Science.gov

Sample records for obidoxime trimedoxime hi-6

  1. A comparison of the therapeutic and reactivating efficacy of newly developed oximes (K117, K127) and currently available oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik

    2008-01-01

    The potency of newly developed bispyridinium compounds (K117, K127) to reactivate tabun-inhibited acetylcholinesterase and reduce tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, trimedoxime, oxime HI-6) by using in vivo methods. A study that determined the percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of newly developed oxime K127 is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. The potency of another newly developed K117 to reactivate tabun-inhibited acetylcholinesterase is comparable with obidoxime or trimedoxime in the diaphragm, but it is significantly lower than the reactivating potency of trimedoxime and obidoxime in the blood and brain. The oxime, K127, was also found to be relatively effective in reducing lethal toxic effects in tabun-poisoned mice. Its therapeutic efficacy is consistent with the therapeutic potency of obidoxime. On the other hand, the potency of the oxime, K117, to reduce acute toxicity of tabun is significantly lower compared to trimedoxime and obidoxime. The therapeutic efficacy of K117 and K127 corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase, especially in the diaphragm and brain. Contrary to obidoxime and trimedoxime, the oxime, HI-6, is not an effective oxime in the reactivation of tabun-inhibited acetycholinesterase and in reducing the lethal effects of tabun. The reactivating and therapeutic potency of both newly developed oximes does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.

  2. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana; Musilek, Kamil; Kuca, Kamil

    2008-01-20

    The potency of newly developed monoxime bispyridinium compounds (K156, K203) in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of newly developed oxime K203 is comparable with obidoxime and trimedoxime in blood and higher than the reactivating potency of trimedoxime and obidoxime in diaphragm and brain, where the difference in reactivating efficacy of obidoxime, trimedoxime and K203 is significant. On the other hand, the potency of newly developed K156 to reactivate tabun-inhibited acetylcholinesterase is comparable with obidoxime or trimedoxime in diaphragm and brain. It is significantly lower than the reactivating efficacy of trimedoxime and obidoxime in blood. Moreover, both newly developed oximes were found to be relatively efficacious in the reduction of lethal toxic effects in tabun-poisoned mice. Especially, the oxime K203 is able to decrease the acute toxicity of tabun nearly two times. The therapeutic efficacy of K156 and K203 corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase, especially in diaphragm and brain. In contrast to obidoxime and trimedoxime, the oxime HI-6 is not effective in reactivation of tabun-inhibited acetycholinesterase and in reducing tabun lethality. While the oxime K156 does not improve the reactivating and therapeutic effectiveness of currently available obidoxime and trimedoxime, the newly developed oxime K203 is markedly more effective in reactivation of tabun-inhibited acetylcholinesterase in rats, especially in brain, and in reducing lethal toxic effects of tabun in mice and, therefore, it is suitable for the replacement of commonly used oximes for the antidotal treatment of acute tabun

  3. A comparison of the potency of newly developed oximes (K074, K075) and currently available oximes (obidoxime, trimedoxime, HI-6) to counteract acute toxic effects of tabun and cyclosarin in mice.

    PubMed

    Kassa, Jirí; Humlicek, Vojtech

    2008-01-01

    The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, trimedoxime, and HI-6) to counteract tabun or cyclosarin-induced acute toxic effects was studied in mice. The therapeutic efficacy of trimedoxime and both newly developed oximes (K074, K075) was significantly higher than the potency of obidoxime and the oxime HI-6 in the case of acute tabun poisonings. On the other hand, the oxime HI-6 was significantly more efficacious than other studied oximes when mice were intoxicated with cyclosarin. The findings support the hypothesis that the therapeutic efficacy of oximes depends on the type of nerve agent. Due to their therapeutic efficacy, both newly developed K oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisonings, while the oxime HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency to counteract cyclosarin-induced acute toxic effects.

  4. Evaluation of potency of known oximes (pralidoxime, trimedoxime, HI-6, methoxime, obidoxime) to in vitro reactivate acetylcholinesterase inhibited by pesticides (chlorpyrifos and methylchlorpyrifos) and nerve agent (Russian VX).

    PubMed

    Musílek, Kamil; Kuca, Kamil; Jun, Daniel

    2007-01-01

    Nerve agents and pesticides belong to the group of organophosphates. They are able to inhibit irreversibly the enzyme acetylcholinesterase (AChE). Acetylcholinesterase reactivators were designed for the treatment of nerve agent intoxications. Their potency to reactivate pesticide-inhibited AChE was many times evaluated. In this study, five commonly used AChE reactivators (pralidoxime, methoxime, HI-6, obidoxime, trimedoxime) for the reactivation of AChE inhibited by two pesticides (chlorpyrifos and methylchlorpyrifos) were used. Russian VX (nerve agent) as a member of nerve agents' family was taken for comparison. Obtained results show that oximes developed against nerve agent intoxication are less effective for intoxication with organophosphorus pesticides. Especially, methylchlorpyrifos-inhibited AChE was found to be poorly reactivated by the compounds used.

  5. A comparison of reactivating and therapeutic efficacy of the oxime K203 and its fluorinated analog (KR-22836) with currently available oximes (obidoxime, trimedoxime, HI-6) against tabun in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Caisberger, Filip; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik

    2010-08-01

    The potency of newly developed bispyridinium compound K203 and its fluorinated analog KR-22836 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determining the percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of K203 is higher than the reactivating efficacy of its fluorinated analog KR-22836 as well as currently available oximes studied. The therapeutic efficacy of the oxime K203 and its fluorinated analog corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase. According to the results, the oxime K203 is more suitable than KR-22836 for the replacement of commonly used oximes for the antidotal treatment of acute tabun poisoning due to its relatively high potency to counteract the acute toxicity of tabun.

  6. A comparison of reactivating and therapeutic efficacy of bispyridinium acetylcholinesterase reactivator KR-22934 with the oxime K203 and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Musilek, Kamil; Kuca, Kamil; Bajgar, Jiri; Jung, Young-Sik

    2011-03-01

    The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).

  7. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Tesarova, Sandra

    2011-07-01

    The ability of two combinations of oximes (HI-6+trimedoxime, HI-6+K203) to reduce soman-induced acute neurotoxic signs and symptoms was compared with the neuroprotective efficacy of the oxime HI-6 alone, using a functional observational battery. Soman-induced neurotoxicity and the neuroprotective effects of HI-6 alone and HI-6 combined with trimedoxime or K203 in rats poisoned with soman at a sublethal dose (90 μg/kg intramuscularly, i.m.; 80% of LD₅₀ value) were monitored by the functional observational battery at 24 hours following soman administration. The results indicate that both tested oxime mixtures combined with atropine were able to allow soman-poisoned rats to survive 24 hours following soman challenge, while 4 nontreated soman-poisoned rats and 1 soman-poisoned rat treated with oxime HI-6 alone combined with atropine died within 24 hours following soman poisoning. While the oxime HI-6 alone combined with atropine treatment was able to eliminate a few soman-induced neurotoxic signs and symptoms, both oxime mixtures showed higher neuroprotective efficacy in soman-poisoned rats. Especially, the combination of HI-6 with trimedoxime was able to eliminate most soman-induced neurotoxic signs and symptoms and markedly reduce acute neurotoxicity of soman in rats. Thus, both tested mixtures of oximes combined with atropine were able to increase the neuroprotective effectiveness of antidotal treatment of acute soman poisonings, compared to the individual oxime.

  8. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro.

    PubMed

    Worek, F; Aurbek, N; Thiermann, H

    2007-01-01

    Highly toxic organophosphorus-type (OP) chemical warfare agents (nerve agents) and OP pesticides may be used by terrorists and during military conflicts emphasizing the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators (oximes) is considered to be ineffective with certain nerve agents due to low oxime efficacy. Despite research over decades none of the oximes has turned out to be a broad spectrum reactivator to cover the whole range of potential threat agents. The prospective oxime HI 6 is a weak reactivator of tabun- and pesticide-inhibited AChE, while the established oxime obidoxime mainly lacks efficacy with cyclosarin-inhibited enzyme. In order to investigate the feasibility of combining obidoxime and HI 6, human AChE inhibited by sarin, cyclosarin, VX, tabun and paraoxon was reactivated by these oximes either alone or in combination. Two major findings of this study were that a combination of HI 6 and obidoxime did not impair reactivation, compared with HI 6 or obidoxime alone, but broadened the spectrum compared with the individual oximes. By using different oxime concentrations a combination of oxime doses may be suggested which could be an alternative to individual obidoxime or HI 6 autoinjectors.

  9. Pseudocatalytic scavenging of the nerve agent VX with human blood components and the oximes obidoxime and HI-6.

    PubMed

    Wille, Timo; von der Wellen, Jens; Thiermann, Horst; Worek, Franz

    2017-03-01

    Despite six decades of extensive research in medical countermeasures against nerve agent poisoning, a broad spectrum acetylcholinesterase (AChE) reactivator is not yet available. One current approach is directed toward synthesizing oximes with high affinity and reactivatability toward butyrylcholinesterase (BChE) in plasma to generate an effective pseudocatalytic scavenger. An interim solution could be the administration of external AChE or BChE from blood products to augment pseudocatalytic scavenging with slower but clinically approved oximes to decrease nerve agent concentrations in the body. We here semiquantitatively investigate the ability of obidoxime and HI-6 to decrease the inhibitory activity of VX with human AChE and BChE from whole blood, erythrocyte membranes, erythrocytes, plasma, clinically available fresh frozen plasma and packed red blood cells. The main findings are that whole blood showed a VX concentration-dependent decrease in inhibitory activity with HI-6 being more potent than obidoxime. Using erythrocytes and erythrocyte membranes again, HI-6 was more potent compared to obidoxime. With freshly prepared plasma, obidoxime and HI-6 showed comparable results for the decrease in VX. The use of the clinically available blood products revealed that packed red blood cells showed similar kinetics as fresh erythrocytes. Fresh frozen plasma resulted in a slower and incomplete decrease in inhibitory plasma compared to freshly prepared plasma. In conclusion, the administration of blood products in combination with available oximes augments pseudocatalytic scavenging and might be useful to decrease the body load of persistent, highly toxic nerve agents.

  10. Reactivation of nerve agent-inhibited human acetylcholinesterase by obidoxime, HI-6 and obidoxime+HI-6: Kinetic in vitro study with simulated nerve agent toxicokinetics and oxime pharmacokinetics.

    PubMed

    Worek, Franz; Koller, Marianne; Thiermann, Horst; Wille, Timo

    2016-03-28

    Despite extensive research for decades no effective broad-spectrum oxime for the treatment of poisoning by a broad range of nerve agents is available. Previous in vitro and in vivo data indicate that the combination of in service oximes could be beneficial. To investigate the ability of obidoxime, HI-6 and the combination of both oximes to reactivate inhibited human AChE in the presence of sarin, cyclosarin or tabun we adopted a dynamic in vitro model with real-time and continuous determination of AChE activity to simulate inhalation nerve agent exposure and intramuscular oxime administration. The major findings of this kinetic study are that the extent and velocity of reactivation is dependent on the nerve agent and the oxime-specific reactivating potency. The oxime-induced reactivation of inhibited human AChE in the presence of nerve agents is markedly impaired and the combination of obidoxime and HI-6 had no additive effect but could broaden the spectrum. In conclusion, these data indicate that a combination of obidoxime and HI-6 would be beneficial for the treatment of poisoning by a broad spectrum of nerve agents and could present an interim solution until more effective and broad-spectrum reactivators are available.

  11. A comparison of the potency of a novel bispyridinium oxime K203 and currently available oximes (obidoxime, HI-6) to counteract the acute neurotoxicity of sarin in rats.

    PubMed

    Kassa, Jiri; Misik, Jan; Karasova, Jana Zdarova

    2012-11-01

    The neuroprotective effects of a newly developed oxime K203 and currently available oximes (obidoxime, HI-6) in combination with atropine in rats poisoned with sarin were studied. The sarin-induced neurotoxicity was monitored using a functional observatory battery at 2 hr after sarin challenge. The results indicate that the potency of a novel bispyridinium oxime K203 to counteract sarin-induced neurotoxicity is relatively low and roughly corresponds to the neuroprotective efficacy of obidoxime. Among tested oximes, the oxime HI-6 seems to be significanlty more efficacious to counteract acute neurotoxicity of sarin than commonly used obidoxime and a newly developed oxime K203. Thus, the oxime K203 does not provide any beneficial effect for the antidotal treatment of acute poisoning with sarin in comparison with the oxime HI-6 that should be considered to be the best oxime for antidotal treatment of acute sarin poisonings.

  12. Tabun-inhibited rat tissue and blood cholinesterases and their reactivation with the combination of trimedoxime and HI-6 in vivo.

    PubMed

    Bajgar, Jiri; Karasova, Jana Zdarova; Kassa, Jiri; Cabal, Jiri; Fusek, Josef; Blaha, Vaclav; Tesarova, Sandra

    2010-09-06

    Up to now, intensive attempts to synthesize a universal reactivator able to reactivate cholinesterases inhibited by all types of nerve agents/organophosphates were not successful. Therefore, another approach using a combination of two reactivators differently reactivating enzyme was used: in rats poisoned with tabun and treated with combination of atropine (fixed dose) and different doses of trimedoxime and HI-6, changes of acetylcholinesterase activities (blood, diaphragm and different parts of the brain) were studied. An increase of AChE activity was observed following trimedoxime treatment depending on its dose; HI-6 had very low effect. Combination of both oximes showed potentiation of their reactivation efficacy; this potentiation was expressed for peripheral AChE (blood, diaphragm) and some parts of the brain (pontomedullar area, frontal cortex); AChE in the basal ganglia was relatively resistant. These observations suggest that the action of combination of oximes in vivo is different from that observed in vitro.

