkin in metabolic stress, 3T3-L1 preadipocytes were transfected with small interfering RNA (siRNA) of PINK1 and Parkin followed by PA treatment. Our results showed that under lower concentrations of PA, PINK1 and Parkin can be activated and play a protective role in resisting the harmful effects of PA, including protecting the mitochondrial function and resisting cellular death, while under higher concentrations of PA, the expression of PINK1 and Parkin can be inhibited. These results suggest that PINK1-Parkin can protect mitochondrial function against metabolic stress induced by obesity or PA to a certain degree. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Anti-Inflammatory and Anti-Obesity Properties of Food Bioactive Components: Effects on Adipose Tissue

    PubMed Central

    Jayarathne, Shasika; Koboziev, Iurii; Park, Oak-Hee; Oldewage-Theron, Wilna; Shen, Chwan-Li; Moustaid-Moussa, Naima

    2017-01-01

    Obesity is an epidemic and costly disease affecting 13% of the adult population worldwide. Obesity is associated with adipose tissue hypertrophy and hyperplasia, as well as pathologic endocrine alterations of adipose tissue including local and chronic systemic low-grade inflammation. Moreover, this inflammation is a risk factor for both metabolic syndrome (MetS) and insulin resistance. Basic and clinical studies demonstrate that foods containing bioactive compounds are capable of preventing both obesity and adipose tissue inflammation, improving obesity-associated MetS in human subjects and animal models of obesity. In this review, we discuss the anti-obesity and anti-inflammatory protective effects of some bioactive polyphenols of plant origin and omega-3 polyunsaturated fatty acids, available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. We review how these bioactive compounds modulate cell signaling including through the nuclear factor-κB, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, toll-like receptors, and G-protein coupled receptor 120 intracellular signaling pathways and improve the balance of pro- and anti-inflammatory mediators secreted by adipose tissue and subsequently lower systemic inflammation and risk for metabolic diseases. PMID:29333376

  15. Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice.

    PubMed

    Yoneshiro, Takeshi; Kaede, Ryuji; Nagaya, Kazuki; Aoyama, Julia; Saito, Mana; Okamatsu-Ogura, Yuko; Kimura, Kazuhiro; Terao, Akira

    Identification of thermogenic food ingredients is potentially a useful strategy for the prevention of obesity and related metabolic disorders. It has been reported that royal jelly (RJ) supplementation improves insulin sensitivity; however, its impacts on energy expenditure and adiposity remain elusive. We investigated anti-obesity effects of RJ supplementation and their relation to physical activity levels and thermogenic capacities of brown (BAT) and white adipose tissue (WAT). C57BL/6J mice were fed under four different experimental conditions for 17 weeks: normal diet (ND), high fat diet (HFD), HFD with 5% RJ, and HFD with 5% honey bee larva powder (BL). Spontaneous locomotor activity, hepatic triglyceride (TG) content, and blood parameters were examined. Gene and protein expressions of thermogenic uncoupling protein 1 (UCP1) and mitochondrial cytochrome c oxidase subunit IV (COX-IV) in BAT and WAT were investigated by qPCR and Western blotting analysis, respectively. Dietary RJ, but not BL, suppressed HFD-induced accumulations of WAT and hepatic TG without modifying food intake. Consistently, RJ improved hyperglycemia and the homeostasis model assessment-insulin resistance (HOMA-IR). Although dietary RJ and BL unchanged locomotor activity, gene and protein expressions of UCP1 and COX-IV in BAT were increased in the RJ group compared to the other experimental groups. Neither the RJ nor BL treatment induced browning of WAT. Our results indicate that dietary RJ ameliorates diet-induced obesity, hyperglycemia, and hepatic steatosis by promoting metabolic thermogenesis in BAT in mice. RJ may be a novel promising food ingredient to combat obesity and metabolic disorders. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  16. Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates.

    PubMed

    Raposo, Helena F; Paiva, Adriene A; Kato, Larissa S; de Oliveira, Helena C F

    2015-01-01

    Hypertriglyceridemia is a common type of dyslipidemia found in obesity. However, it is not established whether primary hyperlipidemia can predispose to obesity. Evidences have suggested that proteins primarily related to plasma lipoprotein transport, such as apolipoprotein (apo) CIII and E, may significantly affect the process of body fat accumulation. We have previously observed an increased adiposity in response to a high fat diet (HFD) in mice overexpressing apoCIII. Here, we examined the potential mechanisms involved in this exacerbated response of apoCIII mice to the HFD. We measured body energy balance, tissue capacity to store exogenous lipids, lipogenesis and lipolysis rates in non-transgenic and apoCIII overexpressing mice fed a HFD during two months. Food intake, fat excretion and whole body CO2 production were similar in both groups. However, the adipose tissue mass (45 %) and leptin plasma levels (2-fold) were significantly greater in apoCIII mice. Lipogenesis rates were similar, while exogenous lipid retention was increased in perigonadal (2-fold) and brown adipose tissues (40 %) of apoCIII mice. In addition, adipocyte basal lipolysis (55 %) and in vivo lipolysis index (30 %) were significantly decreased in apoCIII mice. A fat tolerance test evidenced delayed plasma triglyceride clearance and greater transient availability of non-esterified fatty acids (NEFA) during the post-prandial state in the apoCIII mice plasma. Thus, apoCIII overexpression resulted in increased NEFA availability to adipose uptake and decreased adipocyte lipolysis, favoring lipid enlargement of adipose depots. We propose that plasma apoCIII levels represent a new risk factor for diet-induced obesity.

  17. Gut REG3γ-Associated Lactobacillus Induces Anti-inflammatory Macrophages to Maintain Adipose Tissue Homeostasis

    PubMed Central

    Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun

    2017-01-01

    Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739

  18. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes.

    PubMed

    Jayabalan, Nanthini; Nair, Soumyalekshmi; Nuzhat, Zarin; Rice, Gregory E; Zuñiga, Felipe A; Sobrevia, Luis; Leiva, Andrea; Sanhueza, Carlos; Gutiérrez, Jaime Agustín; Lappas, Martha; Freeman, Dilys Jane; Salomon, Carlos

    2017-01-01

    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue

  19. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes

    PubMed Central

    Jayabalan, Nanthini; Nair, Soumyalekshmi; Nuzhat, Zarin; Rice, Gregory E.; Zuñiga, Felipe A.; Sobrevia, Luis; Leiva, Andrea; Sanhueza, Carlos; Gutiérrez, Jaime Agustín; Lappas, Martha; Freeman, Dilys Jane; Salomon, Carlos

    2017-01-01

    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body’s major energy reservoir. The role of adipose tissue, however, is not restricted to a “bag of fat.” The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue

  20. Brown adipose tissue

    PubMed Central

    Townsend, Kristy; Tseng, Yu-Hua

    2012-01-01

    Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue. PMID:23700507

  1. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity

    PubMed Central

    Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop

    2017-01-01

    Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496

  2. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity.

    PubMed

    Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop

    2017-03-01

    Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.

  3. Adipose tissue immunity and cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-01-01

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481

  4. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients.

    PubMed

    Fusaru, Ana Marina; Pisoschi, Cătălina Gabriela; Bold, Adriana; Taisescu, C; Stănescu, R; Hîncu, Mihaela; Crăiţoiu, Stefania; Baniţă, Ileana Monica

    2012-01-01

    VEGF is one the pro-inflammatory adipokines synthesized by the "adipose secretoma" of obese subjects as a response to hypoxic conditions; but the main function of VEGF is angiogenesis, being recognized as the most important factor increasing blood capillaries in the adipose tissue by stimulating endothelial cell growth. In this paper, we propose a comparative study of the vascular response to VEGF synthesis in the subcutaneous and central-peritoneal adipose depots in lean, obese and obese diabetic patients. We used CD31 to label the endothelial cells in order to evaluate the response of the vascular network to VEGF synthesis. Our results showed an increase of VEGF protein synthesis in obese and obese-diabetic patients compared to lean subjects where the protein was absent. The positivity for VEGF in obese diabetic samples was observed in numerous structures from the adipose depots, both in the stromal vascular fraction--blood vessels and stromal cells--as well as in the cytoplasm of adipocytes. Positivity in the vascular wall was observed more frequently in areas of perivascular and intralobular fibrosis. Obese and diabetic patients showed similar incidence of CD31 immunoreactivity with lean subjects in both subcutaneous and peritoneal depots. In conclusion, human adipose depots show a different incidence of VEGF positive cells in relation with their disposal and the metabolic status. VEGF synthesis in visceral adipose tissue is inefficient being not followed by angiogenesis to counterbalance tissue hypoxia. We suggest that may be a pathogenic link between the degrees of intralobular fibrosis in adipose depots and VEGF expression.

  5. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats

    PubMed Central

    2014-01-01

    Objective To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. Methods NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. Results The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). Conclusion The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of

  6. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    PubMed

    Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R

    2011-01-01

    Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  7. Transcriptome profiling of visceral adipose tissue in a novel obese rat model, WNIN/Ob & its comparison with other animal models.

    PubMed

    Sakamuri, Siva Sankara Vara Prasad; Putcha, Uday Kumar; Veettil, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2016-09-01

    Adipose tissue dysfunction in obesity is linked to the development of type 2 diabetes and cardiovascular diseases. We studied the differential gene expression in retroperitoneal adipose tissue of a novel obese rat model, WNIN/Ob, to understand the possible underlying transcriptional changes involved in the development of obesity and associatedcomorbidities in this model. Four month old, male WNIN/Ob lean and obese rats were taken, blood was collected and tissues were dissected. Body composition analysis and adipose tissue histology were performed. Global gene expression in retroperitoneal adipose tissue of lean and obese rats was studied by microarray using Affymetrix GeneChips. One thousand and seventeen probe sets were downregulated and 963 probe sets were upregulated (more than two-fold) in adipose tissue of WNIN/Ob obese rats when compared to that of lean rats. Small nucleolar RNA (SnoRNA) made most of the underexpressed probe sets, whereas immune system-related genes werethe most overexpressed in the adipose tissues of obese rats. Genes coding for cytoskeletal proteinswere downregulated, whereas genes related to lipid biosynthesis were elevated in the adipose tissue of obese rats. Majority of the altered genes and pathways in adipose tissue of WNIN/Ob obese rats were similar to the observations in other obese animal models and human obesity. Based on these observations, it is proposed that WNIN/Ob obese rat model may be a good model to study the mechanisms involved in the development of obesity and its comorbidities. Downregulation of SnoRNA appears to be a novel feature in this obese rat model.

  8. Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Göttingen minipigs and Ossabaw minipigs.

    PubMed

    Rødgaard, Tina; Stagsted, Jan; Christoffersen, Berit Ø; Cirera, Susanna; Moesgaard, Sophia G; Sturek, Michael; Alloosh, Mouhamad; Heegaard, Peter M H

    2013-02-15

    The acute phase protein orosomucoid (ORM) has anti-inflammatory and immunomodulatory effects, and may play an important role in the maintenance of metabolic homeostasis in obesity-induced low-grade inflammation. Even though the pig is a widely used model for obesity related metabolic symptoms, the expression of ORM has not yet been characterized in such pig models. The objective of this study was to investigate the expression of ORM1 mRNA in liver, visceral adipose tissue, subcutaneous adipose tissue (SAT) from the abdomen or retroperitoneal abdominal adipose tissue (RPAT) and SAT from the neck, as well as the serum concentration of ORM protein in three porcine obesity models; the domestic pig, Göttingen minipigs and Ossabaw minipigs. No changes in ORM1 mRNA expression were observed in obese pigs compared to lean pigs in the four types of tissues. However, obese Ossabaw minipigs, but none of the other breeds, showed significantly elevated ORM serum concentrations compared to their lean counterparts. Studies in humans have shown that the expression of ORM was unchanged in adipose tissue depots in obese humans with an increased serum concentration of ORM. Thus in this respect, obese Ossabaw minipigs behave more similarly to obese humans than the other two pig breeds investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue

    PubMed Central

    Pérez, Laura M.; Pareja‐Galeano, Helios; Sanchis‐Gomar, Fabián; Emanuele, Enzo; Lucia, Alejandro

    2016-01-01

    Abstract The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi‐organ damage and a systemic pro‐inflammatory state (‘inflammageing’). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi‐system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of ‘adipaging’ to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals. PMID:26926488

  10. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-03-15

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors.

  11. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  12. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  13. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    PubMed

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  14. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Adipose tissue as an immunological organ

    PubMed Central

    Grant, Ryan W.; Dixit, Vishwa Deep

    2014-01-01

    Objective This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated co-morbidities. Design and Methods The review utilized PubMed searches of current literature to examine adipose tissue leukocytosis. Results The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes which emerges as an active immunological organ capable of modifying whole body metabolism through paracrine and endocrine mechanisms. Conclusion Adipose tissue is a large immunologically active organ during obesity that displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is presently unclear whether the adipose compartment has a direct role in immune-surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanism by which obesity contributes to increased susceptibility to both metabolic and certain infectious disease. PMID:25612251

  17. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  18. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity.

    PubMed

    Song, Mun-Gyu; Lee, Hye-Jin; Jin, Bo-Yeong; Gutierrez-Aguilar, Ruth; Shin, Kyung-Ho; Choi, Sang-Hyun; Um, Sung Hee; Kim, Dong-Hoon

    2016-11-01

    Adipose tissue (AT) expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC) of subcutaneous and visceral fats in lean and obese mice. We compared the AC of epididymal fat (EF) and inguinal fat (IF) using an angiogenesis assay in diet-induced obese (DIO) mice and diet-resistant (DR) mice fed a high-fat diet (HFD). Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD), DIO mice, and DR mice fed a HFD. DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a , Vegfa , Fgf1 , Kdr , and Pecam1 ), macrophage recruitment, and inflammation (including Emr1 , Ccr2 , Itgax , Ccl2 , Tnf , and Il1b ) correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity.

  19. MKK6 controls T3-mediated browning of white adipose tissue.

    PubMed

    Matesanz, Nuria; Bernardo, Edgar; Acín-Pérez, Rebeca; Manieri, Elisa; Pérez-Sieira, Sonia; Hernández-Cosido, Lourdes; Montalvo-Romeral, Valle; Mora, Alfonso; Rodríguez, Elena; Leiva-Vega, Luis; Lechuga-Vieco, Ana Victoria; Ruiz-Cabello, Jesús; Torres, Jorge L; Crespo-Ruiz, Maria; Centeno, Francisco; Álvarez, Clara V; Marcos, Miguel; Enríquez, Jose Antonio; Nogueiras, Ruben; Sabio, Guadalupe

    2017-10-11

    Increasing the thermogenic capacity of adipose tissue to enhance organismal energy expenditure is considered a promising therapeutic strategy to combat obesity. Here, we report that expression of the p38 MAPK activator MKK6 is elevated in white adipose tissue of obese individuals. Using knockout animals and shRNA, we show that Mkk6 deletion increases energy expenditure and thermogenic capacity of white adipose tissue, protecting mice against diet-induced obesity and the development of diabetes. Deletion of Mkk6 increases T3-stimulated UCP1 expression in adipocytes, thereby increasing their thermogenic capacity. Mechanistically, we demonstrate that, in white adipose tissue, p38 is activated by an alternative pathway involving AMPK, TAK, and TAB. Our results identify MKK6 in adipocytes as a potential therapeutic target to reduce obesity.Brown and beige adipose tissues dissipate heat via uncoupling protein 1 (UCP1). Here the authors show that the stress activated kinase MKK6 acts as a repressor of UCP1 expression, suggesting that its inhibition promotes adipose tissue browning and increases organismal energy expenditure.

  20. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation

    PubMed Central

    Fitzgibbons, Timothy P.; Kogan, Sophia; Aouadi, Myriam; Hendricks, Greg M.; Straubhaar, Juerg

    2011-01-01

    Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and the metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea, and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared with white adipose tissue (WAT), PVAT and BAT from C57BL6/J mice fed a high-fat diet for 13 wk had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80 and CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) compared with WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from inflammatory stress. PMID:21765057

  1. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans.

    PubMed

    Brown, Amy; Hossain, Intekhab; Perez, Lester J; Nzirorera, Carine; Tozer, Kathleen; D'Souza, Kenneth; Trivedi, Purvi C; Aguiar, Christie; Yip, Alexandra M; Shea, Jennifer; Brunt, Keith R; Legare, Jean-Francois; Hassan, Ansar; Pulinilkunnil, Thomas; Kienesberger, Petra C

    2017-01-01

    Lysophosphatidic acid (LPA) receptor signaling has been implicated in cardiovascular and obesity-related metabolic disease. However, the distribution and regulation of LPA receptors in the myocardium and adipose tissue remain unclear. This study aimed to characterize the mRNA expression of LPA receptors (LPA1-6) in the murine and human myocardium and adipose tissue, and its regulation in response to obesity. LPA receptor mRNA levels were determined by qPCR in i) heart ventricles, isolated cardiomyocytes, and perigonadal adipose tissue from chow or high fat-high sucrose (HFHS)-fed male C57BL/6 mice, ii) 3T3-L1 adipocytes and HL-1 cardiomyocytes under conditions mimicking gluco/lipotoxicity, and iii) human atrial and subcutaneous adipose tissue from non-obese, pre-obese, and obese cardiac surgery patients. LPA1-6 were expressed in myocardium and white adipose tissue from mice and humans, except for LPA3, which was undetectable in murine adipocytes and human adipose tissue. Obesity was associated with increased LPA4, LPA5 and/or LPA6 levels in mice ventricles and cardiomyocytes, HL-1 cells exposed to high palmitate, and human atrial tissue. LPA4 and LPA5 mRNA levels in human atrial tissue correlated with measures of obesity. LPA5 mRNA levels were increased in HFHS-fed mice and insulin resistant adipocytes, yet were reduced in adipose tissue from obese patients. LPA4, LPA5, and LPA6 mRNA levels in human adipose tissue were negatively associated with measures of obesity and cardiac surgery outcomes. This study suggests that obesity leads to marked changes in LPA receptor expression in the murine and human heart and white adipose tissue that may alter LPA receptor signaling during obesity.

  2. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans

    PubMed Central

    Perez, Lester J.; Nzirorera, Carine; Tozer, Kathleen; D’Souza, Kenneth; Trivedi, Purvi C.; Aguiar, Christie; Yip, Alexandra M.; Shea, Jennifer; Brunt, Keith R.; Legare, Jean-Francois; Hassan, Ansar; Pulinilkunnil, Thomas

    2017-01-01

    Background Lysophosphatidic acid (LPA) receptor signaling has been implicated in cardiovascular and obesity-related metabolic disease. However, the distribution and regulation of LPA receptors in the myocardium and adipose tissue remain unclear. Objectives This study aimed to characterize the mRNA expression of LPA receptors (LPA1-6) in the murine and human myocardium and adipose tissue, and its regulation in response to obesity. Methods LPA receptor mRNA levels were determined by qPCR in i) heart ventricles, isolated cardiomyocytes, and perigonadal adipose tissue from chow or high fat-high sucrose (HFHS)-fed male C57BL/6 mice, ii) 3T3-L1 adipocytes and HL-1 cardiomyocytes under conditions mimicking gluco/lipotoxicity, and iii) human atrial and subcutaneous adipose tissue from non-obese, pre-obese, and obese cardiac surgery patients. Results LPA1-6 were expressed in myocardium and white adipose tissue from mice and humans, except for LPA3, which was undetectable in murine adipocytes and human adipose tissue. Obesity was associated with increased LPA4, LPA5 and/or LPA6 levels in mice ventricles and cardiomyocytes, HL-1 cells exposed to high palmitate, and human atrial tissue. LPA4 and LPA5 mRNA levels in human atrial tissue correlated with measures of obesity. LPA5 mRNA levels were increased in HFHS-fed mice and insulin resistant adipocytes, yet were reduced in adipose tissue from obese patients. LPA4, LPA5, and LPA6 mRNA levels in human adipose tissue were negatively associated with measures of obesity and cardiac surgery outcomes. This study suggests that obesity leads to marked changes in LPA receptor expression in the murine and human heart and white adipose tissue that may alter LPA receptor signaling during obesity. PMID:29236751

  3. Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population

    PubMed Central

    Zhang, Jun; Zhang, Zhiwei; Ding, Yulei; Xu, Peng; Wang, Tingting; Xu, Wenjing; Lu, Huan; Li, Jun; Wang, Yan; Li, Siyuan; Liu, Zongzhi; An, Na; Yang, Li; Xie, Jianxin

    2015-01-01

    Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P < 0.01). The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P < 0.01). In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue. PMID:26273678

  4. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  5. Genomic and epigenomic regulation of adipose tissue inflammation in obesity.

    PubMed

    Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas

    2013-12-01

    Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  7. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  8. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  9. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes

  10. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity.

    PubMed

    Costa, Rafael M; Neves, Karla B; Tostes, Rita C; Lobato, Núbia S

    2018-01-01

    Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out.

  11. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  12. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  13. Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue.

    PubMed

    Neyrinck, Audrey M; Alligier, Maud; Memvanga, Patrick B; Névraumont, Elodie; Larondelle, Yvan; Préat, Véronique; Cani, Patrice D; Delzenne, Nathalie M

    2013-01-01

    Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®), at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. Mice were fed either a control diet (CT), a high fat (HF) diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet) associated with white pepper (0.01 %) for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.

  14. Curcuma longa Extract Associated with White Pepper Lessens High Fat Diet-Induced Inflammation in Subcutaneous Adipose Tissue

    PubMed Central

    Memvanga, Patrick B.; Névraumont, Elodie; Larondelle, Yvan; Préat, Véronique; Cani, Patrice D.; Delzenne, Nathalie M.

    2013-01-01

    Background Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®), at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. Methodology/Principal Findings Mice were fed either a control diet (CT), a high fat (HF) diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet) associated with white pepper (0.01 %) for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. Conclusions/Significance These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition. PMID:24260564

  15. Protein Kinase A Regulatory Subunits in Human Adipose Tissue

    PubMed Central

    Mantovani, Giovanna; Bondioni, Sara; Alberti, Luisella; Gilardini, Luisa; Invitti, Cecilia; Corbetta, Sabrina; Zappa, Marco A.; Ferrero, Stefano; Lania, Andrea G.; Bosari, Silvano; Beck-Peccoz, Paolo; Spada, Anna

    2009-01-01

    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects. RESEARCH DESIGN AND METHODS—The expression of the different PKA regulatory subunits was evaluated by immunohistochemistry, Western blot, and real-time PCR in subcutaneous and visceral adipose tissue samples from 20 nonobese and 67 obese patients. PKA activity and glycerol release were evaluated in total protein extract and adipocytes isolated from fresh tissue samples, respectively. RESULTS—Expression techniques showed that R2B was the most abundant regulatory protein, both at mRNA and protein level. Interestingly, R2B mRNA levels were significantly lower in both subcutaneous and visceral adipose tissues from obese than nonobese patients and negatively correlated with BMI, waist circumference, insulin levels, and homeostasis model assessment of insulin resistance. Moreover, both basal and stimulated PKA activity and glycerol release were significantly lower in visceral adipose tissue from obese patients then nonobese subjects. CONCLUSIONS—Our results first indicate that, in human adipose tissue, there are important BMI-related differences in R2B expression and PKA activation, which might be included among the multiple determinants involved in the different lipolytic response to β-adrenergic activation in obesity. PMID:19095761

  16. Regional Differences in Adipose Tissue Hormone/Cytokine Production Before and After Weight Loss in Abdominally Obese Women

    PubMed Central

    You, Tongjian; Wang, Xuewen; Murphy, Karin M.; Lyles, Mary F.; Demons, Jamehl L.; Yang, Rongze; Gong, Da-Wei; Nicklas, Barbara J.

    2014-01-01

    Objective To compare the regional differences in subcutaneous adipose tissue hormone/cytokine production in abdominally obese women during weight loss. Design and Methods Forty-two abdominally obese, older women underwent a 20-week weight loss intervention composed of hypocaloric diet with or without aerobic exercise (total energy expenditure: ~2800 kcal/week). Subcutaneous (gluteal and abdominal) adipose tissue biopsies were conducted before and after the intervention. Results Adipose tissue gene expression and release of leptin, adiponectin, and interleukin 6 (IL-6) were determined. The intervention resulted in significant weight loss (−10.1 ±0.7 kg, P<0.001). At baseline, gene expression of adiponectin were higher (P<0.01), and gene expression and release of IL-6 were lower (both P<0.05) in abdominal than in gluteal adipose tissue. After intervention, leptin gene expression and release were lower in both gluteal and abdominal adipose tissue compared to baseline (P<0.05 to P<0.01). Abdominal, but not gluteal, adipose tissue adiponectin gene expression and release increased after intervention (both P<0.05). Conclusion A 20-week weight loss program decreased leptin production in both gluteal and abdominal adipose tissue, but only increased adiponectin production from abdominal adipose tissue in obese women. This depot-specific effect may be of importance for the treatment of health complications associated with abdominal adiposity. PMID:24634403

  17. Physiological regulation and metabolic role of browning in white adipose tissue.

    PubMed

    Jankovic, Aleksandra; Otasevic, Vesna; Stancic, Ana; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2017-09-01

    Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.

  18. Modulations of calcium in adipose tissue by TRPC1: a key player in obesity

    USDA-ARS?s Scientific Manuscript database

    The disruption of metabolic homeostasis, the regulation of energy the body extracts, stores and uses, leads to excess adipose tissue accumulation and the onset of obesity. White adipose tissue (WAT) is a metabolically dynamic endocrine organ responsible for maintaining metabolic homeostasis through ...

  19. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    USDA-ARS?s Scientific Manuscript database

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  20. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity.

    PubMed

    Barquissau, Valentin; Léger, Benjamin; Beuzelin, Diane; Martins, Frédéric; Amri, Ez-Zoubir; Pisani, Didier F; Saris, Wim H M; Astrup, Arne; Maoret, Jean-José; Iacovoni, Jason; Déjean, Sébastien; Moro, Cédric; Viguerie, Nathalie; Langin, Dominique

    2018-01-23

    Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity.

    PubMed

    Park, Yoon Jeong; Choe, Sung Sik; Sohn, Jee Hyung; Kim, Jae Bum

    2017-04-03

    Obesity is closely associated with metabolic diseases including type 2 diabetes. One hallmark characteristics of obesity is chronic inflammation that is coordinately controlled by complex signaling networks in adipose tissues. Compelling evidence indicates that reactive oxygen species (ROS) and its related signaling pathways play crucial roles in the progression of chronic inflammation in obesity. The pentose phosphate pathway (PPP) is an anabolic pathway that utilizes the glucoses to generate molecular building blocks and reducing equivalents in the form of NADPH. In particular, NADPH acts as one of the key modulators in the control of ROS through providing an electron for both ROS generation and scavenging. Recently, we have reported that glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the PPP, is implicated in adipose tissue inflammation and systemic insulin resistance in obesity. Mechanistically, G6PD potentiates generation of ROS that augments pro-inflammatory responses in adipose tissue macrophages, leading to systemic insulin resistance. Here, we provide an overview of cell type- specific roles of G6PD in the regulation of ROS balance as well as additional details on the significance of G6PD that contributes to pro-oxidant NADPH generation in obesity-related chronic inflammation and insulin resistance.

  2. The effect of dietary carbohydrate on genes for fatty acid synthase and inflammatory cytokines in adipose tissues from lean and obese subjects.

    PubMed

    Hudgins, Lisa C; Baday, Aline; Hellerstein, Marc K; Parker, Thomas S; Levine, Daniel M; Seidman, Cynthia E; Neese, Richard A; Tremaroli, Jolanta D; Hirsch, Jules

    2008-04-01

    Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.

  3. Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics.

    PubMed

    Kucuk Baloglu, Fatma; Baloglu, Onur; Heise, Sebastian; Brockmann, Gudrun; Severcan, Feride

    2017-10-01

    The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm -1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues.

    PubMed

    Lee, Robyn K; Hittel, Dustin S; Nyamandi, Vongai Z; Kang, Li; Soh, Jung; Sensen, Christoph W; Shearer, Jane

    2012-04-01

    Obesity is a chronic condition involving the excessive accumulation of adipose tissue that adversely affects all systems in the body. The aim of the present study was to employ an unbiased, genome-wide assessment of transcript abundance in order to identify common gene expression pathways within insulin-sensitive tissues in response to dietary-induced diabetes. Following 20 weeks of chow or high-fat feeding (60% kcal), age-matched mice underwent a euglycemic-hyperinsulinemic clamp to assess insulin sensitivity. High-fat-fed animals were obese and highly insulin resistant, disposing of ∼75% less glucose compared with their chow-fed counterparts. Tissues were collected, and gene expression was examined by microarray in 4 tissues known to exhibit obesity-related metabolic disturbances: white adipose tissue, skeletal muscle, liver, and heart. A total of 463 genes were differentially expressed between diets. Analysis of individual tissues showed skeletal muscle to exhibit the largest number of differentially expressed genes (191) in response to high-fat feeding, followed by adipose tissue (169), liver (115), and heart (65). Analyses revealed that the response of individual genes to obesity is distinct and largely tissue specific, with less than 10% of transcripts being shared among tissues. Although transcripts are largely tissue specific, a systems approach shows numerous commonly activated pathways, including those involved in signal transduction, inflammation, oxidative stress, substrate transport, and metabolism. This suggests a coordinated attempt by tissues to limit metabolic perturbations occurring in early-stage obesity. Many identified genes were associated with a variety of disorders, thereby serving as potential links between obesity and its related health risks.

  5. A macrophage NBR1-MEKK3 complex triggers JNK-mediated adipose-tissue inflammation in obesity

    PubMed Central

    Hernandez, Eloy D.; Lee, Sang Jun; Kim, Ji Young; Duran, Angeles; Linares, Juan F.; Yajima, Tomoko; Müller, Timo D.; Tschöp, Matthias H.; Smith, Steven R.; Diaz-Meco, Maria T.; Moscat, Jorge

    2014-01-01

    SUMMARY The c-Jun NH(2)-terminal kinase (JNK) is a critical determinant of obesity-associated inflammation and glucose intolerance. The upstream mechanisms controlling this pathway are still unknown. Here we report that the levels of the PB1 domain-containing adapter NBR1 correlated with the expression of pro-inflammatory molecules in adipose tissue from human patients with metabolic syndrome, suggesting that NBR1 plays a key role in adipose-tissue inflammation. We also show that NBR1 inactivation in the myeloid compartment impairs the function, M1 polarization and chemotactic activity of macrophages, prevents inflammation of adipose tissue, and improves glucose tolerance in obese mice. Furthermore, we demonstrate that an interaction between the PB1 domains of NBR1 and the mitogen-activated kinase kinase 3 (MEKK3) enables the formation of a signaling complex required for the activation of JNK. Together these discoveries identify an NBR1-MEKK3 complex as a key regulator of JNK signaling and adipose-tissue inflammation in obesity. PMID:25043814

  6. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner.

    PubMed

    LeMieux, Monique J; Kalupahana, Nishan S; Scoggin, Shane; Moustaid-Moussa, Naima

    2015-03-01

    Obesity is associated with an overexpansion of adipose tissue, along with increases in blood pressure, glycemia, inflammation, and thrombosis. Research to develop nutritional interventions to prevent or treat obesity and its associated diseases is greatly needed. Previously, we demonstrated the ability of eicosapentaenoic acid (EPA) to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation in mice. The objective of the current study was to determine the mechanisms mediating the anti-inflammatory and antilipogenic actions of EPA. In a previous study, male C57BL/6J mice were fed a low-fat diet (10% of energy from fat), an HF diet (45% of energy from fat), or an HF diet supplemented with EPA (45% of energy from fat; 36 g/kg EPA; HF+EPA) for 11 wk or an HF diet for 6 wk and then switched to the HF+EPA diet for 5 wk. In this study, we used histology/immunohistochemistry, gene expression, and metabolomic analyses of white adipose tissue from these mice. In addition, cultured mouse 3T3-L1 adipocytes were treated with 100 μM EPA for 48 h and then used for extracellular flux assays with untreated 3T3-L1 adipocytes used as a control. Compared with the HF diet, the HF+EPA diet significantly reduced body weight, adiposity, adipocyte size, and macrophage infiltration into adipose tissue. No significant differences in overall body weight or fat pad weights were observed between HF-fed mice vs. those fed the HF+EPA diet for a short time after first inducing obesity with the HF diet. Interestingly, both histology and immunohistochemistry results showed a significantly lower mean adipocyte size and macrophage infiltration in mice fed the HF diet and then switched to the HF+EPA diet vs. those fed HF diets only. This indicated that EPA was able to prevent as well as reverse HF-diet-induced adipocyte inflammation and hypertrophy and that some of the metabolic effects of EPA were independent of body weight or adiposity. In addition, adipose tissue metabolomic

  7. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management.

    PubMed

    Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Stancic, Ana; Otasevic, Vesna; Ferdinandy, Péter; Daiber, Andreas; Korac, Bato

    2017-06-01

    Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О 2 •- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О 2 •- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2016 The British Pharmacological Society.