  13. A comparison of neuroprotective efficacy of newly developed oximes (K203, K206) and commonly used oximes (obidoxime, HI-6) in tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana; Vasina, Libor; Bajgar, Jiri; Kuca, Kamil; Musilek, Kamil

    2009-01-01

    The neuroprotective effects of newly developed oximes (K203, K206) and commonly used oximes (obidoxime, HI-6) in combination with atropine in rats poisoned with tabun at a sublethal dose (180 microg/kg i.m.; 80% LD(50)) were studied. The tabun-induced neurotoxicity was monitored by using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 hours and 7 days following tabun challenge. The results indicate that K203 and obidoxime in combination with atropine allow all tabun-poisoned rats to survive within 7 days following tabun challenge, while 2 nontreated tabun-poisoned rats and 1 tabun-poisoned rat treated with K206 or HI-6 in combination with atropine died within 7 days. Only one of the newly developed oximes (K203) combined with atropine seems to be effective for a decrease in tabun-induced neurotoxicity within 24 hours after tabun sublethal poisoning, although it is not able to eliminate tabun-induced neurotoxicity completely. On the other hand, the neuroprotective efficacy of commonly used oximes (obidoxime and HI-6), as well as one of the new synthesized oximes (K206), is significantly lower in comparison with K203, according to the number of eliminated tabun-induced neurotoxic signs at 24 hours after tabun challenge. Due to its neuroprotective effects, K203 appears to be a suitable oxime for the antidotal treatment of acute tabun poisonings.

  14. A comparison of reactivating efficacy of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in cyclosarin-and tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Jun, Daniel; Kuca, Kamil

    2007-06-01

    The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, HI-6) to reactivate nerve agent-inhibited acetylcholinesterase was evaluated in rats poisoned with tabun or cyclosarin at a lethal dose corresponding to the LD50 value. In vivo determined percentage of reactivation of tabun-inhibited blood and brain acetylcholinesterase showed that obidoxime is the most efficacious reactivator of tabun-inhibited acetylcholinesterase among studied oximes in the peripheral compartment (blood) although the differences between obidoxime and newly developed oximes were not significant. On the other hand, one of the newly developed oximes (K074) seems to be a significantly more efficacious reactivator of tabun-inhibited acetylcholinesterase in the central compartment (brain) than the other studied oximes. In addition, the oxime HI-6 is unable to sufficiently reactivate tabun-inhibited acetylcholinesterase in rats. In vivo determined percentage of reactivation of cyclosarin-inhibited blood and brain acetylcholinesterase in poisoned rats showed that HI-6 is the most efficacious reactivator of cyclosarin-inhibited acetylcholinesterase among the studied oximes in the peripheral (blood) as well as central (brain) compartment although the differences between the oxime HI-6 and other tested oximes in the brain were not significant. Due to their reactivating effects, both newly developed K-oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisoning while the oximes HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency in reactivating cyclosarin-inhibited acetylcholinesterase in the peripheral as well as central compartment.

  15. A comparison of reactivating efficacy of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in soman, cyclosarin and tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Jun, Daniel; Karasova, Jana; Bajgar, Jiri; Kuca, Kamil

    2008-09-25

    The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, HI-6) to reactivate nerve agent-inhibited acetylcholinesterase was evaluated in rats poisoned with soman, tabun or cyclosarin at a lethal dose corresponding to their LD(50) value. In vivo determined percentage of reactivation of soman-inhibited blood and brain acetylcholinesterase in poisoned rats showed that only the oxime HI-6 was able to reactivate soman-inhibited acetylcholinesterase in the peripheral (blood) as well as central (brain) compartment. In vivo determined percentage of reactivation of tabun-inhibited blood and brain acetylcholinesterase in poisoned rats showed that obidoxime is the most efficacious reactivator of tabun-inhibited acetylcholinesterase among studied oximes in the peripheral compartment (blood) while K074 seems to be the most efficacious reactivator of tabun-inhibited acetylcholinesterase among studied oximes in the central compartment (brain). In vivo determined percentage of reactivation of cyclosarin-inhibited blood and brain acetylcholinesterase in poisoned rats showed that HI-6 is the most efficacious reactivator of cyclosarin-inhibited acetylcholinesterase among studied oximes. Due to their reactivating effects, both newly developed K oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisonings while the oxime HI-6 is still the most promising oxime for the treatment of acute soman and cyclosarin poisonings.

  16. A comparison of the potency of newly developed oximes (K027, K048) and commonly used oximes (obidoxime, HI-6) to counteract tabun-induced neurotoxicity in rats.

    PubMed

    Kassa, Jirí; Kunesova, Gabriela

    2006-01-01

    The neuroprotective effects of newly developed oximes (K027, K048) and currently available oximes (obidoxime, HI-6) in combination with atropine in rats poisoned with tabun at a sublethal dose (170 microg kg(-1) i.m.; 80% of LD(50) value) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 h and 7 days following tabun challenge. The results indicate that the oxime HI-6 in combination with atropine was not able to protect the rats from the lethal effects of tabun. Two non-treated tabun-poisoned rats and one tabun-poisoned rat treated with atropine combined with HI-6 died within 2 h. On the other hand, all other tested oximes combined with atropine allowed all the tabun-poisoned rats to survive 7 days following tabun challenge. Both newly developed oximes combined with atropine seem to be sufficiently effective antidotes for a decrease in tabun-induced neurotoxicity in the case of sublethal poisoning although they are not able to eliminate tabun-induced neurotoxicity completely. The neuroprotective efficacy of obidoxime in combination with atropine approached the potency of newly developed oximes but the ability of the oxime HI-6 to counteract tabun-induced acute neurotoxicity was significantly lower, especially at 24 h after tabun poisoning. Due to their neuroprotective effects, both newly developed oximes appear to be suitable oximes for the antidotal treatment of acute tabun poisoning.

  17. Time-dependent changes in concentration of two clinically used acetylcholinesterase reactivators (HI-6 and obidoxime) in rat plasma determined by HPLC techniques after in vivo administration.

    PubMed

    Zdarova Karasova, Jana; Novotny, Ladislav; Antos, Karel; Zivna, Helena; Kuca, Kamil

    2010-01-01

    A simple and reliable HPLC method for determination of rat plasma levels of clinically used acetylcholinesterase (AChE) reactivators (HI-6 and obidoxime) is presented in our study. Separation was carried out by HPLC using an octadecyl silica stationary phase and a mobile phase consisting of 24% acetonitrile and containing 5 mM sodium octanesulfonate and 5 mM tetramethylammonium chloride (pH 2.3). Following intramuscular administration of equimolar doses of both oximes (22.23 mg/kg), the maximum of HI-6 concentration in rat plasma was reached in about 20 min giving 15.26 +/- 1.71 microg/mL. The distribution of obidoxime was fast; the single maximum 23.62 +/- 3.563 microg/mL was recorded at about 10 min. HPLC with UV detection presented in our study is a general method which could be applied for quick measurements of bisquaternary AChE reactivators in rat plasma.

  18. A comparison of tabun-inhibited rat brain acetylcholinesterase reactivation by three oximes (HI-6, obidoxime, and K048) in vivo detected by biochemical and histochemical techniques.

    PubMed

    Bajgar, Jiri; Hajek, Petr; Zdarova, Jana Karasova; Kassa, Jiri; Paseka, Antonin; Slizova, Dasa; Krs, Otakar; Kuca, Kamil; Jun, Daniel; Fusek, Josef; Capek, Lukas

    2010-12-01

    Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme. Reactivation of AChE is determined mostly biochemically without specification of different brain structures. Histochemical determination allows a fine search for different structures but is performed mostly without quantitative evaluation. In rats intoxicated with tabun and treated with a combination of atropine and HI-6, obidoxime, or new oxime K048, AChE activities in different brain structures were determined using biochemical and quantitative histochemical methods. Inhibition of AChE following untreated tabun intoxication was different in the various brain structures, having the highest degree in the frontal cortex and reticular formation and lowest in the basal ganglia and substantia nigra. Treatment resulted in an increase of AChE activity detected by both methods. The highest increase was observed in the frontal cortex. This reactivation was increased in the order HI-6 < K048 < obidoxime; however, this order was not uniform for all brain parts studied. A correlation between AChE activity detected by histochemical and biochemical methods was demonstrated. The results suggest that for the mechanism of action of the nerve agent tabun, reactivation in various parts of the brain is not of the same physiological importance. AChE activity in the pontomedullar area and frontal cortex seems to be the most important for the therapeutic effect of the reactivators. HI-6 was not a good reactivator for the treatment of tabun intoxication.

  19. A comparison of the potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, HI-6) to counteract tabun-induced neurotoxicity in rats.

    PubMed

    Kassa, Jiri; Karasova, Jana

    2007-01-05

    The neuroprotective effects of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in combination with atropine in rats poisoned with tabun at a sublethal dose (180 micro g/kg i.m.; 80% LD(50)) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24h and 7 days following tabun challenge. The results indicate that all oximes studied in combination with atropine allow all tabun-poisoned rats to survive within 7 days following tabun challenge while two non-treated tabun-poisoned rats died within 2h. Both newly developed oximes combined with atropine seem to be effective antidotes for a decrease in tabun-induced neurotoxicity in the case of sublethal poisoning although they are not able to eliminate tabun-induced neurotoxicity completely. The oxime K075 showed a higher neuroprotective efficacy against tabun than K074 according to the number of eliminated tabun-induced neurotoxic signs at 24h as well as 7 days after tabun challenge. The neuroprotective efficacy of obidoxime in combination with atropine is similar to the potency of newly developed oxime K075 but the ability of the oxime HI-6 to counteract tabun-induced acute neurotoxicity is significantly lower at 24h as well as 7 days after tabun poisoning. Due to their neuroprotective effects, both newly developed oximes (especially K075) appear to be more suitable oximes for the antidotal treatment of acute tabun poisonings than the oxime HI-6.

  20. A comparison of the potency of newly developed oximes (K347, K628) and currently available oximes (obidoxime, HI-6) to counteract acute neurotoxic effects of Tabun in rats.

    PubMed

    Kassa, Jirí; Karasová, Jana Zdarová; Tesarová, Sandra; Musílek, Kamil; Kuca, Kamil

    2010-01-01

    The ability of newly developed oximes (K347, K628) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oximes (obidoxime, HI-6) using a functional observational battery. The neuroprotective effects of the oximes studied (K347, K628, obidoxime, HI-6) combined with atropine on rats poisoned with tabun at a sublethal dose (220 microg/kg i.m.; 80% of LD50 value) were evaluated. Tabun-induced neurotoxicity was monitored by a functional observational battery and automatic measurement of motor activity at 24 hours following tabun challenge. The results indicate that all tested oximes combined with atropine enable tabun-poisoned rats to survive 24 hours following tabun challenge. Both newly developed oximes (K347, K628) combined with atropine are able to decrease tabun-induced neurotoxicity in the case of sublethal poisonings but they do not eliminate all tabun-induced acute neurotoxic signs and symptoms. Their ability to decrease the tabun-induced acute neurotoxicity is higher than that of the oxime HI-6 and it is slightly slower than the neuroprotective efficacy of obidoxime. As the neuroprotective potency of both newly developed oximes (K347, K628) is not as high as the potency of obidoxime, they are not a suitable replacement for obidoxime for the treatment of acute tabun poisonings.

  1. A comparison of the reactivating and therapeutic efficacy of newly developed oximes (K347, K628) with commonly used oximes (obidoxime, HI-6) against tabun in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Kuca, Kamil; Musilek, Kamil

    2010-07-01

    The potency of newly developed reactivators of nerve agent-inhibited acetylcholinesterase (K347, K628) in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, the oxime HI-6), using in vivo methods. Studies that determined the percentage of reactivation of tabun-inhibited blood and tissue acetycholinesterase in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with the oxime HI-6, but it is significantly lower than the reactivating effects of obidoxime. The monopyridinium oxime, K347, was also found to be able to reduce lethal toxic effects in tabun-poisoned mice, while the therapeutic efficacy of another newly developed bispyridinium oxime, K628, was negligible. The therapeutic efficacy of K347 was higher than the potency of the oxime, HI-6, but it was lower than the therapeutic effects of obidoxime. Thus, the reactivating and therapeutic potency of both newly developed oximes (K347, K628) was not more effective then currently available oximes, and therefore, they are not suitable for the replacement of commonly used oximes (especially obidoxime) for the treatment of acute tabun poisoning.

  2. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K727, K733) with the oxime HI-6 and obidoxime in sarin-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Sepsova, Vendula; Matouskova, Lenka; Horova, Anna; Musilek, Kamil

    2015-03-01

    The ability of two novel bispyridinium oximes K727 and K733 and currently available oximes (HI-6, obidoxime) to reactivate sarin-inhibited acetylcholinesterase and to reduce acute toxicity of sarin was evaluated. To investigate the reactivating efficacy of the oximes, the rats were administered intramuscularly with atropine and oximes in equitoxic doses corresponding to 5% of their LD50 values at 1 min after the intramuscular administration of sarin at a dose of 24 µg/kg (LD50). The activity of acetylcholinesterase was measured at 60 min after sarin poisoning. The LD50 value of sarin in non-treated and treated mice was assessed using probit-logarithmical analysis of death occurring within 24 h after intramuscular administration of sarin at five different doses. In vivo determined percentage of reactivation of sarin-inhibited rat blood, diaphragm and brain acetylcholinesterase showed that the potency of both novel oximes K727 and K733 to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating efficacy of obidoxime. On the other hand, the oxime HI-6 was found to be the most efficient reactivator of sarin-inhibited acetylcholinesterase. While the oxime HI-6 was able to reduce the acute toxicity of sarin >3 times, both novel oximes and obidoxime decreased the acute toxicity of sarin <2 times. Based on the results, we can conclude that the reactivating and therapeutic efficacy of both novel oximes K727 and K733 is significantly lower compared to the oxime HI-6 and, therefore, they are not suitable for the replacement of the oxime HI-6 for the antidotal treatment of acute sarin poisoning.

  3. A comparison of the potency of trimedoxime and other currently available oximes to reactivate tabun-inhibited acetylcholinesterase and eliminate acute toxic effects of tabun.

    PubMed

    Kassa, Jirí; Kuca, Kamil; Cabal, Jirí

    2005-12-01

    Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to highly toxic organophosphorus compounds misused as chemical warfare agents for military as well as terroristic purposes. It differs from other highly toxic organophosphates by its chemical structure and by the fact that tabun-inhibited acetylcholinesterase is extraordinarily difficult to reactivate. The potency of trimedoxime and other commonly used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate tabun-inhibited acetylcholinesterase and to eliminate tabun-induced acute effects was evaluated using in vitro and in vivo methods. In vitro calculated kinetic parameters of reactivation of tabun-inhibited acetylcholinesterase from rat brain homogenate and in vivo determined percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats show that trimedoxime seems to be the most efficacious reactivator in the case of tabun poisonings. Trimedoxime was also found to be the most efficacious oxime in the elimination of acute lethal toxic effects in tabun-poisoned rats and mice. The oxime HI-6, so efficacious against soman, does not seem to be sufficiently effective oxime to reactivate tabun-inhibited acetylcholinesterase and to counteract acute lethal effects of tabun.

  4. Internal standard high-performance liquid chromatography method for the determination of obidoxime in urine of organophosphate-poisoned patients.

    PubMed

    Grasshoff, C; Thiermann, H; Gillessen, T; Zilker, T; Szinicz, L

    2001-04-05

    Obidoxime is an antidote approved for reactivation of inhibited acetylcholinesterase in organophosphate poisoning. HPLC methods were described for its determination in blood or aqueous solutions but not for the determination in urine. Since data for renal obidoxime excretion ranged from 2.2 to 84% of administered dose in healthy volunteers depending on the route of administration and little is known about pharmacokinetics of obidoxime in severely intoxicated patients we developed an internal standard (HI 6) reversed-phase HPLC method for determining obidoxime in urine. The mobile phase consisted of methanol, the counter ion 1-heptane sulfonic acid and tetrabutylammonium phosphate, the stationary phase involved a 5 microm reversed-phase column (125x4 mm). Obidoxime was detected spectrophotometrically at 288 nm. The limit of quantification (LOQ) was 1 microM, the limit of detection (LOD) 0.5 microM. Linear calibration curves were obtained in a concentration range from 1 to 1000 microM. Intra- and inter-day precision C.V.s were below 4%. Accuracy was 95.9% in the LOQ range. Using this method, we were able to quantify obidoxime in urine of an organophosphate poisoned patient. Based on this data we calculated that 58% of the administered dose was excreted in the urine.

  5. HI 6 human serum albumin nanoparticles--development and transport over an in vitro blood-brain barrier model.

    PubMed

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Kufleitner, Jürgen; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2011-09-25

    The standard treatment of intoxication with organophosphorus (OP) compounds includes the administration of oximes acting as acetylcholinesterase (AChE) reactivating antidotes. However, the blood-brain barrier (BBB) restricts the rapid transport of these drugs from the blood into the brain in therapeutically relevant concentrations. Since human serum albumin (HSA) nanoparticles enable the delivery of a variety of drugs across the BBB into the brain, HI 6 dimethanesulfonate and HI 6 dichloride monohydrate were bound to these nanoparticles in the present study. The resulting sorption isotherms showed a better fit to Freundlich's empirical adsorption isotherm than to Langmuir's adsorption isotherm. At the pH of 8.3 maximum drug binding capacities of 344.8 μg and 322.6 μg per mg of nanoparticles were calculated for HI 6 dimethanesulfonate and HI 6 dichloride monohydrate, respectively. These calculated values are higher than the adsorption capacity of 93.5 μg/mg for obidoxime onto HSA nanoparticles determined in a previous study. In vitro testing of the nanoparticulate oxime formulations in primary porcine brain capillary endothelial cells (pBCEC) demonstrated an up to two times higher reactivation of OP-inhibited AChE than the free oximes. These findings show that nanoparticles made of HSA may enable a sufficient antidote OP-poisoning therapy with HI 6 derivatives even within the central nervous system (CNS).

  6. Photostability of antidotal oxime HI-6, impact on drug development.

    PubMed

    Bogan, Reinhard; Worek, Franz; Koller, Marianne; Klaubert, Bernd

    2012-01-01

    HI-6 exhibits superior efficacy in the therapy of intoxication by different highly toxic organophosphorus nerve agents. Therefore HI-6 is a promising candidate for the development of new antidotes against nerve agents. For ethical and safety reasons antidotes containing HI-6 should get marketing authorization. Active pharmaceutical ingredients of medicinal products have to fulfil regulatory conditions in terms of purity and stability. Photostability is an essential parameter in this testing strategy. HI-6 was tested under conditions of ICH Q1B 'Photostability testing of new drug substances and products'. The data showed a marked degradation of HI-6 after exposure to daylight. The mechanism of degradation could be detected as photoisomerism. The light burden dependent rate of photoisomerism was followed quantitatively. Based on these quantitative results on the amount of light induced isomeric product a pharmacological qualification was made. A standardized in vitro test showed a decreased ability of light exposed HI-6 to reactivate sarin- and paraoxon-inhibited human acetylcholinesterase. These results have an impact on the further development of antidotes containing HI-6, as light protection will probably be necessary during handling, packaging, storage and application.

  7. Evaluation of the potency of two novel bispyridinium oximes (K456, K458) in comparison with oxime K203 and trimedoxime to counteract tabun-induced neurotoxicity in rats.

    PubMed

    Kassa, Jiri; Misik, Jan; Karasova, Jana Z

    2013-09-01

    The ability of two newly developed bispyridinium oximes (K456, K458) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with oxime K203 and trimedoxime using the functional observational battery. The neuroprotective effects of the oximes studied combined with atropine on rats poisoned with tabun at a sublethal dose (200 μg/kg i.m.; 85% of LD50 value) were evaluated. Tabun-induced neurotoxicity was monitored by the functional observational battery and automatic measurement of motor activity at 2 hr after tabun challenge. The results indicate that all tested oximes combined with atropine enable tabun-poisoned rats to survive till the end of experiment. Both newly developed oximes (K456, K458) combined with atropine were able to decrease tabun-induced neurotoxicity in the case of sublethal poisonings although they did not eliminate all tabun-induced acute neurotoxic signs and symptoms. Their ability to decrease tabun-induced acute neurotoxicity was slightly higher than that of trimedoxime and oxime K203, but the difference in neuroprotective efficacy among all oximes studied is not large enough to make a decision about replacement of commonly used oximes (especially trimedoxime and obidoxime) in the treatment of acute tabun poisonings.

  8. DFT conformational studies of the HI-6 molecule

    NASA Astrophysics Data System (ADS)

    Silva, Gustavo R.; Borges, Itamar; Figueroa-Villar, Jose D.

    A systematic study of the oxime HI-6 [1-(2-hydroxyiminomethyl-1-pyridinium)-1-(4-carboxy-aminopyridinium)dimethyl ether] hydrochloride, which is one of the most promising antidotes against soman intoxication, was carried out using density functional theory with the B3LYP (Becke, Lee, Yang, and Parr) method and the 6-31+G*, 6-31+G*, and 6-31+G** basis sets. Rotational barriers, equilibrium geometries, and charge distributions were calculated in order to investigate the role of the side chain for the larger oximes used as antidotes in the treatment of neurotoxic organophosphate poisoning. Also reported is the comparison between HI-6 and pralidoxime (2-PAM), a smaller oxime previously studied in our research group. It is shown that conformation minima for the protonated E isomer do not depend on the size of the side chain; on the other hand, this effect has a pronounced influence on the protonated Z isomer. For the unprotonated isomers, other effects, such as electrostatic interactions and resonance, should be taken into account in their conformational analysis.

  9. Hyaluronidase: its effects on HI-6 dichloride and dimethanesulphonate pharmacokinetic profile in pigs.

    PubMed

    Karasova, Jana Zdarova; Pavlik, Michal; Chladek, Jaroslav; Jun, Daniel; Kuca, Kamil

    2013-07-04

    Pigs were administered intramuscularly molar equivalents of HI-6 salts (HI-6 dichloride 10.71 mg/kg and HI-6 DMS 13.59 mg/kg) either with or without hyaluronidase (60 U/kg). Hyaluronidase is supposed to increase tissue permeability and diminishes discomfort caused by the intramuscular injection. Doses of HI-6 salts corresponded with standard HI-6 dichloride dose in one autoinjector (500 mg) and were recalculated for 1 kg of body weight. According to the results, both HI-6 salts applied in combination with hyaluronidase had increased tissue absorption and improved pharmacokinetic profile. The Cmax was significantly higher in case of HI-6 DMS plus hyaluronidase (29.6 ± 2.98 μg/ml) administration increase compared to HI-6 DMS (23.8 ± 3.04 μg/ml) and HI-6 dichloride (19.0 ± 0.93 μg/ml); both without hyaluronidase. Bioavailability calculated as AUCtotal (HI-6 DMS with hyaluronidase, 4,119 ± 647 min μg/ml) was also significantly higher compared to HI-6 DMS (2,259 ± 329 min μg/ml) and HI-6 dichloride (1,969 ± 254 min μg/ml); both without hyaluronidase. The results suggest that administration of HI-6 salt with higher solubility is the first step in the improvement of application strategy, but use some substances with spreading effect (hyaluronidase) may also leads to better absorption and better bioavailability. Improved bioavailability could to go hand in hand with increased effectiveness of therapy without the need of multiple autoinjector applications.

  10. Dose-response effects of atropine and HI-6 treatment of organophosphorus poisoning in guinea pigs

    SciTech Connect

    Koplovitz, I.; Menton, R.; Matthews, C.; Shutz, M.; Nalls, C.

    1995-12-31

    H1-6 (1-2-hydrnxyiminomethyl-1 pyridino-3-(4-carbameyl- 1--pyddino)-2- oxaprnpane dichioride) has been evaluated as an oxime alternative to pralidoxime, and toxogonin in the treatment of organophosphorus (OP) poisoning. The dose response effects of atropine (ATR) and HI-6 were investigated to more fully explore the interaction of these compounds in the treatment of OP poisoning. ATR, HI-6 and various combinations of the two drugs were evaluated against lethal poisoning by soman (GD) and tabun (GA) in guinea pigs. The effect of adjunctive diazepam treatment on the efficacy of atropine and HI-6 against soman was also investigated. Animals of either sex were challenged s.c. with OP and treated i.m. 1 min later with ATR and/or HI-6. When used, diazepam was injected immediately after ATR+HI6. LD50s of each treatment were calculated from probit models based on 24-hour survival against 5 levels of nerve agent and 6 animals per challenge level. A protective index (PI) was calculated by dividing the nerve agent LD50 in the presence of treatment by the LD50 in the absence of treatment. Treatment with HI-6 alone had little effect on the toxicity of either OP. Treatment with ATR alone was more effective than HI-6 alone and was significantly more effective against soman than against tabun. When used in combination atropine and HI-6 had a strong synergistic effect against both agents. The dose of atropine used with HI-6 was critical in determining the efficacy of HI-6 against either agent. The slopes of the dose-lethality curves were minimally affected by the dose of ATR or HI-6. Adjunctive treatment with diazepam enhanced the efficacy of HI-6 and atropine against soman.

  11. A comparison of the therapeutic and reactivating efficacy of newly developed bispyridinium compounds (K206, K269) with currently available oximes against tabun in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana; Bajgar, Jiri; Kuca, Kamil; Musilek, Kamil

    2008-12-01

    The potency of newly developed bispyridinium compounds (K206, K269) in reactivating tabun-inhibited acetylcholinesterase and eliminating tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies which determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. Nevertheless, the differences in reactivating efficacy of obidoxime, trimedoxime and K206 was not significant while the potency of K269 to reactivate tabun-inhibited acetylcholinesterase was significantly lower. Both newly developed oximes were also found to be relatively efficacious in elimination of the lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy corresponds to the therapeutic potency of obidoxime. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and to counteract lethal effects of tabun. Both newly developed oximes (K206, K269) are significantly more efficacious in reactivating tabun-inhibited AChE in rats and to eliminate lethal toxic effects of tabun in mice than the oxime HI-6 but their reactivating and therapeutic potency does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.

  12. Preclincal Studies of the Oxime, HI-6, an Element of the Treatment of Soman Poisoning. Appendix 13. The Pharmacokinetics of HI-6 in the Rat and Dog

    DTIC Science & Technology

    1982-03-31

    Comparison of the Efficacy of HS-6 versus HI-6 when "Combined with Atropine, Pyridostigmine and Clonazepam for Soman Poisoning in the Monkey. Arch. int... Pregnancy Slide Test TS()NTLSE ElFungus, culture VIRAL STUDIES TESTiS) inOTL) E ElV.D.R.L. re syphilis (Pray. Lob. History form must be * lProtein - mgm

  13. In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.

    PubMed

    Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice

    2014-03-01

    Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate.

  14. HI-6 modulates immunization efficacy in a BALB/c mouse model.

    PubMed

    Pohanka, Miroslav

    2013-11-01

    HI-6 is used as an antidote to nerve agents. It can also act as an antagonist to acetylcholine receptors (AChRs) including the nicotinic receptor, α 7 nAChR which is involved in regulating the immune response through macrophages. This experiment investigated the efficacy of HI-6 to regulate the immune response. Laboratory BALB/c mice received HI-6 and/or keyhole limpet hemocyanin (KLH) as an antigen. Antibody production was investigated after either 21 or 65 days when either single or repeated dose of antigen was applied. We confirmed that HI-6 significantly improved vaccination efficacy when KLH was given in a dose of 1mg/kg. The effect was dose dependent. A combination of HI-6 and KLH produced a vaccination of almost the same efficacy as that for Freund's complete adjuvant. The findings point at the suitability of HI-6 for improving vaccination efficacy at the level of immunity regulation by the nervous system.

  15. Pd(II) complexes of acetylcholinesterase reactivator obidoxime

    PubMed Central

    Stoykova, Silviya; Atanasov, Vasil; Pantcheva, Ivayla; Antonov, Liudmil

    2014-01-01

    The ability of the acetylcholinesterase reactivator obidoxime (H2L2+) to bind palladium(II) cations was evaluated spectrophotometrically at different reaction conditions (pH, reaction time, metal-to-ligand molar ratio). The results showed that immediately after mixing the reagents, pH 7.4, complex species of composition [PdHL]3+ existed predominantly with a value of conditional stability constant lgβ‘=6.52. The reaction was completed within 24 hours affording the formation of species [Pd2L]4+ with significantly increased stability (lgβ‘=9.34). The spectral data suggest that obidoxime coordinates metal(II) ions through the oximate functional groups. The in vitro reactivation assay of paraoxon-inhibited rat brain acetylcholinesterase revealed that the new complex species were much less active than the non-coordinated obidoxime. The lack of reactivation ability could be explained by the considerable stability of complexes in solution as well as by the deprotonation of oxime groups essential for recovery of the enzymatic activity. PMID:26109891

  16. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    PubMed

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model.

  17. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs.