  8. Adipose Dipeptidyl Peptidase-4 and Obesity

    PubMed Central

    Sell, Henrike; Blüher, Matthias; Klöting, Nora; Schlich, Raphaela; Willems, Miriam; Ruppe, Florian; Knoefel, Wolfram Trudo; Dietrich, Arne; Fielding, Barbara A.; Arner, Peter; Frayn, Keith N.; Eckel, Jürgen

    2013-01-01

    OBJECTIVE To study expression of the recently identified adipokine dipeptidyl peptidase-4 (DPP4) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of patients with various BMIs and insulin sensitivities, as well as to assess circulating DPP4 in relation to obesity and insulin sensitivity. RESEARCH DESIGN AND METHODS DPP4 expression was measured in SAT and VAT from 196 subjects with a wide range of BMIs and insulin sensitivities. DPP4 release was measured ex vivo in paired biopsies from SAT and VAT as well as in vivo from SAT of lean and obese patients. Circulating DPP4 was measured in insulin-sensitive and insulin-resistant BMI-matched obese patients. RESULTS DPP4 expression was positively correlated with BMI in both SAT and VAT, with VAT consistently displaying higher expression than SAT. Ex vivo release of DPP4 from adipose tissue explants was higher in VAT than in SAT in both lean and obese patients, with obese patients displaying higher DPP4 release than lean controls. Net release of DPP4 from adipose tissue was also demonstrated in vivo with greater release in obese subjects than in lean subjects and in women than in men. Insulin-sensitive obese patients had significantly lower circulating DPP4 than did obesity-matched insulin-resistant patients. In this experiment, DPP4 positively correlated with the amount of VAT, adipocyte size, and adipose tissue inflammation. CONCLUSIONS DPP4, a novel adipokine, has a higher release from VAT that is particularly pronounced in obese and insulin-resistant patients. Our data suggest that DPP4 may be a marker for visceral obesity, insulin resistance, and the metabolic syndrome. PMID:24130353

  9. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    PubMed

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  10. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Ren, Jun

    2016-01-01

    Background and Purpose The growing epidemic of obesity and metabolic diseases necessitates the development of novel strategies to prevent and treat such diseases. Current research suggests that browning of white adipose tissue (WAT) promotes energy expenditure to counter obesity. Recent research suggests that activation of the TRPV1 channels counters obesity. However, the mechanism by which activation of TRPV1 channels counters obesity still remains unclear. Experimental Approach We evaluated the effect of dietary capsaicin to induce a browning program in WAT by activating TRPV1 channels to prevent diet‐induced obesity using wild‐type and TRPV1−/− mouse models. We performed experiments using preadipocytes and fat pads from these mice. Key Results Capsaicin stimulated the expression of brown fat‐specific thermogenic uncoupling protein‐1 and bone morphogenetic protein‐8b in WAT. Capsaicin triggered browning of WAT by promoting sirtuin‐1 expression and activity via TRPV1 channel‐dependent elevation of intracellular Ca2 + and phosphorylation of Ca2 +/calmodulin‐activated protein kinase II and AMP‐activated kinase. Capsaicin increased the expression of PPARγ 1 coactivator α and enhanced metabolic and ambulatory activity. Further, capsaicin stimulated sirtuin‐1‐dependent deacetylation of PPARγ and the transcription factor PRDM‐16 and facilitated PPARγ–PRDM‐16 interaction to induce browning of WAT. Dietary capsaicin did not protect TRPV1−/− mice from obesity. Conclusions and Interpretations Our results show for the first time that activation of TRPV1 channels by dietary capsaicin triggers browning of WAT to counteract obesity. Our results suggest that activation of TRPV1 channels is a promising strategy to counter obesity. PMID:27174467

  12. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    PubMed

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  13. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    PubMed Central

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  14. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  15. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  16. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice.

    PubMed

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-26

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  17. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue

    PubMed Central

    2013-01-01

    Background The effect of pomegranate vinegar (PV) on adiposity was investigated in high-fat diet (HF)-induced obese rats. Methods The rats were divided into 5 groups and treated with HF with PV or acetic acid (0, 6.5 or 13% w/w) for 16 weeks. Statistical analyses were performed by the Statistical Analysis Systems package, version 9.2. Results Compared to control, PV supplementation increased phosphorylation of AMP-activated protein kinase (AMPK), leading to changes in mRNA expressions: increases for hormone sensitive lipase and mitochondrial uncoupling protein 2 and decreases for sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptorγ (PPARγ) in adipose tissue; increases for PPARα and carnitinepalmitoyltransferase-1a (CPT-1a) and decrease for SREBP-1c in the liver. Concomitantly, PV reduced increases of body weight (p = 0.048), fat mass (p = 0.033), hepatic triglycerides (p = 0.005), and plasma triglycerides (p = 0.001). Conclusions These results suggest that PV attenuates adiposity through the coordinated control of AMPK, which leads to promotion of lipolysis in adipose tissue and stimulation of fatty acid oxidation in the liver. PMID:24180378

  18. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  19. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice.

    PubMed

    Maioli, Tatiani Uceli; Gonçalves, Juliana Lauar; Miranda, Mariana Camila Gonçalves; Martins, Vinícius Dantas; Horta, Laila Sampaio; Moreira, Thais Garcias; Godard, Ana Lucia Brunialti; Santiago, Andrezza Fernanda; Faria, Ana Maria Caetano

    2016-02-01

    The purpose of the study was to develop a novel diet based on standard AIN93G diet that would be able to induce experimental obesity and impair immune regulation with high concentrations of both carbohydrate and lipids. To compare the effects of this high sugar and butter (HSB) diet with other modified diets, male C57BL/6 mice were fed either mouse chow, or AIN93G diet, or high sugar (HS) diet, or high-fat (HF) diet, or high sugar and butter (HSB) diet for 11 weeks ad libitum. HSB diet induced higher weight gain. Therefore, control AIN93G and HSB groups were chosen for additional analysis. Regulatory T cells were studied by flow cytometry, and cytokine levels were measured by ELISA. Although HF and HSB diets were able to induce a higher weight gain compatible with obesity in treated mice, HSB-fed mice presented the higher levels of serum glucose after fasting and the lowest frequency of regulatory T cells in adipose tissue. In addition, mice that were fed HSB diet presented higher levels of cholesterol and triglycerides, hyperleptinemia, increased resistin and leptin levels as well as reduced adiponectin serum levels. Importantly, we found increased frequency of CD4(+)CD44(+) effector T cells, reduction of CD4(+)CD25(+)Foxp3(+) and Th3 regulatory T cells as well as decreased levels of IL-10 and TGF-β in adipose tissue of HSB-fed mice. Therefore, HSB represents a novel model of obesity-inducing diet that was efficient in triggering alterations compatible with metabolic syndrome as well as impairment in immune regulatory parameters.

  20. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    PubMed

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  1. Toll-like receptor 5 in obesity: the role of gut microbiota and adipose tissue inflammation.

    PubMed

    Pekkala, Satu; Munukka, Eveliina; Kong, Lingjia; Pöllänen, Eija; Autio, Reija; Roos, Christophe; Wiklund, Petri; Fischer-Posovszky, Pamela; Wabitsch, Martin; Alen, Markku; Huovinen, Pentti; Cheng, Sulin

    2015-03-01

    This study aimed at establishing bacterial flagellin-recognizing toll-like receptor 5 (TLR5) as a novel link between gut microbiota composition, adipose tissue inflammation, and obesity. An adipose tissue microarray database was used to compare women having the highest (n = 4, H-TLR) and lowest (n = 4, L-TLR) expression levels of TLR5-signaling pathway genes. Gut microbiota composition was profiled using flow cytometry and FISH. Standard laboratory techniques were used to determine anthropometric and clinical variables. In vivo results were verified using cultured human adipocytes. The H-TLR group had higher flagellated Clostridium cluster XIV abundance and Firmicutes-to-Bacteroides ratio. H-TLR subjects had obese phenotype characterized by greater waist circumference, fat %, and blood pressure (P < 0.05 for all). They also had higher leptin and lower adiponectin levels (P < 0.05 for both). Six hundred and sixty-eight metabolism- and inflammation-related adipose tissue genes were differentially expressed between the groups. In vitro studies confirmed that flagellin activated TLR5 inflammatory pathways, decreased insulin signaling, and increased glycerol secretion. The in vivo findings suggest that flagellated Clostridium cluster XIV bacteria contribute to the development of obesity through distorted adipose tissue metabolism and inflammation. The in vitro studies in adipocytes show that the underlying mechanisms of the human findings may be due to flagellin-activated TLR5 signaling. © 2015 The Obesity Society.

  2. Dynamic M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high fat diet-induced obesity in mice

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation is a pathogenic factor in obesity complications, in particular insulin resistance (IR). A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been the recognition of the underlying role of adipose tissue macrophages (ATM's). The...

  3. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  4. Uncovering Suitable Reference Proteins for Expression Studies in Human Adipose Tissue with Relevance to Obesity

    PubMed Central

    Pérez-Pérez, Rafael; López, Juan A.; García-Santos, Eva; Camafeita, Emilio; Gómez-Serrano, María; Ortega-Delgado, Francisco J.; Ricart, Wifredo; Fernández-Real, José M.; Peral, Belén

    2012-01-01

    Background Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals. Methodology and Findings To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples. Conclusions ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity

  5. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  6. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  7. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  8. Contribution of Adipose Tissue to Development of Cancer

    PubMed Central

    Cozzo, Alyssa J.; Fuller, Ashley M.; Makowski, Liza

    2018-01-01

    Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose “organ,” and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. PMID:29357128

  9. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs.

    PubMed

    Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete

    2018-02-01

    The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase

  10. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue.

    PubMed

    Harford, Karen A; Reynolds, Clare M; McGillicuddy, Fiona C; Roche, Helen M

    2011-11-01

    High-fat diet-induced obesity is associated with a chronic state of low-grade inflammation, which pre-disposes to insulin resistance (IR), which can subsequently lead to type 2 diabetes mellitus. Macrophages represent a heterogeneous population of cells that are instrumental in initiating the innate immune response. Recent studies have shown that macrophages are key mediators of obesity-induced IR, with a progressive infiltration of macrophages into obese adipose tissue. These adipose tissue macrophages are referred to as classically activated (M1) macrophages. They release cytokines such as IL-1β, IL-6 and TNFα creating a pro-inflammatory environment that blocks adipocyte insulin action, contributing to the development of IR and type 2 diabetes mellitus. In lean individuals macrophages are in an alternatively activated (M2) state. M2 macrophages are involved in wound healing and immunoregulation. Wound-healing macrophages play a major role in tissue repair and homoeostasis, while immunoregulatory macrophages produce IL-10, an anti-inflammatory cytokine, which may protect against inflammation. The functional role of T-cell accumulation has recently been characterised in adipose tissue. Cytotoxic T-cells are effector T-cells and have been implicated in macrophage differentiation, activation and migration. Infiltration of cytotoxic T-cells into obese adipose tissue is thought to precede macrophage accumulation. T-cell-derived cytokines such as interferon γ promote the recruitment and activation of M1 macrophages augmenting adipose tissue inflammation and IR. Manipulating adipose tissue macrophages/T-cell activity and accumulation in vivo through dietary fat modification may attenuate adipose tissue inflammation, representing a therapeutic target for ameliorating obesity-induced IR.

  11. Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice.

    PubMed

    Alligier, Maud; Dewulf, Evelyne M; Salazar, Nuria; Mairal, Aline; Neyrinck, Audrey M; Cani, Patrice D; Langin, Dominique; Delzenne, Nathalie M

    2014-07-01

    To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD. © 2014 The Obesity Society.

  12. A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue

    PubMed Central

    Fischer, I P; Irmler, M; Meyer, C W; Sachs, S J; Neff, F; Hrabě de Angelis, M; Beckers, J; Tschöp, M H; Hofmann, S M; Ussar, S

    2018-01-01

    Background/Objectives: Dieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity. Methods: In our model, male high-fat diet (HFD)-fed obese C57BL/6J mice were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. We measured body composition, as well as metrics of glucose, insulin and lipid homeostasis. This was accompanied by histological and gene expression analysis of adipose tissue and liver to assess adipose tissue inflammation and hepatosteatosis. Moreover, acute hypothalamic response to (re-) exposure to HFD was assessed by qPCR. Results & Conclusions: Within 7 weeks after diet switch, most obesity-associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain. PMID:28901330

  13. Cell-specific dysregulation of microRNA expression in obese white adipose tissue.

    PubMed

    Oger, Frédérik; Gheeraert, Celine; Mogilenko, Denis; Benomar, Yacir; Molendi-Coste, Olivier; Bouchaert, Emmanuel; Caron, Sandrine; Dombrowicz, David; Pattou, François; Duez, Hélène; Eeckhoute, Jérome; Staels, Bart; Lefebvre, Philippe

    2014-08-01

    Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.

  14. Lipoxin A4 Attenuates Obesity-Induced Adipose Inflammation and Associated Liver and Kidney Disease.

    PubMed

    Börgeson, Emma; Johnson, Andrew M F; Lee, Yun Sok; Till, Andreas; Syed, Gulam Hussain; Ali-Shah, Syed Tasadaque; Guiry, Patrick J; Dalli, Jesmond; Colas, Romain A; Serhan, Charles N; Sharma, Kumar; Godson, Catherine

    2015-07-07

    The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analog as interventions in a 3-month high-fat diet (HFD; 60% fat)-induced obesity model. Obesity caused distinct pathologies, including impaired glucose tolerance, adipose inflammation, fatty liver, and chronic kidney disease (CKD). Lipoxins (LXs) attenuated obesity-induced CKD, reducing glomerular expansion, mesangial matrix, and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase, and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c(+) M1-macrophages (MΦs), while restoring CD206(+) M2-MΦs and increasing Annexin-A1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin(-/-) mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity-induced systemic disease, and these data support a novel therapeutic paradigm for treating obesity and associated pathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. TRB3 gene silencing activates AMPK in adipose tissue with beneficial metabolic effects in obese and diabetic rats.

    PubMed

    Sun, Xiaoyan; Song, Ming; Wang, Hui; Zhou, Huimin; Wang, Feng; Li, Ya; Zhang, Yun; Zhang, Wei; Zhong, Ming; Ti, Yun

    2017-06-17

    Our previous study had suggested Tribbles homolog 3 (TRB3) might be involved in metabolic syndrome via adipose tissue. Given prior studies, we sought to determine whether TRB3 plays a major role in adipocytes and adipose tissue with beneficial metabolic effects in obese and diabetic rats. Fully differentiated 3T3-L1 adipocytes were incubated to induce insulin resistant adipocytes. Forty male Sprague-Dawley rats were all fed high-fat (HF) diet. Type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin (STZ). Compared with control group, in insulin resistant adipocytes, protein levels of insulin receptor substrate-1(IRS-1), glucose transporter 4(GLUT4) and phosphorylated-AMP-activated protein kinase (p-AMPK)were reduced, TRB3 protein level and triglyceride level were significantly increased, glucose uptake was markedly decreased. TRB3 silencing alleviated adipocytes insulin resistance. With TRB3 gene silencing, protein levels of IRS-1, GLUT4 and p-AMPK were significantly increased in adipocytes. TRB3 gene silencing decreased blood glucose, ameliorated insulin sensitivity and adipose tissue remodeling in diabetic rats. TRB3 silencing decreased triglyceride, increased glycogen simultaneously in diabetic epididymal and brown adipose tissues (BAT). Consistently, p-AMPK levels were increased in diabetic epididymal adipose tissue, and BAT after TRB3-siRNA treatment. TRB3silencing increased phosphorylation of Akt in liver, and improved liver insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  16. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    PubMed

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  17. Phytochemicals and their impact on adipose tissue inflammation and diabetes.

    PubMed

    Leiherer, Andreas; Mündlein, Axel; Drexel, Heinz

    2013-01-01

    Type 2 diabetes mellitus is an inflammatory disease and the mechanisms that underlie this disease, although still incompletely understood, take place in the adipose tissue of obese subjects. Concurrently, the prevalence of obesity caused by Western diet's excessive energy intake and the lack of exercise escalates, and is believed to be causative for the chronic inflammatory state in adipose tissue. Overnutrition itself as an overload of energy may induce the adipocytes to secrete chemokines activating and attracting immune cells to adipose tissue. But also inflammation-mediating food ingredients like saturated fatty acids are believed to directly initiate the inflammatory cascade. In addition, hypoxia in adipose tissue as a direct consequence of obesity, and its effect on gene expression in adipocytes and surrounding cells in fat tissue of obese subjects appears to play a central role in this inflammatory response too. In contrast, revisiting diet all over the world, there are also some natural food products and beverages which are associated with curative effects on human health. Several natural compounds known as spices such as curcumin, capsaicin, and gingerol, or secondary plant metabolites catechin, resveratrol, genistein, and quercetin have been reported to provide an improved health status to their consumers, especially with regard to diabetes, and therefore have been investigated for their anti-inflammatory effect. In this review, we will give an overview about these phytochemicals and their role to interfere with inflammatory cascades in adipose tissue and their potential for fighting against inflammatory diseases like diabetes as investigated in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  19. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  20. The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity.

    PubMed

    Escobedo, Noelia; Oliver, Guillermo

    2017-10-03

    Obesity is a key risk factor for metabolic and cardiovascular diseases, and although we understand the mechanisms regulating weight and energy balance, the causes of some forms of obesity remain enigmatic. Despite the well-established connections between lymphatics and lipids, and the fact that intestinal lacteals play key roles in dietary fat absorption, the function of the lymphatic vasculature in adipose metabolism has only recently been recognized. It is well established that angiogenesis is tightly associated with the outgrowth of adipose tissue, as expanding adipose tissue requires increased nutrient supply from blood vessels. Results supporting a crosstalk between lymphatic vessels and adipose tissue, and linking lymphatic function with metabolic diseases, obesity, and adipose tissue, also started to accumulate in the last years. Here we review our current knowledge of the mechanisms by which defective lymphatics contribute to obesity and fat accumulation in mouse models, as well as our understanding of the lymphatic-adipose tissue relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies.

    PubMed

    Manna, Prasenjit; Jain, Sushil K

    2015-12-01

    Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in

  2. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies

    PubMed Central

    Manna, Prasenjit

    2015-01-01

    Abstract Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue

  3. Beta-arrestin-1 protein represses diet-induced obesity.

    PubMed

    Zhuang, Le-nan; Hu, Wen-xiang; Zhang, Ming-liang; Xin, Shun-mei; Jia, Wei-ping; Zhao, Jian; Pei, Gang

    2011-08-12

    Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.

  4. Retinoic acid receptor-related orphan receptor α stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress.

    PubMed

    Liu, Yin; Chen, Yulong; Zhang, Jinlong; Liu, Yulan; Zhang, Yanjie; Su, Zhiguang

    2017-08-25

    Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Reproducible MRI Measurement of Adipose Tissue Volumes in Genetic and Dietary Rodent Obesity Models

    PubMed Central

    Johnson, David H.; Flask, Chris A.; Ernsberger, Paul R.; Wong, Wilbur C. K.; Wilson, David L.

    2010-01-01

    Purpose To develop ratio MRI [lipid/(lipid+water)] methods for assessing lipid depots and compare measurement variability to biological differences in lean controls (spontaneously hypertensive rats, SHRs), dietary obese (SHR-DO), and genetic/dietary obese (SHROBs) animals. Materials and Methods Images with and without CHESS water-suppression were processed using a semi-automatic method accounting for relaxometry, chemical shift, receive coil sensitivity, and partial volume. Results Partial volume correction improved results by 10–15%. Over six operators, volume variation was reduced to 1.9 ml from 30.6 ml for single-image-analysis with intensity inhomogeneity. For three acquisitions on the same animal, volume reproducibility was <1%. SHROBs had 6X visceral and 8X subcutaneous adipose tissue than SHRs. SHR-DOs had enlarged visceral depots (3X SHRs). SHROB had significantly more subcutaneous adipose tissue, indicating a strong genetic component to this fat depot. Liver ratios in SHR-DO and SHROB were higher than SHR, indicating elevated fat content. Among SHROBs, evidence suggested a phenotype SHROB* having elevated liver ratios and visceral adipose tissue volumes. Conclusion Effects of diet and genetics on obesity were significantly larger than variations due to image acquisition and analysis, indicating that these methods can be used to assess accumulation/depletion of lipid depots in animal models of obesity. PMID:18821617

  6. Enhanced peroxisomal β-oxidation metabolism in visceral adipose tissues of high-fat diet-fed obesity-resistant C57BL/6 mice

    PubMed Central

    XIE, WEI-DONG; WANG, HUA; ZHANG, JIN-FANG; LI, JIAN-NA; CAN, YI; QING, LV; KUNG, HSIANG-FU; ZHANG, YA-OU

    2011-01-01

    This study aimed to investigate the potential mechanisms of natural resistance to high-fat diet-induced obesity. Four-week-old C57BL/6 mice were fed a high-fat diet for 6 weeks and were then designated as high-fat diet-fed obesity-prone (HOP) and obesity-resistant (HOR) animals. Their blood biochemistry was evaluated, and visceral adipose tissue samples were subjected to proteomic, Western blot and quantitative real-time PCR (q-PCR) analyses. The HOR mice showed reduced visceral fat weight and size, as well as lowered serum lipid and leptin levels. Proteomic analysis showed that enoyl coenzyme A hydratase 1, peroxisomal (Ech1) expression was significantly increased in their visceral adipose tissues. Moreover, other proteins, such as α-tropomyosin, myosin light chain, urine-nucleoside phosphorylase and transgelin, were also significantly increased. Furthermore, q-PCR analysis showed that the expression of acyl-CoA oxidase 1 palmitoyl, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase responsible for peroxisomal β-oxidation was also up-regulated in the visceral adipose tissues of the HOR mice. The expression of peroxisome proliferator-activated receptor α (PPARα) was increased in the HOR mice as shown by Western blot analysis. Obesity-resistant animals show enhanced peroxisomal β-oxidation metabolism and reduced fat accumulation in visceral adipose tissues by up-regulating the expression of Ech1, peroxisomal or other related peroxisomal β-oxidation marker genes, which may be driven or enhanced by the up-regulation of the expression of PPARα. However, further validation in future studies is required. PMID:22977503

  7. Enhanced Inflammation without Impairment of Insulin Signaling in the Visceral Adipose Tissue of 5α-Dihydrotestosterone-Induced Animal Model of Polycystic Ovary Syndrome.

    PubMed

    Milutinović, Danijela Vojnović; Nikolić, Marina; Veličković, Nataša; Djordjevic, Ana; Bursać, Biljana; Nestorov, Jelena; Teofilović, Ana; Antić, Ivana Božić; Macut, Jelica Bjekić; Zidane, Abdulbaset Shirif; Matić, Gordana; Macut, Djuro

    2017-09-01

    Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1β mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1β levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  8. (n-3) Fatty Acids Alleviate Adipose Tissue Inflammation and Insulin Resistance: Mechanistic Insights12

    PubMed Central

    Kalupahana, Nishan S.; Claycombe, Kate J.; Moustaid-Moussa, Naima

    2011-01-01

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid–mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet–induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health. PMID:22332072

  9. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    PubMed

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  10. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    PubMed

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  11. Autophagy in adipose tissue biology.

    PubMed

    Zhang, Yong; Zeng, Xiangang; Jin, Shengkan

    2012-12-01

    Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. High-Fat Diet-Induced Adiposity, Adipose Inflammation, Hepatic Steatosis and Hyperinsulinemia in Outbred CD-1 Mice

    PubMed Central

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population. PMID:25768847

  13. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice.

    PubMed

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.

  14. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema

    2012-10-01

    Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.

  15. Glucocorticoid deprivation alters in vivo glucose uptake by muscle and adipose tissues of GTG-obese mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1995-11-01

    The effect of 1 wk of glucocorticoid deprivation by surgical adrenalectomy (ADX) on tissue 2-deoxy(-)[U-14C]glucose (2-DG) uptake and hepatic glucose production (HGP) was assessed in conscious, catheterized mice 5 wk after the induction of obesity with gold thioglucose (GTG). Despite the prevailing hyperglycemia and hyperinsulinemia, glucose uptake by heart, quadriceps muscle, and interscapular brown adipose tissue (BAT) of GTG-obese mice was unchanged compared with controls, suggesting that the hyperglycemia of GTG-obese mice is able to compensate for the insulin resistance of these tissues. In contrast, epididymal white adipose tissue (WAT) of GTG-obese mice showed increased glucose uptake with hyperglycemia and hyperinsulinemia. ADX decreased the hyperglycemia and lowered the elevated glycogen content of the liver of GTG-obese mice. ADX reduced glucose uptake by heart and WAT of control and GTG-obese mice, consistent with the concomitant decrease in insulinemia. Glucose uptake by muscle of control and GTG-obese mice was not significantly decreased after ADX despite the decrease in insulin, and ADX increased glucose uptake by BAT of GTG-obese mice, suggesting increased sympathetically mediated thermogenesis in this tissue. HGP was increased in GTG-obese mice compared with controls, and ADX significantly reduced HGP in both GTG-obese and control mice. These results suggest that the improved glucose tolerance of ADX GTG-obese mice and ADX control mice is due to a decrease in HGP rather than an increase in peripheral glucose uptake.

  16. Adenovirus 36 DNA in human adipose tissue.

    PubMed

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  17. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.

    PubMed

    Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia

    2015-01-22

    Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.

  18. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation.

    PubMed

    Theriau, Christopher F; Sauvé, O'Llenecia S; Beaudoin, Marie-Soleil; Wright, David C; Connor, Michael K

    2017-01-01

    Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.

  19. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity.

    PubMed

    Ueta, Cintia B; Olivares, Emerson L; Bianco, Antonio C

    2011-09-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism.

  20. Responsiveness to Thyroid Hormone and to Ambient Temperature Underlies Differences Between Brown Adipose Tissue and Skeletal Muscle Thermogenesis in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Ueta, Cintia B.; Olivares, Emerson L.

    2011-01-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890

  1. Mechanisms of Chronic State of Inflammation as Mediators That Link Obese Adipose Tissue and Metabolic Syndrome

    PubMed Central

    Fuentes, Eduardo; Fuentes, Francisco; Badimon, Lina; Palomo, Iván

    2013-01-01

    The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism. PMID:23843680

  2. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue

    PubMed Central

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W.; Simó, Rafael; Tinahones, Francisco J.

    2016-01-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n = 8; body mass index [BMI]: 23 ± 1 kg/m2) and obese (n = 8; BMI: 35 ± 5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor’s BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. Significance The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal

  3. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  4. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue

    PubMed Central

    2012-01-01

    Background Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue. Methods Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject. Results Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot. Conclusions Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue. PMID:22974251

  5. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates

    PubMed Central

    Varlamov, Oleg; White, Ashley E.; Carroll, Julie M.; Bethea, Cynthia L.; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W.

    2012-01-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue. PMID:22547568

  6. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model.

    PubMed

    Cabalén, María E; Cabral, María F; Sanmarco, Liliana M; Andrada, Marta C; Onofrio, Luisina I; Ponce, Nicolás E; Aoki, María P; Gea, Susana; Cano, Roxana C

    2016-03-22

    Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4-/- mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression.

  7. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity.

    PubMed

    Mitsutomi, Kimihiko; Masaki, Takayuki; Shimasaki, Takanobu; Gotoh, Koro; Chiba, Seiichi; Kakuma, Tetsuya; Shibata, Hirotaka

    2014-01-01

    Nonnutritive sweeteners (NNSs) have been studied in terms of their potential roles in type 2 diabetes, obesity, and related metabolic disorders. Several studies have suggested that NNSs have several specific effects on metabolism such as reduced postprandial hyperglycemia and insulin resistance. However, the detailed effects of NNSs on body adiposity and energy metabolism have not been fully elucidated. We investigated the effects of an NNS on energy metabolism in mice with diet-induced obesity (DIO). DIO mice were divided into NNS-administered (4% NNS in drinking water), sucrose-administered (33% sucrose in drinking water), and control (normal water) groups. After supplementation for 4 weeks, metabolic parameters, including uncoupling protein (UCP) levels and energy expenditure, were assessed. Sucrose supplementation increased hyperglycemia, body adiposity, and body weight compared to the NNS-administered and control groups (P<0.05 for each). In addition, NNS supplementation decreased hyperglycemia compared to the sucrose-administered group (P<0.05). Interestingly, NNS supplementation increased body adiposity, which was accompanied by hyperinsulinemia, compared to controls (P<0.05 for each). NNS also increased leptin levels in white adipose tissue and triglyceride levels in tissues compared to controls (P<0.05 for each). Notably, compared to controls, NNS supplementation decreased the UCP1 level in brown adipose tissue and decreased O2 consumption in the dark phase. NNSs may be good sugar substitutes for people with hyperglycemia, but appear to influence energy metabolism in DIO mice. © 2013.

  8. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    PubMed Central

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  9. Adipose tissue metabolic and inflammatory responses to a mixed meal in lean, overweight and obese men.

    PubMed

    Travers, Rebecca L; Motta, Alexandre C; Betts, James A; Thompson, Dylan

    2017-02-01

    Most of what we know about adipose tissue is restricted to observations derived after an overnight fast. However, humans spend the majority of waking hours in a postprandial (fed) state, and it is unclear whether increasing adiposity impacts adipose tissue responses to feeding. The aim of this research was to investigate postprandial responses in adipose tissue across varying degrees of adiposity. Thirty males aged 35-55 years with waist circumference 81-118 cm were divided equally into groups categorized as either lean, overweight or obese. Participants consumed a meal and insulinaemic, glycaemic and lipidaemic responses were monitored over 6 h. Subcutaneous adipose tissue samples were obtained at baseline and after 6 h to examine changes in gene expression and adipose tissue secretion of various adipokines. Following consumption of the meal, insulin and glucose responses were higher with increased adiposity (total AUC effects of group; p = 0.058 and p = 0.027, respectively). At 6 h, significant time effects reflected increases in IL-6 (F = 14.7, p = 0.001) and MCP-1 (F = 10.7, p = 0.003) and reduction in IRS2 adipose tissue gene expression (F = 24.6, p < 0.001), all independent of adiposity. Ex vivo adipokine secretion from adipose tissue explants remained largely unchanged after feeding. Increased systemic measures of postprandial metabolism with greater adiposity do not translate into increased inflammatory responses within adipose tissue. Instead, postprandial adipose tissue changes may represent a normal response to feeding or a (relatively) normalized response with increased adiposity due to either similar net exposure (i.e. per g of adipose) or reduced adipose tissue responsiveness.

  10. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men.

    PubMed Central

    Fried, S K; Russell, C D; Grauso, N L; Brolin, R E

    1993-01-01

    There are marked variations in the activity of lipoprotein lipase (LPL) among adipose depots, particularly in women. Consistent with data on LPL activity, the level of expression of LPL mRNA was lower in omental (OM) than subcutaneous (SQ) adipose tissue of women. To investigate the cellular basis of these differences, OM and SQ adipose tissues obtained at surgery from obese men and women were placed in organ culture for 7 d with varying concentrations of insulin and dexamethasone. Insulin increased levels of LPL mRNA and LPL activity in abdominal SQ but not OM adipose tissue. Dexamethasone also increased LPL mRNA and LPL activity, and these effects were more marked in the OM adipose tissue, particularly in men. When insulin and dexamethasone were added together, synergistic increases in LPL activity were seen in both depots, and this was in part explained at the level of LPL mRNA. The SQ depot was more sensitive to the effects of submaximal doses of dexamethasone in the presence of insulin. The maximum activity of LPL induced by insulin or insulin plus dexamethasone was higher in the SQ than in the OM depot of women, and this was associated with higher levels of LPL mRNA. Rates of LPL synthesis paralleled LPL mRNA levels. These data show that insulin and glucocorticoids influence human adipose tissue LPL activity at the level of LPL gene expression, as well as posttranslationally, and that responsiveness to these hormonal effects is dependent on adipose depot and gender. Images PMID:8227334

  11. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans.

    PubMed

    Gavaldà-Navarro, Aleix; Moreno-Navarrete, José M; Quesada-López, Tania; Cairó, Montserrat; Giralt, Marta; Fernández-Real, José M; Villarroya, Francesc

    2016-10-01

    Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. Adult mice were maintained at 4°C for 3 weeks or treated with the β3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. LBP is identified as a negative regulator of the

  12. Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils.

    PubMed

    van den Berg, Susan M; van Dam, Andrea D; Kusters, Pascal J H; Beckers, Linda; den Toom, Myrthe; van der Velden, Saskia; Van den Bossche, Jan; van Die, Irma; Boon, Mariëtte R; Rensen, Patrick C N; Lutgens, Esther; de Winther, Menno P J

    2017-10-01

    Brown adipose tissue (BAT) activation and white adipose tissue (WAT) beiging can increase energy expenditure and have the potential to reduce obesity and associated diseases. The immune system is a potential target in mediating brown and beige adipocyte activation. Type 2 and anti-inflammatory immune cells contribute to metabolic homeostasis within lean WAT, with a prominent role for eosinophils and interleukin (IL)-4-induced anti-inflammatory macrophages. We determined eosinophil numbers in epididymal WAT (EpAT), subcutaneous WAT (ScAT) and BAT after 1 day, 3 days or 1 week of high-fat diet (HFD) feeding in C57Bl/6 mice. One day of HFD resulted in a rapid drop in eosinophil numbers in EpAT and BAT, and after 3 days, in ScAT. In an attempt to restore this HFD-induced drop in adipose tissue eosinophils, we treated 1-week HFD-fed mice with helminth antigens from Schistosoma mansoni or Trichuris suis and evaluated whether the well-known protective metabolic effects of helminth antigens involves BAT activation or beiging. Indeed, antigens of both helminth species induced high numbers of eosinophils in EpAT, but failed to induce beiging. In ScAT, Schistosoma mansoni antigens induced mild eosinophilia, which was accompanied by slightly more beiging. No effects were observed in BAT. To study type 2 responses on brown adipocytes directly, T37i cells were stimulated with IL-4. This increased Ucp1 expression and strongly induced the production of eosinophil chemoattractant CCL11 (+26-fold), revealing that brown adipocytes themselves can attract eosinophils. Our findings indicate that helminth antigen-induced eosinophilia fails to induce profound beiging of white adipocytes. © 2017 Society for Endocrinology.