    PubMed

    Bures, Jan; Kvetina, Jaroslav; Pavlik, Michal; Kunes, Martin; Kopacova, Marcela; Rejchrt, Stanislav; Jun, Daniel; Hrabinova, Martina; Kuca, Kamil; Tachecí, Ilja

    2013-01-01

    Organophosphorus compounds represent nerve agents, pesticides and several industrial compounds. Treatment after exposure to organophosphates involves the use of parasympatolytics, acetylcholinesterase (AChE) reactivators/modulators and anticonvulsive drugs. Wider clinical use of several AChE reactivators/modulators might be limited because of possible side effects, including gastrointestinal toxicity. In this study we evaluated the effect of paraoxon and an AChE reactivator (HI-6) on the gastric myoelectric activity in experimental pigs. Six female experimental pigs (mean weight 33 kg) entered the study. Intramuscular paraoxon (1.5 g) was administrated after the baseline gastric electrogastrography (EGG) recording, followed by HI-6 dimethansulphonate (1.5 g i.m.) 10 min. later. A further ten 15-minute-interval EGG recordings were performed. Running spectral analysis was used for the elemental evaluation of the EGG. The results were expressed as dominant frequency of slow waves at all intervals of EGG recordings. EGG power analysis was performed in all animals. Paraoxon induced a non-significant decrease of dominant frequency (2.8±0.6 vs. 2.6±0.5 cycles per min.; p=0.092). Subsequent administration of HI-6 normalised dominant frequency to basal values and increased it significantly within the subsequent 30 minutes (3.0±0.4; p<0.001). Paraoxon administration did not influence the power (within a 10-minute exposure). However, the amplitudes increased significantly 90 minutes after administration of HI-6 (819±109 vs. 5054±732 μV2; p<0.001). AChE reactivator HI-6 blocked the gastric effect of paraoxon significantly. Subsequent myoelectric changes in the dominant frequency and power were executed by HI-6. The effect of paraoxon was non-significant.

  18. In vivo distribution of organophosphate antidotes: autoradiography of (/sup 14/C)HI-6 in the rat

    SciTech Connect

    Ligtenstein, D.A.; Moes, G.W.; Kossen, S.P.

    1988-02-01

    In order to visualize the distribution of HI-6 in the rat after iv administration, autoradiographic experiments were carried out with (/sup 14/C)HI-6, labeled at the carbon of the carboxamide moiety. Autoradiography clearly confirms penetration of HI-6 into the central nervous system. Considerable radioactivity was found in the cerebrum, the cerebellum, and the choroid plexus. No significant activity was detected in the pontomedullary region or the spinal cord. Peripherally, (/sup 14/C)HI-6 is observed in large amounts in kidneys, heart, liver, nose, bladder, testes, and marrow-containing bone. The gastrointestinal tract was largely devoid of any radioactivity. The relative absence of HI-6 in the pontomedullary region renders centrally mediated influences of HI-6 on hemodynamic and respiratory parameters less likely.

  19. HI-6 oxime (an acetylcholinesterase reactivator): blood plasma pharmacokinetics and organ distribution in experimental pigs.

    PubMed

    Kuneš, Martin; Květina, Jaroslav; Bureš, Jan; Karasová, Jana Zdárová; Pavlík, Michal; Tachecí, Ilja; Musílek, Kamil; Kuca, Kamil

    2014-01-01

    Oxime HI-6 DMS (dimethanesulfonate) is an asymmetric bis-pyridinium aldoxime and essential acetylcholinesterase (AChE) reactivator. The high effectiveness is due to its wide spectrum of therapeutic activity against different structures of nerve agents. Aim of this study was to compare plasma time profiles and tissue distribution (to delimitation of potential toxicity risks) after its intramuscular (i.m.) and intragastric (i.g.) administration to experimental pigs. The study entered female Landrace pigs (Sus scrofa f. domestica), 4-5 months old animals, 29 ± 3.2 kg of body weight. Before the HI-6 DMS administration (i.m. injection or i.g. using a gastric tube), vena auricularis was cannulated (under general anaesthesia) for collection of blood samples. The tissue distribution study was carried out at expected t-max. Concentrations of HI-6 DMS in blood plasma and other tissue samples were detected by means of HPLC method. Fast absorption after i.m. administration, relatively slow absorption and no even elimination after i.g. administration were found. Tissue distribution showed low accumulation in the liver, but a higher content in the kidneys and high concentrations in the brain and gastrointestinal wall. Plasma time profiles after i.g. administration has a prolonged pharmacokinetics. Tissue distribution study showed potential side effects to the stomach due to a higher accumulation of HI-6 in this tissue after i.g. administration but not after a standard i.m. administration. Higher content of HI-6 in the kidneys after i.m. administration suggests the main way of the oxime elimination.

  20. A comparison of the reactivating and therapeutic efficacy of newly developed bispyridinium oximes (K250, K251) with commonly used oximes against tabun in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana; Bajgar, Jiri; Kuca, Kamil; Musilek, Kamil; Kopelikova, Irena

    2009-08-01

    The potency of newly developed bispyridinium compounds (K250, K251) in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with the oxime HI-6 but it is significantly lower than the reactivating effects of obidoxime and trimedoxime, especially in diaphragm and brain. Both newly developed oximes were also found to be able to slightly reduce lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy is higher than the potency of the oxime HI-6 but it is lower than the therapeutic effects of trimedoxime and obidoxime. Thus, the reactivating and therapeutic potency of both newly developed oximes (K250, K251) does not prevail over the effectiveness of currently available oximes and, therefore, they are not suitable for their replacement for the treatment of acute tabun poisoning.

  1. [Effect of acetylcholinesterase reactivator dosage on its effectiveness in the treatment of tabun poisoning in mice].

    PubMed

    Kassa, J

    2004-01-01

    The therapeutic efficacy of selected reactivators of acetylcholinesterase (obidoxime, oxime HI-6, trimedoxime) against acute tabun poisoning in dependence on their dose was examined in experiments on male mice. A comparison of the values of the medium lethal dose (LD50) of tabun in the intoxication influenced by an antidote therapy consisting of atropin and some of the oximes tested revealed that in all three oximes under study their dose markedly influenced their effect. The highest efficacy was always achieved when oximes were administered in the maximal therapeutic dose (20% of LD50). It follows from the comparison of the efficacy of equieffective doses of the oximes tested that in all doses the acute lethal effects of tabun are most effectively eliminated by trimedoxime, and on the other hand, obidoxime seems to be least effective, though in the smallest dose tested (2% of LD50) the differences between the therapeutic efficacy of the individual oximes are not statistically significant. Oxime HI-6 is significantly more effective than obidoxime (in a dose corresponding to 20% of LD50), but it is less effective than trimedoxime (in a dose corresponding to 5% LD50). The achieved results have shown that oxime HI-6, so effective against soman, another nerve agent, is not the most advantageous reactivator of acetylcholinesterase for the therapy of acute tabun poisonings, though its efficacy is partly eliminated by its possible higher dosing in human medicine due to its lower toxicity for mammals. The most suitable reactivator of acetylcholinesterase for the elimination of acute lethal toxic effects of tabun seems to be trimedoxime. Obidoxime, which is the most widely used reactivator of acetylcholinesterase in the therapy of poisonings by nerve agents at present, is, like in the case of soman poisonings, a relatively least suitable oxime ensuring the survival in lethal tabun poisonings.

  2. [A comparison of the efficacy of the reactivators of acetylcholinesterase inhibited with tabun].

    PubMed

    Cabal, J; Kuca, K; Jun, D; Bajgar, J; Hrabinová, M

    2005-07-01

    The nerve agent tabun inhibits acetylcholinesterase (AChE; EC 3.1.1.7) by the formation of a covalent bond with the enzyme. Afterwards, AChE is not able to fulfil its role in the organism and subsequently cholinergic crisis occurs. AChE reactivators (pralidoxime, obidoxime and HI-6) as causal antidotes are used for the cleavage of the bond between the enzyme and nerve agent. Unfortunately, their potency for reactivation of tabun-inhibited AChE is poor. The aim of the study was to choose the most potent reactivator of tabun-inhibited AChE. We have tested eight AChE reactivators--pralidoxime, obidoxime, trimedoxime, HI-6, methoxime, Hlö-7 and our newly synthesized oximes K027 and K048. All reactivators were tested using our standard in vitro reactivation test (pH 8, 25 degrees C, time of inhibition by the nerve agent 30 minutes, time of reactivation by AChE reactivator 10 minutes). According to our results, only trimedoxime was able to achieve 50% reactivation potency. However, this relatively high potency was achieved at high oxime concentration (10(-2) M). At a lower concentration of 10(-4) M (the probably attainable concentration in vivo), four AChE reactivators (trimedoxime, obidoxime, K027, and K048) were able to reactivate AChE inhibited by tabun reaching from 10 to 18%.

  3. Intravenous application of HI-6 salts (dichloride and dimethansulphonate) in pigs: comparison with pharmacokinetics profile after intramuscular administration.

    PubMed

    Zdarova Karasova, Jana; Zemek, Filip; Kunes, Martin; Kvetina, Jaroslav; Chladek, Jaroslav; Jun, Daniel; Bures, Jan; Tachecí, Ilja; Kuca, Kamil

    2013-01-01

    Oxime HI-6 is an acetylcholinesterase reactivator therapeutically efficient against nerve agents. Because of their physico-chemical properties, oximes are typically applied intramuscularly (i.m.). This route of administration has also some disadvantages, and alternative strategies ought to be examined. We evaluated the pharmacokinetic profiles of two HI-6 salts after their intravenous (i.v.) administration, and compare the results with the known pharmacokinetics after i.m. administration. Pigs were administered with HI-6 salts (i.v), either HI-6 dichloride (10.71 mg/kg) or molar equivalent HI-6 dimethansulphonate (13.59 mg/kg). Doses of the HI-6 salts corresponded with a standard HI-6 dichloride dose in one autoinjector (500 mg) and were recalculated for one kilogram of body weight. The main pharmacokinetic parameters are comparable after i.v. and i.m. HI-6 administration. The compared pharmacokinetic parameters were half-life, terminal rate constant, mean residence time of the molecule in the body, clearance, and the apparent volume in the terminal phase. The bioavailability after i.m. administration was comparable with that of i.v.; these results suggest that the oxime is well released from the muscle depot. Significant differences were found in parameters Cmax and Tmax which are important in cases of emergency when rapidity and bioavailability are paramount for the success of treatment. I.v. administration should solve the problem of rapid clearance. Infusion or bolus administration may be considered as a logical subsequent step in oxime treatment strategy. The main advantage is in maintenance of an effective therapeutic plasma concentration, a more easily achievable effective therapeutic concentration, and fewer local adverse reactions.

  4. Effect of HI-6 on cytokines production after immunity stimulation by keyhole limpet hemocyanin in a mouse model.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    HI-6 or asoxime in some sources is an antidotum for nerve agents. In recent experiments, implication of HI-6 in immunity response was proved; however, the issue was not studied in details. In this experiment, role of cytokines in HI-6 impact on immunity was searched. DESIG N: BALB/c mice were exposed to saline, HI-6 in a dose 1-100 mg/kg and/or 1 keyhole limpet hemocyanin (KLH) 1 mg/kg. Mice were sacrificed 21 days after experiment beginning and interleukins (IL) 1, 2, 4, 6 were determined by Enzyme Linked Immunosorbent Assay (ELISA). The animals had no pathological manifestation. From the tested cytokines, no significant alteration was found for the IL-1, IL-4 and IL-6. IL-2 was significantly increased in a dose response manner. The experimental data well correlates with the previous work where HI-6 caused increase of antibodies production. HI-6 is suitable to be used as an adjuvant whenever immunity should be pharmacologically altered.

  5. Investigation of oxidative stress in blood, brain, kidney, and liver after oxime antidote HI-6 application in a mouse experimental model.

    PubMed

    Pohanka, Miroslav; Sobotka, Jakub; Svobodova, Hana; Stetina, Rudolf

    2011-07-01

    Oxime reactivator HI-6 (asoxime, in some sources) is a potent antidote suitable for treatment of intoxication by nerve agents. Despite the fact that HI-6 is considered for practical application in emergency situations, the impact of HI-6 on patients' bodies has not been established yet. The present experiment was carried out in order to estimate whether HI-6 would be able to trigger or protect from oxidative stress in a BALB/c mice model. HI-6 was applied in doses ranging from 0.2 to 20% of LD₅₀. Ferric-reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and glutathione reductase (GR) were assayed in the blood, liver, kidney, and brain of treated animals. It was found that HI-6 does not increase GR or TBARS. On the contrary, TBARS levels in the brain and liver were found to be significantly decreased in HI-6-treated animals. Pertinent antioxidant properties of HI-6 were excluded by the FRAP method. Endogenous antioxidants were unchanged, with the exception of the kidney. Low-molecular-weight antioxidants assayed by the FRAP method were significantly decreased in kidneys of animals treated with HI-6. However, GSH partially recovered the loss of the other low-molecular-weight antioxidants and was significantly increased in the kidney of HI-6-exposed mice. HI-6 potential to produce nephropathy is hypothesized. The achieved conclusions were quite surprising and showed a complex impact of HI-6 on the body.

  6. Comparison of reactivating and therapeutic efficacy of two salts of the oxime HI-6 against tabun, soman and cyclosarin in rats.

    PubMed

    Kassa, Jiri; Jun, Daniel; Kuca, Kamil; Bajgar, Jiri

    2007-11-01

    The reactivating and therapeutic efficacy of two salts of the oxime HI-6 (dichloride and dimethanesulphonate) against chosen nerve agents (tabun, soman and cyclosarin) was compared in rats. The potency of both salts of HI-6 to decrease the acute toxicity of tabun, soman and cyclosarin was similar in nerve agent-poisoned rats. While the potency of HI-6 dichloride and HI-6 dimethanesulphonate to counteract acute toxic effects of tabun is rather low, both salts of HI-6 were able to decrease the acute toxicity of soman two times and acute toxicity of cyclosarin more than three times. The therapeutic efficacy of both salts of the oxime HI-6 corresponds to their reactivating potency. While the reactivating efficacy of HI-6 dichloride as well as HI-6 dimethanesulphonate against tabun was negligible, their potency to reactivate soman-inhibited acetylcholinesterase and cyclosarin-inhibited acetylcholinesterase in peripheral (blood) and central (brain) compartment was relatively high. HI-6 dichloride showed a somewhat higher potency to reactivate tabun-inhibited acetylcholinesterase in brain, and soman-inhibited acetylcholinesterase in blood and brain than HI-6 dimethanesulphonate but the differences were not significant. Thus, the replacement of dichloride anion by dimethanesulphonate anion in the oxime HI-6 does not influence the therapeutic and reactivating efficacy of the oxime HI-6 against nerve agents. In addition, the higher solubility and stability of HI-6 dimethanesulphonate in comparison with HI-6 dichloride makes it possible to increase the dose and thus, the effectiveness of the oxime HI-6 in the antidotal treatment of acute nerve agent poisonings.