  13. Adipose tissue IL-8 is increased in normal weight women after menopause and reduced after gastric bypass surgery in obese women.

    PubMed

    Alvehus, Malin; Simonyte, Kotryna; Andersson, Therése; Söderström, Ingegerd; Burén, Jonas; Rask, Eva; Mattsson, Cecilia; Olsson, Tommy

    2012-11-01

    The menopausal transition is characterized by increased body fat accumulation, including redistribution from peripheral to central fat depots. This distribution is associated with an increased risk of type 2 diabetes and cardiovascular disease that are linked to low-grade inflammation. We determined whether postmenopausal women have higher levels of inflammatory markers, compared with premenopausal women. We also wanted to determine whether these markers are reduced by stable weight loss in obese women. Anthropometric data, blood samples and subcutaneous adipose tissue biopsies were collected from normal weight premenopausal and postmenopausal women and obese women before and 2 years after gastric bypass (GBP) surgery. Serum protein levels and adipose tissue gene expression of inflammatory markers were investigated. IL-8 expression in adipose tissue and circulating levels were higher in postmenopausal vs premenopausal women. IL-8 expression was associated with waist circumference, independent of menopausal status. IL-6 expression and serum levels of monocyte chemoattractant protein (MCP)-1 were higher in postmenopausal vs premenopausal women. Two years after GBP surgery, adipose expression of IL-8, tumour necrosis factor-α and MCP-1 decreased significantly. Serum insulin levels were associated with inflammation-related gene expression before GBP surgery, but these associations disappeared after surgery. Postmenopausal women have an increased inflammatory response in the subcutaneous fat and circulation. Inflammatory markers in adipose tissue decreased significantly after surgery-induced weight loss. This effect may be beneficial for metabolic control and reduced cardiovascular risk after weight loss. © 2011 Blackwell Publishing Ltd.

  14. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  15. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals.

    PubMed

    Coker, Robert H; Miller, Sharon; Schutzler, Scott; Deutz, Nicolaas; Wolfe, Robert R

    2012-12-11

    Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR) would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR). We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day): 1) EAAMR or a 2) competitive meal replacement (CMR) in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

  16. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    PubMed

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver.

  17. Elevated Expression of Osteopontin May Be Related to Adipose Tissue Macrophage Accumulation and Liver Steatosis in Morbid Obesity

    PubMed Central

    Bertola, Adeline; Deveaux, Vanessa; Bonnafous, Stéphanie; Rousseau, Déborah; Anty, Rodolphe; Wakkach, Abdelilah; Dahman, Moncef; Tordjman, Joan; Clément, Karine; McQuaid, Siobhán E.; Frayn, Keith N.; Huet, Pierre-Michel; Gugenheim, Jean; Lotersztajn, Sophie; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2009-01-01

    OBJECTIVE—Osteopontin (OPN) plays an important role in the development of insulin resistance and liver complications in dietary murine models. We aimed to determine the expression pattern of OPN and its receptor CD44 in obese patients and mice according to insulin resistance and liver steatosis. RESEARCH DESIGN AND METHODS—OPN and CD44 expressions were studied in 52 morbidly obese patients and in mice. Cellular studies were performed in HepG2 cells. RESULTS—Hepatic OPN and CD44 expressions were strongly correlated with liver steatosis and insulin resistance in obese patients and mice. This increased OPN expression could be due to the accumulation of triglycerides, since fat loading in HepG2 promotes OPN expression. In contrast, OPN expression in adipose tissue (AT) was enhanced independently of insulin resistance and hepatic steatosis in obese patients. The elevated OPN expression in AT was paralleled with the AT macrophage infiltration, and both phenomena were reversed after weight loss. The circulating OPN level was slightly elevated in obese patients and was not related to liver steatosis. Further, AT did not appear to secrete OPN. In contrast, bariatric surgery–induced weight loss induced a strong increase in circulating OPN. CONCLUSIONS—The modestly elevated circulating OPN levels in morbidly obese patients were not related to liver steatosis and did not appear to result from adipose tissue secretion. In subcutaneous AT, expression of OPN was directly related to macrophage accumulation independently from liver complications. In contrast, hepatic OPN and CD44 expressions were related to insulin resistance and steatosis, suggesting their local implication in the progression of liver injury. PMID:18952835

  18. Milk-derived peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ACE) dependent cascade.

    PubMed

    Sawada, Yoko; Sakamoto, Yuri; Toh, Mariko; Ohara, Nozomi; Hatanaka, Yuiko; Naka, Ayano; Kishimoto, Yoshimi; Kondo, Kazuo; Iida, Kaoruko

    2015-12-01

    This study aimed to examine the effects of Val-Pro-Pro (VPP), a food-derived peptide with an angiotensin-converting enzyme (ACE) inhibitory property, on obesity-linked insulin resistance, and adipose inflammation in vivo and in vitro. C57BL/6J mice were fed high-fat high-sucrose diet and VPP (0.1% in water) for 4 months. For in vitro analysis, coculture of 3T3-L1 adipocytes overexpressing either ACE (3T3-ACE) or green fluorescent protein (3T3-GFP) and RAW264 macrophages was conducted with VPP. In diet-induced obese mice, VPP improved insulin sensitivity, concomitant with a significant decrease in tumor necrosis factor α (TNF-α) and IL-1β expression in adipose tissue, with a tendency (p = 0.06) toward decreased CC chemokine ligand 5 expression. Additionally, VPP administration inhibited macrophage accumulation and activation in fat tissues. In vitro, VPP attenuated TNF-α mRNA induced by ACE overexpression in 3T3-L1 adipocytes. TNF-α and IL-1β expression decreased following VPP treatment of RAW264 macrophage and 3T3-ACE adipocyte cocultures, but not in RAW264-3T3-GFP adipocyte cocultures. Our data suggest that VPP inhibits adipose inflammation in the interaction between adipocytes and macrophages, acting as an ACE inhibitor, thereby improving obesity-related insulin resistance. Thus, ingestion of VPP may be a viable protective and therapeutic strategy for insulin resistance and obesity-associated adipose inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  20. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  1. Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.

    PubMed

    Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon

    2013-01-01

    It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.

  2. Quercetin Lowers Plasma Triglycerides Accompanied by White Adipose Tissue Browning in Diet-Induced Obese Mice.

    PubMed

    Kuipers, Eline N; Dam, Andrea D van; Held, Ntsiki M; Mol, Isabel M; Houtkooper, Riekelt H; Rensen, Patrick C N; Boon, Mariëtte R

    2018-06-16

    Obesity and dyslipidemia are major risk factors for the development of cardiovascular diseases (CVD). Quercetin, a natural flavonoid, lowers plasma triglycerides (TG) in human intervention studies, and its intake is associated with lower CVD risk. The aim of this study was to elucidate the mechanism by which quercetin lowers plasma TG levels in diet-induced obesity. C57Bl/6J mice received a high-fat diet (45% of calories derived from fat) with or without quercetin (0.1% w / w ) for 12 weeks. Quercetin decreased plasma TG levels from nine weeks onwards (−19%, p < 0.05), without affecting food intake, body composition, or energy expenditure. Mechanistically, quercetin did not reduce intestinal fatty acid (FA) absorption. Rather, quercetin induced a slight reduction in liver Apob expression (−13%, p < 0.05), which suggests decreased very-low density lipoprotein-TG production. Interestingly, quercetin also markedly increased the uptake of [³H]oleate, which was derived from glycerol tri[³H]oleate-labeled lipoprotein-like particles by subcutaneous white adipose tissue (sWAT, +60%, p < 0.05). Furthermore, quercetin also markedly increased mRNA expression of Ucp1 (+229%, p < 0.05) and Elovl3 (+138%, p < 0.05), specifically in sWAT. Accordingly, only quercetin-treated animals showed uncoupling protein-1 protein-positive cells in sWAT, which is fully compatible with increased browning. Taken together, the TG-lowering effect of quercetin may, at least in part, be due to increased TG-derived FA uptake by sWAT as a consequence of browning.

  3. Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue.

    PubMed

    Justo, Maria Luisa; Claro, Carmen; Zeyda, Maximilian; Stulnig, Thomas M; Herrera, María Dolores; Rodríguez-Rodríguez, Rosalía

    2016-09-01

    The inflammatory process associated with obesity mainly arises from white adipose tissue (WAT) alterations. In the last few years, nutritional-based strategies have been positioned as promising alternatives to pharmacological approaches against these pathologies. Our aim was to determine the potential of a rice bran enzymatic extract (RBEE)-supplemented diet in the prevention of metabolic, biochemical and functional adipose tissue and macrophage changes associated with a diet-induced obesity (DIO) in mice. C57BL/6J mice were fed high-fat diet (HF), 1 and 5 % RBEE-supplemented high-fat diet (HF1 % and HF5 %, respectively) and standard diet as control. Serum cardiometabolic parameters, adipocytes size and mRNA expression of pro-inflammatory biomarkers and macrophage polarization-related genes from WAT and liver were evaluated. RBEE administration significantly decreased insulin resistance in obese mice. Serum triglycerides, total cholesterol, glucose, insulin, adiponectin and nitrites from treated mice were partially restored, mainly by 1 % RBEE-enriched diet. The incremented adipocytes size observed in HF group was reduced by RBEE treatment, being 1 % more effective than 5 % RBEE. Pro-inflammatory biomarkers in WAT such as IL-6 and IL-1β were significantly decreased in RBEE-treated mice. Adiponectin, PPARγ, TNF-α, Emr1 or M1/M2 levels were significantly restored in WAT from HF1 % compared to HF mice. RBEE-supplemented diet attenuated insulin resistance, dyslipidemia and morphological and functional alterations of adipose tissue in DIO mice. These benefits were accompanied by a modulating effect in adipocytes secretion and some biomarkers associated with macrophage polarization. Therefore, RBEE may be considered an alternative nutritional complement over metabolic syndrome and its complications.

  4. Exercise-induced adaptations to white and brown adipose tissue.

    PubMed

    Lehnig, Adam C; Stanford, Kristin I

    2018-03-07

    The beneficial effects of exercise on skeletal muscle and the cardiovascular system have long been known. Recent studies have focused on investigating the effects of exercise on adipose tissue and the effects that these exercise-induced adaptations have on overall metabolic health. Examination of exercise-induced adaptations in both white adipose tissue (WAT) and brown adipose tissue (BAT) has revealed marked differences in each tissue with exercise. In WAT, there are changes to both subcutaneous WAT (scWAT) and visceral WAT (vWAT), including decreased adipocyte size and lipid content, increased expression of metabolic genes, altered secretion of adipokines and increased mitochondrial activity. Adaptations specific to scWAT include lipidomic remodeling of phospholipids and, in rodents, the beiging of scWAT. The changes to BAT are less clear: studies evaluating the effect of exercise on the BAT of humans and rodents have revealed contradictory data, making this an important area of current investigation. In this Review, we discuss the exercise-induced changes to WAT and BAT that have been reported by different studies and highlight the current questions in this field. © 2018. Published by The Company of Biologists Ltd.

  5. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet

    PubMed Central

    2014-01-01

    Background Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue. To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Materials/methods Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. Results The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Conclusions Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes. PMID:24495336

  6. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet.

    PubMed

    Dias, Fernando Milanez; Leffa, Daniela Dimer; Daumann, Francine; Marques, Schérolin de Oliveira; Luciano, Thais F; Possato, Jonathan Correa; de Santana, Aline Alves; Neves, Rodrigo Xavier; Rosa, José Cesar; Oyama, Lila Missae; Rodrigues, Bruno; de Andrade, Vanessa Moraes; de Souza, Cláudio Teodoro; de Lira, Fabio Santos

    2014-02-04

    Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue.To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes.

  7. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  8. Exosome-Like Vesicles Derived from Adipose Tissue Provide Biochemical Cues for Adipose Tissue Regeneration.

    PubMed

    Dai, Minjia; Yu, Mei; Zhang, Yan; Tian, Weidong

    2017-11-01

    There is an emerging need for soft tissue replacements in the field of reconstructive surgery for the treatment of congenital deformities, posttraumatic repair, and cancer rehabilitation. Previous studies have shown that the bioactive adipose tissue extract can induce adipogenesis without additional stem cells or growth factors. In this study, we innovatively investigated whether exosome-like vesicles derived from adipose tissue (ELV-AT) could direct stem cell differentiation and trigger adipose tissue regeneration. In vitro, ELV-AT can induce adipogenesis of adipose-derived stem cells and promote proliferation, migration, and angiogenic potential of the aorta endothelial cells. In vivo, ELV-AT were transplanted to a chamber on the back of nude mice and neoadipose tissues were formed. Our findings indicated that ELV-AT could be used as a cell-free therapeutic approach for adipose tissue regeneration.

  9. Brown adipose tissue macrophages control tissue innervation and homeostatic energy expenditure

    PubMed Central

    Cortese, Nina; Haimon, Zhana; Sar Shalom, Hadas; Kuperman, Yael; Kalchenko, Vyacheslav; Brandis, Alexander; David, Eyal; Segal-Hayoun, Yifat; Chappell-Maor, Louise; Yaron, Avraham; Jung, Steffen

    2017-01-01

    Tissue macrophages provide immune defense and contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but displayed spontaneous obesity, which could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and local norepinephrine titers, resulting in reduced adipocyte expression of thermogenic factors. Mutant macrophages over-expressed PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance. PMID:28459435

  10. Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat.

    PubMed

    Chen, Li-Han; Chien, Yi-Wen; Liang, Chung-Tiang; Chan, Ching-Hung; Fan, Meng-Han; Huang, Hui-Yu

    2017-01-01

    Background: A wealth of research has reported on the anti-obesity effects of green tea extract (GTE). Although browning of white adipose tissue (WAT) has been reported to attenuate obesity, no study has disclosed the effects of GTE on browning in Sprague Dawley rats. Objectives: The aims of the study were to investigate the effects of GTE on anti-obesity and browning, and their underlying mechanisms. Methods: Four groups of rats (n=10/group) were used including a normal diet with vehicle treatment, and a high-energy diet (HED) with vehicle or GTE by oral gavage at 77.5 or 155 mg/kg/day for 8 weeks. Body weight, fat accumulation, and serum biochemical parameters were used to evaluate obesity. The gene expressions were analyzed using RT-qPCR and western blotting. Results: GTE modulated HED-induced body weight, fat accumulation, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein, free fatty acids, aspartate aminotransferase, and alanine aminotransferase. Moreover, GTE enhanced the serum high-density lipoprotein. Most importantly, the biomarkers of beige adipose tissue were up-regulated in WAT in GTE-given groups. GTE induced genes involved in different pathways of browning, and reduced transducin-like enhancer protein-3 in WAT. Conclusion: Our results suggest that GTE may improve obesity through inducing browning in HED-fed rats. Abbreviations : ALT: Alanine transaminase; AST: Aspartate transaminase; BAT: Brown adipose tissue; BMP-7: Bone morphogenetic protein-7; BW: Body weight; CIDEA: Cell death activator; CPT-1: Carnitine palmitoyltransferase-1; EFP: Epididymal fat pad; FFA: Free fatty acid; FGF-21: Fibroblast growth factor-21; GTE: Green tea extract; HDL: High-density lipoprotein; HED: high-energy diet; LDL: Low-density lipoprotein; MFP: Mesenteric fat pad; PGC-1α: Activates PPAR-γ coactivator-1; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PRDM-16: PR domain containing 16; RFP: Renal fat pad; SD: Sprague Dawley; TC: Total

  11. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype

    PubMed Central

    2013-01-01

    Background The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. Results Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. Conclusions The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness. PMID:24040759

  12. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    PubMed

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    USDA-ARS?s Scientific Manuscript database

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  14. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity

    PubMed Central

    Hellmann, Jason; Sansbury, Brian E.; Holden, Candice R.; Tang, Yunan; Wong, Blenda; Wysoczynski, Marcin; Rodriguez, Jorge; Bhatnagar, Aruni; Hill, Bradford G.

    2016-01-01

    Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c+ adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7+ macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c+ cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7. Obese Ccr7−/− mice had reduced accumulation of CD8+ T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity. PMID:27207557

  15. Canine adiponectin: cDNA structure, mRNA expression in adipose tissues and reduced plasma levels in obesity.

    PubMed

    Ishioka, K; Omachi, A; Sagawa, M; Shibata, H; Honjoh, T; Kimura, K; Saito, M

    2006-04-01

    Adiponectin is a protein synthesized and secreted by adipocytes. Decreased adiponectin is responsible for insulin resistance and atherosclerosis associated with human obesity. We obtained a cDNA clone corresponding to canine adiponectin, whose nucleotide and deduced amino acid sequences were highly identical to those of other species. Adiponectin mRNA was detected in adipose tissues, but not in other tissues, of dogs. When 22 adult beagles were given a high-energy diet for 14 weeks, they became obese, showing heavier body weights, higher plasma leptin concentrations, but lower plasma adiponectin concentrations. The adiponectin concentrations of plasma samples collected from 71 dogs visiting veterinary practices were negatively correlated to plasma leptin concentrations, being lower in obese than non-obese dogs. These results are compatible with those reported in other species, and suggest that adiponectin is an index of adiposity and a target molecule for studies on diseases associated with obesity in dogs.

  16. Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality.

    PubMed

    McMorrow, Aoibheann M; Connaughton, Ruth M; Lithander, Fiona E; Roche, Helen M

    2015-02-01

    Evidence suggests that at a population level, childhood and adolescent obesity increase the long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level, however, the metabolic consequences of obesity in youth vary immensely. Despite comparable BMI, some adolescents develop impaired glucose tolerance while others maintain normal glucose homeostasis. It has been proposed that the variation in the capacity to store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and dyslipidaemia. The present review examines the differential adipose tissue development and function in children and adolescents who exhibit metabolic dysregulation compared with those who are protected. Additionally, the role of manipulating dietary fat quality to potentially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of the present review highlight the need for further randomised controlled trials to establish the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adolescents. Furthermore, using a personalised nutrition approach to target interventions to those at risk of, or those with established metabolic dysregulation may optimise the efficacy of modifying dietary fat quality.

  17. Effects of Electroacupuncture on Pro-/Anti-inflammatory Adipokines in Serum and Adipose Tissue in Lean and Diet-induced Obese Rats.

    PubMed

    Liaw, Jacqueline J T; Peplow, Philip V

    2016-04-01

    The effects of electroacupuncture (EA) on pro-/anti-inflammatory cytokines and blood glucose (BG) in lean and obese Long Evans rats were investigated. Group 1 and Group 3 had five lean and seven obese rats, respectively, and received EA at the Zhongwan/Guanyuan acupoints on Day 1, Day 3, Day 5, Day 8, Day 10, and Day 12. Group 2 and Group 4, with five lean and seven obese rats, respectively, did not undergo EA. After induction of anesthesia, BG was measured at 10 minutes and 20 minutes. EA was applied for 30 minutes, and BG was measured again. At the end of the study, blood and white adipose tissue were collected. Analyses showed that for all groups, the mean BG at 20 minutes (baseline) and 50 minutes were significantly greater on Day 1 than on any other day. Compared with Group 2, the baseline BG in Week 1 for Group 1 was significantly lower, but Groups 3 and 4 showed no difference. Group 1 had significantly higher serum interleukin-10 and tumor necrosis factor-α than Group 2, while Group 3's serum leptin was greater than Group 4's. White adipose tissue interleukin-10 and adiponectin:leptin ratio were higher for Group 1 than Group 2. EA affected no significant differences in any other components measured for lean and obese animals. Copyright © 2015. Published by Elsevier B.V.

  18. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice.

    PubMed

    Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas; Taipaleenmäki, Hanna; Nielsen, Tina Kamilla; Kassem, Moustapha

    2018-06-01

    Obesity represents a risk factor for development of insulin resistance and type 2 diabetes. In addition, it has been associated with increased adipocyte formation in the bone marrow (BM) along with increased risk for bone fragility fractures. However, little is known on the cellular mechanisms that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory genes (Tnfα, IL1β, Lcn2) and did not manifest an insulin resistant phenotype evidenced by normal levels of pAKT after insulin stimulation as well as normal levels of insulin signaling genes. In addition, BM progenitor cells manifested enhanced adipocyte differentiation in HFD condition. Thus, our data demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin resistance and inflammation in the BM suggest that BMAT buffers extra energy in the form of triglycerides and thus plays a role in whole-body energy homeostasis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.

  19. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  20. Anti-obesity effect of radix Angelica sinensis and candidate causative genes in transcriptome analyses of adipose tissues in high-fat diet-induced mice.

    PubMed

    Zhong, Tao; Zhang, Hao; Duan, Xiaoyue; Hu, Jiangtao; Wang, Linjie; Li, Li; Zhang, Hongping; Niu, Lili

    2017-01-30

    We have previously reported that radix Angelica sinensis (RAS) suppressed body weight and altered the expression of the fat mass and obesity associated (FTO) gene in mice with high fat diet (HFD)-induced obesity. In the present study we performed RNA sequencing-mediated transcriptome analysis to elucidate the molecular mechanisms underlying the anti-obesogenic effects of RAS in mice. The results revealed that 36 differentially-expressed genes (DEGs) were identified in adipose tissues from the RAS supplementation group (DH) and control group (HC). These 36 DEGs were clustered into 297 functional gene ontology (GO) categories, among which several GO annotations and signaling pathways were associated with lipid homeostasis. Six out of the 36 DEGs were identified to be involved in lipid metabolism, with the APOA2 gene a potential anti-obesogenic influence. The expression pattern revealed by RNA-Seq was identical to the results of quantitative real-time PCR (qPCR). Therefore, RAS supplementation in HFD-induced obese mice was associated with an anti-obesogenic global transcriptomic response. This study provides insight into potential applications of RAS in obesity therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Xu, Yatao; Luo, Dan; Ren, Qian; Wu, Song; Sun, Chao

    2017-08-01

    Pyroptosis is a proinflammatory form of cell death that is associated with pathogenesis of many chronic inflammatory diseases. Melatonin is substantially reported to possess anti-inflammatory properties by inhibiting inflammasome activation. However, the effects of melatonin on inflammasome-induced pyroptosis in adipocytes remain elusive. Here, we demonstrated that melatonin alleviated lipopolysaccharides (LPS)-induced inflammation and NLRP3 inflammasome formation in mice adipose tissue. The NLRP3 inflammasome-mediated pyroptosis was also inhibited by melatonin in adipocytes. Further analysis revealed that gasdermin D (GSDMD), the key executioner of pyroptosis, was the target for melatonin inhibition of adipocyte pyroptosis. Importantly, we determined that nuclear factor κB (NF-κB) signal was required for the GSDMD-mediated pyroptosis in adipocytes. We also confirmed that melatonin alleviated adipocyte pyroptosis by transcriptional suppression of GSDMD. Moreover, GSDMD physically interacted with interferon regulatory factor 7 (IRF7) and subsequently formed a complex to promote adipocyte pyroptosis. Melatonin also attenuated NLRP3 inflammasome activation and pyroptosis, which was induced by LPS or obesity. In summary, our results demonstrate that melatonin alleviates inflammasome-induced pyroptosis by blocking NF-κB/GSDMD signal in mice adipose tissue. Our data reveal a novel function of melatonin on adipocyte pyroptosis, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  3. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  4. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone

    PubMed Central

    Wilson-Fritch, Leanne; Nicoloro, Sarah; Chouinard, My; Lazar, Mitchell A.; Chui, Patricia C.; Leszyk, John; Straubhaar, Juerg; Czech, Michael P.; Corvera, Silvia

    2004-01-01

    Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes. To examine the relevance of these effects in vivo, we studied white adipocytes from ob/ob mice during the development of obesity and after treatment with rosiglitazone. The levels of approximately 50% of gene transcripts encoding mitochondrial proteins were decreased with the onset of obesity. About half of those genes were upregulated after treatment with rosiglitazone, and this was accompanied by an increase in mitochondrial mass and changes in mitochondrial structure. Functionally, adipocytes from rosiglitazone-treated mice displayed markedly enhanced oxygen consumption and significantly increased palmitate oxidation. These data reveal mitochondrial remodeling and increased energy expenditure in white fat in response to rosiglitazone treatment in vivo and suggest that enhanced lipid utilization in this tissue may affect whole-body energy homeostasis and insulin sensitivity. PMID:15520860

  5. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  6. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity.

    PubMed

    Hersoug, L-G; Møller, P; Loft, S

    2016-04-01

    The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue. © 2015 World Obesity.

  7. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestana, Diogo, E-mail: diogopestana@gmail.com; CINTESIS—Center for Research in Health Technologies and Information Systems, P-4200-450 Porto; Faria, Gil

    Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) weremore » collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (R{sub S}=0.310, p<0.01) and duration of obesity (R{sub S}=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (R{sub S}=0.277, p<0.01), with relevance for vAT (R{sub S}=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to

  8. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity

    USDA-ARS?s Scientific Manuscript database

    The extracellular matrix (ECM) plays an important role in maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accomodate changes in energy storage needs. Obesity and adipocyte hypertrophy places a strain on the EC...

  9. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    PubMed

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80 + /CD11c + /CD206 - cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Pre-Operative Diet Impacts the Adipose Tissue Response to Surgical Trauma

    PubMed Central

    Nguyen, Binh; Tao, Ming; Yu, Peng; Mauro, Christine; Seidman, Michael A.; Wang, Yaoyu E.; Mitchell, James; Ozaki, C. Keith

    2012-01-01

    Background Short-term changes in pre-operative nutrition can have profound effects on surgery related outcomes such as ischemia reperfusions injury in pre-clinical models. Dietary interventions that lend protection against stress in animal models (e.g. fasting, dietary restriction [DR]) impact adipose tissue quality/quantity. Adipose tissue holds high surgical relevance due to its anatomic location and high tissue volume, and it is ubiquitously traumatized during surgery. Yet the response of adipose tissue to trauma under clinically relevant circumstances including dietary status remains poorly defined. We hypothesized that pre-operative diet alters the adipose tissue response to surgical trauma. Methods A novel mouse model of adipose tissue surgical trauma was employed. Dietary conditions (diet induced obesity [DIO], pre-operative DR) were modulated prior to application of surgical adipose tissue trauma in the context of clinically common scenarios (different ages, simulated bacterial wound contamination). Local/distant adipose tissue phenotypic responses were measured as represented by gene expression of inflammatory, tissue remodeling/growth, and metabolic markers. Results Surgical trauma had a profound effect on adipose tissue phenotype at the site of trauma. Milder but significant distal effects on non-traumatized adipose tissue were also observed. DIO exacerbated the inflammatory aspects of this response, and pre-operative DR tended to reverse these changes. Age and LPS-simulated bacterial contamination also impacted the adipose tissue response to trauma, with young adult animals and LPS treatment exacerbating the proinflammatory response. Conclusions Surgical trauma dramatically impacts both local and distal adipose tissue biology. Short-term pre-operative DR may offer a strategy to attenuate this response. PMID:23274098

  11. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity

    PubMed Central

    Henegar, Corneliu; Tordjman, Joan; Achard, Vincent; Lacasa, Danièle; Cremer, Isabelle; Guerre-Millo, Michèle; Poitou, Christine; Basdevant, Arnaud; Stich, Vladimir; Viguerie, Nathalie; Langin, Dominique; Bedossa, Pierre; Zucker, Jean-Daniel; Clement, Karine

    2008-01-01

    Background Investigations performed in mice and humans have acknowledged obesity as a low-grade inflammatory disease. Several molecular mechanisms have been convincingly shown to be involved in activating inflammatory processes and altering cell composition in white adipose tissue (WAT). However, the overall importance of these alterations, and their long-term impact on the metabolic functions of the WAT and on its morphology, remain unclear. Results Here, we analyzed the transcriptomic signature of the subcutaneous WAT in obese human subjects, in stable weight conditions and after weight loss following bariatric surgery. An original integrative functional genomics approach was applied to quantify relations between relevant structural and functional themes annotating differentially expressed genes in order to construct a comprehensive map of transcriptional interactions defining the obese WAT. These analyses highlighted a significant up-regulation of genes and biological themes related to extracellular matrix (ECM) constituents, including members of the integrin family, and suggested that these elements could play a major mediating role in a chain of interactions that connect local inflammatory phenomena to the alteration of WAT metabolic functions in obese subjects. Tissue and cellular investigations, driven by the analysis of transcriptional interactions, revealed an increased amount of interstitial fibrosis in obese WAT, associated with an infiltration of different types of inflammatory cells, and suggest that phenotypic alterations of human pre-adipocytes, induced by a pro-inflammatory environment, may lead to an excessive synthesis of ECM components. Conclusion This study opens new perspectives in understanding the biology of human WAT and its pathologic changes indicative of tissue deterioration associated with the development of obesity. PMID:18208606

  12. Maternal high-fat diet modulates brown adipose tissue response to B-adrenergic agonist

    USDA-ARS?s Scientific Manuscript database

    Maternal obesity increases offspring risk for several metabolic diseases. We previously showed that offspring of obese dams are predisposed to obesity, liver and adipose tissue anomalies. However, the effect of maternal obesity on developmental programing brown adipose tissue (BAT) is poorly underst...

  13. TRPV1 Activation Counters Diet-Induced Obesity Through Sirtuin-1 activation and PRDM-16 Deacetylation in Brown Adipose Tissue

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Fettel, Kevin; Gao, Peng; Zhu, Zhiming; Ren, Jun; Thyagarajan, Baskaran

    2017-01-01

    Background/Objective An imbalance between energy intake and expenditure leads to obesity. Increasing metabolism and thermogenesis in brown adipose tissue (BAT) can help in overcoming obesity. Here, we investigated the effect of activation of transient receptor potential vanilloid subfamily 1 (TRPV1) in the upregulation of thermogenic proteins in BAT to counter diet-induced obesity. Subjects/Methods We investigated the effect of dietary supplementation of capsaicin (TRPV1 agonist) on the expression of metabolically important thermogenic proteins in BAT of wild type and TRPV1−/− mice that received either a normal chow or high fat (± capsaicin; TRPV1 activator) diet by immunoblotting. We measured the metabolic activity, respiratory quotient and BAT lipolysis. Results CAP antagonized high fat diet (HFD)-induced obesity without decreasing energy intake in mice. HFD suppressed TRPV1 expression and activity in BAT and CAP countered this effect. HFD feeding caused glucose intolerance, hypercholesterolemia and decreased the plasma concentration of glucagon like peptide-1 and CAP countered these effects. HFD suppressed the expression of metabolically important thermogenic genes, ucp-1, bmp8b, sirtuin 1, pgc-1α and prdm-16 in BAT and CAP prevented this effect. CAP increased the phosphorylation of sirtuin 1 and induced an interaction between PPARγ with PRDM-16. Further, CAP treatment, in vitro, decreased the acetylation of PRDM-16, which was antagonized by inhibition of TRPV1 by capsazepine, chelation of intracellular Ca2+ by cell permeable BAPTA-AM or the inhibition of SIRT-1 by EX 527. Further, CAP supplementation, post HFD, promoted weight loss and enhanced the respiratory exchange ratio. CAP did not have any effect in TRPV1−/− mice. Conclusions Our data show that activation of TRPV1 in BAT enhances the expression of SIRT-1, which facilitates the deacetylation and interaction of PPARγ and PRDM-16. These data suggest that TRPV1 activation is a novel strategy to

  14. The role of adipose tissue in cancer-associated cachexia.

    PubMed

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  15. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress.

    PubMed

    Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William

    2017-04-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.

  16. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress

    PubMed Central

    Petersen, Pia S.; Lei, Xia; Wolf, Risa M.; Rodriguez, Susana; Tan, Stefanie Y.; Little, Hannah C.; Schweitzer, Michael A.; Magnuson, Thomas H.; Steele, Kimberley E.

    2017-01-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. PMID:28223291

  17. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    PubMed

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  18. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity.

    PubMed

    Hellmann, Jason; Sansbury, Brian E; Holden, Candice R; Tang, Yunan; Wong, Blenda; Wysoczynski, Marcin; Rodriguez, Jorge; Bhatnagar, Aruni; Hill, Bradford G; Spite, Matthew

    2016-08-01

    Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c(+) adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7(+) macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c(+) cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7 Obese Ccr7(-/-) mice had reduced accumulation of CD8(+) T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells

    PubMed Central

    Cautivo, Kelly M.; Molofsky, Ari B.

    2016-01-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus (T2DM). In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy adipose tissue, including those associated with type 2 or “allergic” immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, adipose tissue “browning”, and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and T2DM. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines IL-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of ILC2 cells and type 2 immunity in adipose tissue metabolism and homeostasis. PMID:27120716

  20. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country.