  7. Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes

    PubMed Central

    2014-01-01

    Background Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Results Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2 × LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Conclusion Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the

  8. Simple high-performance liquid chromatographic method for determination of atropine and obidoxime in a parenteral injection device.

    PubMed

    Gören, Ahmet C; Bilsel, Gökhan; Bilsel, Mine; Yenisoy-Karaka, Serpil; Karaka, Duran

    2004-11-19

    Atropine and obidoxime in a parenteral injection device are determined by simple HPLC method simultaneously without any pretreatment at 228 nm. The relative standard deviations (R.S.D.) were below 1.6% for the compounds. The correlation coefficient was greater than 0.999 for both compounds in the calibration range. The recoveries at 5 mg/L concentration averaged as 95% for atropine and 102% for obidoxime. The uncertainty of the measurements for atropine and obidoxime was 2.8% and 2.4%, respectively.

  9. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro.

    PubMed

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit; Maggio, Nicola; Chapman, Joab; Eisenkraft, Arik

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain.

  10. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro

    PubMed Central

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit

    2016-01-01

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805

  11. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.

    PubMed

    Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-11-25

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms.

  12. Analysis of the HI-6, HS-3 and HS-6, Influence on the Liver Methabolizing Enzyme Systems

    DTIC Science & Technology

    2001-09-01

    ON THE LIVER METHABOLIZING ENZIME SYSTEMS Christophor Dishovsky, Maria Kadiiska*, Petko Alov* Military Medical Academy, 1606, Sofia, Bulgaria...reactivators of ChE, liver, methabolizing enzime systems FIGURES AND TABLES Table 1. Effect of reactivators of ChE HS-3, HS-6, HI-6 on the hexobarbital

  13. Optimal choice of acetylcholinesterase reactivators for antidotal treatment of nerve agent intoxication.

    PubMed

    Bajgar, Jirí

    2010-01-01

    The studies dealing with mechanism of organophosphates (OP)/nerve agent action, prophylaxis and treatment of intoxications is a very hot topic at present. Though the research is very intensive, unfortunately, up to now, there is not universal or significantly better reactivator sufficiently effective against all nerve agents/OP when compared with presently available oximes (pralidoxime, methoxime, obidoxime, trimedoxime, HI-6). The use of the most effective reactivator (HI-6) using simple type of autoinjector (e.g. ComboPen) is strictly limited because of decomposition of HI-6 in solution. Thanks to better solubility it is clear that another salt of HI-6 (dimethanesulfonate, HI-6 DMS) is more convenient for the use as antidote against nerve agents in the autoinjector than HI-6 chloride (Cl). It was clearly demonstrated that reactivation potency of HI-6 DMS in comparison with HI-6 Cl in vivo was the same and bioavailability of HI-6 DMS is better than that of HI-6 Cl. Three chambered autoinjector allows administration of all three antidotes (atropine, reactivator, diazepam) simultaneously. Moreover, the content of chambers can be changed according to proposed requirements. Possible way to solve the problem of universal reactivator could be the use of two reactivators. Three chambered autoinjector is an ideal device for this purpose.

  14. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan

    2016-05-01

    The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and

  15. The influence of the time of antidotal treatment administration on its effectiveness against tabun-induced poisoning in mice.

    PubMed

    Kassa, Jirí

    2004-01-01

    1. The influence of the time of administration of antidotal treatment consisting of anticholinergic drug (atropine) and oxime (pralidoxime, obidoxime, HI-6 or trimedoxime) on its effectiveness to eliminate tabun-induced lethal effects was studied in mice. 2. The therapeutic efficacy of antidotal treatment of tabun-induced acute poisoning depends on the time of its administration when obidoxime or the oxime HI-6 was used as an acetylcholinesterase reactivator. 3. Pralidoxime is practically ineffective to eliminate acute toxic effects of tabun regardless of the time of its administration. 4. Our results show that trimedoxime seems to be the most effective to eliminate lethal effects of tabun. In addition, its efficacy does not decrease when it is administered 5 min after tabun poisoning. 5. The findings support the hypothesis that trimedoxime appears to be the most suitable oxime to counteract acute toxicity of tabun because of its ability to eliminate lethal effects of tabun when it is injected 5 min after tabun challenge on the contrary to other oximes tested.

  16. The evaluation of the neuroprotective effects of bispyridinium oximes in tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana

    2007-09-01

    Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to the group of highly toxic organophosphorus compounds that may be used as chemical warfare agents for military as well as terrorist purposes. Tabun differs from other highly toxic organophosphates by the fact that commonly used antidotes are not able adequately to prevent tabun-induced acute toxic effects. The neuroprotective effects of four bispyridinium oximes (K075, trimedoxime, HI-6, obidoxime) in combination with atropine on rats poisoned with tabun at a sublethal dose (150 microg/kg i.m.; 80% of LD50 value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h and 7 d following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 7 d following challenge. Trimedoxime combined with atropine was the most effective antidote in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Due to its neuroprotective effects, trimedoxime may be considered to be more suitable oxime for the antidotal treatment of acute tabun exposure than currently used oximes (obidoxime, HI-6) and the newly synthesized oxime K075.

  17. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: A computational study.

    PubMed

    Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; França, Tanos C C

    2017-10-11

    Abstracts The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.

  18. Therapeutic efficacy of different antidotal mixtures against poisoning with GF-agent in mice.

    PubMed

    Bartosová, Lucie; Kunesová, Gabriela; Kuca, Kamil; Vachek, Josef

    2004-01-01

    The toxicity of cyclohexyl methylphosphonofluoridate (GF-agent; cyclosarin) and therapeutic efficacy of four oximes (trimedoxime, methoxime, obidoxime and HI-6) in combination with atropine or benactyzine (BNZ) was studied in mice. The oxime therapy combined with anticholinergic drug was administered intramusculary (i.m.) 1 or 2 min after i.m. GF-agent challenge. All the drugs were applied in dose of 20% of LD50. Obidoxime and trimedoxime that were combined with atropine were less effective than methoxime and HI-6 in combination with BNZ when applied 2 minutes after GF-agent poisoning. When the drugs were administered 1 min after GF-agent challenge already, in case of methoxime, the faster application of therapy resulted in significantly higher protective ratio, while for obidoxime the therapeutic effectivity did not depend significantly on the seasonableness of therapeutic intervention. The present findings show that all four combinations of oxime with anticholinergic drug decrease the GF-agent toxicity more than twofold regardless of the time of treatment administration.

  19. Stability study of a new antidote drug combination (Atropine-HI-6-Prodiazepam) for treatment of organophosphate poisoning.

    PubMed

    Clair, P; Wiberg, K; Granelli, I; Carlsson Bratt, I; Blanchet, G

    2000-01-01

    The main purpose of this study was to investigate the chemical stability of a new antidote combination for the treatment of organophosphate poisoning. The antidote combination was packed (enclosed) in two plastic compartments separated by a barrier film. One of them contained a powder oxime cholinesterase reactivator (HI-6-monohydrate 1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2-[(hydro xyimino)meth yl]-pyridinium dichloride). The other contained an anticholinergic (Atropine) and an anticonvulsant (Prodiazepam or Avizafone (L-lysyl-N-(2-benzoyl-4-chlorophenyl)-N-methyl-glycinamide dihydrochloride) drug in a liquid mixture. The plastic compartments were mounted in an autoinjector device to study the dissolution of HI-6 by ejection of the solution. Drug analysis was performed by high-performance liquid chromatography. The results obtained after 6 months show that this new antidote combination is stable. The amount of each antidote is unchanged during the study. Some known degradation products can be detected in small amounts. The autoinjector mechanism used, gives a complete dissolution of HI-6 powder in the liquid mixture throughout the study.

  20. Rapid and equivalent systemic bioavailability of the antidotes HI-6 and dicobalt edetate via the intraosseous and intravenous routes.

    PubMed

    Hill, Simon L; Thomas, Simon H L; Flecknell, Paul A; Thomas, Aurelie A; Morris, Chris M; Henderson, David; Dunn, Michael; Blain, Peter G

    2015-08-01

    Rapid and effective administration of antidotes by emergency medical responders is needed to improve the survival of patients severely poisoned after deliberate release of chemical weapons, but intravenous access is difficult to obtain while wearing personal protective equipment and in casualties with circulatory collapse. To test the hypothesis that rapid and substantial bioavailability of the antidotes HI-6 oxime and dicobalt edetate can be achieved via the intraosseous (IO) route, plasma concentration-time profiles of these antidotes were compared after administration by the intravenous and IO routes in a minipig animal model. 12 male Göttingen minipigs were randomly allocated to receive 7.14 mg/kg of HI-6 (by rapid bolus) then 4.28 mg/kg of dicobalt edetate (over 1 min) via the intravenous or IO route. Plasma concentrations of each antidote were measured over 360 min following administration and plasma concentration-time profiles plotted for each drug by each route. Peak HI-6 and cobalt concentrations occurred within 2 min of administration by both the intravenous and IO routes. Mean areas under the concentration-time curves (SD) to the end of the experiment (area under the concentration-time curve, AUC (0-t)) for cobalt were 430 (47, intravenous) and 445 (40, IO) μg-min/mL (mean difference 15, 95% CI -41 to 70, p=0.568) and for HI-6 were 2739 (1038, intravenous) and 2772 (1629, IO) μg-min/mL (mean difference 0.33, 95% CI -1724 to 1790, p=0.97). Increases in heart rate (by 50 beats/min intravenous and 27 beats/min IO) and BP, (by 67/58 mm Hg intravenous and 78/59 mm Hg IO), were observed after dicobalt edetate, consistent with the known adverse effects of this antidote. This study demonstrates rapid and similar systemic bioavailability of HI-6 and dicobalt edetate when given by the IO and intravenous routes. IO delivery of these antidotes is appropriate in the acute management of patients with organophosphate and cyanide intoxication when

  1. Monoquaternary pyridinium salts with modified side chain-synthesis and evaluation on model of tabun- and paraoxon-inhibited acetylcholinesterase.

    PubMed

    Musilek, Kamil; Kucera, Jiri; Jun, Daniel; Dohnal, Vlastimil; Opletalova, Veronika; Kuca, Kamil

    2008-09-01

    Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Eighteen monoquaternary reactivators of acetylcholinesterase with modified side chain were developed in an effort to extend the properties of pralidoxime. The known reactivators (pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) and the prepared compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monoquaternary reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation better or comparable with pralidoxime for paraoxon poisoning. However, extensive differences were found by a SAR study for various side chains on the non-oxime part of the reactivator molecule.

  2. Partition of bispyridinium oximes (trimedoxime and K074) administered in therapeutic doses into different parts of the rat brain.

    PubMed

    Karasova, Jana Zdarova; Zemek, Filip; Bajgar, Jiri; Vasatova, Martina; Prochazka, Petr; Novotny, Ladislav; Kuca, Kamil

    2011-04-05

    The penetration of acetylcholinesterase reactivators (oximes) into the central nervous system is typically restricted by the blood-brain barrier. Although oximes are highly hydrophilic compounds, some contradictory results confirming permeation into the brain exist. The aim of this study is to verify the penetration of oximes through the blood-brain barrier and to detect their levels achieved in different brain regions 60 min after the administration. It was confirmed that oximes are able to penetrate into the brain after injection of therapeutic doses corresponding with 5% of LD(50). The level in whole brain was 0.58% for trimedoxime and 0.85% for the experimental drug oxime K074 as the percentage of their plasma concentration. The highest concentration was found in frontal cortex (trimedoxime 2.27%; oxime K074 0.95%) and lowest in basal ganglia (trimedoxime 0.86%; oxime K074 0.42%). Entry of oximes into the brain is minimal, but some low reactivation effect should be expected. The reactivation potency of oximes might be higher or lower, depending on the real oxime concentration in a given area. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase.

    PubMed

    Cabal, Jirí; Kuca, K; Kassa, J

    2004-08-01

    The efficacy of various oximes to reactivate acetylcholinesterase phosphorylated by tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) was tested by in vitro and in vivo methods. The oximes commonly used for the treatment of acute poisonings with highly toxic organophosphates appeared to be almost ineffective (HI-6, pralidoxime, methoxime) or just slightly effective (obidoxime) against tabun. On the other hand, trimedoxime seemed to be a significantly more efficacious reactivator than the others in the case of tabun poisonings. In vitro, the concentration of trimedoxime corresponding to 1.0 mmol/l was able to reach 50% reactivation of tabun-inhibited brain acetylcholinesterase. Higher reactivating potency of trimedoxime in comparison with the other commonly used oximes was demonstrated by in vivo method, too. In addition, other structural analogues of trimedoxime were found to be efficacious in counteracting tabun-induced acetylcholinesterase inhibition although not as efficacious as trimedoxime itself. Some effective acetylcholinesterase reactivators were characterised by dissociation constant of enzyme-reactivator complex as well as enzyme-inhibitor-reactivator complex and by rate constant of reactivation.

  4. Development and validation of a sensitive HPLC method for the quantification of HI-6 in guinea pig plasma and evaluated in domestic swine.

    PubMed

    Bohnert, Sara; Vair, Cory; Mikler, John

    2010-05-15

    A rapid and small volume assay to quantify HI-6 in plasma was developed to further the development and licensing of an intravenous formulation of HI-6. The objective of this method was to develop a sensitive and rapid assay that clearly resolved HI-6 and an internal standard in saline and plasma matrices. A fully validated method using ion-pair HPLC and 2-PAM as the internal standard fulfilled these requirements. Small plasma samples of 35 microL were extracted using acidification, filtration and neutralization. Linearity was shown for over 4 microg/mL to 1mg/mL with accuracy and precision within 6% relative error at the lower limit of detection. This method was utilized in the pharmacokinetic analysis HI-6 dichloride (2Cl) and HI-6 dimethane sulfonate (DMS) in anaesthetized guinea pigs and domestic swine following an intravenous bolus administration. From the resultant pharmacokinetic parameters a target plasma concentration of 100 microM was established and maintained in guinea pigs receiving an intravenous infusion. This validated method allows for the analysis of low volume samples, increased sample numbers and is applicable to the determination of pharmacokinetic profiles and parameters. Copyright (c) 2010. Published by Elsevier B.V.