    PubMed

    Backer, Vibeke; Baines, Katherine J; Powell, Heather; Porsbjerg, Celeste; Gibson, Peter G

    2016-02-01

    An overlap between obesity and asthma exists, and inflammatory cells in adipose tissue could drive the development of asthma. Comparison of adipose tissue gene expression among Inuit living in Greenland to those in Denmark provides an opportunity to assess how changes in adipose tissue inflammation can be modified by migration and diet. To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). Of the 1059 Greenlandic Inuit participants, 556 were living in Greenland and 6.4% had asthma. Asthma was increased in Denmark (9%) compared to Greenland (3.6%, p < 0.0001) and associated with increased adipose tissue IL-6 gene expression and increased BMI. There was no association between asthma and adipose tissue mast cell gene expression. Pro-inflammatory gene expression (IL-6, IL-1β) was higher in those living in Denmark, and with increasing BMI and dietary changes. The anti-inflammatory (M2) macrophage marker, CD163, was higher in Greenland-dwelling Inuit (p < 0.01). No association was found between gene expression of mast cell markers in adipose tissue and asthma. Among Greenlandic Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  2. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  3. The Great Roundleaf Bat (Hipposideros armiger) as a Good Model for Cold-Induced Browning of Intra-Abdominal White Adipose Tissue

    PubMed Central

    Ke, Shanshan; Fang, Na; Irwin, David M.; Lei, Ming; Zhang, Junpeng; Shi, Huizhen; Zhang, Shuyi; Wang, Zhe

    2014-01-01

    Background Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans. Methods Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett's big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue). Results Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett's big-footed bat did not show such a tendency in beige fat. Conclusions The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans. PMID:25393240

  4. The NALP3/NLRP3 Inflammasome Instigates Obesity-Induced Autoinflammation and Insulin Resistance

    PubMed Central

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E.; Stadler, Krisztian; Mynatt, Randall L.; Ravussin, Eric; Stephens, Jacqueline M.; Dixit, Vishwa Deep

    2010-01-01

    Emergence of chronic ‘sterile’ inflammation during obesity in absence of overt infection or autoimmune process is a puzzling phenomenon. The Nod Like Receptor (NLR) family of innate immune cell sensors like the Nlrp3 inflammasome are implicated in recognizing certain non-microbial origin ‘danger–signals’ leading to caspase-1 activation and subsequent IL-1β and IL-18 secretion. We show that reduction in adipose tissue expression of Nlrp3 is coupled with decreased inflammation and improved insulin–sensitivity in obese type-2 diabetic patients. The Nlrp3 inflammasome senses the lipotoxicity–associated ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 prevented the obesity–induced inflammasome activation in fat depots and liver together with enhanced insulin–signalling. Furthermore, elimination of Nlrp3 in obesity reduced IL-18 and adipose tissue IFNγ along with an increase in naïve and reduction in effector adipose tissue T cells. Collectively, these data establish that Nlrp3 inflammasome senses obesity–associated ‘danger–signals’ and contributes to obesity–induced inflammation and insulin–resistance. PMID:21217695

  5. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise.

    PubMed

    Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad

    2017-01-01

    ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1-8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia.

  6. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise

    PubMed Central

    Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad

    2017-01-01

    Objective ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1–8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. Methods A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. Results In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). Conclusion In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia. PMID:28264047

  7. Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity.

    PubMed

    Caetano, Luiz Carlos; Bonfleur, Maria Lúcia; Ribeiro, Rosane Aparecida; Nardelli, Tarlliza Romanna; Lubaczeuski, Camila; do Nascimento da Silva, Juliana; Carneiro, Everardo Magalhães; Balbo, Sandra Lucinei

    2017-03-01

    Obesity is usually associated with low-grade inflammation, which impairs insulin action. The amino acid, taurine (TAU), regulates glucose homeostasis and lipid metabolism and presents anti-inflammatory actions. Here, we evaluated whether inflammatory markers are altered in the serum and retroperitoneal adipose tissue of monosodium glutamate (MSG) obese rats, supplemented or not with TAU. Male Wistar rats received subcutaneous injections of MSG (4 mg/kg body weight/day, MSG group) or hypertonic saline (CTL) during the first 5 days of life. From 21 to 120 days of age, half of each of the MSG and CTL groups received 2.5 % TAU in their drinking water (CTAU and MTAU). At 120 days of age, MSG rats were obese and hyperinsulinemic. TAU supplementation reduced fat deposition without affecting insulinemia in MTAU rats. MSG rats presented increased pIκ-Bα/Iκ-Bα protein expression in the retroperitoneal adipose tissue. TAU supplementation decreased the ratio of pIκ-Bα/Iκ-Bα protein, possibly contributing to the increased Iκ-Bα content in MTAU adipose tissue. Furthermore, MSG obesity or supplementation did not alter TNF-α, IL-1β or IL-6 content in adipose tissue. In contrast, MSG rats presented lower serum TNF-α, IL-4 and IL-10 concentrations, and these alterations were prevented by TAU treatment. MSG obesity in rats was not associated with alterations in pro-inflammatory markers in retroperitoneal fat stores; however, reductions in the serum concentrations of anti-inflammatory cytokines and of TNF-α were observed. TAU treatment decreased adiposity, and this effect was associated with the normalization of circulating TNF-α and IL-4 concentrations in MTAU rats.

  8. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    PubMed

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues

    PubMed Central

    Kasza, Ildiko; Hernando, Diego; Roldán-Alzate, Alejandro; Alexander, Caroline M.; Reeder, Scott B.

    2016-01-01

    Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13–1.10 cm; on average, this depot is calculated to weigh 8.8 kg. PMID:27668285

  10. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with (1-/sup 14/C)2-deoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of (1-/sup 14/C)2-deoxyglucose 6-phosphate and blood disappearance rate of (1-/sup 14/C)2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was themore » most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice.« less

  11. Thrombin promotes diet-induced obesity through fibrin-driven inflammation.

    PubMed

    Kopec, Anna K; Abrahams, Sara R; Thornton, Sherry; Palumbo, Joseph S; Mullins, Eric S; Divanovic, Senad; Weiler, Hartmut; Owens, A Phillip; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P; Flick, Matthew J

    2017-08-01

    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.

  12. Thrombin promotes diet-induced obesity through fibrin-driven inflammation

    PubMed Central

    Kopec, Anna K.; Abrahams, Sara R.; Thornton, Sherry; Palumbo, Joseph S.; Mullins, Eric S.; Weiler, Hartmut; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P.; Flick, Matthew J.

    2017-01-01

    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients. PMID:28737512

  13. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk.

    PubMed

    Sam, Susan

    2018-03-09

    Metabolic and cardiovascular diseases are increasing worldwide due to the rise in the obesity epidemic. The metabolic consequences of obesity vary by distribution of adipose tissue. Visceral and ectopic adipose accumulation are associated with adverse cardiometabolic consequences, while gluteal-femoral adipose accumulation are negatively associated with these adverse complications and subcutaneous abdominal adipose accumulation is more neutral in its associations. Gender, race and ethnic differences in adipose tissue distribution have been described and could account for the observed differences in risk for cardiometabolic disease. The mechanisms behind the differential impact of adipose tissue on cardiometabolic risk have started to be unraveled and include differences in adipocyte biology, inflammatory profile, connection to systemic circulation and most importantly the inability of the subcutaneous adipose tissue to expand in response to positive energy balance.

  14. Flow cytometry on the stromal-vascular fraction of white adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow c...

  15. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    PubMed Central

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  16. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    PubMed

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  17. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    PubMed

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  18. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    PubMed

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  20. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    PubMed

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (P<0.05). Lower MDA concentration and longer telomere length were seen in subjects with diabetes compared to those without (P<0.05). DNA damage, analysed via Comet assay, was significantly lower in subjects with diabetes compared to those without (P<0.05). A paradoxical decrease in oxidative stress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults

    PubMed Central

    Gonzalez, Javier T.; Richardson, Judith D.; Chowdhury, Enhad A.; Koumanov, Francoise; Holman, Geoffrey D.; Cooper, Scott; Thompson, Dylan

    2017-01-01

    Key points In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue.In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue.The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt.Insulin‐stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole‐body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down‐regulation to prevent excessive de novo lipogenesis. Abstract This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty‐nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin‐stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up‐regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97–1.30) versus 0.80 (95% CI: 0.64–0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33–2.16) versus 1.09 (95% CI: 0.67–1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in

  2. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults.

    PubMed

    Gonzalez, Javier T; Richardson, Judith D; Chowdhury, Enhad A; Koumanov, Francoise; Holman, Geoffrey D; Cooper, Scott; Thompson, Dylan; Tsintzas, Kostas; Betts, James A

    2018-02-15

    In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue. In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue. The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt. Insulin-stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole-body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down-regulation to prevent excessive de novo lipogenesis. This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty-nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin-stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up-regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97-1.30) versus 0.80 (95% CI: 0.64-0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33-2.16) versus 1.09 (95% CI: 0.67-1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in genes involved in lipid turnover (all

  3. Effect of combined thermal and electrical muscle stimulation on cardiorespiratory fitness and adipose tissue in obese individuals.

    PubMed

    Rostrup, Espen; Slettom, Grete; Seifert, Reinhard; Bjørndal, Bodil; Berge, Rolf K; Nordrehaug, Jan Erik

    2014-10-01

    To better understand how prolonged electrical muscle stimulation can improve cardiorespiratory risk markers in obese subjects, we investigated the effect of prolonged combined thermal and electrical muscle stimulation (cTEMS) on peak oxygen consumption (VO2peak) and body composition with subsequent lipolytic and mitochondrial activity in adipocytes. Eleven obese (BMI ≥ 30 kg/m(2)) individuals received cTEMS in three 60-minute sessions per week for 8 weeks. Activity levels and dietary habits were kept unchanged. Before and after the stimulation period, functional capacity was assessed by VO2peak, and body composition was analysed. Lipolytic activity was determined in abdominal adipose tissue by 24 hours of microdialysis on a sedentary day, and adipose tissue biopsies were taken for the gene expression analysis. Eight weeks of cTEMS significantly increased VO2peak from 28.9 ± 5.7 to 31.7 ± 6.2 ml/kg/min (p < 0.05), corresponding to an average increase of 1.2% per week. Oxygen uptake and work capacity also increased at the anaerobic threshold. Mean microdialytic glycerol concentration over 24 hours, an index of sedentary lipolytic activity, increased from 238 ± 60 to 306 ± 55 µM (p < 0,0001), but no significant changes in body composition were observed. In addition, PGC-1α and carnitine-palmitoyltransferase-2 mRNAs were significantly upregulated in subcutaneous abdominal adipose tissue. In obese individuals with unchanged lifestyles, 8 weeks of cTEMS significantly improved functional capacity towards a higher fatigue resistance. This increase also gave rise to elevated lipolytic activity and increased mitochondrial activity in abdominal adipose tissue. © Authors 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. The evolution of human adiposity and obesity: where did it all go wrong?

    PubMed Central

    Wells, Jonathan C. K.

    2012-01-01

    Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized ‘external’ environmental change rather than attempting to manipulate ‘internal’ biology through pharmaceutical or behavioral means. PMID:22915021

  5. The evolution of human adiposity and obesity: where did it all go wrong?

    PubMed

    Wells, Jonathan C K

    2012-09-01

    Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized 'external' environmental change rather than attempting to manipulate 'internal' biology through pharmaceutical or behavioral means.

  6. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots.

    PubMed

    Long, N M; Rule, D C; Zhu, M J; Nathanielsz, P W; Ford, S P

    2012-07-01

    Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the

  7. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    PubMed

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  8. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Hickner, Robert C

    2013-08-01

    Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Vitamin D and adipose tissue-more than storage.

    PubMed

    Mutt, Shivaprakash J; Hyppönen, Elina; Saarnio, Juha; Järvelin, Marjo-Riitta; Herzig, Karl-Heinz

    2014-01-01

    The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR(-/-)) and CYP27B1 knock out (CYP27B1 (-/-)) mouse models: Both VDR(-/-) and CYP27B1(-/-) models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  10. Adipose tissue and inflammatory bowel disease pathogenesis.

    PubMed

    Fink, Christopher; Karagiannides, Iordanes; Bakirtzi, Kyriaki; Pothoulakis, Charalabos

    2012-08-01

    Creeping fat has long been recognized as an indicator of Crohn's disease (CD) activity. Although most patients with CD have normal or low body mass index (BMI), the ratio of intraabdominal fat to total abdominal fat is far greater than that of controls. The obesity epidemic has instructed us on the inflammatory nature of hypertrophic adipose tissue and similarities between mesenteric depots in obese and CD patients can be drawn. However, several important physiological differences exist between these two depots as well. While the molecular basis of the crosstalk between mesenteric adipose and the inflamed intestine in CD is largely unknown, novel evidence implicates neuropeptides along with adipocyte-derived paracrine mediators (adipokines) as potential targets for future investigations and highlight adipose tissue physiology as a potential important determinant in the course of IBD. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.

  11. A worm of one’s own: how helminths modulate host adipose tissue function and metabolism

    PubMed Central

    Guigas, Bruno; Molofsky, Ari B.

    2015-01-01

    Parasitic helminths have co-existed with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of ‘Western’ diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. PMID:25991556

  12. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of Korean red ginseng (Panax ginseng) on obesity and adipose inflammation in ovariectomized mice.

    PubMed

    Lee, Hyunghee; Choi, Jeonghyun; Shin, Soon Shik; Yoon, Michung

    2016-02-03

    Korean red ginseng (ginseng, Panax ginseng C.A. Meyer) is a famous traditional drug used in Korea for the treatment and prevention of obesity, type 2 diabetes, cancer, and liver and cardiovascular diseases. Menopause is strongly associated with many of the aforementioned metabolic diseases and increased visceral obesity. The aims of this study were to investigate whether ginseng inhibits obesity and related disorders in ovariectomized (OVX) C57BL/6J mice, which is a mouse model of postmenopausal women, and to determine the mechanism of action involved in this process. After OVX mice were treated with 5% (w/w) ginseng for 15 weeks, we determined the effects of ginseng on obesity and adipose inflammation, angiogenesis, metalloproteinase (MMP) activity and metabolic parameters. OVX mice had higher body weight, adipose tissue mass and adipocyte size when fed a high fat diet (HFD) compared with HFD-fed sham-operated mice. All of these parameters were significantly reduced in OVX mice fed a HFD supplemented with ginseng. Ginseng treatment also decreased blood vessel density, MMP activity, and mRNA levels of angiogenic factors (e.g., VEGF-A and FGF-2) and MMPs (e.g., MMP-2 and MMP-9) in adipose tissues of OVX mice. Infiltrating inflammatory cells and expression of inflammatory cytokines (e.g., CD68, TNFα and MCP-1) in adipose tissue were reduced by ginseng. Ginseng not only reduced the circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in OVX mice. Hepatic lipid droplets were almost completely abolished by ginseng. These results suggest that ginseng inhibited ovariectomy-induced obesity, adiposity, and adipocyte hypertrophy by modulating angiogenesis and MMP activity. Ginseng also suppressed adipose inflammation, insulin resistance, and hepatic steatosis in OVX mice. Thus, it is likely that ginseng may be a promising drug for the prevention and treatment of obesity and related disorders in obese postmenopausal

  14. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    PubMed

    Yu, Jie; Yu, Bing; He, Jun; Zheng, Ping; Mao, Xiangbing; Han, Guoquan; Chen, Daiwen

    2014-01-01

    Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.

  15. Effect of Gender on the Total Abdominal Fat, Intra-Abdominal Adipose Tissue and Abdominal Sub-Cutaneous Adipose Tissue among Indian Hypertensive Patients.

    PubMed

    Sahoo, Jaya Prakash; Kumari, Savita; Jain, Sanjay

    2016-04-01

    Abdominal obesity is a better marker of adverse metabolic profile than generalized obesity in hypertensive subjects. Further, gender has effect on adiposity and its distribution. Effect of gender on obesity and the distribution of fat in different sub-compartments of abdomen among Indian hypertensive subjects. This observational study included 278 adult subjects (Males-149 & Females-129) with essential hypertension from a tertiary care centre in north India over one year. A detailed history taking and physical examination including anthropometry were performed in all patients. Total Abdominal Fat (TAF) and abdominal adipose tissue sub-compartments like Intra-Abdominal Adipose Tissue (IAAT) and Sub-Cutaneous Adipose Tissue (SCAT) were measured using the predictive equations developed for Asian Indians. Female hypertensive subjects had higher Body Mass Index (BMI) with more overweight (BMI ≥ 23kg/m(2)), and obesity (BMI≥ 25 kg/m(2)). Additionally, they had higher prevalence of central obesity based on both Waist Circumference (WC) criteria (WC≥ 90 cm in males and WC≥ 80 cm in females) and TAF criteria {≥245.6 cm(2) (males) and ≥203.46 cm(2) (females)} than male patients. But there was no difference in the prevalence of central obesity based on Waist Hip Ratio (WHR) criteria (WHR ≥0.90 in males and WHR ≥ 0.85 in females) between two genders. High TAF & IAAT were present in more females although there was no difference in the distribution of high SCAT between two genders. Female hypertensive subjects were more obese with higher abnormal TAF & IAAT compared to male patients. However, there was no difference in the distribution of high SCAT among them.

  16. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes.

    PubMed

    Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie

    2015-09-01

    Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus.

    PubMed

    de Araújo, Iana M; Salmon, Carlos E G; Nahas, Andressa K; Nogueira-Barbosa, Marcello H; Elias, Jorge; de Paula, Francisco J A

    2017-01-01

    To assess the association of bone mass and marrow adipose tissue (MAT) with other fat depots, insulin resistance, bone remodeling markers, adipokines and glucose control in type 2 diabetes and obesity. The study groups comprised 24 controls (C), 26 obese (O) and 28 type 2 diabetes. Dual-energy X-ray absorptiometry was used to determine bone mineral density (BMD). Blood samples were collected for biochemical measurements. 1 H Magnetic resonance spectroscopy was used to assess MAT in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids in visceral (VAT) and subcutaneous adipose tissue. Regression analysis models were used to test the association between parameters. At all sites tested, BMD was higher in type 2 diabetes than in O and C subjects. The C group showed lower VAT values than the type 2 diabetes group and lower IHL than the O and type 2 diabetes groups. However, MAT was similar in the 3 groups. Osteocalcin and C-terminal telopeptide of type 1 collagen were lower in type 2 diabetes than those in C and O subjects. Moreover, at all sites, BMD was negatively associated with osteocalcin. No association was observed between MAT and VAT. No relationship was observed among MAT and HOMA-IR, leptin, adiponectin or Pref-1, but MAT was positively associated with glycated hemoglobin. MAT is not a niche for fat accumulation under conditions of energy surplus and type 2 diabetes, also is not associated with VAT or insulin resistance. MAT is associated with glycated hemoglobin. © 2017 European Society of Endocrinology.

  18. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  19. Group 2 innate lymphoid cells promote beiging of adipose and limit obesity

    PubMed Central

    Brestoff, Jonathan R.; Kim, Brian S.; Saenz, Steven A.; Stine, Rachel R.; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Thome, Joseph J.; Farber, Donna L.; Lutfy, Kabirullah; Seale, Patrick; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity1,2. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity3,4 and eosinophil and alternatively-activated macrophage responses5, and were recently identified in murine white adipose tissue (WAT)5 where they may act to limit the development of obesity6. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here, we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure7–9. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signaling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging. PMID:25533952

  20. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    PubMed

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue.

    PubMed

    Kim, Dong-Hyeon; Jeong, Dana; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Seo, Kun-Ho

    2017-11-01

    Kefir consumption inhibits the development of obesity and non-alcoholic fatty liver disease (NALFD) in mice fed 60% high-fat diet (HFD). To identify the key contributor of this effect, we isolated lactic acid bacteria (LAB) from kefir and examined their anti-obesity properties from in vitro screening and in vivo validation. Thirteen kefir LAB isolates were subjected to survivability test using artificial gastrointestinal environment and cholesterol-reducing assay. Lactobacillus kefiri DH5 showed 100% survivability in gastrointestinal environments and reduced 51.6% of cholesterol; thus, this strain was selected for in vivo experiment. Compared to the HFD-saline group, the HFD-DH5 group showed significantly lower body weight (34.68 versus 31.10 g; p < 0.001), epididymal adipose tissue weight (1.39 versus 1.05 g; p < 0.001), blood triglyceride (38.2 versus 31.0 mg/dL; p < 0.01) and LDL-cholesterol levels (19.4 versus 15.7 mg/dL; p < 0.01). In addition, L. kefiri DH5 administration significantly modulated gut microbiota of HFD-fed mice. The hepatic steatosis was significantly milder (Lesion score, 2.1 versus 1.2; p < 0.001) and adipocyte diameter was significantly smaller (65.1 versus 42.2 μm; p < 0.001) in the HFD-DH5 group. L. kefiri DH5 upregulated PPAR-α, FABP4, and CPT1 expression in the epididymal adipose tissues (2.29-, 1.77-, and 2.05-fold change, respectively), suggesting a reduction in adiposity by stimulating fatty acid oxidation. L. kefiri DH5 exerts anti-obesity effects by direct reduction of cholesterol in the lumen and upregulation of PPAR-α gene in adipose tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    PubMed

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota

    PubMed Central

    Geurts, Lucie; Everard, Amandine; Van Hul, Matthias; Essaghir, Ahmed; Duparc, Thibaut; Matamoros, Sébastien; Plovier, Hubert; Castel, Julien; Denis, Raphael G. P.; Bergiers, Marie; Druart, Céline; Alhouayek, Mireille; Delzenne, Nathalie M.; Muccioli, Giulio G.; Demoulin, Jean-Baptiste; Luquet, Serge; Cani, Patrice D.

    2015-01-01

    Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. PMID:25757720

  4. Changes in visceral adipose tissue plasma membrane lipid composition in old rats are associated with adipocyte hypertrophy with aging.

    PubMed

    Bonzón-Kulichenko, Elena; Moltó, Eduardo; Pintado, Cristina; Fernández, Alejandro; Arribas, Carmen; Schwudke, Dominik; Gallardo, Nilda; Shevchenko, Andrej; Andrés, Antonio

    2018-04-16

    Increased adiposity, through adipocyte hypertrophy and/or hyperplasia, characterizes aging and obesity. Both are leptin-resistant states, associated to disturbed lipid metabolism, reduced insulin sensitivity and inflammation. Nevertheless, fat tissue dysfunction appears earlier in obesity than in normal aging. In contrast, lipodystrophy is accompanied by diabetes, and improving the fat cell capacity to expand rescues the diabetic phenotype. Fat tissue dysfunction is extensively studied in the diet-induced obesity, but remains relatively neglected in the aging-associated obesity. In the Wistar rat, as occurs in humans, early or middle aging is accompanied by an increase in adiposity. Using this experimental model, we describe the molecular mechanisms contributing to the white adipose tissue (WAT) hypertrophy. WAT from middle-old age rats is characterized by decreased basal lipogenesis and lipolysis, increased esterification, as demonstrated by the higher TAG and cholesterol content in visceral WAT, and the maintenance of total ceramide levels within normal values. In addition, we describe alterations in the adipose tissue plasma membrane lipid composition, as increased total ether-phosphatidylcholine, sphingomyelin and free cholesterol levels that favor an enlarged fat cell size with aging. All these metabolic changes may be regarded as a survival advantage that prevents the aged rats from becoming overtly diabetic.

  5. Perilipin-2 Deletion Promotes Carbohydrate-Mediated Browning of White Adipose Tissue at Ambient Temperature.

    PubMed

    Libby, Andrew E; Bales, Elise S; Monks, Jenifer; Orlicky, David J; McManaman, James L

    2018-06-04

    Mice lacking Perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by western or high fat diets. In the current study, we found that compared to wild type (WT) mice on western diet, Plin2-null adipose tissue was more insulin sensitive, and that inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared to WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum FGF21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver: study in the experimental model of Zucker rats.

    PubMed

    Ragusa, Rosetta; Cabiati, Manuela; Guzzardi, Maria Angela; D'Amico, Andrea; Giannessi, Daniela; Del Ry, Silvia; Caselli, Chiara

    2017-04-01

    Suppression of tumorigenicity 2 (ST2) mediates the effect of Interleukin-33 (IL-33). Few data are reported on the relationship between IL-33/ST2 and obesity. We aimed to investigate effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver in a rodent model of obesity. The relationship of cardiac expression of IL-33/ST2 system with natriuretic peptides (NPs) system and inflammatory mediators was also studied. mRNA expression of IL-33/ST2 system was evaluated in cardiac, adipose and hepatic biopsies from obese Zucker rats (O) and controls (CO). Expression levels of sST2 was significantly lower in O rats compared with CO (p<0.05) in all tissues. Besides, the mRNA levels of IL-33 decreased significant in fat of O respect to CO, while, expression levels of ST2L was significantly higher in liver of CO than in O. A strong relationship of IL-33/ST2 with NPs and classical inflammatory mediators was observed in cardiac tissue. Expression of sST2 in cardiac, adipose and liver tissue decreased in O compared with controls, suggesting an involvement for IL-33/ST2 system in molecular mechanisms of obesity. The strong relationships with NP systems and inflammatory mediators could suggest an involvement for IL-33/ST2 in molecular pathways leading to cardiac dysfunction and inflammation associated with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology.

    PubMed

    Renu, Kaviyarasi; Madhyastha, Harishkumar; Madhyastha, Radha; Maruyama, Masugi; Arunachlam, Sankarganesh; V G, Abilash

    2018-03-01

    Exposure to arsenic in drinking water can stimulate a diverse number of diseases that originate from impaired lipid metabolism in adipose and glucose metabolism, leading to insulin resistance. Arsenic inhibits differentiation of adipocyte and mediates insulin resistance with diminutive information on arsenicosis on lipid storage and lipolysis. This review focused on different mechanisms and pathways involved in adipogenesis and lipolysis in adipose tissue during arsenic-induced diabetes. Though arsenic is known to cause type2 diabetes through different mechanisms, the role of adipose tissue in causing type2 diabetes is still unclear. With the existing literature, this review exhibits the effect of arsenic on adipose tissue and its signalling events such as SIRT3- FOXO3a signalling pathway, Ras -MAP -AP-1 cascade, PI(3)-K-Akt pathway, endoplasmic reticulum stress protein, C/EBP homologous protein (CHOP10) and GPCR pathway with role of adipokines. There is a need to elucidate the different types of adipokines which are involved in arsenic-induced diabetes. The exhibited information brings to light that arsenic has negative effects on a white adipose tissue (WAT) by decreasing adipogenesis and enhancing lipolysis. Some of the epidemiological studies show that arsenic would causes obesity. Few studies indicate that arsenic might induces lipodystrophy condition. Further research is needed to evaluate the mechanistic link between arsenic and adipose tissue dysfunction which leads to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Interactions between adipose tissue and the immune system in health and malnutrition.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan

    2015-09-01

    Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adipose tissue MRI for quantitative measurement of central obesity.

    PubMed

    Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B

    2013-03-01

    To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.

  10. Regulation of the Fibrosis and Angiogenesis Promoter SPARC/Osteonectin in Human Adipose Tissue by Weight Change, Leptin, Insulin, and Glucose

    PubMed Central

    Kos, Katrina; Wong, Steve; Tan, Bee; Gummesson, Anders; Jernas, Margareta; Franck, Niclas; Kerrigan, David; Nystrom, Fredrik H.; Carlsson, Lena M.S.; Randeva, Harpal S.; Pinkney, Jonathan H.; Wilding, John P.H.

    2009-01-01

    OBJECTIVE Matricellular Secreted Protein, Acidic and Rich in Cysteine (SPARC), originally discovered in bone as osteonectin, is a mediator of collagen deposition and promotes fibrosis. Adipose tissue collagen has recently been found to be linked with metabolic dysregulation. Therefore, we tested the hypothesis that SPARC in human adipose tissue is influenced by glucose metabolism and adipokines. RESEARCH DESIGN AND METHODS Serum and adipose tissue biopsies were obtained from morbidly obese nondiabetic subjects undergoing bariatric surgery and lean control subjects for analysis of metabolic markers, SPARC, and various cytokines (RT-PCR). Additionally, 24 obese subjects underwent a very-low-calorie diet of 1,883 kJ (450 kcal)/day for 16 weeks and serial subcutaneous-abdominal-adipose tissue (SCAT) biopsies (weight loss: 28 ± 3.7 kg). Another six lean subjects underwent fast-food–based hyperalimentation for 4 weeks (weight gain: 7.2 ± 1.6 kg). Finally, visceral adipose tissue explants were cultured with recombinant leptin, insulin, and glucose, and SPARC mRNA and protein expression determined by Western blot analyses. RESULTS SPARC expression in human adipose tissue correlated with fat mass and was higher in SCAT. Weight loss induced by very-low-calorie diet lowered SPARC expression by 33% and increased by 30% in adipose tissue of subjects gaining weight after a fast-food diet. SPARC expression was correlated with leptin independent of fat mass and correlated with homeostasis model assessment–insulin resistance. In vitro experiments showed that leptin and insulin potently increased SPARC production dose dependently in visceral adipose tissue explants, while glucose decreased SPARC protein. CONCLUSIONS Our data suggest that SPARC expression is predominant in subcutaneous fat and its expression and secretion in adipose tissue are influenced by fat mass, leptin, insulin, and glucose. The profibrotic effects of SPARC may contribute to metabolic dysregulation in

  11. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity.

    PubMed

    Moreno-Navarrete, José María; Serino, Matteo; Blasco-Baque, Vincent; Azalbert, Vincent; Barton, Richard H; Cardellini, Marina; Latorre, Jèssica; Ortega, Francisco; Sabater-Masdeu, Mònica; Burcelin, Rémy; Dumas, Marc-Emmanuel; Ricart, Wifredo; Federici, Massimo; Fernández-Real, José Manuel

    2018-02-01

    To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA 1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA 1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T

    NASA Astrophysics Data System (ADS)

    Ong, Henry H.; Webb, Corey D.; Gruen, Marnie L.; Hasty, Alyssa H.; Gore, John C.; Welch, E. B.

    2015-03-01

    In obesity, fat-water MRI (FWMRI) methods provide valuable information about adipose tissue (AT) distribution. AT is known to undergo complex metabolic and endocrine changes in association with chronic inflammation including iron overloading. Here, we investigate the potential for FWMRI parameters (fat signal fraction (FSF), local magnetic field offset, and T2*) to be sensitive to AT inflammatory changes in an established diet-induced obesity mouse model. Male C57BL/6J mice were placed on a low fat (LFD) or a high fat diet (HFD). 3D multi- gradient-echo MRI at 15.2T was performed at baseline, 4, 8, 12, and 16 weeks after diet onset. A 3D fat-water separation algorithm and additional processing was used to generate FSF, local field offset, and T2* maps. We examined these parameters in perirenal AT ROIs from HFD and LFD mice. Results: The data suggest that FSF, local field offset, and T2* can differentiate time course behavior between inflamed and control AT (increasing FSF, decreasing local field offset, increasing followed by decreasing T2*). The biophysical mechanisms of these observed changes are not well understood and require further study. To the best of our knowledge, we report the first evidence that FWMRI can provide biomarkers sensitive to AT inflammation, and that FWMRI has the potential for longitudinal non-invasive assessment of AT inflammation in obesity.

  13. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    PubMed

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  14. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα

    PubMed Central

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Dufour, Catherine Rosa; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-01-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  15. Adaptation of human adipose tissue to hypocaloric diet.

    PubMed

    Rossmeislová, L; Mališová, L; Kračmerová, J; Štich, V

    2013-05-01

    Hypocaloric diet is a key component of the weight-reducing treatment of obesity and obesity-related disorders. Hypocaloric diets and the associated weight reduction promote improvement of metabolic profile of obese individuals. Among the mechanisms that underlie this beneficial metabolic outcome, the diet-induced modifications of morphological and functional characteristics of human adipose tissue (AT) are believed to have an important role. Prospective studies of hypocaloric weight-reducing dietary intervention demonstrate effects on adipocyte metabolism, namely lipolysis and lipogenesis, and associated changes of the adipocyte size. The endocrine function of AT, which involves cytokine and adipokine production by adipocytes, as well as by cells of stromavascular fraction, is also regulated by dietary intervention. Related inflammatory status of AT is modulated also as a consequence of the changes in recruitment of immune cells, mainly macrophages, in AT. Here, we give an overview of metabolic and endocrine modifications in human AT induced by a variety of hypocaloric diets.

  16. Flow cytometry on the stromal-vascular fraction of white adipose tissue.

    PubMed

    Brake, Danett K; Smith, C Wayne

    2008-01-01

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.

  17. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    PubMed Central

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  18. Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men.