  5. Studies on the role of central catecholaminergic mechanisms in the antidotal effect of the oxime HI 6 in soman poisoned mice.

    PubMed

    Reithmann, C; Arbogast, H; Hallek, M; Auburger, G; Szinicz, L

    1988-08-01

    The effects of atropine and the oxime HI 6 on running performance, brain and plasma cholinesterase activity and brain catecholamines were investigated in mice intoxicated with sublethal doses of soman (100 micrograms/kg s.c.). The running time on a rotating mash wire drum (total running time 60 min) after injection of soman was reduced to 17.2 min. Treatment with atropine (10 mg/kg i.p.) or HI 6 (55 mg/kg i.p.) improved the running performance to 48.2 and 44.8 min, respectively. Cholinesterase activity was decreased in soman poisoned mice to 47.3% in plasma and 43.5% in brain. Therapy with the oxime HI 6 resulted in a reactivation of soman-inhibited peripheral cholinesterase to 76.6%, but failed to reactivate central cholinesterase. Dopamine levels in mice brain were elevated in soman poisoning by 23.2%, whereas noradrenaline levels remained unchanged. The increase in brain dopamine levels was antagonized by atropine as well as by HI 6. The results of this study lead to the speculation that central dopaminergic mechanisms may be involved in soman toxicity as well as in the antidotal action of atropine and the mainly peripherally acting oxime HI 6.

  6. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity.

    PubMed

    Artursson, Elisabet; Andersson, Per Ola; Akfur, Christine; Linusson, Anna; Börjegren, Susanne; Ekström, Fredrik

    2013-05-01

    Nerve agents such as tabun, cyclosarin and Russian VX inhibit the essential enzyme acetylcholinesterase (AChE) by organophosphorylating the catalytic serine residue. Nucleophiles, such as oximes, are used as antidotes as they can reactivate and restore the function of the inhibited enzyme. The oxime HI-6 shows a notably low activity on tabun adducts but can effectively reactivate adducts of cyclosarin and Russian VX. To examine the structural basis for the pronounced substrate specificity of HI-6, we determined the binary crystal structures of Mus musculus AChE (mAChE) conjugated by cyclosarin and Russian VX and found a conformational mobility of the side chains of Phe338 and His447. The interaction between HI-6 and tabun-adducts of AChE were subsequently investigated using a combination of time resolved fluorescence spectroscopy and X-ray crystallography. Our findings show that HI-6 binds to tabun inhibited Homo sapiens AChE (hAChE) with an IC50 value of 300μM and suggest that the reactive nucleophilic moiety of HI-6 is excluded from the phosphorus atom of tabun. We propose that a conformational mobility of the side-chains of Phe338 and His447 is a common feature in nerve-agent adducts of AChE. We also suggest that the conformational mobility allow HI-6 to reactivate conjugates of cyclosarin and Russian VX while a reduced mobility in tabun conjugated AChE results in steric hindrance that prevents efficient reactivation.

  7. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods.

    PubMed

    Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin

    2006-10-01

    The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.

  8. High-performance liquid chromatography analysis of by-products and intermediates arising during the synthesis of the acetylcholinesterase reactivator HI-6.

    PubMed

    Jun, Daniel; Stodulka, Petr; Kuca, Kamil; Dolezal, Bohuslav

    2010-09-01

    An high-performance liquid chromatography (HPLC) method for identification of quaternary and non-quaternary compounds (parent compounds, intermediates, by-products, and products) within the synthesis of the acetylcholinesterase reactivator HI-6, the most promising antidote of nerve agent poisonings, is described. This HPLC method could be of high interest as a quick purity control for those who are interested in development of new acetylcholinesterase reactivators as well as for those who are interested in the synthesis of HI-6 in laboratory or in large-scale production. An HPLC method for quaternary compounds without using common ion-pairing reagents was developed, too.

  9. Comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit

    SciTech Connect

    Koplovitz, I.; Stewart, J.R.

    1994-12-31

    This study compared the efficacy of H16 and 2-PAM against nerve agent (soman tabun sarin and VX) -induced lethality in the atropinesterase-free rabbits pretreated with vehicle (controls) or pyridostigmine. Treatment was administered at signs or 2 min after agent challenge and consisted ofoxime (l00umol/lkg) + atropine 13 mg(kg) (alone or together with diazepam). Twenty-four-h LD50 values were calculated for soman- and tabun-intoxicated animals, whereas 24-h survival was noted in animals given 10 LD50s of sarin or VX. In pyridostigmine and control rabbits intoxicated with soman and treated with oxime + atropine (alone or together with diazepam), HI6 was 35 times more effective than 2-PAM. In contrast 1116 was less effective than 2-PAM against tabun poisoning. In pyridostigmine-pretreated animals exposed to tabun, efficacy was increased more than 3-fold when compare to tabun-challenged animals treated with atropine + H16 alone. Both oximes were highly effective against satin and VX. These findings suggest that Hifi could replace 2-PAM as therapy for nerve agent poisoning because it is superior to 2-PAM against soman, and when used in pyridostigmine-pretreated animals it affords excellent protection against all four nerve agents when used in combination with atropine (alone or together with diazepam) therapy.

  10. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6.

    PubMed

    Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Linusson, Anna; Ekström, Fredrik J

    2016-05-17

    Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.

  11. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6

    PubMed Central

    Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Linusson, Anna; Ekström, Fredrik J.

    2016-01-01

    Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme–sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636

  12. Subacute intramuscular toxicity of the acetylcholinesterase reactivating agent Hi-6 in rats and dogs. (Reannouncement with new availability information)

    SciTech Connect

    Levine, B.S.; Tomlinson, M.J.

    1993-12-31

    Studies herein describe the toxicity of HI-6 in Sprague-Dawley rats and Beagle dogs following i.m. injection for 14 days. Dose levels were 0, 50, 150, and 450 mg/kg/day for 10 rats/sex/dose and 0, 35, 70, and 140 mg/kg/day for 4 dogs/sex/dose. Three rats at the high dose, 2 males and 1 female, died prior to scheduled sacrifice. Reduced weight gain, decreased activity, tremors, hunched posture,and poor grooming were seen in high dose survivors. Increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities at the mid and high doses suggested hepatotoxicity, although liver weights and histology were normal. Hematology parameters were unaffected except for slight, dose-related increases of platelets in both sexes. Injection site inflammation was seen; however, serum creatine kinase activity was not altered. In dogs, slight weight loss, vomiting, salivation, and diarrhea occurred at the high dose, but no deaths were observed at any of the doses. As with rats, dose-related increases in ALT and AST activities occurred at the mid and high doses, and were, in this case, accompanied at the high dose by hepatomegaly and hepatocellular vacuolization. Cardiotoxicity was evidenced by increased relative heart weights and subtle ECG changes, the latter of which occurred almost exclusively at the highest dose. Injection site inflammation, which was accompanied by dose-related elevations in serum CK-MM2 activity, was also observed.

  13. Development of a Combined Solution Formulation of Atropine Sulfate and Obidoxime Chloride for Autoinjector and Evaluation of Its Stability

    PubMed Central

    Ettehadi, Hossein Ali; Ghalandari, Rouhollah; Shafaati, Alireza; Foroutan, Seyed Mohsen

    2013-01-01

    Atropine (AT) and oximes, alone or in combination, have been proven greatly valuable therapeutics in the treatment of organophosphates intoxications. An injectable mixture of AT and obidoxime (OB) was formulated for the administration by automatic self-injector. The aqueous single dose solution contained 275 mg obidoxime chloride and 2.5 mg atropine sulfate per 1 mL (220 mg and 2 mg per 0.8 effective dose, respectively). The final solution was sterilized by filtration through a 0.22 μm pore size filter. This more concentrated solution allowed to use a smaller size and lighter weight cartridge. Quality control tests, including assay of the two major compounds were performed separately, using reversed-phase HPLC methods. Besides, the stability test was carried out according to ICH guideline for the accelerated test. The obtained results showed that the proposed formulation is stable over a period of 2 years after preparation. PMID:24250669

  14. Effectiveness of oximes 2-PAM and HI-6 in recovery of muscle function depressed by organophosphate agents in the rat hemidiaphragm: an in vitro study.

    PubMed

    Reddy, V K; Deshpande, S S; Cintra, W M; Scoble, G T; Albuquerque, E X

    1991-11-01

    Phrenic nerve diaphragm muscles of young adult rats were used to study the ability of the oximes 2-PAM and HI-6 to recover muscle function depressed by organophosphate (OP) agents. The single twitch of diaphragm muscles which were exposed to soman (0.2 microM) recovered after washing with saline for 3 hr, but the muscles pretreated with sarin (0.4 microM), VX (0.2 microM), or tabun (0.4 microM) showed only partial recovery. In addition, after 3 hr washing, the muscles pretreated with soman as well as with tabun did not recover the tetanus sustaining ability (TSA), yet complete recovery was observed with muscles pretreated with sarin and VX. These results indicate that the OPs have different effects on muscle contractile properties and that VX- and sarin-pretreated muscles recover equally well after wash with physiological solution. The recovery of twitch tension of diaphragm muscles by 2-PAM and HI-6 was similar to that achieved by washing with saline for 3 hr for sarin- and soman-exposed muscles. The most remarkable differences were seen in the recovery of TSA. Both 2-PAM and HI-6 recovered the TSA of muscles that were pretreated with sarin and VX. Although 2-PAM recovered the TSA after tabun pretreatment, HI-6 had no discernible effect. On the other hand, HI-6 recovered the TSA of soman-pretreated muscles but 2-PAM did not. The effectiveness of muscle function recovery was not related to the oximes' ability to reactivate AChE, thus indicating that the recovery of muscle contractility may be attributed to a direct effect of these compounds on the muscle.

  15. Structure of HI-6*sarin-acetylcholinesterase determined by X-ray crystallography and molecular dynamics simulation: reactivator mechanism and design.

    PubMed

    Ekström, Fredrik; Hörnberg, Andreas; Artursson, Elisabet; Hammarström, Lars-Gunnar; Schneider, Gunter; Pang, Yuan-Ping

    2009-06-18

    Organophosphonates such as isopropyl metylphosphonofluoridate (sarin) are extremely toxic as they phosphonylate the catalytic serine residue of acetylcholinesterase (AChE), an enzyme essential to humans and other species. Design of effective AChE reactivators as antidotes to various organophosphonates requires information on how the reactivators interact with the phosphonylated AChEs. However, such information has not been available hitherto because of three main challenges. First, reactivators are generally flexible in order to change from the ground state to the transition state for reactivation; this flexibility discourages determination of crystal structures of AChE in complex with effective reactivators that are intrinsically disordered. Second, reactivation occurs upon binding of a reactivator to the phosphonylated AChE. Third, the phosphorous conjugate can develop resistance to reactivation. We have identified crystallographic conditions that led to the determination of a crystal structure of the sarin(nonaged)-conjugated mouse AChE in complex with [(E)-[1-[(4-carbamoylpyridin-1-ium-1-yl)methoxymethyl]pyridin-2-ylidene]methyl]-oxoazanium dichloride (HI-6) at a resolution of 2.2 A. In this structure, the carboxyamino-pyridinium ring of HI-6 is sandwiched by Tyr124 and Trp286, however, the oxime-pyridinium ring is disordered. By combining crystallography with microsecond molecular dynamics simulation, we determined the oxime-pyridinium ring structure, which shows that the oxime group of HI-6 can form a hydrogen-bond network to the sarin isopropyl ether oxygen, and a water molecule is able to form a hydrogen bond to the catalytic histidine residue and subsequently deprotonates the oxime for reactivation. These results offer insights into the reactivation mechanism of HI-6 and design of better reactivators.

  16. Percutaneous exposure to the nerve agent VX: Efficacy of combined atropine, obidoxime and diazepam treatment.

    PubMed

    Joosen, Marloes J A; van der Schans, Marcel J; van Helden, Herman P M

    2010-10-06

    The nerve agent VX is most likely to enter the body via liquid contamination of the skin. After percutaneous exposure, the slow uptake into the blood, and its slow elimination result in toxic levels in plasma for a period of several hours. Consequently, this has implications for the development of toxic signs and for treatment onset. In the present study, clinical signs, toxicokinetics and effects on respiration, electroencephalogram and heart rate were investigated in hairless guinea pigs after percutaneous exposure to 500 microg/kg VX. We found that full inhibition of AChE and partial inhibition of BuChE in blood were accompanied by the onset of clinical signs, reflected by a decline in respiratory minute volume, bronchoconstriction and a decrease in heart rate. Furthermore, we investigated the therapeutic efficacy of a single dose of atropine, obidoxime and diazepam, administered at appearance of first clinical signs, versus that of repetitive dosing of these drugs on the reappearance of signs. A single shot treatment extended the period to detrimental physiological decline and death for several hours, whereas repetitive administration remained effective as long as treatment was continued. In conclusion, percutaneous VX poisoning showed to be effectively treatable when diagnosed on time and when continued over the entire period of time during which VX, in case of ineffective decontamination, penetrates the skin.

  17. Effect of five acetylcholinesterase reactivators on tabun-intoxicated rats: induction of oxidative stress versus reactivation efficacy.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Kassa, Jiri

    2009-08-01

    Oxime reactivators HI-6, obidoxime, trimedoxime, K347 and K628 were investigated as drugs designed for treatment of tabun intoxication. The experiments were performed on rats in order to simulate real conditions. Rats were intoxicated with one LD(50 )of tabun and treated with atropine and mentioned reactivators. Activities of erythrocyte acetylcholinesterase (AChE), plasma butyrylcholinesterase (BChE) and brain AChE were measured as markers of reactivation efficacy. An estimation of low molecular weight antioxidant levels using cyclic voltammetry was the second examination parameter. The evaluation of cholinesterases activity showed good reactivation potency of blood AChE and plasma BChE by commercially available obidoxime and newly synthesized K347. The potency of oximes to reactivate brain AChE was lower due to the poor blood-brain barrier penetration of used compounds. Commercially available reactivator HI-6 and newly synthesized K628 caused oxidative stress measured by cyclic voltammetry as antioxidant level. The oxidative stress provoked by HI-6 and K628 was found to be significant on probability level P = 0.05. The others reactivators did not affect antioxidant levels.

  18. The evaluation of the reactivating and therapeutic efficacy of two novel oximes (K361 and K378) in comparison with the oxime K203 and trimedoxime in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Sepsova, Vendula; Tumova, Martina; Musilek, Kamil; Horova, Anna

    2014-03-01

    The potency of two newly developed oximes (K361 and K378) to reactivate tabun-inhibited cholinesterase and to reduce acute toxicity of tabun was compared with the oxime K203 and trimedoxime using in vivo methods. The study determining percentage of reactivation of tabun-inhibited diaphragm cholinesterase in poisoned rats showed that the reactivating efficacy of the oxime K378 is slightly lower than the reactivating potency of the oxime K203 and trimedoxime while the ability of the oxime K361 to reactivate tabun-inhibited cholinesterase is markedly lower compared with the oxime K203 and trimedoxime. In the brain, the potency of both newly developed oximes to reactivate tabun-inhibited cholinesterase was negligible. The therapeutic efficacy of both newly developed oximes roughly corresponds to their weak reactivating efficacy. Their potency to reduce acute toxicity of tabun was significantly lower compared with the oxime K203 as well as trimedoxime. In conclusion, the reactivating and therapeutic potency of both newly developed oximes does not prevail the effectiveness of the oxime K203 and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.

  19. The evaluation of the reactivating and therapeutic efficacy of three novel bispyridinium oximes (K454, K456, K458) in comparison with the oxime K203 and trimedoxime in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Sepsova, Vendula; Musilek, Kamil; Horova, Anna

    2013-02-01

    The potency of three newly developed bispyridinium compounds (K454, K456, K458) to reactivate tabun-inhibited acetylcholinesterase and reduce tabun-induced lethal toxic effects was compared with the oxime K203 and trimedoxime using in vivo methods. The study determining percentage of reactivation of tabun-inhibited diaphragm and brain acetylcholinesterase in poisoned rats showed that the reactivating efficacy of all newly developed oximes is comparable with K203 but lower than the reactivating potency of trimedoxime in diaphragm. In the brain, their potency to reactivate tabun-inhibited acetylcholinesterase is lower compared with trimedoxime and the oxime K203. All three newly developed oximes were also found to be relatively effective in reducing lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy is consistent with the therapeutic potency of the oxime K203. On the other hand, their potency to reduce acute toxicity of tabun is significantly lower compared with trimedoxime. In conclusion, the reactivating and therapeutic potency of all three newly developed oximes does not prevail the effectiveness of the oxime K203 and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.

  20. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality.

  1. A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, And Young-Sik

    2009-03-01

    The potency of newly developed bispyridinium compounds (K117, K127) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oxime (obidoxime) using functional observational battery. The neuroprotective effects of atropine alone and atropine combined with one of three bispyridinium oximes (K117, K127, obidoxime) on rats poisoned with tabun at a sublethal dose (180 microg/kg i.m.; 80% of LD(50) value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 24 h following tabun challenge while one tabun-poisoned rats died within 24 h after tabun poisoning when the rats were treated with atropine alone. Newly developed oxime K127 combined with atropine was the most effective in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Nevertheless, the differences of neuroprotective efficacy between K127 and obidoxime are not sufficient to replace obidoxime by K127 for the treatment of acute tabun poisonings.

  2. Repetitive obidoxime treatment induced increase of red blood cell acetylcholinesterase activity even in a late phase of a severe methamidophos poisoning: A case report.

    PubMed

    Steinritz, Dirk; Eyer, Florian; Worek, Franz; Thiermann, Horst; John, Harald

    2016-02-26

    Accidental self-poisoning or deliberate use in suicidal intent of organophosphorus pesticides (OPP), which are widely used in agriculture, represent a health problem worldwide. Symptoms of poisoning are characterized by acute cholinergic crisis caused by inhibition of acetylcholinesterase. A 75-year-old male patient ingested 20ml of an OPP solution containing 10% methamidophos in suicidal intent. In the course of poisoning typical clinical symptoms of cholinergic crisis (miosis, bradycardia, hypotension, hypersalivation and impairment of neurologic status) were evident. Butyryl (plasma) cholinesterase (BChE) and red blood cell acetylcholinesterase (RBC-AChE) revealed decreased activities, thus specific treatment with the enzyme reactivator obidoxime was started. Inhibitory activity of the patient's plasma indicated significant amounts of persisting methamidophos in the circulation and was still found on day 4 after ingestion. Due to missing spontaneous breathing on day 6, obidoxime was administered again. Afterwards a significant increase of RBC-AChE activity was found. The patient was extubated on day 10 and a restitution ad integrum was achieved. In conclusion, obidoxime is a potent reactivator of OPP-inhibited AChE. A repetitive and prolonged administration of obidoxime should be considered in cases of severe methamidophos poisoning and should be tailored with an advanced analytical biomonitoring.

  3. The oximes HI-6 and MMB-4 fail to reactivate soman-inhibited human and guinea pig AChE: A kinetic in vitro study.

    PubMed

    Worek, Franz; Thiermann, Horst; Wille, Timo

    2017-10-06

    Acetylcholinesterase (AChE) inhibited by the organophosphorus nerve (OP) agent soman underlies a spontaneous and extremely rapid dealkylation ("aging") reaction which prevents reactivation by oximes. However, in vivo studies in various, soman poisoned animal species showed a therapeutic effect of oximes, with the exact mechanism of this effect remaining still unclear. In order to get more insight and a basis for the extrapolation of animal data to humans, we applied a dynamic in vitro model with continuous online determination of AChE activity. This model allows to simulate the in vivo toxico- and pharmacokinetics between human and guinea pig AChE with soman and the oximes HI-6 and MMB-4 in order to unravel the species dependent kinetic interactions. It turned out that only HI-6 was able to slow down the ongoing inhibition of human AChE by soman without preventing final complete inhibition of the enzyme. Continuous perfusion of AChE with soman and simultaneous or delayed (8, 15 or 40min) oxime perfusion did not result in a relevant reactivation of AChE (less than 2%). In conclusion, the results of the present study indicate a negligible reactivation of soman-inhibited AChE by oximes at conditions simulating the in vivo poisoning by soman. The observed therapeutic effect of oximes in soman poisoned animals in vivo must be attributed to alternative mechanisms which may not be relevant in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (k727 and k733) with oxime k203 and trimedoxime in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Sepsova, Vendula; Tumova, Martina; Horova, Anna; Musilek, Kamil

    2015-04-01

    The reactivating and therapeutic efficacy of three original bispyridinium oximes (K727, K733 and K203) and one currently available oxime (trimedoxime) was evaluated in tabun-poisoned rats and mice. The oxime-induced reactivation of tabun-inhibited acetylcholinesterase was measured in diaphragm and brain of tabun-poisoned rats. The results showed that the reactivating efficacy of two recently developed oximes (K727 and K733) does not achieve the level of the reactivation of tabun-inhibited acetylcholinesterase induced by oxime K203 and trimedoxime. While all oximes studied were able to increase the activity of tabun-inhibited acetylcholinesterase in diaphragm, oxime K733 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied roughly corresponds to their reactivating efficacy. While both recently developed oximes were able to reduce acute toxicity of tabun less than 1.5-fold, another original oxime K203 and commonly used trimedoxime reduced the acute toxicity of tabun almost two times. In conclusion, the reactivating and therapeutic potency of both newly developed oximes does not prevail the effectiveness of oxime K203 and trimedoxime, and therefore, they are not suitable for their replacement of commonly used oximes for the antidotal treatment of acute tabun poisoning.

  5. A comparison of neuroprotective efficacy of the oxime K203 and its fluorinated analogue (KR-22836) with obidoxime in Tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Tesarova, Sandra; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik

    2010-11-01

    The ability of the newly developed bispyridinium compound K203 and its fluorinated analogue KR-22836 to reduce tabun-induced acute neurotoxic signs and symptoms was compared with the currently available reactivator of acetylcholinesterase-obidoxime. Tabun-induced neurotoxicity and the neuroprotective effects of all tested oximes in combination with atropine in rats poisoned with tabun at a sublethal dose (200 μg/kg intramuscularly (i.m.); 80% of LD(50) value) were monitored by a functional observational battery at 24 hr after tabun challenge. The results indicate that all tested oximes combined with atropine were able to survive tabun-poisoned rats 24 hr after tabun challenge while one non-treated tabun-poisoned rat died within 24 hr after tabun poisoning. All tested oximes combined with atropine were able to decrease tabun-induced neurotoxicity in the case of sublethal poisoning but they did not eliminate all tabun-induced acute neurotoxic signs and symptoms. While the ability to reduce tabun-induced acute neurotoxicity of obidoxime and K203 was similar, the neuroprotective efficacy of KR-22836 was slightly higher compared to other tested oximes. Thus, the newly developed fluorinated analogue of K203, called KR-22836, is able to slightly increase the neuroprotective effectiveness of antidotal treatment of acute tabun poisonings compared to K203 and currently available obidoxime.

  6. Russian VX: inhibition and reactivation of acetylcholinesterase compared with VX agent.

    PubMed

    Kuca, Kamil; Jun, Daniel; Cabal, Jiri; Hrabinova, Martina; Bartosova, Lucie; Opletalova, Veronika

    2006-04-01

    Organophosphorus compounds such as nerve agents inhibit, practically irreversibly, cholinesterases by their phosphorylation in the active site of these enzymes. Current antidotal treatment used in the case of acute nerve agent intoxications consists of combined administration of anticholinergic drug (usually atropine) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivator (HI-6, obidoxime, pralidoxime), which from a chemical view is a derivative from the group of pyridinium or bispyridinium aldoximes (commonly called "oxime"). Oximes counteract acetylcholine increase, resulting from AChE inhibition. In the human body environment these compounds are powerful nucleophiles and are able to break down the bond between AChE and nerve agent molecule. This process leads to renewal of enzyme functionality -- to its reactivation. The usefulness of oxime in the reactivation process depends on its chemical structure and on the nerve agent whereby AChE is inhibited. Due to this fact, selection of suitable reactivator in the treatment of intoxications is very important. In our work, we have compared differences in the in vitro inhibition potency of VX and Russian VX on rat, pig and human brain, and subsequently we have tested reactivation of rat brain cholinesterase inhibited by these agents using oxime HI-6, obidoxime, pralidoxime, trimedoxime and methoxime. The results showed that no major differences in the reactivation process of both VX and Russian VX-inhibited cholinesterase. The similarity in reactivation was caused by analogous chemical structure of either nerve agent; and that oxime HI-6 seems to be the most effective reactivator tested, which confirms that HI-6 is currently the most potent reactivator of AChE inhibited by nerve agents. The results obtained in our study should be considered in the future development of new AChE reactivators.

  7. A comparison of neuroprotective efficacy of two novel reactivators of acetylcholinesterase called K920 and K923 with the oxime K203 and trimedoxime in tabun-poisoned rats.

    PubMed

    Kassa, Jiri; Misik, Jan; Hatlapatkova, Jana; Zdarova Karasova, Jana

    2017-01-22

    The ability of two newly developed bispyridinium oximes (K920, K923) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with the oxime K203 and trimedoxime using a functional observational battery (FOB). The neuroprotective effects of the oximes studied combined with atropine on rats poisoned with tabun at a sublethal dose (130 μg/kg i.m.; 80% of LD50 value) were evaluated. Tabun-induced neurotoxicity was monitored by FOB at 2 h after tabun administration. The results indicate that all tested oximes combined with atropine enable tabun-poisoned rats to survive till the end of experiment while one non-treated tabun-poisoned rat died within 2 h. Both newly developed oximes (K920, K923) combined with atropine were able to markedly decrease tabun-induced neurotoxicity in the case of sublethal poisoning although they did not eliminate all tabun-induced acute neurotoxic signs and symptoms. Their ability to decrease tabun-induced acute neurotoxicity did not prevail the neuroprotective efficacy of trimedoxime and the oxime K203. Therefore, the newly developed oximes are not suitable for the replacement of currently available oximes (especially trimedoxime) in the treatment of acute tabun poisonings.

  8. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik; Kassa, Jiri

    2011-02-01

    These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.

  9. An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: Application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice.

    PubMed

    Calas, André-Guilhem; Dias, José; Rousseau, Catherine; Arboléas, Mélanie; Touvrey-Loiodice, Mélanie; Mercey, Guillaume; Jean, Ludovic; Renard, Pierre-Yves; Nachon, Florian

    2017-04-01

    Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 μmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice.

  10. New experimental Oximes in the management of organophosphorus pesticides poisoning.

    PubMed

    Barelli, A; Soave, P M; Del Vicario, M; Barelli, R

    2011-12-01

    Organophosphorus compounds (OPCs) are widely used in agriculture as pesticides and occasionally in industrial settings. They have also been developed as warfare nerve agents. OPCs poisoning from intentional, accidental, and occupational exposure is a major public health problem, especially across the rural developing world. The main toxic mechanism of OPCs is the inhibition of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), resulting in accumulation of acetylcholine (ACh) at the synapse with cholinergic crisis and possible death. Exposure to even small amounts of an OPC can be fatal and death is usually caused by respiratory failure. Standard treatment involves the administration of intravenous atropine and an oxime to counteract acetylcholinesterase inhibition at the synapse, but the usefulness of oximes is still debated. During more than five decades, pyridinium oximes have been developed as therapeutic agents used in the medical treatment of poisoning with OPCs. They act by reactivation of AChE inhibited by OPCs. However, their activity in poisonings with pesticides and warfare nerve agents is different, and there is still no universal oxime sufficiently effective against all known OPCs. The aim of this article was to review the most recent findings in this field and compare the protection conferred by the new K-oximes and sugar oximes with the effect of the four recommended pyridinium oximes (pralidoxime, obidoxime, trimedoxime, and HI-6), in the search for a broad-spectrum AChE reactivator.

  11. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides.