    PubMed

    Jocken, J W E; Goossens, G H; van Hees, A M J; Frayn, K N; van Baak, M; Stegen, J; Pakbiers, M T W; Saris, W H M; Blaak, E E

    2008-02-01

    Obesity is characterised by increased triacylglycerol storage in adipose tissue. There is in vitro evidence for a blunted beta-adrenergically mediated lipolytic response in abdominal subcutaneous adipose tissue (SAT) of obese individuals and evidence for this at the whole-body level in vivo. We hypothesised that the beta-adrenergically mediated effect on lipolysis in abdominal SAT is also impaired in vivo in obese humans. We investigated whole-body and abdominal SAT glycerol metabolism in vivo during 3 h and 6 h [2H5]glycerol infusions. Arterio-venous concentration differences were measured in 13 lean and ten obese men after an overnight fast and during intravenous infusion of the non-selective beta-adrenergic agonist isoprenaline [20 ng (kg fat free mass)(-1) min(-1)]. Lean and obese participants showed comparable fasting glycerol uptake by SAT (9.7+/-3.4 vs 9.3+/-2.5% of total release, p=0.92). Furthermore, obese participants showed an increased whole-body beta-adrenergically mediated lipolytic response versus lean participants. However, their fasting lipolysis was blunted [glycerol rate of appearance: 7.3+/-0.6 vs 13.1+/-0.9 micromol (kg fat mass)(-1) min(-1), p<0.01], as was the beta-adrenergically mediated lipolytic response per unit SAT [Delta total glycerol release: 140+/-71 vs 394+/-112 nmol (100 g tissue)(-1) min(-1), p<0.05] compared with lean participants. Net triacylglycerol flux tended to increase in obese compared with lean participants during beta-adrenergic stimulation [Delta net triacylglycerol flux: 75+/-32 vs 16+/-11 nmol (100 g tissue)(-1) min(-1), p=0.06]. We demonstrated in vivo that beta-adrenergically mediated lipolytic response is impaired systematically and in abdominal SAT of obese versus lean men. This may be important in the development or maintenance of increased triacylglycerol stores and obesity.

  19. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation

    PubMed Central

    Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan

    2012-01-01

    Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784

  20. Measurement of subcutaneous adipose tissue blood flow in the morbidly obese using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard

    1992-08-01

    Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.

  1. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u-ac.jp; Hanao, Norihide; Nishiyama, Kaori

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl{sub 2}, HgCl{sub 2}, NaAsO{sub 2} and MnCl{sub 2} pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals.more » Repeated administration of CoCl{sub 2} significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl{sub 2} treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl{sub 2} significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl{sub 2} had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl{sub 2} enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl{sub 2} treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results

  2. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takanori, E-mail: mikit@med.kagawa-u.ac.jp; Liu, Jun-Qian; Ohta, Ken-ichi

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved bymore » separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.« less

  3. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota.

    PubMed

    Li, Guolin; Xie, Cen; Lu, Siyu; Nichols, Robert G; Tian, Yuan; Li, Licen; Patel, Daxeshkumar; Ma, Yinyan; Brocker, Chad N; Yan, Tingting; Krausz, Kristopher W; Xiang, Rong; Gavrilova, Oksana; Patterson, Andrew D; Gonzalez, Frank J

    2017-10-03

    While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. Published by Elsevier Inc.

  4. Attenuation of obesity-induced inflammation in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    PubMed

    Hirose, Shouhei; Asano, Krisana; Nakane, Akio

    2017-03-11

    Obesity is associated with chronic inflammation of adipose tissue and causes development of type 2 diabetes. M1 macrophage population was increased in adipose tissue of obese mouse. M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in various mouse inflammatory diseases. In this study, we examined the effect of PG on type 2 diabetes using high-fat-diet (HFD) induced obese mouse model. Oral PG administration enhanced the population of small adipocytes (area less than 1000 μm 2 ) without body and tissue weight gain. In addition, PG administration suppressed mRNA expression of TNF-α, IL-6 and CXCL2 in adipose tissue. The proportion of M1 macrophages was decreased by PG administration. In addition, PG administration suppressed hyperglycemia after intraperitoneal glucose injection. Fasted serum insulin level was decreased in PG-administered mice. Moreover, insulin-stimulated phosphorylation of Akt was enhanced in the liver and gastrocnemius skeletal muscle of PG-administered mice. These data suggested that PG administration improves hyperglycemia and insulin sensitivity in obese mice by modulation of M1 macrophages which secrete proinflammatory cytokines in adipose tissue and activation of Akt in liver and skeletal muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Estrogen receptor (ER)α-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression.

    PubMed

    Drew, Brian G; Hamidi, Habib; Zhou, Zhenqi; Villanueva, Claudio J; Krum, Susan A; Calkin, Anna C; Parks, Brian W; Ribas, Vicent; Kalajian, Nareg Y; Phun, Jennifer; Daraei, Pedram; Christofk, Heather R; Hewitt, Sylvia C; Korach, Kenneth S; Tontonoz, Peter; Lusis, Aldons J; Slamon, Dennis J; Hurvitz, Sara A; Hevener, Andrea L

    2015-02-27

    Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Selected adipose tissue hormones, bone metabolism, osteoprotegerin and receptor activator of nuclear factor-kB ligand in postmenopausal obese women.

    PubMed

    Ostrowska, Zofia; Świętochowska, Elżbieta; Marek, Bogdan; Kajdaniuk, Dariusz; Tyrpień-Golder, Krystyna; Wołkowska-Pokrywa, Kinga; Damasiewicz-Bodzek, Aleksandra; Kos-Kudła, Beata

    2014-01-01

    It has been suggested that changes in the production of adipose tissue hormones in obese postmenopausal women might affect their bone status. The aim of this study was to determine whether obese postmenopausal women exhibited any relationship between serum levels of LP, ADIPO, RES, VISF, APE and bone metabolism markers (OC and CTx), OPG, sRANKL, the OPG/sRANKL ratio as well as BMD. 80 postmenopausal women (60 obese and 20 healthy) underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) at lumbar spine L2-L4. Serum levels of selected adipose tissue hormones, OC, CTx, OPG and its soluble ligand, sRANKL, were assessed by ELISA. Obese postmenopausal women demonstrated a significant increase in body mass, BMI and WHR associated with significant increases in LP and RES levels, a decrease in ADIPO concentration, suppression of OC, CTx, OPG and sRANKL and an increase in the OPG/sRANKL ratio and BMD. BMI correlated positively with BMD, LP, RES, OPG and the OPG/sRANKL ratio, whereas in the case of ADIPO, OC, CTx, sRANKL the relationship was negative. WHR was positively correlated with the OPG/sRANKL ratio, and negatively with ADIPO and APE. A positive correlation was found between BMD and LP, APE and the OPG/sRANKL ratio, while the correlation between BMD and ADIPO, CTx, sRANKL was negative. Significant positive correlations were also revealed between OC, CTx and ADIPO; OPG and ADIPO; sRANKL and ADIPO, RES; the OPG/sRANKL ratio and LP. OC correlated negatively with LP, RES, VISF, APE; CTx with LP, VISF, APE; OPG with LP; sRANKL with LP and APE; the OPG/sRANKL ratio with VISF. ADIPO was an independent predictor of OC, OPG and sRANKL, while LP turned out to be an independent predictor of CTx, OPG, sRANKL and the OPG/sRANKL ratio. Obesity in postmenopausal women can lead to changes in BMD, circulating levels of bone markers, OPG, sRANKL and/or the OPG/sRANKL ratio; these changes are associated with alterations in the concentrations of adipose tissue hormones

  7. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    NASA Astrophysics Data System (ADS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  8. Global Gene Expression Profiling in Omental Adipose Tissue of Morbidly Obese Diabetic African Americans.

    PubMed

    Doumatey, Ayo P; Xu, Huichun; Huang, Hanxia; Trivedi, Niraj S; Lei, Lin; Elkahloun, Abdel; Adeyemo, Adebowale; Rotimi, Charles N

    2015-06-01

    Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D. Twenty morbidly obese (mean BMI: about 54 kg/m 2 ) subjects were studied, including 14 morbidly obese individuals with T2D (cases) and 6 morbidly obese individuals without T2D (reference group). Gene expression profiling was performed using the Affymetrix U133 Plus 2.0 human genome expression array. Analysis of covariance was performed to identify differentially expressed genes (DEGs). Bioinformatics tools including PANTHER and Ingenuity Pathway Analysis (IPA) were applied to the DEGs to determine biological functions, networks and canonical pathways that were overrepresented in these individuals. At an absolute fold-change threshold of 2 and false discovery rate (FDR) < 0.05, 68 DEGs were identified in cases compared to the reference group. Myosin X (MYO10) and transforming growth factor beta regulator 1 (TBRG1) were upregulated. MYO10 encodes for an actin-based motor protein that has been associated with T2D. Telomere extension by telomerase ( HNRNPA1, TNKS2 ), D-myo-inositol (1, 4, 5)-trisphosphate biosynthesis (PIP5K1A, PIP4K2A), and regulation of actin-based motility by Rho (ARPC3) were the most significant canonical pathways and overlay with T2D signaling pathway. Upstream regulator analysis predicted 5 miRNAs (miR-320b, miR-381-3p, miR-3679-3p, miR-494-3p, and miR-141-3p,) as regulators of the expression changes identified. This study identified a number of transcripts and miRNAs in OAT as candidate novel players in the pathophysiology of T2D in African Americans.

  9. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    PubMed

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats.

    PubMed

    Bounihi, Abdenour; Bitam, Arezki; Bouazza, Asma; Yargui, Lyece; Koceir, Elhadj Ahmed

    2017-12-01

    Fruit vinegars (FVs) are used in Mediterranean folk medicine for their hypolipidemic and weight-reducing properties. To investigate the preventive effects of three types of FV, commonly available in Algeria, namely prickly pear [Opuntia ficus-indica (L.) Mill (Cectaceae)], pomegranate [Punica granatum L. (Punicaceae)], and apple [Malus domestica Borkh. (Rosaceae)], against obesity-induced cardiomyopathy and its underlying mechanisms. Seventy-two male Wistar rats were equally divided into 12 groups. The first group served as normal control (distilled water, 7 mL/kg bw), and the remaining groups were respectively treated with distilled water (7 mL/kg bw), acetic acid (0.5% w/v, 7 mL/kg bw) and vinegars of pomegranate, apple or prickly pear (at doses of 3.5, 7 and 14 mL/kg bw, acetic acid content as mentioned above) along with a high-fat diet (HFD). The effects of the oral administration of FV for 18 weeks on the body and visceral adipose tissue (VAT) weights, plasma inflammatory and cardiac enzymes biomarkers, and in heart tissue were evaluated. Vinegars treatments significantly (p < .05) attenuated the HFD-induced increase in bw (0.2-0.5-fold) and VAT mass (0.7-1.8-fold), as well as increase in plasma levels of CRP (0.1-0.3-fold), fibrinogen (0.2-0.3-fold), leptin (1.7-3.7-fold), TNF-α (0.1-0.6-fold), AST (0.9-1.4-fold), CK-MB (0.3-1.4-fold) and LDH (2.7-6.7-fold). Moreover, vinegar treatments preserved myocardial architecture and attenuated cardiac fibrosis. These findings suggest that pomegranate, apple and prickly pear vinegars may prevent HFD-induced obesity and obesity-related cardiac complications, and that this prevention may result from the potent anti-inflammatory and anti-adiposity properties of these vinegars.

  11. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity.

    PubMed

    Lackey, Denise E; Burk, David H; Ali, Mohamed R; Mostaedi, Rouzbeh; Smith, William H; Park, Jiyoung; Scherer, Philipp E; Seay, Shundra A; McCoin, Colin S; Bonaldo, Paolo; Adams, Sean H

    2014-02-01

    The extracellular matrix (ECM) plays an important role in the maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accommodate changes in energy storage needs. Obesity and adipocyte hypertrophy place a strain on the ECM remodeling machinery, which may promote disordered ECM and altered tissue integrity and could promote proinflammatory and cell stress signals. To explore these questions, new methods were developed to quantify omental and subcutaneous WAT tensile strength and WAT collagen content by three-dimensional confocal imaging, using collagen VI knockout mice as a methods validation tool. These methods, combined with comprehensive measurement of WAT ECM proteolytic enzymes, transcript, and blood analyte analyses, were used to identify unique pathophenotypes of metabolic syndrome and type 2 diabetes mellitus in obese women, using multivariate statistical modeling and univariate comparisons with weight-matched healthy obese individuals. In addition to the expected differences in inflammation and glycemic control, approximately 20 ECM-related factors, including omental tensile strength, collagen, and enzyme transcripts, helped discriminate metabolically compromised obesity. This is consistent with the hypothesis that WAT ECM physiology is intimately linked to metabolic health in obese humans, and the studies provide new tools to explore this relationship.

  12. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity.

    PubMed

    Lee, Mi-Jeong; Pramyothin, Pornpoj; Karastergiou, Kalypso; Fried, Susan K

    2014-03-01

    Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease

  13. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice.

    PubMed

    Neyrinck, Audrey M; Bindels, Laure B; Geurts, Lucie; Van Hul, Matthias; Cani, Patrice D; Delzenne, Nathalie M

    2017-11-01

    Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice

    PubMed Central

    Notarnicola, Maria; Tutino, Valeria; Tafaro, Angela; Bianco, Giusy; Guglielmi, Emilia; Caruso, Maria Gabriella

    2016-01-01

    BACKGROUND: Cannabinoid- 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation. Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation. OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status. METHODS: Four groups of animal were studied: ST group, receiving a standard diet; OO group, receiving the standard diet in which soybean oil (source of fats) was replaced with olive oil; OM-3 group, receiving the standard diet in which soybean oil was replaced with salmon oil; OM-6 group, receiving the standard diet in which soybean oil was replaced with oenothera oil. Gene and protein expression, in adipose tissue, were evaluated by RT-PCR and Western Blotting, respectively. Enzymatic activities were assayed by fluorescent and radiometric method, where appropriated. RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue. CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern. PMID:28035344

  15. Zinc-α2-glycoprotein expression in adipose tissue of obese postmenopausal women before and after weight loss and exercise + weight loss.

    PubMed

    Ge, Shealinna; Ryan, Alice S

    2014-08-01

    Zinc-Alpha 2-Glycoprotein (ZAG) has recently been implicated in the regulation of adipose tissue metabolism due to its negative association with obesity and insulin resistance. The purpose of this study is to investigate the relationships between adipose tissue ZAG expression and central obesity, and the effects of six-months of weight loss (WL) or aerobic exercise + weight loss (AEX + WL) on ZAG expression. A six-month, longitudinal study of 33 healthy, overweight or obese postmenopausal women (BMI: 25-46 kg/m(2)) was conducted. Abdominal and gluteal adipose tissue samples were obtained before and after AEX + WL (n = 17) and WL (n = 16). ZAG expression was determined by RT-PCR. Prior to interventions, abdominal ZAG expression was negatively correlated with visceral fat (r = -0.50, P < 0.005), sagittal diameter (r = -0.42, P < 0.05), and positively related to VO(2)max (r = 0.37, P < 0.05). Gluteal ZAG expression was negatively correlated with weight, fat-free mass, visceral fat, resting metabolic rate, and fasting insulin (r = -0.39 to -0.50, all P < 0.05). Abdominal ZAG mRNA levels increased, though not significantly, 5% after AEX + WL and 11% after WL. Gluteal ZAG mRNA levels also did not change significantly with AEX + WL and WL. Abdominal ZAG expression may be important in central fat accumulation and fitness but only modestly increase (nonsignificantly) with weight reduction alone or with aerobic training in obese postmenopausal women. Published by Elsevier Inc.

  16. The effects on weight loss and gene expression in adipose and hepatic tissues of very-low carbohydrate and low-fat isoenergetic diets in diet-induced obese mice.

    PubMed

    Yamazaki, Tomomi; Okawa, Sumire; Takahashi, Mayumi

    2016-01-01

    Obesity is caused by excessive fat or carbohydrate intake. The improvement of obesity is an important issue, especially in Western societies. Both low-carbohydrate diet (LCD) and low-fat diet (LFD) are used to achieve weight loss in humans. To clarify the mechanisms underlying LCD-induced weight loss, especially in early stage, we compared the gene expression in liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of a very-low carbohydrate diet (VLCD)- and LFD-fed diet-induced obese (DIO) mice. DIO male ddY mice were divided into high-fat diet (HFD), and isoenergetic VLCD and LFD groups. Pair-feeding was performed in the VLCD and LFD groups. Three weeks later, the body, liver, WAT and BAT were weighed and the serum and hepatic lipids, the mRNA expression levels in each tissue, and energy metabolism were analyzed. The caloric intake of the VLCD-fed mice was initially reduced but was subsequently restored. The total energy intake was similar in the VLCD- and LFD-fed mice. There was a similar decrease in the BW of the VLCD- and LFD-fed mice. The VLCD-fed mice had elevated levels of serum fibroblast growth factor 21 (FGF21) and ketone bodies, which are known to increase energy expenditure. The browning of WAT was observed to a greater extent in the VLCD-fed mice. Moreover, in the VLCD-fed mice, BAT activation was observed, the weight of the BAT was decreased, and the expression of G-protein-coupled receptor 120, type 2 iodothyronine deiodinase, and FGF21 in BAT was extremely increased. Although the energy expenditure of the VLCD- and LFD-fed mice did not differ, that of the VLCD-fed mice was sometimes higher during the dark cycle. Hepatic TG accumulation was reduced in LFD-fed mice due to their decreased fatty acid uptake but not in the VLCD-fed mice. The pro-inflammatory macrophage ratio was increased in the WAT of VLCD-fed mice. After 3 weeks, the isoenergetic VLCD- and LFD-fed DIO mice showed similar weight loss. The VLCD-fed mice increased serum

  17. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4.

    PubMed

    Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Gay, Jason; Sussan, Thomas E; Jun, Jonathan C; Myers, Allen C; Olivecrona, Gunilla; Schwartz, Alan R; Halberg, Nils; Scherer, Philipp E; Semenza, Gregg L; Powell, David R; Polotsky, Vsevolod Y

    2013-07-15

    Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

  18. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue1

    PubMed Central

    Lumeng, Carey N.; Liu, Jianhua; Geletka, Lynn; Delaney, Colin; DelProposto, Jennifer; Desai, Anjali; Oatmen, Kelsie; Martinez-Santibanez, Gabriel; Julius, Annabelle; Garg, Sanjay; Yung, Raymond L.

    2011-01-01

    Age-related adiposity has been linked to chronic inflammatory diseases in late-life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cell in fat. Therefore, we have performed a detailed examination of ATM subtypes in young and old mice using state of the art techniques. Our results demonstrate qualitative changes in ATMs with aging that generate a decrease in resident Type 2 (M2) ATMs. The profile of ATMs in old fat shifts towards a pro-inflammatory environment with increased numbers of CD206-CD11c- (double negative) ATMs. The mechanism of this aging-induced shift in the phenotypic profile of ATMs was found to be related to a decrease in PPARγ expression in ATMs and alterations in chemokine/chemokine receptor expression profiles. Furthermore, we have revealed a profound and unexpected expansion of adipose tissue T (ATT) cells in visceral fat with aging that includes a significant induction of regulatory T cells (Tregs) in fat. Our findings demonstrate a unique inflammatory cell signature in the physiologic context of aging adipose tissue that differs from those induced in setting of diet-induced obesity. PMID:22075699

  19. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine.

    PubMed

    Palmer, Allyson K; Kirkland, James L

    2016-12-15

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue

    PubMed Central

    Kim, Min; Neinast, Michael D.; Frank, Aaron P.; Sun, Kai; Park, Jiyoung; Zehr, Jordan A.; Vishvanath, Lavanya; Morselli, Eugenia; Amelotte, Mason; Palmer, Biff F.; Gupta, Rana K.; Scherer, Philipp E.; Clegg, Deborah J.

    2014-01-01

    Hypoxia Inducible Factor 1 (HIF-1) promotes fibrosis and inflammation in adipose tissues, while estrogens and Estrogen Receptor α (ERα) have the opposite effect. Here we identify an Estrogen Response Element (ERE) in the promoter of Phd3, which is a negative regulatory enzyme of HIF-1, and we demonstrate HIF-1α is ubiquitinated following 17-β estradiol (E2)/ERα mediated Phd3 transcription. Manipulating ERα in vivo increases Phd3 transcription and reduces HIF-1 activity, while addition of PHD3 ameliorates adipose tissue fibrosis and inflammation. Our findings outline a novel regulatory relationship between E2/ERα, PHD3 and HIF-1 in adipose tissues, providing a mechanistic explanation for the protective effect of E2/ERα in adipose tissue. PMID:25161887

  1. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less

  2. Depot-Specific Response of Adipose Tissue to Diet-Induced Inflammation: The Retinoid-Related Orphan Receptor α (RORα) Involved?

    PubMed

    Kadiri, Sarah; Auclair, Martine; Capeau, Jacqueline; Antoine, Bénédicte

    2017-11-01

    Epididymal adipose tissue (EAT), a visceral fat depot, is more closely associated with metabolic dysfunction than inguinal adipose tissue (IAT), a subcutaneous depot. This study evaluated whether the nuclear receptor RORα, which controls inflammatory processes, could be implicated. EAT and IAT were compared in a RORα loss-of-function mouse (sg/sg) and in wild-type (WT) littermates, fed a standard diet (SD) or a Western diet (WD), to evaluate the impact of RORα expression on inflammatory status and on insulin sensitivity (IS) of each fat depot according to the diet. Sg/sg mice fed the SD exhibited a decreased inflammatory status and a higher IS in their fat depots than WT mice. WD-induced obesity had distinct effects on the two fat depots. In WT mice, EAT exhibited increased inflammation and insulin resistance while IAT showed reduced inflammation and improved IS, together with a depot-specific increase of RORα, and its target gene IκBα, in the stroma vascular fraction (SVF). Conversely, in sg/sg mice, WD increased inflammation and lowered IS of IAT but not of EAT. These findings suggest an anti-inflammatory role for RORα in response to WD, which occurs at the level of SVF of IAT, thus possibly contributing to the "healthy" expansion of IAT. © 2017 The Obesity Society.

  3. Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity.

    PubMed

    Trayhurn, Paul

    2017-03-01

    Brown adipose tissue (BAT) was identified as a thermogenic organ in 1961, and in 1978 shown to be the major site of thermoregulatory non-shivering thermogenesis in rats acclimated to the cold. Investigations in the mid-late 1970s established the uncoupling of oxidative phosphorylation through a proton conductance pathway across the mitochondrial inner membrane as the mechanism for heat production in BAT, this being regulated by UCP1 which was first discovered as a 32,000 M r cold-inducible protein. These developments came when those concerned with nutritional energetics were proposing that thermogenesis is a significant factor in energy balance and the aetiology of obesity. A link with BAT was first demonstrated in obese ob/ob mice, which were shown to have decreased thermogenic activity in the tissue, and in rats exhibiting diet-induced thermogenesis (DIT) during overfeeding on a cafeteria diet where an activation of brown fat was evident. These pioneering observations led to extensive studies on BAT in different animal models of obesity, both genetic (particularly ob/ob and db/db mice, fa/fa rats) and experimentally-induced. In each case, indices of BAT activity and capacity (mitochondrial content, GDP binding, amount of UCP1) indicated that the tissue plays a role in DIT and that obesity is characterised by reduced thermogenesis. Links between BAT and whole-body energetics were also made in physiological situations such as lactation and fasting. Studies in the 1980s also provided clear evidence for the presence of BAT in adult humans, particularly through the detection of UCP1, and its activation in patients with phaeochromocytoma. Interest in BAT in energetics and obesity waned by the 1990s; the current major renewal of interest has undoubtedly been contingent on the pioneering developments that emerged some 40 years ago. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

    PubMed Central

    Haim, Yulia; Blüher, Matthias; Slutsky, Noa; Goldstein, Nir; Klöting, Nora; Harman-Boehm, Ilana; Kirshtein, Boris; Ginsberg, Doron; Gericke, Martin; Guiu Jurado, Esther; Kovsan, Julia; Tarnovscki, Tanya; Kachko, Leonid; Bashan, Nava; Gepner, Yiftach; Shai, Iris; Rudich, Assaf

    2015-01-01

    Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice (e2f1−/−) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1−/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic

  5. Microbiota-induced obesity requires farnesoid X receptor

    PubMed Central

    Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik

    2017-01-01

    Objective The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. Design We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr−/− mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. Results The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr−/− and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr−/− and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Conclusions Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. PMID:26740296

  6. Obesity, Inflammation, and Cancer.

    PubMed

    Deng, Tuo; Lyon, Christopher J; Bergin, Stephen; Caligiuri, Michael A; Hsueh, Willa A

    2016-05-23

    Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.

  7. Impaired Local Production of Proresolving Lipid Mediators in Obesity and 17-HDHA as a Potential Treatment for Obesity-Associated Inflammation

    PubMed Central

    Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K.; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E.; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N.; Stulnig, Thomas M.

    2013-01-01

    Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3–derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3–derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications. PMID:23349501

  8. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation.

    PubMed

    Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N; Stulnig, Thomas M

    2013-06-01

    Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3-derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3-derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications.

  9. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    PubMed Central

    Davis, Kathryn E.; D. Neinast, Michael; Sun, Kai; M. Skiles, William; D. Bills, Jessica; A. Zehr, Jordan; Zeve, Daniel; D. Hahner, Lisa; W. Cox, Derek; M. Gent, Lana; Xu, Yong; V. Wang, Zhao; A. Khan, Sohaib; Clegg, Deborah J.

    2013-01-01

    Our data demonstrate that estrogens, estrogen receptor-α (ERα), and estrogen receptor-β (ERβ) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that αERKO mice have increased adipose tissue inflammation and fibrosis prior to obesity onset. Selective deletion of adipose tissue ERα in adult mice using a novel viral vector technology recapitulated the findings in the total body ERα null mice. Generation of a novel mouse model, lacking ERα specifically from adipocytes (AdipoERα), demonstrated increased markers of fibrosis and inflammation, especially in the males. Additionally, we found that the beneficial effects of estrogens on adipose tissue require adipocyte ERα. Lastly, we determined the role of ERβ in regulating inflammation and fibrosis, by breeding the AdipoERα into the βERKO background and found that in the absence of adipocyte ERα, ERβ has a protective role. These data suggest that adipose tissue and adipocyte ERα protects against adiposity, inflammation, and fibrosis in both males and females. PMID:24049737

  10. The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.

    PubMed

    Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis

    2011-04-01

    Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.

  11. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: results of a pilot study

    PubMed Central

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchel; Santander, Ana M.; Mendez, Armando J.; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2014-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  12. Panax red ginseng extract regulates energy expenditures by modulating PKA dependent lipid mobilization in adipose tissue.

    PubMed

    Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup

    2014-05-16

    Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. ApoE and the role of very low density lipoproteins in adipose tissue inflammation

    USDA-ARS?s Scientific Manuscript database

    Our goal was too identify the role of triglyceride-rich lipoproteins and apoE, a major apolipoprotein in triglyceride-rich lipoproteins, in adipose tissue inflammation with high-fat diet induced obesity. Male apoE-/- and C57BL/6J wild-type mice fed high fat diets for 12 weeks were assessed for metab...

  14. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    PubMed Central

    Camacho, Jaime; Duque, Juan; Carreño, Marisol; Acero, Edward; Pérez, Máximo; Ramirez, Sergio; Umaña, Juan; Obando, Carlos; Guerrero, Albert; Sandoval, Néstor; Rodríguez, Gina

    2017-01-01

    Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases. PMID:29209367

  16. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    PubMed Central

    2011-01-01

    Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1) and fatty acid amide hydrolase (FAAH) are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years) underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9), caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13), or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8). Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P < 0.05). Compared to pre-intervention, CR did not change abdominal, but decreased gluteal CB1 (Δ = -0.82 ± 0.25, P < 0.05) and FAAH (Δ = -0.49 ± 0.14, P < 0.05) gene expression. CRM or CRV alone did not change adipose tissue CB1 and FAAH gene expression. However, combined CRM and CRV (CRM+CRV) decreased abdominal adipose tissue FAAH gene expression (Δ = -0.37 ± 0.18, P < 0.05). The changes in gluteal CB1 and abdominal FAAH gene expression levels in the CR alone and the CRM+CRV group were different (P < 0.05) or tended to be different (P = 0.10). Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue

  19. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    PubMed

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity

    PubMed Central

    Kuhajda, Francis P.; Tu, Yajun; Han, Wan Fang; Medghalchi, Susan M.; El Meskini, Rajaa; Landree, Leslie E.; Peterson, Jonathan M.; Daniels, Khadija; Wong, Kody; Wydysh, Edward A.; Townsend, Craig A.; Ronnett, Gabriele V.

    2011-01-01

    Storage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice. FSG67 administered intraperitoneally decreased body weight and energy intake, without producing conditioned taste aversion. Daily FSG67 (5 mg/kg, 15.3 μmol/kg) produced gradual 12% weight loss in DIO mice beyond that due to transient 9- to 10-day hypophagia (6% weight loss in pair-fed controls). Continued FSG67 maintained the weight loss despite return to baseline energy intake. Weight was lost specifically from fat mass. Indirect calorimetry showed partial protection by FSG67 against decreased rates of oxygen consumption seen with hypophagia. Despite low respiratory exchange ratio due to a high-fat diet, FSG67-treated mice showed further decreased respiratory exchange ratio, beyond pair-fed controls, indicating enhanced fat oxidation. Chronic FSG67 increased glucose tolerance and insulin sensitivity in DIO mice. Chronic FSG67 decreased gene expression for lipogenic enzymes in white adipose tissue and liver and decreased lipid accumulation in white adipose, brown adipose, and liver tissues without signs of damage. RT-PCR showed decreased gene expression for orexigenic hypothalamic neuropeptides AgRP or NPY after acute and chronic systemic FSG67. FSG67 given intracerebroventricularly (100 and 320 nmol icv) produced 24-h weight loss and feeding suppression, indicating contributions from direct central nervous system sites of action. Together, these data point to GPAT as a new potential therapeutic target for the management of obesity and its comorbidities. PMID:21490364

  1. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    PubMed Central

    Sun, Chao; Zeng, Ruixia; Cao, Ge; Song, Zhibang; Zhang, Yibo; Liu, Chang

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve. PMID:26125027

  2. A role of low dose chemical mixtures in adipose tissue in carcinogenesis.

    PubMed

    Lee, Duk-Hee; Jacobs, David R; Park, Ho Yong; Carpenter, David O

    2017-11-01

    The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice

    PubMed Central

    Takahashi, Yumiko; Sakurai, Mutsumi; Akimoto, Yukari; Tsushida, Tojiro; Oike, Hideaki; Ippoushi, Katsunari

    2015-01-01

    Scope To examine the effect of dietary quercetin on the function of epididymal adipose tissue (EAT) in Western diet‐induced obese mice. Methods and results C57BL/6J mice were fed a control diet; a Western diet high in fat, cholesterol, and sucrose; or the same Western diet containing 0.05% quercetin for 18 weeks. Supplementation with quercetin suppressed the increase in the number of macrophages, the decrease in the ratio of CD4+ to CD8+ T cells in EAT, and the elevation of plasma leptin and tumor necrosis factor α levels in mice fed the Western diet. Comprehensive gene expression analysis revealed that quercetin suppressed gene expression associated with the accumulation and activation of immune cells, including macrophages and lymphocytes in EAT. It also improved the expression of the oxidative stress‐sensitive transcription factor NFκB, NADPH oxidases, and antioxidant enzymes. Quercetin markedly increased gene expression associated with mitochondrial oxidative phosphorylation and mitochondrial DNA content. Conclusion Quercetin most likely universally suppresses the accumulation and activation of immune cells, including antiinflammatory cells, whereas it specifically increased gene expression associated with mitochondrial oxidative phosphorylation. Suppression of oxidative stress and NFκB activity likely contributed to the prevention of the accumulation and activation of immune cells and resulting chronic inflammation. PMID:26499876

  4. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice.

    PubMed

    Zhang, C; McFarlane, C; Lokireddy, S; Masuda, S; Ge, X; Gluckman, P D; Sharma, M; Kambadur, R

    2012-01-01

    Although myostatin-null (Mstn (-/-)) mice fail to accumulate fat in adipose tissue when fed a high-fat diet (HFD), little is known about the molecular mechanism(s) behind this phenomenon. We therefore sought to identify the signalling pathways through which myostatin regulates accumulation and/or utilisation of fat. Wild-type, Mstn (-/-) and wild-type mice treated with soluble activin type IIB receptor (sActRIIB) were fed a control chow diet or an HFD for 12 weeks. Changes in gene expression were measured by microarray and quantitative PCR. Histological changes in white adipose tissue were assessed together with peripheral tissue fatty acid oxidation and changes in circulating hormones following HFD feeding. Our results demonstrate that inactivation of myostatin results in reduced fat accumulation in mice on an HFD. Molecular analysis revealed that metabolic benefits, due to lack of myostatin, are mediated through at least two independent mechanisms. First, lack of myostatin increased fatty acid oxidation in peripheral tissues through induction of enzymes involved in lipolysis and in fatty acid oxidation in mitochondria. Second, inactivation of myostatin also enhanced brown adipose formation in white adipose tissue of Mstn (-/-) mice. Consistent with the above, treatment of HFD-fed wild-type mice with the myostatin antagonist, sActRIIB, reduced the obesity phenotype. We conclude that absence of myostatin results in enhanced peripheral tissue fatty acid oxidation and increased thermogenesis, culminating in increased fat utilisation and reduced adipose tissue mass. Taken together, our data suggest that anti-myostatin therapeutics could be beneficial in alleviating obesity.

  5. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.

    PubMed

    Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J

    2017-12-01

    Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.

  6. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  7. Zinc-α2-Glycoprotein Expression in Adipose Tissue of Obese Postmenopausal Women before and after Weight Loss with and without Exercise

    PubMed Central

    Ge, Shealinna; Ryan, Alice S.

    2014-01-01

    Objective Zinc-Alpha 2-Glycoprotein (ZAG) has recently been implicated in the regulation of adipose tissue metabolism due to its negative association with obesity and insulin resistance. The purpose of this study is to investigate the relationships between adipose tissue ZAG expression and central obesity, and the effects of six-months of weight loss (WL) or aerobic exercise + weight loss (AEX+WL) on ZAG expression. Design and Methods A six-month, longitudinal study of 33 healthy, overweight or obese postmenopausal women (BMI: 25–46 kg/m2) was conducted. Abdominal and gluteal adipose tissue samples were obtained before and after AEX+WL (n=17) and WL (n=16). ZAG expression was determined by RT-PCR. Results Prior to interventions, abdominal ZAG expression was negatively correlated with visceral fat (r=−0.50, P<0.005), sagittal diameter (r=−0.42, P<0.05), and positively related to VO2max (r=0.37, P<0.05). Gluteal ZAG expression was negatively correlated with weight, fat-free mass, visceral fat, resting metabolic rate, and fasting insulin (r=−0.39 to −0.50, all P<0.05). Abdominal ZAG mRNA levels increased, though not significantly, 5% after AEX+WL and 11% after WL. Gluteal ZAG mRNA levels also did not change significantly with AEX+WL and WL. Conclusions Abdominal ZAG expression may be important in central fat accumulation and fitness that modestly but not significantly increases with weight reduction alone or with aerobic training in obese postmenopausal women. PMID:24929893

  8. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function

    PubMed Central

    Hildebrand, Staffan; Stümer, Jasmin; Pfeifer, Alexander

    2018-01-01

    Adipose tissue is commonly categorized into three types with distinct functions, phenotypes, and anatomical localizations. White adipose tissue (WAT) is the major energy store; the largest depots of WAT are found in subcutaneous or intravisceral sites. Brown adipose tissue (BAT) is responsible for energy dissipation during cold-exposure (i.e., non-shivering thermogenesis) and is primarily located in the interscapular region. Beige or brite (brown-in-white) adipose tissue can be found interspersed in WAT and can attain a brown-like phenotype. These three types of tissues also have endocrine functions and play major roles in whole body metabolism especially in obesity and its co-morbidities, such as cardiovascular disease. Over the last years, perivascular adipose tissue (PVAT) has emerged as an adipose organ with endocrine and paracrine functions. Pro and anti-inflammatory agents released by PVAT affect vascular health, and are implicated in the inflammatory aspects of atherosclerosis. PVAT shares several of the defining characteristics of brown adipose tissue, including its cellular morphology and expression of thermogenic genes characteristic for brown adipocytes. However, PVATs from different vessels are phenotypically different, and significant developmental differences exist between PVAT and other adipose tissues. Whether PVAT represents classical BAT, beige adipose tissue, or WAT with changing characteristics, is unclear. In this review, we summarize the current knowledge on how PVAT relates to other types of adipose tissue, both in terms of functionality, developmental origins, and its role in obesity-related cardiovascular disease and inflammation. PMID:29467675

  9. Redox implications in adipose tissue (dys)function—A new look at old acquaintances

    PubMed Central

    Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Otasevic, Vesna; Stancic, Ana; Daiber, Andreas; Korac, Bato

    2015-01-01

    Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. PMID:26177468

  10. Increased Interleukin-32 Levels in Obesity Promote Adipose Tissue Inflammation and Extracellular Matrix Remodeling: Effect of Weight Loss.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Landecho, Manuel F; Silva, Camilo; Salvador, Javier; Frühbeck, Gema

    2016-12-01

    Interleukin (IL)-32 is a recently described cytokine involved in the regulation of inflammation. We aimed to explore whether IL-32 could function as an inflammatory and angiogenic factor in human obesity and obesity-associated type 2 diabetes. Samples obtained from 90 subjects were used in the study. Obese patients exhibited higher expression levels of IL-32 in visceral adipose tissue (AT) as well as in subcutaneous AT and peripheral blood mononuclear cells. IL32 was mainly expressed by stromovascular fraction cells, and its expression was significantly enhanced by inflammatory stimuli and hypoxia, whereas no changes were found after the incubation with anti-inflammatory cytokines. The addition of exogenous IL-32 induced the expression of inflammation and extracellular matrix-related genes in human adipocyte cultures, and IL32-silenced adipocytes showed a downregulation of inflammatory genes. Furthermore, adipocyte-conditioned media obtained from obese patients increased IL32 gene expression in human monocyte cultures, whereas the adipocyte-conditioned media from lean volunteers had no effect on IL32 mRNA levels. These findings provide evidence, for the first time, about the inflammatory and remodeling properties of IL-32 in AT, implicating this cytokine in obesity-associated comorbidities. © 2016 by the American Diabetes Association.

  11. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  12. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease.

    PubMed

    Almeida-Oliveira, Fernanda; Leandro, João G B; Ausina, Priscila; Sola-Penna, Mauro; Majerowicz, David

    2017-04-01

    Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: Implications of nitric oxide.

    PubMed

    Kumar, Durgesh; Shankar, Kripa; Patel, Saraswati; Gupta, Abhishek; Varshney, Salil; Gupta, Sanchita; Rajan, Sujith; Srivastava, Ankita; Vishwakarma, Achchhe Lal; Gaikwad, Anil N

    2018-05-10

    Various imperative studies support the notion that hyperinsulinemia (HI) itself serves as the common link between adipose tissue inflammation (ATI) and metabolic syndrome. However, the contribution of HI mediated ATI and its metabolic consequences are yet to be explored. We induced chronic HI per se in mice by administration of exogenous insulin for 8 weeks through mini-osmotic pumps. For the reduction of circulating insulin in response to excess calorie intake, we have partially ablated β-cells by using streptozotocin (STZ) in the diet-induced obesity (DIO) and genetic mice models (db/db). Flow cytometry analysis was performed for the quantification of immune cells in stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). Our studies demonstrated that chronic HI augmented ATI in terms of elevated pro-inflammatory cells (M1 macrophages and NK-cells) and suppressed anti-inflammatory cells (M2 macrophages, eosinophils and regulatory T-cells). These results were correlated with altered obesity-associated metabolic phenotype. Partial reduction of circulating insulin level attenuated excess calorie-induced ATI and improved insulin sensitivity. Mechanistically, an imbalance in M1 and M2 macrophage proportions in eWAT promoted iNOS (inducible nitric oxide synthase): arginase-1 imbalance that resulted into extracellular matrix (ECM) deposition and insulin resistance (IR) development. However, iNOS -/- mice were protected from HI-induced M1:M2 macrophage imbalance, ECM deposition and IR in adipose tissue. Overall, we conclude that chronic HI per se contributed in ATI and iNOS corroborated ECM deposition. Copyright © 2018. Published by Elsevier B.V.

  14. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance.

    PubMed

    Baranova, Ancha; Gowder, Shobha J; Schlauch, Karen; Elariny, Hazem; Collantes, Rochelle; Afendy, Arian; Ong, Janus P; Goodman, Zachary; Chandhoke, Vikas; Younossi, Zobair M

    2006-09-01

    Adipose tissue is an active endocrine organ that secretes a variety of metabolically important substances including adipokines. These factors affect insulin sensitivity and may represent a link between obesity, insulin resistance, type 2 diabetes (DM), and nonalcoholic fatty liver disease (NAFLD). This study uses real-time polymerase chain reaction (PCR) quantification of mRNAs encoding adiponectin, leptin, and resistin on snap-frozen samples of intra-abdominal adipose tissue of morbidly obese patients undergoing bariatric surgery. Morbidly obese patients undergoing bariatric surgery were studied. Patients were classified into two groups: Group A (with insulin resistance) (N=11; glucose 149.84 +/- 40.56 mg/dL; serum insulin 8.28 +/- 3.52 microU/mL), and Group B (without insulin resistance) (N=10; glucose 102.2 +/- 8.43 mg/dL; serum insulin 3.431 +/- 1.162 microU/mL). Adiponectin mRNA in intra-abdominal adipose tissue and serum adiponectin levels were significantly lower in Group A compared to Group B patients (P<0.016 and P<0.03, respectively). Although serum resistin was higher in Group A than in Group B patients (P<0.005), resistin gene expression was not different between the two groups. Finally, for leptin, neither serum level nor gene expression was different between the two groups. Serum adiponectin level was the only predictor of nonalcoholic steatohepatitis (NASH) in this study (P=0.024). Obese patients with insulin resistance have decreased serum adiponectin and increased serum resistin. Additionally, adiponectin gene expression is also decreased in the adipose tissue of these patients. This low level of adiponectin expression may predispose patients to the progressive form of NAFLD or NASH.

  15. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  16. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  17. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults.

    PubMed

    Piccolo, Brian D; Dolnikowski, Gregory; Seyoum, Elias; Thomas, Anthony P; Gertz, Erik R; Souza, Elaine C; Woodhouse, Leslie R; Newman, John W; Keim, Nancy L; Adams, Sean H; Van Loan, Marta D

    2013-08-26

    Cholecalciferol is known to be deposited in human adipose tissue, but it is not known whether 25-hydroxyvitamin D (25(OH)D) is found in detectable concentrations. Therefore, our objective was to determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons enrolled in a twelve week energy restricted diet. Baseline and post-intervention gluteal SWAT biopsies were collected from 20 subjects participating in a larger clinical weight loss intervention. LC-MS/MS was utilized to determine SWAT 25(OH)D concentrations. Serum 25(OH)D and 1,25(OH)2D were measured by RIA. Body composition was assessed by dual energy x-ray absorptiometry. SWAT 25(OH)D concentrations were 5.8 ± 2.6 nmol/kg tissue and 6.2 ± 2.7 nmol/kg tissue pre- and post-intervention SWAT, respectively. There was a significant positive association between SWAT 25(OH)D concentration and serum 25(OH)D concentration (r = 0.52, P < 0.01). Both SWAT and serum 25(OH)D concentrations did not significantly change after a twelve-week period of energy restriction with approximately 5 kg of fat loss. In conclusion, we have demonstrated our LC-MS/MS method can detect 25(OH)D3 in human subcutaneous fat tissue from overweight and obese individuals and is consistent with previously reported concentrations in swine. Additionally, our findings of no significant changes in SWAT 25(OH)D3 or serum 25(OH)D after a 6% loss of total body weight and 13% reduction in total fat provides the first human evidence that adipose 25(OH)D does not likely contribute to serum 25(OH)D with moderate weight loss; whether this is also the case with larger amounts of weight loss is unknown. Weight loss alone is not sufficient to increase serum 25(OH)D and increases in dietary or dermal biosynthesis of vitamin D appear to be the most critical contributors to in vitamin D status.

  18. Mapping of human brown adipose tissue in lean and obese young men

    PubMed Central

    Leitner, Brooks P.; Huang, Shan; Brychta, Robert J.; Duckworth, Courtney J.; Baskin, Alison S.; McGehee, Suzanne; Tal, Ilan; Dieckmann, William; Gupta, Garima; Kolodny, Gerald M.; Pacak, Karel; Herscovitch, Peter

    2017-01-01

    Human brown adipose tissue (BAT) can be activated to increase glucose uptake and energy expenditure, making it a potential target for treating obesity and metabolic disease. Data on the functional and anatomic characteristics of BAT are limited, however. In 20 healthy young men [12 lean, mean body mass index (BMI) 23.2 ± 1.9 kg/m2; 8 obese, BMI 34.8 ± 3.3 kg/m2] after 5 h of tolerable cold exposure, we measured BAT volume and activity by 18F-labeled fluorodeoxyglucose positron emission tomography/computerized tomography (PET/CT). Obese men had less activated BAT than lean men (mean, 130 vs. 334 mL) but more fat in BAT-containing depots (mean, 1,646 vs. 855 mL) with a wide range (0.1–71%) in the ratio of activated BAT to inactive fat between individuals. Six anatomic regions had activated BAT—cervical, supraclavicular, axillary, mediastinal, paraspinal, and abdominal—with 67 ± 20% of all activated BAT concentrated in a continuous fascial layer comprising the first three depots in the upper torso. These nonsubcutaneous fat depots amounted to 1.5% of total body mass (4.3% of total fat mass), and up to 90% of each depot could be activated BAT. The amount and activity of BAT was significantly influenced by region of interest selection methods, PET threshold criteria, and PET resolutions. The present study suggests that active BAT can be found in specific adipose depots in adult humans, but less than one-half of the fat in these depots is stimulated by acute cold exposure, demonstrating a previously underappreciated thermogenic potential. PMID:28739898

  19. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis.

    PubMed

    Kalinkovich, Alexander; Livshits, Gregory

    2017-05-01

    Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway. Copyright © 2016 Elsevier B.V. All rights

  20. The tumour suppressor CDKN2A/p16INK4a regulates adipogenesis and bone marrow-dependent development of perivascular adipose tissue

    PubMed Central

    Wouters, Kristiaan; Deleye, Yann; Hannou, Sarah A; Vanhoutte, Jonathan; Maréchal, Xavier; Coisne, Augustin; Tagzirt, Madjid; Derudas, Bruno; Bouchaert, Emmanuel; Duhem, Christian; Vallez, Emmanuelle; Schalkwijk, Casper G; Pattou, François; Montaigne, David; Staels, Bart; Paumelle, Réjane

    2017-01-01

    The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk. PMID:28868898

  1. Licochalcone F alleviates glucose tolerance and chronic inflammation in diet-induced obese mice through Akt and p38 MAPK.

    PubMed

    Bak, Eun-Jung; Choi, Kyung-Chul; Jang, Sungil; Woo, Gye-Hyeong; Yoon, Ho-Geun; Na, Younghwa; Yoo, Yun-Jung; Lee, Youngseok; Jeong, Yangsik; Cha, Jeong-Heon

    2016-04-01

    Licochalcone (lico) F is a novel synthetic retrochalcone. In this study, we investigated the anti-inflammatory effects of lico F in vitro, and its effects on obesity-induced chronic inflammation, glucose intolerance, and fatty liver in vivo. The inhibitory effects of lico F on TNFα-induced inflammation were investigated using NF-κB luciferase reporter assay and RT-PCR. Diet-induced obese mice were treated orally, once per day, with vehicle or lico F (10 mg/kg/day), for 3 weeks, and blood, liver, and adipose tissues were analyzed. Lico F inhibited TNFα-induced NF-κB activation and mRNA expression of TNFα, COX-2, IL-6, IL-1β, and NOS2. In obese mice, lico F administration significantly alleviated glucose tolerance without changes in body weight gain and food intake. Lico F reduced adipocyte size and macrophage infiltration into white adipose tissue and improved hepatic lesions, by decreasing fat droplets and glycogen deposition. The mRNA expression levels of TNFα, MCP-1, and CD68 in white adipose tissue also decreased markedly. Moreover, lico F enhanced Akt signaling, but reduced p38 MAPK signaling in white adipose tissue. Lico F had anti-inflammatory effects and showed beneficial effects on glucose metabolism, which could be partially caused by activation of the Akt signal pathway and obesity-induced chronic inflammation, probably by downregulating p38 signal pathway. Moreover, lico F could be used as a potential novel therapeutic compound against type 2 diabetes and obesity-induced chronic inflammation without the deleterious effects of body weight gain and fatty liver. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.

    PubMed

    Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C

    2016-09-01

    To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue.

    PubMed

    Narvaez, Carmen J; Matthews, Donald; Broun, Emily; Chan, Michelle; Welsh, JoEllen

    2009-02-01

    Increased adiposity is a feature of aging in both mice and humans, but the molecular mechanisms underlying age-related changes in adipose tissue stores remain unclear. In previous studies, we noted that 18-month-old normocalcemic vitamin D receptor (VDR) knockout (VDRKO) mice exhibited atrophy of the mammary adipose compartment relative to wild-type (WT) littermates, suggesting a role for VDR in adiposity. Here we monitored body fat depots, food intake, metabolic factors, and gene expression in WT and VDRKO mice on the C57BL6 and CD1 genetic backgrounds. Regardless of genetic background, both sc and visceral white adipose tissue depots were smaller in VDRKO mice than WT mice. The lean phenotype of VDRKO mice was associated with reduced serum leptin and compensatory increased food intake. Similar effects on adipose tissue, leptin and food intake were observed in mice lacking Cyp27b1, the 1alpha-hydroxylase enzyme that generates 1,25-dihydroxyvitamin D(3), the VDR ligand. Although VDR ablation did not reduce expression of peroxisome proliferator-activated receptor-gamma or fatty acid synthase, PCR array screening identified several differentially expressed genes in white adipose tissue from WT and VDRKO mice. Uncoupling protein-1, which mediates dissociation of cellular respiration from energy production, was greater than 25-fold elevated in VDRKO white adipose tissue. Consistent with elevation in uncoupling protein-1, VDRKO mice were resistant to high-fat diet-induced weight gain. Collectively, these studies identify a novel role for 1,25-dihydroxyvitamin D(3) and the VDR in the control of adipocyte metabolism and lipid storage in vivo.

  4. Microbiota-induced obesity requires farnesoid X receptor.

    PubMed

    Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik

    2017-03-01

    The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr -deficient mice to GF wild-type mice. The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity

    PubMed Central

    Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.

    2013-01-01

    Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450

  6. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    USDA-ARS?s Scientific Manuscript database

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  7. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation.

    PubMed

    Tan, Qiu-Wen; Zhang, Yi; Luo, Jing-Cong; Zhang, Di; Xiong, Bin-Jun; Yang, Ji-Qiao; Xie, Hui-Qi; Lv, Qing

    2017-06-01

    Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017. © 2017 Wiley Periodicals, Inc.

  8. Serum Progranulin Concentrations May Be Associated With Macrophage Infiltration Into Omental Adipose Tissue

    PubMed Central

    Youn, Byung-Soo; Bang, Sa-Ik; Klöting, Nora; Park, Ji Woo; Lee, Namseok; Oh, Ji-Eun; Pi, Kyung-Bae; Lee, Tae Hee; Ruschke, Karen; Fasshauer, Mathias; Stumvoll, Michael; Blüher, Matthias

    2009-01-01

    OBJECTIVE—Progranulin is an important molecule in inflammatory response. Chronic inflammation is frequently associated with central obesity and associated disturbances; however, the role of circulating progranulin in human obesity, type 2 diabetes, and dyslipidemia is unknown. RESEARCH DESIGN AND METHODS—For the measurement of progranulin serum concentrations, we developed an enzyme-linked immunosorbent assay (ELISA). Using this ELISA, we assessed circulating progranulin in a cross-sectional study of 209 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance and in 60 individuals with normal (NGT) or impaired (IGT) glucose tolerance or type 2 diabetes before and after a 4-week physical training program. Progranulin mRNA and protein expression was measured in paired samples of omental and subcutaneous adipose tissue (adipocytes and cells of the stromal vascular fraction) from 55 lean or obese individuals. Measurement of Erk activation and chemotactic activity induced by progranulin in vitro was performed using THP-1–based cell migration assays. RESULTS—Progranulin serum concentrations were significantly higher in individuals with type 2 diabetes compared with NGT and in obese subjects with predominant visceral fat accumulation. Circulating progranulin significantly correlates with BMI, macrophage infiltration in omental adipose tissue, C-reactive protein (CRP) serum concentrations, A1C values, and total cholesterol. Multivariable linear regression analyses revealed CRP levels as the strongest independent predictor of circulating progranulin. The extent of in vitro progranulin-mediated chemotaxis is similar to that of monocyte chemoattractant protein-1 but independent of Gα. Moreover, in type 2 diabetes, but not in IGT and NGT individuals, physical training for 4 weeks resulted in significantly decreased circulating progranulin levels. CONCLUSIONS—Elevated progranulin serum concentrations are associated

  9. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome.

    PubMed

    Ge, Qian; Brichard, Sonia; Yi, Xu; Li, QiFu

    2014-01-01

    Obesity is associated closely with the metabolic syndrome (MS). It is well known that obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of MS. White adipose tissue (AT) is the primary site for the initiation and exacerbation of obesity-associated inflammation. Exploring the mechanisms of white AT inflammation and resetting the immunological balance in white AT could be crucial for the management of MS. Several prominent molecular mechanisms have been proposed to mediate inflammation in white AT, including hypoxia, endoplasmic reticulum stress, lipotoxicity, and metabolic endotoxemia. Recently, a growing body of evidence supports the role of miRNAs as a new important inflammatory mediator by regulating both the adaptive and innate immunity. This review will focus on the implication of miRNAs in white AT inflammation in obesity, and will also highlight the potential of miRNAs as targets for therapeutic intervention in MS as well as the challenges lying in miRNA-targeting therapeutics.

  10. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running

    PubMed Central

    Toedebusch, Ryan G.; Roberts, Christian K.; Roberts, Michael D.; Booth, Frank W.

    2015-01-01

    In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life. PMID:26678390

  11. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running.

    PubMed

    Ruegsegger, Gregory N; Company, Joseph M; Toedebusch, Ryan G; Roberts, Christian K; Roberts, Michael D; Booth, Frank W

    2015-01-01

    In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex 'omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10-11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.

  12. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    PubMed Central

    2010-01-01

    Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB). Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects. Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes. PMID:20426869

  13. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  14. From the Cover: Adipose tissue mass can be regulated through the vasculature

    NASA Astrophysics Data System (ADS)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  15. Quantification of adipose tissue in a rodent model of obesity

    NASA Astrophysics Data System (ADS)

    Johnson, David H.; Flask, Chris; Wan, Dinah; Ernsberger, Paul; Wilson, David L.

    2006-03-01

    Obesity is a global epidemic and a comorbidity for many diseases. We are using MRI to characterize obesity in rodents, especially with regard to visceral fat. Rats were scanned on a 1.5T clinical scanner, and a T1W, water-spoiled image (fat only) was divided by a matched T1W image (fat + water) to yield a ratio image related to the lipid content in each voxel. The ratio eliminated coil sensitivity inhomogeneity and gave flat values across a fat pad, except for outlier voxels (> 1.0) due to motion. Following sacrifice, fat pad volumes were dissected and measured by displacement in canola oil. In our study of 6 lean (SHR), 6 dietary obese (SHR-DO), and 9 genetically obese rats (SHROB), significant differences in visceral fat volume was observed with an average of 29+/-16 ml increase due to diet and 84+/-44 ml increase due to genetics relative to lean control with a volume of 11+/-4 ml. Subcutaneous fat increased 14+/-8 ml due to diet and 198+/-105 ml due to genetics relative to the lean control with 7+/-3 ml. Visceral fat strongly correlated between MRI and dissection (R2 = 0.94), but MRI detected over five times the subcutaneous fat found with error-prone dissection. Using a semi-automated images segmentation method on the ratio images, intra-subject variation was very low. Fat pad composition as estimated from ratio images consistently differentiated the strains with SHROB having a greater lipid concentration in adipose tissues. Future work will include in vivo studies of diet versus genetics, identification of new phenotypes, and corrective measures for obesity; technical efforts will focus on correction for motion and automation in quantification.

  16. Central Adiposity is Negatively Associated with Hippocampal-Dependent Relational Memory among Overweight and Obese Children

    PubMed Central

    Khan, Naiman A.; Baym, Carol L.; Monti, Jim M.; Raine, Lauren B.; Drollette, Eric S.; Scudder, Mark R.; Moore, R. Davis; Kramer, Arthur F.; Hillman, Charles H.; Cohen, Neal J.

    2014-01-01

    Objective To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Study design Prepubertal children (7–9-year-olds, n = 126), classified as non-overweight (<85th %tile BMI-for-age [n = 73]) or overweight/obese (≥85th %tile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks, and performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (%whole body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed using DXA. Backward regressions identified significant (P <0.05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status, IQ, oxygen consumption (VO2max), and body mass index (BMI) z-score. Results Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with socioeconomic status jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of socioeconomic status and BMI z-score jointly predicted the PDV measure of relational memory. Conclusions Regional, and not whole body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. PMID:25454939

  17. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children.

    PubMed

    Khan, Naiman A; Baym, Carol L; Monti, Jim M; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Moore, R Davis; Kramer, Arthur F; Hillman, Charles H; Cohen, Neal J

    2015-02-01

    To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Prepubertal children (age 7-9 years; n = 126), classified as non-overweight (<85th percentile body mass index [BMI]-for-age [n = 73]) or overweight/obese (≥85th percentile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks. Performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (ie, percent whole-body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed by dual-energy X-ray absorptiometry. Backward regression identified significant (P < .05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status (SES), IQ, oxygen consumption, and BMI z-score. Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with SES jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of SES and BMI z-score jointly predicted the PDV measure of relational memory. Regional, but not whole-body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Impairment of adipose tissue in Prader-Willi syndrome rescued by growth hormone treatment.

    PubMed

    Cadoudal, T; Buléon, M; Sengenès, C; Diene, G; Desneulin, F; Molinas, C; Eddiry, S; Conte-Auriol, F; Daviaud, D; Martin, P G P; Bouloumié, A; Salles, J-P; Tauber, M; Valet, P

    2014-09-01

    Prader-Willi syndrome (PWS) results from abnormalities in the genomic imprinting process leading to hypothalamic dysfunction with an alteration of growth hormone (GH) secretion. PWS is associated with early morbid obesity and short stature which can be efficiently improved with GH treatment. Our aims were to highlight adipose tissue structural and functional impairments in children with PWS and to study the modifications of those parameters on GH treatment. Plasma samples and adipose tissue biopsies were obtained from 23 research centers in France coordinated by the reference center for PWS in Toulouse, France. Lean controls (n=33), non-syndromic obese (n=53), untreated (n=26) and GH-treated PWS (n=43) children were enrolled in the study. Adipose tissue biopsies were obtained during scheduled surgeries from 15 lean control, 7 untreated and 8 GH-treated PWS children. Children with PWS displayed higher insulin sensitivity as shown by reduced glycemia, insulinemia and HOMA-IR compared with non-syndromic obese children. In contrast, plasma inflammatory cytokines such as TNF-α, MCP-1 and IL-8 were increased in PWS. Analysis of biopsies compared with control children revealed decreased progenitor cell content in the stromal vascular fraction of adipose tissue and an impairment of lipolytic response to β-adrenergic agonist in PWS adipocytes. Interestingly, both of these alterations in PWS seem to be ameliorated on GH treatment. Herein, we report adipose tissue dysfunctions in children with PWS which may be partially restored by GH treatment.

  19. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling

    PubMed Central

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-01-01

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases. PMID:28415686

  20. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling.

    PubMed

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-05-09

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.

  1. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    PubMed

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  2. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  3. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    PubMed

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  4. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease

    PubMed Central

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-01-01

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675

  5. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  6. 18β-glycyrrhetinic acid attenuates anandamide-induced adiposity and high-fat diet induced obesity.

    PubMed

    Park, Miyoung; Lee, Ji-Hae; Choi, Jin Kyu; Hong, Yong Deog; Bae, Il-Hong; Lim, Kyung-Min; Park, Young-Ho; Ha, Hunjoo

    2014-07-01

    Previous reports suggest that licorice extract has various metabolically beneficial effects and may help to alleviate adiposity and hyperlipidemia. However, underlying anti-obesity mechanisms still remain elusive. Moreover, it is unknown which single ingredient in licorice extract would mediate such effects. We aimed to demonstrate that licorice extract and its active ingredients can inhibit adipocyte differentiation and fat accumulation. 18β-glycyrrhetinic acid (18β-GA) alleviated the effects of CB1R agonist, anandamide (AEA) on CB1R signaling in a concentration-dependent manner. Consistently, 18β-GA suppressed AEA-induced adipocyte differentiation in 3T3-L1 cells through the downregulation of AEA-induced MAPK activation and expression of adipogenic genes including C/EBP-α and PPAR-γ. The protein levels of fatty acid synthase and stearoyl-CoA desaturase 1 were also decreased and the phosphorylation of acetyl-CoA carboxylase was increased in 18β-GA pretreated cells. The supplementation of 18β-GA significantly lowered body weight, fat weight, and plasma lipids levels in obese animal models. These results may provide a novel insight into the molecular mechanism involved in anti-adipogenic and anti-obesity effects of 18β-GA by suppressing the activation of CB1R induced by AEA. Thus, 18β-GA may exert beneficial effects against obesity-related metabolic disorders. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS).

    PubMed

    Borruel, Susana; Fernández-Durán, Elena; Alpañés, Macarena; Martí, David; Alvarez-Blasco, Francisco; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2013-03-01

    Sexual dimorphism suggests a role for androgens in body fat distribution. Women with polycystic ovary syndrome (PCOS), a mainly androgen excess disorder, often present with abdominal obesity and visceral adiposity. We hypothesized that women with PCOS have a masculinized body fat distribution favoring the deposition of fat in visceral and organ-specific adipose tissue depots. This was a case-control study. The study was conducted at an academic hospital. Women with PCOS (n = 55), women without androgen excess (n = 25), and men (n = 26) presenting with similar body mass index participated in the study. There were no interventions. Ultrasound measurements of adipose tissue depots including sc (minimum and maximum), preperitoneal, ip, mesenteric, epicardial, and perirenal fat thickness were obtained and total body fat mass was estimated using a body fat monitor. Men and patients with PCOS had increased amounts of total body fat compared with control women. Men had increased thickness of intraabdominal adipose tissue depots compared with the control women, with the women with PCOS showing intermediate values that were also higher than those of control women in the case of ip and mesenteric fat thickness and was close to reaching statistical significance in the case of epicardial fat thickness. Women with PCOS also showed increased minimum sc fat thickness compared with the control women. Obesity increased the thickness of all of the adipose tissue depots in the 3 groups of subjects. Women with PCOS have higher global adiposity and increased amounts of visceral adipose tissue compared with control women, especially in the ip and mesenteric depots.

  8. Adipocyte-Macrophage Cross-Talk in Obesity.

    PubMed

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  9. Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

    PubMed Central

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances. PMID:19833879

  10. Complement factor H is expressed in adipose tissue in association with insulin resistance.

    PubMed

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.

  11. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study.

    PubMed

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchell; Santander, Ana M; Mendez, Armando J; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2015-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  12. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    PubMed

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  13. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.

    PubMed

    Stachowiak, M; Szczerbal, I; Switonski, M

    2016-01-01

    The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  15. Sex-dependent effects of neonatal maternal deprivation on endocannabinoid levels in the adipose tissue: influence of diet.

    PubMed

    Mela, Virginia; Piscitelli, Fabiana; Berzal, Alvaro Llorente; Chowen, Julie; Silvestri, Cristoforo; Viveros, Maria Paz; Di Marzo, Vincenzo

    2016-08-01

    Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.

  16. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    USDA-ARS?s Scientific Manuscript database

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  17. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes?

    PubMed

    Chen, Peizhu; Hou, Xuhong; Hu, Gang; Wei, Li; Jiao, Lei; Wang, Hongmei; Chen, Siyu; Wu, Jingzhu; Bao, Yuqian; Jia, Weiping

    2018-06-26

    Previous studies have documented that visceral adipose tissue is positively associated with the risk of diabetes. However, the association of subcutaneous adipose tissue with diabetes risk is still in dispute. We aimed to assess the associations between different adipose distributions and the risk of newly diagnosed diabetes in Chinese adults. The Shanghai Nicheng Cohort Study was conducted among Chinese adults aged 45-70 years. The baseline data of 12,137 participants were analyzed. Subcutaneous and visceral fat area (SFA and VFA) were measured by magnetic resonance imaging. Diabetes was newly diagnosed using a 75 g oral glucose tolerance test. The multivariable-adjusted odds ratios (OR) and 95% confidence intervals (CI) of newly diagnosed diabetes per 1-standard deviation increase in SFA and VFA were 1.29 (1.19-1.39) and 1.61 (1.49-1.74) in men, and 1.10 (1.03-1.18) and 1.56 (1.45-1.67) in women, respectively. However, the association between SFA and newly diagnosed diabetes disappeared in men and was reversed in women (OR 0.86 [95% CI, 0.78-0.94]) after additional adjustment for body mass index (BMI) and VFA. The positive association between VFA and newly diagnosed diabetes remained significant in both sexes after further adjustment for BMI and SFA. Areas under the receiver operating characteristic curve of newly diagnosed diabetes predicted by VFA (0.679 [95% CI, 0.659-0.699] for men and 0.707 [95% CI, 0.690-0.723] for women) were significantly larger than by the other adiposity indicators. SFA was beneficial for lower risk of newly diagnosed diabetes in women but was not associated with newly diagnosed diabetes in men after taking general obesity and visceral obesity into account. VFA, however, was associated with likelihood of newly diagnosed diabetes in both Chinese men and women.

  18. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling.

    PubMed

    Bauters, Dries; Cobbaut, Mathias; Geys, Lotte; Van Lint, Johan; Hemmeryckx, Bianca; Lijnen, H Roger

    2017-07-01

    A potential strategy to treat obesity - and the associated metabolic consequences - is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5. Mice deficient in ADAMTS5 ( Adamts5 -/- ) and wild-type ( Adamts5 +/+ ) littermates were kept on a standard of Western-type diet for 15 weeks. Energy expenditure and heat production was followed by indirect calorimetry. To activate thermogenesis, mice were treated with the β3-adrenergic receptor (β 3 -AR) agonist CL-316,243 or alternatively, exposed to cold for 2 weeks. Compared to Adamts5 +/+ mice, Adamts5 -/- mice have significantly more interscapular BAT and marked browning of their subcutaneous (SC) WAT. Thermogenic pathway analysis indicated, in the absence of ADAMTS5, enhanced β 3 -AR signaling via activation of the cAMP response element-binding protein (CREB). Additional β 3 -AR stimulation with CL-316,243 promoted browning of WAT in Adamts5 +/+ mice but had no additive effect in Adamts5 -/- mice. However, cold exposure induced more pronounced browning of WAT in Adamts5 -/- mice. These data indicate that ADAMTS5 plays a functional role in development of BAT and browning of WAT. Hence, selective targeting of ADAMTS5 could provide a novel therapeutic strategy for treatment/prevention of obesity and metabolic diseases.

  19. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  20. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue*

    PubMed Central

    Guo, Hong; Foncea, Rocio; O'Byrne, Sheila M.; Jiang, Hongfeng; Zhang, Yuanyuan; Deis, Jessica A.; Blaner, William S.; Bernlohr, David A.; Chen, Xiaoli

    2016-01-01

    We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue. PMID:27008859

  1. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  2. Dendritic Cells Promote Macrophage Infiltration and Comprise a Substantial Proportion of Obesity-Associated Increases in CD11c+ Cells in Adipose Tissue and Liver

    PubMed Central

    Stefanovic-Racic, Maja; Yang, Xiao; Turner, Michael S.; Mantell, Benjamin S.; Stolz, Donna B.; Sumpter, Tina L.; Sipula, Ian J.; Dedousis, Nikolaos; Scott, Donald K.; Morel, Penelope A.; Thomson, Angus W.; O’Doherty, Robert M.

    2012-01-01

    Obesity-associated increases in adipose tissue (AT) CD11c+ cells suggest that dendritic cells (DC), which are involved in the tissue recruitment and activation of macrophages, may play a role in determining AT and liver immunophenotype in obesity. This study addressed this hypothesis. With the use of flow cytometry, electron microscopy, and loss-and-gain of function approaches, the contribution of DC to the pattern of immune cell alterations and recruitment in obesity was assessed. In AT and liver there was a substantial, high-fat diet (HFD)–induced increase in DC. In AT, these increases were associated with crown-like structures, whereas in liver the increase in DC constituted an early and reversible response to diet. Notably, mice lacking DC had reduced AT and liver macrophages, whereas DC replacement in DC-null mice increased liver and AT macrophage populations. Furthermore, delivery of bone marrow–derived DC to lean wild-type mice increased AT and liver macrophage infiltration. Finally, mice lacking DC were resistant to the weight gain and metabolic abnormalities of an HFD. Together, these data demonstrate that DC are elevated in obesity, promote macrophage infiltration of AT and liver, contribute to the determination of tissue immunophenotype, and play a role in systemic metabolic responses to an HFD. PMID:22851575

  3. Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue.

    PubMed

    Cheung, Louisa; Fisher, Rachel M; Kuzmina, Natalia; Li, Dongqing; Li, Xi; Werngren, Olivera; Blomqvist, Lennart; Ståhle, Mona; Landén, Ning Xu

    2016-03-01

    Psoriasis is an immune-mediated inflammatory disease, which is associated with a high risk of developing systemic comorbidities, such as obesity, cardiovascular disease, and diabetes mellitus. However, the mechanistic links between psoriatic skin inflammation and systemic comorbidities remain largely unknown. MicroRNAs (miRNAs) are recently discovered gene regulators that play important roles in psoriasis skin inflammation. In this study we aimed to explore whether the skin inflammation in psoriasis affects miRNA expression of the underlying subcutaneous adipose tissue and whether this may be a link between psoriasis and comorbidities. To this end, we compared the miRNA expression profile of subcutaneous adipose tissue underneath lesional and nonlesional psoriatic skin. We further validated the differential expression of several miRNAs and characterized their expression patterns in different cell types present in subcutaneous adipose tissue. We focused on miR-26b-5p, which was highly up-regulated in subcutaneous adipose tissue underneath lesional psoriasis skin. We showed that it targets and down-regulates neutral cholesterol ester hydrolase 1, an enzyme essential for cholesterol efflux, in monocytes/macrophages, adipocytes, vascular endothelial cells, and fibroblasts. We conclude that this miRNA may serve as a mechanistic link between psoriatic skin inflammation and its systemic comorbidities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Rosiglitazone-Induced Mitochondrial Biogenesis in White Adipose Tissue Is Independent of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α

    PubMed Central

    Pardo, Rosario; Enguix, Natàlia; Lasheras, Jaime; Feliu, Juan E.; Kralli, Anastasia; Villena, Josep A.

    2011-01-01

    Background Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). Methodology/Principal Findings To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. Conclusions/Significance These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes. PMID:22087241

  5. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning.

    PubMed

    Hua, Lun; Zhuo, Yong; Jiang, Dandan; Li, Jing; Huang, Xiaohua; Zhu, Yingguo; Li, Zhen; Yan, Lijun; Jin, Chao; Jiang, Xuemei; Che, Lianqiang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Li, Jian; Feng, Bin; Wu, De

    2018-05-02

    Both ovarian E2 and hepatic fibroblast growth factor 21 (FGF21) are critical for energy homeostasis and white adipose tissue browning. Estrogen receptor α (ERα) is abundantly expressed in liver. However, whether FGF21 has a role in E2-induced white adipose tissue browning remains uncertain. In this study, we showed that hepatic Fgf21 expression and secretion during estrus cycle changed with the tetradian oscillatory secretion of circulation E2 in adult, female mice, with their peak expressions and secretions at the proestrus. In addition, exogenous E2 robustly stimulated liver Fgf21 expression and elevated serum FGF21 concentrations, which induced browning gene expression and reduced the tissue weight in subcutaneous white adipose in mice with ovariectomies. The inhibitor of mammalian target of rapamycin (mTOR) and of ERα blocked the induction effect of E2 on the expression of Fgf21 in primary hepatocytes, which revealed that E2 might stimulate FGF21 expression via the ERα-mTOR pathway. Furthermore, FGF21 liver-specific deficiency abolished E2-induced white adipose browning in mice with ovariectomies. This study indicates that ovarian E2 increased liver FGF21 expression directly, which in turn, functioned as an endocrine signal to influence inguinal white adipose tissue browning.-Hua, L., Zhuo, Y., Jiang, D., Li, Jin., Huang, X., Zhu, Y., Li, Z., Yan, L., Jin, C., Jiang, X., Che, L., Fang, Z., Lin, Y., Xu, S. Li, Jia., Feng, B., Wu, D. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning.

  6. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  7. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    PubMed

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (P<0.05, P<0.05). There were no effects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  8. Kefir prevented excess fat accumulation in diet-induced obese mice.

    PubMed

    Choi, Jae-Woo; Kang, Hye Won; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2017-05-01

    Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein-cholesterol concentrations. Overall, kefir has the potential to prevent obesity.

  9. Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review.

    PubMed

    Backonja, Uba; Buck Louis, Germaine M; Lauver, Diane R

    2016-01-01

    Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops-some of the physiological actions of adipose tissue differ depending on tissue amount and location and are related to proposed mechanisms of endometriosis development. The aim of this study was to review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis and delineate potential etiological mechanisms underlying endometriosis.

  10. Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review

    PubMed Central

    Backonja, Uba; Buck Louis, Germaine M.; Lauver, Diane R.

    2015-01-01

    Background Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops—some of the physiologic actions of adipose tissue differ depending on tissue amount and location, and are related to proposed mechanisms of endometriosis development. Objectives To review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. Methods We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT, and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Results Out of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Discussion Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis, and delineate potential etiologic mechanisms underlying endometriosis. PMID:26938364

  11. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis.

    PubMed

    Holtrup, Brandon; Church, Christopher D; Berry, Ryan; Colman, Laura; Jeffery, Elise; Bober, Jeremy; Rodeheffer, Matthew S

    2017-07-03

    Over the past 2 decades, the incidence of childhood obesity has risen dramatically. This recent rise in childhood obesity is particularly concerning as adults who were obese during childhood develop type II diabetes that is intractable to current forms of treatment compared with individuals who develop obesity in adulthood. While the mechanisms responsible for the exacerbated diabetic phenotype associated with childhood obesity is not clear, it is well known that childhood is an important time period for the establishment of normal white adipose tissue in humans. This association suggests that exposure to obesogenic stimuli during adipose development may have detrimental effects on adipose function and metabolic homeostasis. In this study, we identify the period of development associated with puberty, postnatal days 18-34, as critical for the establishment of normal adipose mass in mice. Exposure of mice to high fat diet only during this time period results in metabolic dysfunction, increased leptin expression, and increased adipocyte size in adulthood in the absence of sustained increased fat mass or body weight. These findings indicate that exposure to obesogenic stimuli during critical developmental periods have prolonged effects on adipose tissue function that may contribute to the exacerbated metabolic dysfunctions associated with childhood obesity.

  12. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome.

    PubMed

    Kuo, Lydia E; Kitlinska, Joanna B; Tilan, Jason U; Li, Lijun; Baker, Stephen B; Johnson, Michael D; Lee, Edward W; Burnett, Mary Susan; Fricke, Stanley T; Kvetnansky, Richard; Herzog, Herbert; Zukowska, Zofia

    2007-07-01

    The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.

  13. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG.

    PubMed

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke; Okai, Mika; Tsuchimori, Kazue; Watanabe, Masanori; Mori, Ikuo; Hosoya, Masaki; Horiguchi, Takashi; Kamiguchi, Hidenori

    2017-06-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316,243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  14. Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction

    PubMed Central

    Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.

    2017-01-01

    Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929

  15. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice.

    PubMed

    Seo, Dae-Bang; Jeong, Hyun Woo; Cho, Donghyun; Lee, Bum Jin; Lee, Ji Hae; Choi, Jae Young; Bae, Il-Hong; Lee, Sung-Joon

    2015-05-01

    Obesity is caused by an imbalance between caloric intake and energy expenditure and accumulation of excess lipids in adipose tissues. Recent studies have demonstrated that green tea and its processed products (e.g., oolong and black tea) are introduced to exert beneficial effects on lipid metabolism. Here, we propose that fermented green tea (FGT) extract, as a novel processed green tea, exhibits antiobesity effects. FGT reduced body weight gain and fat mass without modifying food intake. mRNA expression levels of lipogenic and inflammatory genes were downregulated in white adipose tissue of FGT-administered mice. FGT treatment alleviated glucose intolerance and fatty liver symptoms, common complications of obesity. Notably, FGT restored the changes in gut microbiota composition (e.g., the Firmicutes/Bacteroidetes and Bacteroides/Prevotella ratios), which is reported to be closely related with the development of obesity and insulin resistance, induced by high-fat diets. Collectively, FGT improves obesity and its associated symptoms and modulates composition of gut microbiota; thus, it could be used as a novel dietary component to control obesity and related symptoms.

  16. Quantification of cefazolin in serum and adipose tissue by ultra high performance liquid chromatography-Tandem mass spectrometry (UHPLC-MS/MS): application to a pilot study of obese women undergoing cesarean delivery.

    PubMed

    Lillico, Ryan; Sayre, Casey L; Sitar, Daniel S; Davies, Neal M; Baron, Cynthia M; Lakowski, Ted M

    2016-09-15

    Higher doses of cefazolin are required in obese patients for preoperative antibiotic prophylaxis, owing to its low lipophilicity. An ultra high performance liquid chromatography-tandem mass spectrometry method was developed to quantify cefazolin in serum and adipose tissue from 6 obese patients undergoing cesarean delivery, and using stable-isotope labeled cefazolin as an internal standard. The method has a 2μg/g lower limit of quantitation. The concentration in adipose tissue was 3.4±1.6μg/mL, which is less than half of the reported minimum inhibitory concentration of 8μg/mL for cefazolin. Serum cefazolin concentrations were more than 30-fold higher than in adipose tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.

    PubMed

    Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan

    2014-11-28

    Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.

  18. A FSI-based structural approach for micromechanical characterization of adipose tissue

    NASA Astrophysics Data System (ADS)

    Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas

    2017-03-01

    This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.

  19. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    PubMed

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values < 0.01). However, both groups had similar EAT thickness (P = 0.532), which was positively correlated with BMI, fat mass, WC, HC, VAAT thickness, abdominal subcutaneous adipose tissue thickness, and serum triglyceride (TG) level (all P values < 0.01). We found no correlation between EAT thickness and thyroid-stimulating hormone (TSH) level, free thyroxine (FT4) level, or low-density lipoprotein-cholesterol (LDL-C) level, and anti-TPO level (all P values > 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  20. Relevance of Adipose Tissue Stiffness Evaluated by Transient Elastography (AdipoScan™) in Morbidly Obese Patients before Bariatric Surgery

    NASA Astrophysics Data System (ADS)

    Sasso, Magali; Abdennour, Meriem; Liu, Yuejun; Hazrak, Hecham; Aron-Wisnewsky, Judith; Bouillot, Jean-Luc; Le Naour, Gilles; Bedossa, Pierre; Torjman, Joan; Clément, Karine; Miette, Véronique

    Subcutaneous adipose tissue (scAT) in human obesity undergoes severe alteration such as fibrosis which is related to metabolic alterations and to less efficiency in losing weight after bariatric surgery. There is currently no non-invasive tool to assess fibrosis in scAT. Vibration Controlled Transient Elastography (VCTE) using FibroScan® is widely used to assess liver fibrosis in clinical practice. A novel device named AdipoScan™ which is based on VCTE has been developed by Echosens (Paris) so as to assess scAT. The objective of this study is to show the first AdipoScan clinical results. AdipoScan™ was assessed in vivo on 73 morbidly obese patients candidate for bariatric surgery who were enrolled in the Pitié Salpêtrière hospital. scAT shear wave speed measured by AdipoScan™ is significantly associated with scAT fibrosis, gender, hypertension status, total body fat mass assessed by DXA, hypertension status, glycemic, lipid, hepatic parameters and adiponectin. Results suggest that scAT evaluation before bariatric surgery can be useful in clinical practice since it is related to scAT fibrosis -who plays in role in weight loss resistance after bariatric surgery- and to obesity induced co-morbidities such as diabetes, hypertension liver dysfunction.

  1. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    PubMed

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  3. Differences in prostate and adipose tissue basic fibroblast growth factor: analysis of preliminary results.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1997-09-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to human prostate epithelial and stromal cells, and it is reported to be elevated in the serum and urine of patients with various cancers, including prostate cancer. Obesity, with increased body fat, is a risk factor for prostate cancer through unknown mechanisms. Because adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it with normal and cancerous prostate tissues. Using heparin-Sepharose chromatography, we extracted proteins from human omental adipose tissue, adenocarcinoma of the prostate, and benign prostatic hypertrophic (BPH) tissues. Each of the mitogenic proteins eluted with NaCl concentrations between 1.4 M and 1.8 M, similar to control FGF-2. Using FGF-2 antisera (which inhibited the mitogenic activity of the proteins), we performed Western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity, and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells and the chorioallantoic membrane assay. There was greater recovery of FGF-2 from omental adipose tissue compared with cancerous or BPH homogenates (40 micrograms [2.0 micrograms/g] versus 25 micrograms [1.25 micrograms/g] and 20 micrograms [1.0 microgram/g], respectively). Moreover. FGF-2 from adipose tissue had greater mitogenic activity (96.2% versus 74.8% and 54%; P < 0.05) and a greater angiogenic activity (5.1 vessels versus 2.9 and 1.8 vessels; P < 0.05) on the chorioallantoic assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either BPH or prostate cancer tissue FGF-2. It is not known whether FGF-2 from adipose tissue qualitatively or quantitatively may underlie the relationship between obesity and prostate cancer.

  4. Rare adipose disorders (RADs) masquerading as obesity

    PubMed Central

    Herbst, Karen L

    2012-01-01

    Rare adipose disorders (RADs) including multiple symmetric lipomatosis (MSL), lipedema and Dercum's disease (DD) may be misdiagnosed as obesity. Lifestyle changes, such as reduced caloric intake and increased physical activity are standard care for obesity. Although lifestyle changes and bariatric surgery work effectively for the obesity component of RADs, these treatments do not routinely reduce the abnormal subcutaneous adipose tissue (SAT) of RADs. RAD SAT likely results from the growth of a brown stem cell population with secondary lymphatic dysfunction in MSL, or by primary vascular and lymphatic dysfunction in lipedema and DD. People with RADs do not lose SAT from caloric limitation and increased energy expenditure alone. In order to improve recognition of RADs apart from obesity, the diagnostic criteria, histology and pathophysiology of RADs are presented and contrasted to familial partial lipodystrophies, acquired partial lipodystrophies and obesity with which they may be confused. Treatment recommendations focus on evidence-based data and include lymphatic decongestive therapy, medications and supplements that support loss of RAD SAT. Associated RAD conditions including depression, anxiety and pain will improve as healthcare providers learn to identify and adopt alternative treatment regimens for the abnormal SAT component of RADs. Effective dietary and exercise regimens are needed in RAD populations to improve quality of life and construct advanced treatment regimens for future generations. PMID:22301856

  5. Preliminary results comparing the recovery of basic fibroblast growth factor (FGF-2) in adipose tissue and benign and malignant renal tissue.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1998-06-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to numerous epithelial, mesodermal and endothelial cells, and thus may play a role in the neovascularity and progression of several tumors. Furthermore, FGF-2 is reported to be elevated in the serum and urine of patients with various cancers, including renal cancer. Obesity, with increased body fat, is a risk factor for renal cancer through unknown mechanisms. Since adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it to normal and cancerous renal tissue. Using heparin-Sepharose chromatography we extracted proteins from human omental adipose tissue, renal cell carcinoma (RCC) and benign renal tissue (BRT). Using FGF-2 antisera we performed western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells (HUVEC) and the chorioallantoic membrane (CAM) assay. Each of the three purified mitogenic proteins eluted with NaCl concentrations between 1.4 M. and 1.8 M., similar to control FGF-2. There was greater recovery of FGF-2 from omental adipose tissue compared with renal cell carcinoma or benign renal tissue (42 microg. vs. 24 microg. and 18 microg., respectively; ANOVA p <0.05). Moreover, FGF-2 from adipose tissue had greater mitogenic activity (96.% versus 68% and 38%; p <0.05) and greater angiogenic activity (5.5 vessels versus 2.7 and 1.6 vessels; p <0.05) on the CAM assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either benign or cancerous renal tissue FGF-2. It is not known if FGF-2 from adipose tissue may play a role in the relationship between obesity and renal cancer.

  6. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  7. Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice

    PubMed Central

    Styner, Maya; Pagnotti, Gabriel M; McGrath, Cody; Wu, Xin; Sen, Buer; Uzer, Gunes; Xie, Zhihui; Zong, Xiaopeng; Styner, Martin A; Rubin, Clinton T; Rubin, Janet

    2017-01-01

    The relationship between marrow adipose tissue (MAT) and bone health is poorly understood. We used running exercise to ask whether obesity-associated MAT can be attenuated via exercise and whether this correlates with gains in bone quantity and quality. C57BL/6 mice were divided into diet-induced obesity (DIO, n = 14) versus low-fat diet (LFD, n = 14). After 3 months, 16-week-old mice were allocated to an exercise intervention (LFD-E, DIO-E) or a control group (LFD, DIO) for 6 weeks (4 groups, n = 7/group). Marrow adipocyte area was 44% higher with obesity (p<0.0001) and after exercise 33% lower in LFD (p<0.0001) and 39% lower in DIO (p<0.0001). In LFD, exercise did not affect adipocyte number; however, in DIO, the adipocyte number was 56% lower (p<0.0001). MAT was 44% higher in DIO measured by osmium-µCT, whereas exercise associated with reduced MAT (–23% in LFD, –48% in DIO, p<0.05). MAT was additionally quantified by 9.4TMRI, and correlated with osmium-µCT (r = 0.645; p<0.01). Consistent with higher lipid beta oxidation, perilipin 3 (PLIN3) rose with exercise in tibial mRNA (+92% in LFD,+60% in DIO, p<0.05). Tibial µCT-derived trabecular bone volume (BV/TV) was not influenced by DIO but responded to exercise with an increase of 19% (p<0.001). DIO was associated with higher cortical periosteal and endosteal volumes of 15% (p = 0.012) and 35% (p<0.01), respectively, but Ct. Ar/Tt.Ar was lower by 2.4% (p<0.05). There was a trend for higher stiffness (N/m) in DIO, and exercise augmented this further. In conclusion, obesity associated with increases in marrow lipid—measured by osmium-µCT and MRI—and partially due to an increase in adipocyte size, suggesting increased lipid uptake into preexisting adipocytes. Exercise associated with smaller adipocytes and less bone lipid, likely invoking increased ß-oxidation and basal lipolysis as evidenced by higher levels of PLIN3. PMID:28436105

  8. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function

    PubMed Central

    O’Reilly, Michael W.; Bujalska, Iwona J.; Tomlinson, Jeremy W.; Arlt, Wiebke

    2017-01-01

    Context: Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. Objective: To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Design and Outcome Measures: Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Results: Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Conclusions: Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis. PMID:28323916

  9. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse.

    PubMed

    Muñoz, S; Franckhauser, S; Elias, I; Ferré, T; Hidalgo, A; Monteys, A M; Molas, M; Cerdán, S; Pujol, A; Ruberte, J; Bosch, F

    2010-11-01

    In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.

  10. Adipose tissue macrophages in non-rodent mammals: a comparative study.

    PubMed

    Ampem, Grace; Azegrouz, Hind; Bacsadi, Árpád; Balogh, Lajos; Schmidt, Susanne; Thuróczy, Julianna; Röszer, Tamás

    2016-02-01

    The stromal vascular fraction (SVF) of adipose tissue in rodents and primates contains mesenchymal stem cells and immune cells. SVF cells have complex metabolic, immune and endocrine functions with biomedical impact. However, in other mammals, the amount of data on SVF stem cells is negligible and whether the SVF hosts immune cells is unknown. In this study, we show that the SVF is rich in immune cells, with a dominance of adipose tissue macrophages (ATMs) in cattle (Bos primigenius taurus), domestic goat (Capra aegagrus hircus), domestic sheep (Ovis aries), domestic cat (Felis catus) and domestic dog (Canis familiaris). ATMs of these species are granulated lysosome-rich cells with lamellipodial protrusions and express the lysosome markers acid phosphatase 5 (ACP-5) and Mac-3/Lamp-2. Using ACP-5 and Mac-3/Lamp-2 as markers, we additionally detected ATMs in other species, such as the domestic horse (Equus ferus caballus), wild boar (Sus scrofa) and red fox (Vulpes vulpes). Feline and canine ATMs also express the murine macrophage marker F4/80 antigen. In the lean condition, the alternative macrophage activation marker CD206 is expressed by feline and canine ATMs and arginase-1 by feline ATMs. Obesity is associated with interleukin-6 and interferon gamma expression and with overt tyrosine nitration in both feline and canine ATMs. This resembles the obesity-induced phenotype switch of murine and human ATMs. Thus, we show, for the first time, that the presence of ATMs is a general trait of mammals. The interaction between the adipose cells and SVF immune cells might be evolutionarily conserved among mammals.

  11. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue].

    PubMed

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Cachofeiro, Victoria; Lahera, Vicente; de Las Heras, Natalia

    2014-01-01

    To study the effects of rosuvastatin on insulin resistance in overweight rats induced by high fat diet, as well as potential mediators. We used male Wistar rats fed with a standard diet (CT) or high fat diet (33.5% fat) (HFD); half of the animals HFD were treated with rosuvastatin (15mg/kg/day) (HFD+Rosu) for 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Treatment with Rosu did not modify body weight or the weight of the adipose packages in HFD rat. Plasma glucose and insulin levels and HOMA index were higher in HFD rats, and rosuvastatin treatment reduced them. Leptin/adiponectin ratio in plasma and lumbar adipose tissue were higher in HDF rats, and were reduced by rosuvastatin. SIRT-1, PPAR-γ and GLUT-4 protein expression in lumbar adipose tissue were lower in HFD rats and Rosu normalized expression of the three mediators. Rosuvastatin ameliorates insulin sensitivity induced by HFD in rats. This effect is mediated by several mechanisms including reduction of leptin and enhancement of SIRT-1, PPAR-γ and GLUT-4 expression in white adipose tissue. SIRT1 could be considered a major mediator of the beneficial effects of rosuvastatin on insulin sensitivity in overweight rats induced by diet. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  13. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  14. High intensity interval training improves liver and adipose tissue insulin sensitivity.

    PubMed

    Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R

    2015-12-01

    Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  15. Adipocytokines, neuropeptide Y and insulin resistance in overweight women with gynoid and android type of adipose tissue distribution.

    PubMed

    Orbetzova, Maria M; Koleva, Daniela I; Mitkov, Mitko D; Atanassova, Iliana B; Nikolova, Julia G; Atanassova, Pepa K; Genchev, Gencho D

    2012-01-01

    The AIM of the study was to compare the levels of certain adipose tissue hormones in women with the two main morphological types of obesity - android and gynoid obesity. The study included 2 groups of age- and weight-matched women with android (n = 32) and gynoid (n = 27) type of obesity, and a group of age-matched healthy women (n = 24) with normal weight and body constitution. Leptin, resistin, tumour necrosis factor alpha (TNFalpha), neuropeptide Y (NPY), glucose and insulin were measured. HOMA index was calculated. Leptin levels in the women with gynoid obesity did not differ significantly from those in the controls and the women with android obesity. The controls had significantly lower leptin levels compared with the android obesity women. NPY was significantly higher in the control women compared to the women with android obesity and did not differ significantly between the two groups of obese women. TNFalpha levels in all groups were very similar. Resistin did not show significant differences between all groups but tended to have the lowest levels in the controls. In the women with android obesity, insulin was significantly higher than that in the women with gynoid obesity and the controls. Insulin resistance was found in the women with android obesity only. Basal insulin and HOMA index in the women with gynoid obesity did not differ significantly from the values in the control group. The results from this study contribute to understanding the association of adipose tissue hormones and insulin resistance in obesity. When adipose tissue is predominantly distributed in the abdominal area at similar amount and percentage of body fats, leptin production is higher and insulin resistance develops. In the gynoid type of adipose tissue predisposition, overt insulin resistance is not found, leptin levels does not differ significantly from those in the control group.

  16. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  17. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy1234

    PubMed Central

    Chalfant, James S; Smith, Michelle L; Hu, Houchun H; Dorey, Fred J; Goodarzian, Fariba; Fu, Cecilia H

    2012-01-01

    Background: Although the accumulation of white adipose tissue (WAT) is a risk factor for disease, brown adipose tissue (BAT) has been suggested to have a protective role against obesity. Objective: We studied whether changes in BAT were related to changes in the amounts of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in children treated for malignancy. Design: We examined the effect of BAT activity on weight, SAT, and VAT in 32 pediatric patients with cancer whose positron emission tomography–computed tomography (PET-CT) scans at diagnosis showed no BAT activity. Changes in weight, SAT, and VAT from diagnosis to remission for children with metabolically active BAT at disease-free follow-up (BAT+) were compared with those in children without visualized BAT when free of disease (BAT−). Results: Follow-up PET-CT studies (4.7 ± 2.4 mo later) after successful treatment of the cancer showed BAT+ in 19 patients but no active BAT (BAT−) in 13 patients. BAT+ patients, in comparison with BAT− patients, gained significantly less weight (3.3 ± 6.6% compared with 11.0 ± 11.6%; P = 0.02) and had significantly less SAT (18.2 ± 26.5% compared with 67.4 ± 71.7%; P = 0.01) and VAT (22.6 ± 33.5% compared with 131.6 ± 171.8%; P = 0.01) during treatment. Multiple regression analysis indicated that the inverse relations between BAT activation and measures of weight, SAT, and VAT persisted even after age, glucocorticoid treatment, and the season when the PET-CT scans were obtained were accounted for. Conclusion: The activation of BAT in pediatric patients undergoing treatment of malignancy is associated with significantly less adipose accumulation. This trial was registered at clinicaltrials.gov as NCT01517581. PMID:22456659

  18. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue.

    PubMed

    Uchiyama, Tsuyoshi; Okajima, Fumikazu; Mogi, Chihiro; Tobo, Ayaka; Tomono, Shoichi; Sato, Koichi

    2017-01-01

    Obesity is associated with an increased risk of diabetes mellitus, hypertension, and renal dysfunction. Angiotensin 1-7 and alamandine are heptameric renin angiotensin system peptide hormones. Further, alamandine levels increase with renal dysfunction. In the cardiovascular system, angiotensin 1-7 and alamandine produce similar improvements and counterbalance angiotensin II in regulating vascular function. We aimed to determine whether the effect of alamandine on leptin expression and secretion in adipocytes was similar to that of angiotensin 1-7. We studied isolated peri-renal visceral adipose tissue and peri-renal isolated visceral adipocytes from male Wistar rats. Angiotensin II from 0.01 to 10nM had no effect on leptin expression. Angiotensin 1-7 (1 nM) increased leptin secretion and expression, whereas alamandine (1 nM) decreased leptin secretion and expression in adipose tissue and isolated adipocytes and reduced blood leptin levels in vivo. These effects were mediated by Gq, c-Src, p38 mitogen-activated protein, and IκB activation. Additionally, alamandine induced nitric oxide expression via inducible nitric oxidase synthase and plasminogen activator inhibitor 1 expression in adipose tissue and isolated adipocytes. Angiotensin 1-7 and alamandine produced opposing effects on leptin expression and secretion in adipose tissue. This result suggests that the action of Mas (angiotensin 1-7 receptor) and Mas-related G-protein coupled receptor D in adipocytes exhibited opposing actions similar to angiotensin II type 1 and type 2 receptors.

  19. Matrix-Assisted Transplantation of Functional Beige Adipose Tissue

    PubMed Central

    Tharp, Kevin M.; Jha, Amit K.; Kraiczy, Judith; Yesian, Alexandra; Karateev, Grigory; Sinisi, Riccardo; Dubikovskaya, Elena A.

    2015-01-01

    Novel, clinically relevant, approaches to shift energy balance are urgently needed to combat metabolic disorders such as obesity and diabetes. One promising approach has been the expansion of brown adipose tissues that express uncoupling protein (UCP) 1 and thus can uncouple mitochondrial respiration from ATP synthesis. While expansion of UCP1-expressing adipose depots may be achieved in rodents via genetic and pharmacological manipulations or the transplantation of brown fat depots, these methods are difficult to use for human clinical intervention. We present a novel cell scaffold technology optimized to establish functional brown fat–like depots in vivo. We adapted the biophysical properties of hyaluronic acid–based hydrogels to support the differentiation of white adipose tissue–derived multipotent stem cells (ADMSCs) into lipid-accumulating, UCP1-expressing beige adipose tissue. Subcutaneous implantation of ADMSCs within optimized hydrogels resulted in the establishment of distinct UCP1-expressing implants that successfully attracted host vasculature and persisted for several weeks. Importantly, implant recipients demonstrated elevated core body temperature during cold challenges, enhanced respiration rates, improved glucose homeostasis, and reduced weight gain, demonstrating the therapeutic merit of this highly translatable approach. This novel approach is the first truly clinically translatable system to unlock the therapeutic potential of brown fat–like tissue expansion. PMID:26293504

  20. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    PubMed

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  1. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    PubMed

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  2. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake

    PubMed Central

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL. PMID:29244870

  3. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation.

    PubMed

    Caprio, Sonia; Perry, Rachel; Kursawe, Romy

    2017-05-01

    As a consequence of the global rise in the prevalence of adolescent obesity, an unprecedented phenomenon of type 2 diabetes has emerged in pediatrics. At the heart of the development of type 2 diabetes lies a key metabolic derangement: insulin resistance (IR). Despite the widespread occurrence of IR affecting an unmeasurable number of youths worldwide, its pathogenesis remains elusive. IR in obese youth is a complex phenomenon that defies explanation by a single pathway. In this review we first describe recent data on the prevalence, severity, and racial/ethnic differences in pediatric obesity. We follow by elucidating the initiating events associated with the onset of IR, and describe a distinct "endophenotype" in obese adolescents characterized by a thin superficial layer of abdominal subcutaneous adipose tissue, increased visceral adipose tissue, marked IR, dyslipidemia, and fatty liver. Further, we provide evidence for the cellular and molecular mechanisms associated with this peculiar endophenotype and its relations to IR in the obese adolescent. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women.

    PubMed

    Fernández Muñoz, María J; Basurto Acevedo, Lourdes; Córdova Pérez, Nydia; Vázquez Martínez, Ana Laura; Tepach Gutiérrez, Nayive; Vega García, Sara; Rocha Cruz, Alberto; Díaz Martínez, Alma; Saucedo García, Renata; Zárate Treviño, Arturo; González Escudero, Eduardo Alberto; Degollado Córdova, José Antonio

    2014-06-01

    Epicardial adipose tissue has been associated with several obesity-related parameters and with insulin resistance. Echocardiographic assessment of this tissue is an easy and reliable marker of cardiometabolic risk. However, there are insufficient studies on the relationship between epicardial fat and insulin resistance during the postmenopausal period, when cardiovascular risk increases in women. The objective of this study was to examine the association between epicardial adipose tissue and visceral adipose tissue, waist circumference, body mass index, and insulin resistance in postmenopausal women. A cross sectional study was conducted in 34 postmenopausal women with and without metabolic syndrome. All participants underwent a transthoracic echocardiogram and body composition analysis. A positive correlation was observed between epicardial fat and visceral adipose tissue, body mass index, and waist circumference. The values of these correlations of epicardial fat thickness overlying the aorta-right ventricle were r = 0.505 (P < .003), r = 0.545 (P < .001), and r = 0.515 (P < .003), respectively. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome than in those without this syndrome (mean [standard deviation], 544.2 [122.9] vs 363.6 [162.3] mm(2); P = .03). Epicardial fat thickness measured by echocardiography was associated with visceral adipose tissue and other obesity parameters. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome. Therefore, echocardiographic assessment of epicardial fat may be a simple and reliable marker of cardiovascular risk in postmenopausal women. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  5. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  6. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  7. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice.

    PubMed

    Wang, Zheng; Ka, Sun-O; Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2017-03-15

    Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer.

    PubMed

    Wang, Yuan-Yuan; Lehuédé, Camille; Laurent, Victor; Dirat, Béatrice; Dauvillier, Stéphanie; Bochet, Ludivine; Le Gonidec, Sophie; Escourrou, Ghislaine; Valet, Philippe; Muller, Catherine

    2012-11-28

    Among the many different cell types surrounding breast cancer cells, the most abundant are those that compose mammary adipose tissue, mainly mature adipocytes and progenitors. New accumulating recent evidences bring the tumor-surrounding adipose tissue into the light as a key component of breast cancer progression. The purpose of this review is to emphasize the role that adipose tissue might play by locally affecting breast cancer cell behavior and subsequent clinical consequences arising from this dialog. Two particular clinical aspects are addressed: obesity that was identified as an independent negative prognostic factor in breast cancer and the oncological safety of autologous fat transfer used in reconstructive surgery for breast cancer patients. This is preceded by the overall description of adipose tissue composition and function with special emphasis on the specificity of adipose depots and the species differences, key experimental aspects that need to be taken in account when cancer is considered. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. CREG1 heterozygous mice are susceptible to high fat diet-induced obesity and insulin resistance.

    PubMed

    Tian, Xiaoxiang; Yan, Chenghui; Liu, Meili; Zhang, Quanyu; Liu, Dan; Liu, Yanxia; Li, Shaohua; Han, Yaling

    2017-01-01

    Cellular repressor of E1A-stimulated genes 1 (CREG1) is a small glycoprotein whose physiological function is unknown. In cell culture studies, CREG1 promotes cellular differentiation and maturation. To elucidate its physiological functions, we deleted the Creg1 gene in mice and found that loss of CREG1 leads to early embryonic death, suggesting that it is essential for early development. In the analysis of Creg1 heterozygous mice, we unexpectedly observed that they developed obesity as they get older. In this study, we further studied this phenotype by feeding wild type (WT) and Creg1 heterozygote (Creg1+/-) mice a high fat diet (HFD) for 16 weeks. Our data showed that Creg1+/- mice exhibited a more prominent obesity phenotype with no change in food intake compared with WT controls when challenged with HFD. Creg1 haploinsufficiency also exacerbated HFD-induced liver steatosis, dyslipidemia and insulin resistance. In addition, HFD markedly increased pro-inflammatory cytokines in plasma and epididymal adipose tissue in Creg1+/- mice as compared with WT controls. The activation level of NF-κB, a major regulator of inflammatory response, in epididymal adipose tissue was also elevated in parallel with the cytokines in Creg1+/- mice. These pro-inflammatory responses elicited by CREG1 reduction were confirmed in 3T3-L1-derived adipocytes with CREG1 depletion by siRNA transfection. Given that adipose tissue inflammation has been shown to play a key role in obesity-induced insulin resistance and metabolic syndrome, our results suggest that Creg1 haploinsufficiency confers increased susceptibility of adipose tissue to inflammation, leading to aggravated obesity and insulin resistance when challenged with HFD. This study uncovered a novel function of CREG1 in metabolic disorders.

  10. Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors

    PubMed Central

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639

  11. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metaboli...

  12. Adipose tissue uncoupling protein 1 levels and function are increased in a mouse model of developmental obesity induced by maternal exposure to high-fat diet.

    PubMed

    Bytautiene Prewit, E; Porter, C; La Rosa, M; Bhattarai, N; Yin, H; Gamble, P; Kechichian, T; Sidossis, L S

    2018-05-17

    With brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student's t-test and Mann-Whitney test were used (significance: P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02, P=0.04, P=0.005, respectively) and females (P=0.01, P=0.04, P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03, P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.

  13. Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice.

    PubMed

    Acedo, Simone Coghetto; Caria, Cintia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2015-10-28

    To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600

  14. Exercise improves adipose function and inflammation and ameliorates fatty liver disease in obese diabetic mice.

    PubMed

    Haczeyni, Fahrettin; Barn, Vanessa; Mridha, Auvro R; Yeh, Matthew M; Estevez, Emma; Febbraio, Mark A; Nolan, Christopher J; Bell-Anderson, Kim S; Teoh, Narci C; Farrell, Geoffrey C

    2015-09-01

    Adipose inflammation and dysfunction underlie metabolic obesity. Exercise improves glycemic control and metabolic indices, but effects on adipose function and inflammation are less clear. Accordingly, it was hypothesized that exercise improves adipose morphometry to reduce adipose inflammation in hyperphagic obese mice. Alms1 mutant foz/foz mice housed in pairs were fed an atherogenic or chow diet; half the cages were fitted with a computer-monitored wheel for voluntary exercise. Insulin-induced AKT-phosphorylation, adipocyte size distribution, and inflammatory recruitment were studied in visceral versus subcutaneous depots, and severity of fatty liver disease was determined. Exercise prevented obesity and diabetes development in chow-fed foz/foz mice and delayed their onset in atherogenic-fed counterparts. Insulin-stimulated phospho-AKT levels in muscle were improved with exercise, but not in adipose or liver. Exercise suppressed adipose inflammatory recruitment, particularly in visceral adipose, associated with an increased number of small adipocyte subpopulations, and enhanced expression of beige adipocyte factor PRDM16 in subcutaneous fat. In atherogenic-fed foz/foz mice liver, exercise suppressed development of nonalcoholic steatohepatitis and related liver fibrosis. Exercise confers metabo-protective effects in atherogenic-fed hyperphagic mice by preventing early onset of obesity and diabetes in association with enhanced muscle insulin sensitivity, improved adipose morphometry, and suppressed adipose and liver inflammation. © 2015 The Obesity Society.

  15. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue.

    PubMed

    Wang, Ying; Yan, Chaoying; Liu, Limei; Wang, Wei; Du, Hanze; Fan, Winnie; Lutfy, Kabirullah; Jiang, Meisheng; Friedman, Theodore C; Liu, Yanjun

    2015-01-01

    Long-term glucocorticoid exposure increases the risk for developing type 2 diabetes. Prereceptor activation of glucocorticoid availability in target tissue by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6PDH) is an important mediator of the metabolic syndrome. We explored whether the tissue-specific modulation of 11β-HSD1 and H6PDH in adipose tissue mediates glucocorticoid-induced insulin resistance and lipolysis and analyzed the effects of 11β-HSD1 inhibition on the key lipid metabolism genes and insulin-signaling cascade. We observed that corticosterone (CORT) treatment increased expression of 11β-HSD1 and H6PDH and induced lipase HSL and ATGL with suppression of p-Thr(172) AMPK in adipose tissue of C57BL/6J mice. In contrast, CORT induced adipose insulin resistance, as reflected by a marked decrease in IR and IRS-1 gene expression with a reduction in p-Thr(308) Akt/PKB. Furthermore, 11β-HSD1 shRNA attenuated CORT-induced 11β-HSD1 and lipase expression and improved insulin sensitivity with a concomitant stimulation of pThr(308) Akt/PKB and p-Thr(172) AMPK within adipose tissue. Addition of CORT to 3T3-L1 adipocytes enhanced 11β-HSD1 and H6PDH and impaired p-Thr(308) Akt/PKB, leading to lipolysis. Knockdown of 11β-HSD1 by shRNA attenuated CORT-induced lipolysis and reversed CORT-mediated inhibition of pThr(172) AMPK, which was accompanied by a parallel improvement of insulin signaling response in these cells. These findings suggest that elevated adipose 11β-HSD1 expression may contribute to glucocorticoid-induced insulin resistance and adipolysis. Copyright © 2015 the American Physiological Society.

  16. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities

    PubMed Central

    Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming

    2015-01-01

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351

  17. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function.

    PubMed

    You, Yilin; Yuan, Xiaoxue; Liu, Xiaomeng; Liang, Chen; Meng, Minghui; Huang, Yuanyuan; Han, Xue; Guo, Jielong; Guo, Yu; Ren, Chenglong; Zhang, Qianwen; Sun, Xiangyu; Ma, Tingting; Liu, Guojie; Jin, Wanzhu; Huang, Weidong; Zhan, Jicheng

    2017-11-01

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue (BAT) formation and function increases energy expenditure and may protect against obesity. Cyanidin-3-glucoside (C3G) is an anthocyanin compound that occurs naturally in many fruits and vegetables. In this study, we investigated the effect and mechanism of C3G on the prevention of obesity. Db/db mice received C3G dissolved in drinking water for 16 wk; drinking water served as the vehicle treatment. The total body weight, energy intake, metabolic rate, and physical activity were measured. The lipid droplets, gene expression and protein expression were evaluated by histochemical staining, real-time PCR, and western blots. We found that C3G increased energy expenditure, limited weight gain, maintained glucose homeostasis, reversed hepatic steatosis, improved cold tolerance, and enhanced BAT activity in obese db/db mice. C3G also induces brown-like adipocytes (beige) formation in subcutaneous white adipose tissue (sWAT) of db/db mice model. We also found that C3G potently regulates the transcription of uncoupling protein 1 (UCP1) both in BAT and sWAT through increasing mitochondrial number and function. Our results suggest that C3G plays a role in regulating systemic energy balance, which may have potential therapeutic implications for the prevention and control of obesity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    PubMed Central

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  19. Adipose tissue in myocardial infarction.

    PubMed

    Su, Leon; Siegel, John E; Fishbein, Michael C

    2004-01-01

    The histologic evolution of myocardial infarction (MI) has been studied in some detail. However, there is little mention of the presence of adipose tissue in healed MI(HMI). Ninety-one hearts explanted during 1997-2001 were examined to determine the extent of adipose tissue within HMI. The medical records, surgical pathology reports, and all histologic sections of the explanted heart, from patients undergoing heart transplantation for ischemic heart disease, were reviewed. Adipose tissue within the areas of HMI was quantified. The location of the HMI, the age and gender of the patient, age of HMI, and whether the patient was treated with coronary artery bypass surgery (CABG) were noted. Of the 91 hearts examined, 168 HMIs were identified; 141 (84%) contained some mature fat within the HMI. Adipose tissue increased with increasing age, in males, and in those patients who had CABG surgery. The amount of adipose tissue was not related to the location or age of the HMI. Adipose tissue is a prevalent histological finding in HMIs. The pathogenesis of adipose tissue is unknown, but may be influenced by current medical therapy for ischemic heart disease, thus explaining why adipose tissue in HMIs was not reported until 1997. The presence of fat supports the speculation that a regenerative cell, or multipotent stem cell, exists within the heart, and under the influence of microenvironmental or therapeutic factors can differentiate into fat, other mesenchymal tissues, and potentially even myocardium.

  20. Combined Impact of Cardiorespiratory Fitness and Visceral Adiposity on Metabolic Syndrome in Overweight and Obese Adults in Korea

    PubMed Central

    Kim, Sue; Kim, Ji-Young; Lee, Duk-Chul; Lee, Hye-Sun; Lee, Ji-Won; Jeon, Justin Y.

    2014-01-01

    Background Obesity, especially visceral obesity, is known to be an important correlate for cardiovascular disease and increased mortality. On the other hand, high cardiorespiratory fitness is suggested to be an effective contributor for reducing this risk. This study was conducted to determine the combined impact of cardiorespiratory fitness and visceral adiposity, otherwise known as fitness and fatness, on metabolic syndrome in overweight and obese adults. Methods A total of 232 overweight and obese individuals were grouped into four subtypes according to their fitness level. This was measured by recovery heart rate from a step test in addition to visceral adiposity defined as the visceral adipose tissue area to subcutaneous adipose tissue area ratio (VAT/SAT ratio). Associations of fitness and visceral fatness were analyzed in comparison with the prevalence of metabolic syndrome. Results The high visceral fat and low fitness group had the highest prevalence of metabolic syndrome [Odds Ratio (OR) 5.02; 95% Confidence Interval (CI) 1.85–13.61] compared with the reference group, which was the low visceral adiposity and high fitness group, after adjustments for confounding factors. Viscerally lean but unfit subjects were associated with a higher prevalence of metabolic syndrome than more viscerally obese but fit subjects (OR 3.42; 95% CI 1.27–9.19, and OR 2.70; 95% CI 1.01–7.25, respectively). Conclusions Our study shows that visceral obesity and fitness levels are cumulatively associated with a higher prevalence of metabolic syndrome in healthy overweight and obese adults. This suggests that cardiorespiratory fitness is a significant modifier in the relation of visceral adiposity to adverse metabolic outcomes in overweight and obese individuals. PMID:24454926

  1. Exploratory Studies on Biomarkers: An Example Study on Brown Adipose Tissue

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Yamazaki, Naoshi; Kataoka, Masatoshi; Shinohara, Yasuo

    In mammals, two kinds of adipose tissue are known to exist, i.e., white (WAT) and brown (BAT) adipose tissue. The physiological role of WAT is storage of excess energy as fat, whereas that of BAT is the expenditure of excess energy as heat. The uncoupling protein UCP1, which is specifically expressed in brown fat mitochondria, dissipates the proton electrochemical potential across the inner mitochondrial membrane, known as a driving force of ATP synthesis, and thus it dissipates excess energy in a form of heat. Because deficiency in effective expenditure of excess energy causes accumulation of this energy in the form of fat (i.e., obesity), it is very important to understand the energy metabolism in this tissue for the development of anti-obesity drugs. In this article, in addition to providing a brief introduction to the functional properties of BAT and UCP1, the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.

  2. Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock

    PubMed Central

    Asano, Krisana; Yoshimura, Sayuri

    2015-01-01

    Adipose tissue-derived stem cells (ASCs), which are mesenchymal stromal cells isolated from adipose tissues, exhibit immunomodulatory effects that are promising for several applications, including the therapeutics of inflammatory diseases. In the present study, the effect of ASCs on bacterial toxin-induced inflammation was investigated. Intraperitoneal administration of ASCs rescued mice from lethal shock induced by staphylococcal enterotoxin A (SEA) potentiated with lipopolysaccharide. In the sera and/or spleens of mice administered ASCs, the production of proinflammatory cytokines, including interferon gamma, tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-2 was reduced. By quantitative real-time PCR, the expression of Foxp3 in the mice administered ASCs was not altered. On the other hand, the expression of IL-12 receptor and STAT4 was decreased with ASC administration. These results imply that the effect of ASCs is not involved in the lineage of regulatory T cells but that these cells may modulate TH1 differentiation. This information provides evidence that ASCs have properties that are effective to attenuate SEA-induced toxic shock and should prompt further exploration on other inflammatory diseases caused by bacterial toxins or bacterial infections. PMID:26099581

  3. Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ.

    PubMed

    Castan-Laurell, Isabelle; Vítkova, Michaela; Daviaud, Danièle; Dray, Cédric; Kováciková, Michaela; Kovacova, Zuzana; Hejnova, Jindriska; Stich, Vladimir; Valet, Philippe

    2008-06-01

    Apelin is a novel adipokine acting on APJ receptor, regulated by insulin and tumor necrosis factor-alpha (TNF-alpha) in adipose tissue (AT). Plasma apelin levels are increased in obese hyperinsulinemic subjects. The aim was to investigate whether the hypocaloric diet associated with weight loss modifies the elevated plasma apelin levels and the expression of apelin and APJ receptor in AT in obese women. Fasting plasma levels of apelin and TNF-alpha as well as mRNA levels of apelin and APJ in AT were measured before and after a 12-week hypocaloric weight-reducing diet in 20 obese women (body mass index (BMI) before diet 32.2+/-6.4 kg/m(2)). Twelve healthy women with a BMI of 20.7+/-0.6 kg/m(2) served as reference. Plasma levels of apelin and TNF-alpha were higher in obese compared with lean controls. The hypocaloric diet resulted in a significant decrease of BMI to 29.8+/-6.3 kg/m(2), plasma insulin (8.16+/-0.73 to 6.58+/-0.66 mU/l), apelin (369+/-25 pg/ml to 257+/-12 pg/ml), TNF-alpha levels (0.66+/-0.04 pg/ml to 0.56+/-0.04 pg/ml), and AT mRNAs of apelin and APJ. In addition, changes in AT mRNA apelin were related to changes in AT mRNA APJ levels. The hypocaloric diet associated with weight loss reduces the increased plasma and AT expression of apelin in obese women. This reduced apelin expression in AT could contribute to decreased circulating apelin levels.

  4. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs

    USDA-ARS?s Scientific Manuscript database

    Testosterone deficiency is associated with obesity in humans. It has been proven that long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism; therefore, we first study the role of lncRNAs on testosterone deficiency-induced fat deposition using castrated male pigs as the model animal. The ...

  5. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    PubMed

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  6. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice.

    PubMed

    Chen, Guilin; Li, Haijun; Zhao, Yan; Zhu, Hongyan; Cai, Enbo; Gao, Yugang; Liu, Shuangli; Yang, He; Zhang, Lianxue

    2017-08-01

    In this study, high-fat diet (HFD)-induced obesity in mouse model was used to evaluate the dietary effect of saponins from stems and leaves of Panax ginseng (SLG), and to explore its mechanism of action in producing anti-obesity effects. The results indicate that SLG showed significant anti-obesity effects in diet-induced obese mice, represented by decreased serum levels of free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL)-cholesterol, glucose, leptin and insulin, as well as a reduction in overall body and liver weight, epididymal adipose tissue weight, and food efficiency, and inhibition of abnormal increases in acyl carnitine levels normally caused by an HFD. Additionally, the down-regulated expression of PPARγ, FAS, CD36, FATP2 and up-regulated expression of CPT-1, UCP-2, PPARα, HSL, and ATGL in liver tissue was induced by SLG. In addition, the SLG groups showed decreased PPARγ, aP2 and leptin mRNA levels and increased expression of PPARα, PGC-1α, UCP-1 and UCP-3 genes in adipose tissues, compared with the HFD group. In short, SLG may play a key role in producing anti-obesity effects in mice fed an HFD, and its mechanism may be related to regulation of thermogenesis, lipogenesis and lipolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes.

    PubMed

    Krout, Danielle; Schaar, Anne; Sun, Yuyang; Sukumaran, Pramod; Roemmich, James N; Singh, Brij B; Claycombe-Larson, Kate J

    2017-12-15

    The transient receptor potential canonical channel-1 (TRPC1) is a Ca 2+ -permeable channel found in key metabolic organs and tissues, including the hypothalamus, adipose tissue, and skeletal muscle. Loss of TRPC1 may alter the regulation of cellular energy metabolism resulting in insulin resistance thereby leading to diabetes. Exercise reduces insulin resistance, but it is not known whether TRPC1 is involved in exercise-induced insulin sensitivity. The role of TRPC1 in adiposity and obesity-associated metabolic diseases has not yet been determined. Our results show that TRPC1 functions as a major Ca 2+ entry channel in adipocytes. We have also shown that fat mass and fasting glucose concentrations were lower in TRPC1 KO mice that were fed a high-fat (HF) (45% fat) diet and exercised as compared with WT mice fed a HF diet and exercised. Adipocyte numbers were decreased in both subcutaneous and visceral adipose tissue of TRPC1 KO mice fed a HF diet and exercised. Finally, autophagy markers were decreased and apoptosis markers increased in TRPC1 KO mice fed a HF diet and exercised. Overall, these findings suggest that TRPC1 plays an important role in the regulation of adiposity via autophagy and apoptosis and that TRPC1 inhibits the positive effect of exercise on type II diabetes risk under a HF diet-induced obesity environment.

  8. Adipose tissue content and distribution in children and adolescents with bronchial asthma.

    PubMed

    Umławska, Wioleta

    2015-02-01

    The excess of adipose tissue and the pattern of adipose tissue distribution in the body seem to play an important role in the complicated dependencies between obesity and risk of developing asthma. The aim of the present study was to determine nutritional status in children and adolescents with bronchial asthma with special emphasis on adipose tissue distribution evaluated on the basis of skin-fold thicknesses, and to determine the relationships between patterns of adipose tissue distribution and the course of the disease. Anthropometric data on height, weight, circumferences and skin-fold thicknesses were extracted from the medical histories of 261 children diagnosed with asthma bronchitis. Values for children with asthma were compared to Polish national growth reference charts. Distribution of subcutaneous adipose tissue was evaluated using principal components analysis (PCA). Multivariate linear regression analyses tested the effect of three factors on subcutaneous adipose tissue distribution: type of asthma, the severity of the disease and the duration of the disease. Mean body height in the children examined in this study was lower than in their healthy peers. Mean BMI and skin-fold thicknesses were significantly higher and lean body mass was lower in the study group. Excess body fat was noted, especially in girls. Adipose tissue was preferentially deposited in the trunk in girls with severe asthma, as well as in those who had been suffering from asthma for a longer time. The type of asthma, atopic or non-atopic, had no observable effect on subcutaneous adipose tissue distribution in children examined. The data suggest that long-treated subjects and those with severe bronchial asthma accumulate more adipose tissue on the trunk. It is important to regularly monitor nutritional status in children with asthma, especially in those receiving high doses of systemic or inhaled glucocorticosteroids, and long-term treatment as well. Copyright © 2014 Elsevier Ltd. All

  9. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients.

    PubMed

    Jansen, Henry J; Vervoort, Gerald M; van der Graaf, Marinette; Stienstra, Rinke; Tack, Cees J

    2013-11-01

    Patients with type 2 diabetes mellitus (T2DM) are typically overweight and have an increased liver fat content (LFAT). High LFAT may be explained by an increased efflux of free fatty acids from the adipose tissue, which is partly instigated by inflammatory changes. This would imply an association between inflammatory features of the adipose tissue and liver fat content. To analyse associations between inflammatory features of the adipose tissue and liver fat content. A cross-sectional study. Twenty-seven obese patients with insulin-treated T2DM were studied. LFAT content was measured by proton magnetic resonance spectroscopy. A subcutaneous (sc) fat biopsy was obtained to determine morphology and protein levels within adipose tissue. In addition to fat cell size, the percentage of macrophages and the presence of crown-like structures (CLSs) within sc fat were assessed by CD68-immunohistochemical staining. Mean LFAT percentage was 11·1 ± 1·7% (range: 0·75-32·9%); 63% of the patients were diagnosed with an elevated LFAT (upper range of normal ≤5·5%). Whereas adipocyte size did not correlate with LFAT, 3 of 4 subjects with CLSs in sc fat had elevated LFAT and the percentage of macrophages present in sc adipose tissue was positively associated with LFAT. Protein concentrations of adiponectin within adipose tissue negatively correlated with LFAT. Adipose tissue protein levels of the key inflammatory adipokine plasminogen activator inhibitor-1 (PAI-1) were positively associated with LFAT. Several pro-inflammatory changes in sc adipose tissue associate with increased LFAT content in obese insulin-treated patients with T2DM. These findings suggest that inflammatory changes at the level of the adipose tissue may drive liver fat accumulation. © 2012 John Wiley & Sons Ltd.

  10. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  11. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity.

    PubMed

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-08-03

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related.

  12. Correlation of A2bAR and KLF4/KLF15 with Obesity-Dyslipidemia Induced Inflammation in Uygur Population

    PubMed Central

    Wang, Cuizhe; Ha, Xiaodan; Li, Wei; Xu, Peng; Gu, Yajuan; Wang, Tingting; Wang, Yan; Xie, Jianxin; Zhang, Jun

    2016-01-01

    In this paper, the researchers collected visceral adipose tissue from the Uygur population, which were divided into two groups: the normal control group (NC, n = 50, 18.0 kg/m2 ≤ BMI ≤ 23.9 kg/m2) and the obese group (OB, n = 45, BMI ≥ 28 kg/m2), and then use real-time PCR to detect the mRNA expression level of key genes involved in inflammation signaling pathway. The findings suggest that, in obese status, the lower expression level of A2bAR, KLF4, and KLF15 of visceral adipose tissue may correlate with obese-dyslipidemia induced inflammation in Uygur population. PMID:27199507

  13. LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice[S

    PubMed Central

    Archer, Amena; Stolarczyk, Émilie; Doria, Maria Luisa; Helguero, Luisa; Domingues, Rosário; Howard, Jane K.; Mode, Agneta; Korach-André, Marion; Gustafsson, Jan-Åke

    2013-01-01

    To investigate the role of liver X receptor (LXR) in adipose tissue metabolism during obesity, ob/ob mice were treated for 5 weeks with the synthetic LXR agonist GW3965. MRI analysis revealed that pharmacological activation of LXR modified fat distribution by decreasing visceral (VS) fat and inversely increasing subcutaneous (SC) fat storage without affecting whole body fat content. This was concordant with opposite regulation by GW3965 of the lipolytic markers hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in the two fat depots; moreover, the expression of genes involved in lipogenesis was significantly induced in SC fat. Lipidomic analysis suggested that changes in lipid composition in response to GW3965 also varied between VS and SC fat. In both depots, the observed alteration in lipid composition indicated an overall change toward less lipotoxic lipids. Flow cytometry analysis showed decreased immune cell infiltration in adipose tissue of ob/ob mice in response to GW3965 treatment, which in VS fat mainly affected the macrophage population and in SC fat the lymphocyte population. In line with this, the expression and secretion of proinflammatory markers was decreased in both fat deposits with GW3965 treatment. PMID:23446231

  14. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    PubMed

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  15. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity.

    PubMed

    Huang, Zhi Hua; Manickam, Buvana; Ryvkin, Victoria; Zhou, Xiaohong Joe; Fantuzzi, Giamila; Mazzone, Theodore; Sam, Susan

    2013-01-01

    Adipose tissue macrophage (ATM) infiltration is a major pathway for obesity-induced insulin resistance but has not been studied as a mechanism for insulin resistance in PCOS. We tested whether polycystic ovary syndrome (PCOS) is associated with increased ATM infiltration, especially of inflammatory subtype identified by the CD11c marker. We conducted a case-control study at an academic medical center in the United States. Fourteen PCOS and 14 control women of similar age and body mass index (BMI) underwent a gluteal fat biopsy. Markers of ATM, integrins, TNF-α, and adiponectin, were analyzed by quantitative RT-PCR using a standard curve method. Crown-like structures (CLS) were identified by immunohistochemistry. Abdominal magnetic resonance imaging and frequently sampled i.v. glucose tolerance test were performed to assess abdominal fat and insulin sensitivity (SI). Women with PCOS were compared with control women of similar age and BMI for ATM markers, CLS density, adipose tissue expression of inflammatory cytokines and adiponectin, SI, and abdominal fat depots. Women with PCOS had an increase in CD11c expression (P = 0.03), CLS density (P = 0.001), α5 expression (P = 0.009), borderline increase in TNF-α expression (P = 0.08), and a decrease in adiponectin expression (P = 0.02) in gluteal adipose tissue. Visceral (P = 0.009) and sc abdominal fat (P = 0.005) were increased in PCOS. SI was lower in PCOS (P = 0.008). PCOS is associated with an increase in CD11c expression and CLS density and a decrease in adiponectin expression in sc adipose tissue. Additionally, PCOS is associated with higher central abdominal fat depots independent of BMI. These alterations are present among mostly nonobese women and could represent mechanisms for insulin resistance.

  16. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    PubMed

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  17. Metabolic and adipose tissue signatures in adults with Prader-Willi syndrome: a model of extreme adiposity.

    PubMed

    Lacroix, Delphine; Moutel, Sandrine; Coupaye, Muriel; Huvenne, Hélène; Faucher, Pauline; Pelloux, Véronique; Rouault, Christine; Bastard, Jean-Philippe; Cagnard, Nicolas; Dubern, Béatrice; Clément, Karine; Poitou, Christine

    2015-03-01

    Prader-Willi syndrome (PWS), the most frequent syndrome of obesity, is a model of early fat mass (FM) development, but scarce data exist on adipose tissue characteristics. The objective of the study was to compare metabolic, fat distribution, and transcriptomic signatures of sc adipose tissue (scAT) in PWS adults, with matched obese adults with primary obesities. Hormonal and metabolic assessments, systemic inflammation, and gene expression in scAT were compared between PWS patients and obese controls (OCs). Each 42nd PWS patient was matched with one randomly paired control with primary obesity. Matching factors were age, gender, fat mass (percentage), and diabetic status. Compared with OCs, the PWS group had a decreased percentage of trunk FM and a better metabolic profile with decreased insulin and homeostasis model assessment, an index of insulin-resistance, and increased concentrations of serum adiponectin and ghrelin. Adipocyte size relative to body fat was significantly higher in PWS vs OCs. scAT in PWS patients was characterized by a transcriptomic functional signature with enrichment of themes related to immunoinflammation, the extracellular matrix, and angiogenesis. A RT-PCR targeted study revealed that candidate genes encoding proinflammatory markers and remodeling molecules, CD68, CD3e, IL-1β, chemokine (C-C motif) ligand 5, collagen type 4-α, and lysyl oxidase, were down-regulated. Matched for FM, PWS subjects have a better metabolic profile, a phenotype that could be linked to changes in scAT remodeling and promotion of adipocyte growth.

  18. Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation.

    PubMed

    van den Heuvel, José K; Boon, Mariëtte R; van Hengel, Ingmar; Peschier-van der Put, Emma; van Beek, Lianne; van Harmelen, Vanessa; van Dijk, Ko Willems; Pereira, Alberto M; Hunt, Hazel; Belanoff, Joseph K; Rensen, Patrick C N; Meijer, Onno C

    2016-06-01

    High-fat diet consumption results in obesity and chronic low-grade inflammation in adipose tissue. Whereas glucocorticoid receptor (GR) antagonism reduces diet-induced obesity, GR agonism reduces inflammation, the combination of which would be desired in a strategy to combat the metabolic syndrome. The purpose of this study was to assess the beneficial effects of the selective GR modulator C108297 on both diet-induced weight gain and inflammation in mice and to elucidate underlying mechanisms. Ten-week-old C57Bl/6 J mice were fed a high-fat diet for 4 weeks while being treated with the selective GR modulator C108297, a full GR antagonist (RU486/mifepristone) or vehicle. C108297 and, to a lesser extent, mifepristone reduced body weight gain and fat mass. C108297 decreased food and fructose intake and increased lipolysis in white adipose tissue (WAT) and free fatty acid levels in plasma, resulting in decreased fat cell size and increased fatty acid oxidation. Furthermore, C108297 reduced macrophage infiltration and pro-inflammatory cytokine expression in WAT, as well as in vitro LPS-stimulated TNF-α secretion in macrophage RAW 264.7 cells. However, mifepristone also increased energy expenditure, as measured by fully automatic metabolic cages, and enhanced expression of thermogenic markers in energy-combusting brown adipose tissue (BAT) but did not affect inflammation. C108297 attenuates obesity by reducing caloric intake and increasing lipolysis and fat oxidation, and in addition attenuates inflammation. These data suggest that selective GR modulation may be a viable strategy for the reduction of diet-induced obesity and inflammation. © 2016 The British Pharmacological Society.

  19. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    PubMed Central

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  20. Diet-Induced Obesity Alters Vincristine Pharmacokinetics in Blood and Tissues of Mice

    PubMed Central

    Behan, James W.; Avramis, Vassilios I.; Yun, Jason P.; Louie, Stan G.; Mittelman, Steven D.

    2010-01-01

    Obesity is associated with poorer outcome from many cancers, including leukemia. One possible contributor to this could be suboptimal chemotherapy dosing in obese patients. We have previously found that vincristine (VCR) is less effective in obese compared to non-obese mice with leukemia, despite weight-based dosing. In the present study, we administered 3H-VCR to obese and control mice to determine whether obesity would cause suboptimal VCR exposure. Blood VCR concentrations were fitted with a 3-compartment model using pharmacokinetic analysis (two-stage PK) in 3 subsets of VCR concentrations vs. time method. Tissue and blood VCR concentrations were also analyzed using non-compartmental modeling. Blood VCR concentrations showed a triexponential decay and tended to be slightly higher in the obese mice at all time-points. However, the t½β and t½γ were shorter in the obese mice (9.7 vs. 44.5 minutes and 60.3 vs. 85.6 hours, respectively), resulting in a lower AUC0→∞ (13,099 vs. 15,384 ng/ml*hr). Had the dose of VCR been “capped”, as is done in clinical practice, the AUC0→∞ would have been 36% lower in the obese mice than the controls. Tissue disposition of VCR revealed a biexponential decay from spleen, liver, and adipose. Interestingly, VCR slowly accumulated in the bone marrow of control mice, but had a slow decay from the marrow in the obese mice. Thus, obesity alters VCR PK, causing a lower overall exposure in circulation and bone marrow. Given the high prevalence of obesity, additional PK studies should be performed in obese subjects to optimize chemotherapy dosing regimens. PMID:20083201