    PubMed

    Jokanović, Milan

    2009-10-28

    Organophosphorus compounds (OPs) are used as pesticides and developed as warfare nerve agents such as tabun, soman, sarin, VX and others. Exposure to even small amounts of an OP can be fatal and death is usually caused by respiratory failure. The mechanism of OP poisoning involves inhibition of acetylcholinesterase (AChE) leading to inactivation of the enzyme which has an important role in neurotransmission. AChE inhibition results in the accumulation of acetylcholine at cholinergic receptor sites, producing continuous stimulation of cholinergic fibers throughout the nervous systems. During more than five decades, pyridinium oximes have been developed as therapeutic agents used in the medical treatment of poisoning with OP. They act by reactivation of AChE inhibited by OP. However, they differ in their activity in poisoning with pesticides and warfare nerve agents and there is still no universal broad-spectrum oxime capable of protecting against all known OP. In spite of enormous efforts devoted to development of new pyridinium oximes as potential antidotes against poisoning with OP only four compounds so far have found its application in human medicine. Presently, a combination of an antimuscarinic agent, e.g. atropine, AChE reactivator such as one of the recommended pyridinium oximes (pralidoxime, trimedoxime, obidoxime and HI-6) and diazepam are used for the treatment of OP poisoning in humans. In this article the available data related to medical treatment of poisoning with OP pesticides are reviewed and the current recommendations are presented.

  12. HI-6: A Comparative Study of Various Samples,

    DTIC Science & Technology

    1983-12-01

    progress 12. SPONSORING ACTIVITY. Enter the none of the dsprw~seute ssoimmaty. innuel of linal. Give the inclusive deta *s whesn a project office or...PAGES The total pegs count thould lolitowo tionmel pagiiietioit Weloceduoree. i.e., enter the numbf~ler The length of the obstract thould he lemaed to

  13. The benefit of combinations of oximes for the reactivating and therapeutic efficacy of antidotal treatment of sarin poisoning in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Sepsova, Vendula; Caisberger, Filip

    2011-07-01

    The influence of the combinations of oximes on the reactivating and therapeutic efficacy of antidotal treament of acute sarin poisoning was evaluated in this study. The ability of two combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate sarin-inhibited acetylcholinesterase and reduce acute toxicity of sarin was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI-6, trimedoxime, K203) using in vivo methods. Studies determining percentage of reactivation of sarin-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of the combination of oximes involving HI-6 and K203 is slightly higher than the reactivating efficacy of the most effective individual oxime in diaphragm and brain but the difference between them is not significant. The ability of combination of oximes involving HI-6 and trimedoxime to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating effects of the most effective individual oxime in blood as well as tissues. Moreover, both combinations of oximes were found to be as efficacious in the reduction of acute lethal toxic effects in sarin-poisoned mice as the most effective individual oxime. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the oxime HI-6 is markedly more effective than the oxime K203 and trimedoxime. Based on the obtained data, we conclude that the antidotal treatment involving chosen combinations of oximes does not significantly influence the ability of the most effective individual oxime (HI-6) to reactivate sarin-inhibited rat acetylcholinesterase and to reduce acute toxicity of sarin in mice.

  14. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning

    PubMed Central

    Antonijevic, Biljana; Stojiljkovic, Milos P.

    2007-01-01

    The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LüH-6), HI-6 and HLö-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LüH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLö-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LüH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of

  15. The benefit of combination of oximes for the neuroprotective efficacy of antidotal treatment of sarin-poisoned rats.

    PubMed

    Kassa, Jiri; Kunesova, Gabriela

    2012-05-01

    The potency of the oxime HI-6 and two combinations of oximes (HI-6 + trimedoxime, HI-6 + K203) to reduce sarin-induced acute neurotoxic signs and symptoms was evaluated in this study. Sarin-induced neurotoxicity and the neuroprotective effects of atropine alone or in combination with HI-6 alone and HI-6 combined with trimedoxime or K203 in rats poisoned with sarin at a sublethal dose (108 μg/kg i.m.; 90% of LD(50) value) were monitored by a functional observatory battery (FOB) 24 h following sarin administration. The results indicate that both mixtures of oximes combined with atropine were able to survive sarin-poisoned rats 24 h following sarin administration while two non-treated sarin-poisoned rats and one sarin-poisoned rat treated with atropine alone or with atropine in combination with the oxime HI-6 died within 24 h following sarin poisoning. All types of antidotal treatment were able to decrease sarin-induced neurotoxic signs and symptoms but not completely. While atropine alone and atropine in combination with the oxime HI-6 were able to eliminate some sarin-induced neurotoxic signs and symptoms, the neuroprotective efficacy of both combinations of oximes with atropine was slightly higher. Thus, both tested combinations of oximes in combination with atropine bring a small benefit for the neuroprotective efficacy of antidotal treatment of acute sarin poisonings.

  16. Tertiary Oximes on Brain Acetylcholinesterase and Central Excitatory Effects of Nerve Agents

    DTIC Science & Technology

    2012-01-01

    2-PAM), obidoxime (Toxogonin®), or HI-6 to reactivate any unaged, inhibited enzyme, and an anticonvulsant such as diazepam or midazolam to control...sulfate and a benzodiazepine such as diazepam or midazolam [1-4, 28, 31]. These drugs themselves also cause psycho-pharmacological and sedative

  17. First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase.

    PubMed

    Mercey, Guillaume; Verdelet, Tristan; Saint-André, Géraldine; Gillon, Emilie; Wagner, Alain; Baati, Rachid; Jean, Ludovic; Nachon, Florian; Renard, Pierre-Yves

    2011-05-14

    Nerve agents are highly toxic organophosphorus compounds with strong inhibition potency against acetylcholinesterase (AChE). Herein, we describe two first extremely promising uncharged reactivators for poisoned human AChE with a superior or similar in vitro ability to reactivate the enzyme as compared to that of HI-6, obidoxime, TMB-4 and HLö-7. © The Royal Society of Chemistry 2011

  18. A structure-activity analysis of the variation in oxime efficacy against nerve agents

    SciTech Connect

    Maxwell, Donald M. Koplovitz, Irwin; Worek, Franz; Sweeney, Richard E.

    2008-09-01

    A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k{sub r2}) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and in vitro k{sub r2} decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (> 14-fold decrease in PR) than with HI-6 and ICD585 (< 3.7-fold decrease in PR). The decrease in oxime PR and k{sub r2} as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k{sub r2} {center_dot} [oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy.

  19. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents.

    PubMed

    Mercey, Guillaume; Verdelet, Tristan; Renou, Julien; Kliachyna, Maria; Baati, Rachid; Nachon, Florian; Jean, Ludovic; Renard, Pierre-Yves

    2012-05-15

    Since the September 11, 2001, terrorist attacks in the United States, the specter of a chemical threat against civilian populations has renewed research interest in chemical warfare agents, their mechanisms of action, and treatments that reverse their effects. In this Account, we focus specifically on organophosphorus nerve agents (OPNAs). Although some OPNAs are used as pest control, the most toxic chemicals in this class are used as chemical warfare agents in armed conflicts. The acute toxicity of OPNAs results from the irreversible inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) via the formation of a covalent P-O bond at the serine hydroxyl group in the enzyme active site. AChE breaks down the neurotransmitter acetylcholine at neuronal synapses and neuromuscular junctions. The irreversible inhibition of AChE causes the neurotransmitter to accumulate in the synaptic cleft, leading to overstimulation of cholinergic receptors, seizures, respiratory arrest, and death. The current treatment for OPNA poisoning combines an antimuscarinic drug (e.g., atropine), an anticonvulsant drug (e.g., diazepam), and an AChE reactivator of the pyridinium aldoxime family (pralidoxime, trimedoxime, obidoxime, HI-6, HLö-7). Because of their high nucleophilicity, oximes can displace the phosphyl group from the catalytic serine, thus restoring the enzyme's catalytic activity. During 50 years of research in the reactivator field, researchers have synthesized and tested numerous structural modifications of monopyridinium oximes and bispyridinium oximes. In the past decade, medicinal chemists have focused their research on the more efficient bispyridinium reactivators, but all known reactivators have several drawbacks. First, due to their permanent positive charge, they do not cross the blood-brain barrier (BBB) efficiently and do not readily reactivate AChE in the central nervous system. Second, no single oxime is efficient against a wide variety of OPNAs. Third, oximes cannot

  20. The influence of combinations of oximes on the reactivating and therapeutic efficacy of antidotal treatment of tabun poisoning in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Misik, Jan; Caisberger, Filip; Bajgar, Jiri

    2010-03-01

    The influence of the combination of oximes on the reactivating and therapeutic efficacy of antidotal treament of acute tabun poisoning was evaluated. The ability of two combinations of oximes (HI-6 + obidoxime and HI-6 + K203) to reactivate tabun-inhibited acetylcholinesterase and reduce acute toxicity of tabun was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI-6, obidoxime, K203) using in vivo methods. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of both combinations of oximes is higher than the reactivating efficacy of the most effective individual oxime in blood and diaphragm and comparable with the reactivating effects of the most effective individual oxime in brain. Moreover, both combinations of oximes were found to be slightly more efficacious in the reduction of acute lethal toxic effects in tabun-poisoned mice than the antidotal treatment involving individual oxime. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the newly developed oxime K203 is slightly more effective than commonly used obidoxime and both of them are markedly more effective than the oxime HI-6. Based on the obtained data, we can conclude that the antidotal treatment involving chosen combinations of oximes brings beneficial effects for the potency of antidotal treatment to reactivate tabun-inhibited acetylcholinesterase in rats and to reduce acute toxicity of tabun in mice.

  1. Neuroprotective effects of currently used antidotes in tabun-poisoned rats.

    PubMed

    Kassa, Jirí; Krejèová, Gabriela

    2003-06-01

    The neuroprotective effects of antidotes (atropine, pralidoxime/atropine, obidoxime/atropine and HI-6/atropine mixtures) on rats poisoned with tabun at a lethal dose (220 microg/kg intramuscularly; 100% of LD50 value) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 hr and 7 days after tabun challenge. The results indicate that atropine alone is not able to protect the rats from the lethal effects of tabun. Three non-treated tabun-poisoned rats and one tabun-poisoned rat treated with atropine alone died within 24 hr. On the other hand, atropine combined with all tested oximes allows all tabun-poisoned rats to survive at least 7 days following tabun challenge. Obidoxime combined with atropine seems to be the most effective antidotal treatment for the elimination of tabun-induced neurotoxicity in the case of lethal poisoning among tested antidotal mixtures. The antidotal mixture consisting of atropine and HI-6 is significantly less effective than the combination of atropine with obidoxime in the elimination of tabun-induced neurotoxicity in rats at 24 hr following tabun challenge. Pralidoxime in combination with atropine appears to be practically ineffective to decrease tabun-induced neurotoxicity at 24 hours as well as 7 days following tabun poisoning. Due to its neuroprotective effects, obidoxime seems to be the most effective and most suitable oxime for the antidotal treatment of acute tabun exposure among currently used oximes. Thus, the replacement of obidoxime by a more effective acetylcholinesterase reactivator for soman poisoning, the oxime HI-6, can to a small extent diminish the neuroprotective efficacy of antidotal treatment in the case of acute tabun poisonings.

  2. Combined approach to demonstrate acetylcholinesterase activity changes in the rat brain following tabun intoxication and its treatment.

    PubMed

    Bajgar, Jiri; Hajek, Petr; Kassa, Jiri; Slizova, Dasa; Krs, Otakar; Karasova, Jana Zdarova; Fusek, Josef; Capek, Lukas; Voicu, Victor A

    2012-01-01

    Reactivation effects of K203 and currently available oximes (obidoxime, HI-6) in combination with atropine on acetylcholinesterase activities in the brain parts of rats poisoned with tabun were studied. The activity was determined by quantitative histochemical and biochemical methods correlating between them very well. The tabun-induced changes in acetylcholinsterase activity as well as in reactivation potency of reactivators used were different in various parts of the brain. Pontomedullar area seems to be important for observed changes following tabun intoxication and its treatment. From the oximes studied, the reactivation effect of K203 was comparable with obidoxime; HI-6 was ineffective. Combination of bio- and histochemical methods allow fine differentiation among the action of different oximes following tabun poisoning.

  3. A comparison of the ability of a new bispyridinium oxime--1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods.

    PubMed

    Kuca, K; Kassa, J

    2003-12-01

    The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was found to be a more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than pralidoxime (in the case of VX, tabun and cyclosarin), obidoxime (cyclosarin and tabun) and HI-6 (tabun) but it did not reach the efficacy of currently used oximes for the reactivation of acetylcholinesterase inhibited by sarin. Thus, the oxime K048 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, it could be useful for the treatment of a nerve agent-exposed population if information about detection of the type of nerve agent is not available.

  4. Characterization of Soman Toxicity in Atropine and Oxime (HI-6 and MMB- 4) Treated Rhesus Monkeys

    DTIC Science & Technology

    1991-03-30

    Challenged Rhesus Monkeys Pretreated with Pyridostigmine Bromi deo. 3 15. Approval Signatures: P Carl T. 0lson, 0.V.M., Ph.D. t- .3 Study Director P...taken to avoid open flame or heat that may ignite them. F. Safety Regulrements: S 1. Hoods: Hood face velocity must average 100 L 10 Ifpm. The average...S thickness Carrier Gas: Helium Velocity : 30 L S ca/sec for Helium Hake-up Gas: 30 L S *lamin Detector : Flame Ionization Detector (FIO) Oetector

  5. Comparison of acetylcholinesterase, pyridostigmine, and HI-6 as antidotes against organophosphorus compounds

    SciTech Connect

    Maxwell, D.M.; Brecht, K.M.; Saxena, A.; Taylor, P.; Doctor, B.P.

    1995-12-31

    Conventional medical treatment against the toxicity of organophosphorus (OP) compounds consists of a regimen of anticholinergic drugs to counteract the accumulation of acetylcholine and oximes to reactivate OP-inhibited acetylcholinesterase (AChE) (Taylor, 1985). Reactivation ofOP-inhibited AChE by oximes can generate enough active AChE in the peripheral nervous system, especially in the diaphragm, to restore normal cholinergic neurotransmission after exposure to many OP compounds. However, some OP compounds, such as soman (pinacolylmdhylphos phonofluofldate), inhibit AChE and rapidly age into a form that cannot be reactivated by oximes (De Jong and Wolring, 1984), thereby reducing the ability of oximes to provide protection (Maxwell and Brecht, 1991). The inability of oximes to provide adequate protection against the toxicity of rapidly aging OP compounds stimulated the development of carbamate pretreatment in which carbamylation of AChE effectively protects it against inhibition by OP compounds (Leadbeater et al., 1985). Spontaneous decarbamylation of AChE after the OP compound has been detoxified then generates enough active AChE to allow normal cholinergic neurotransmission. Behavioral side effects from carbamate pretreatment in the absence of exposure to OP compounds have been avoided by the use of cationic pretreatment carbamates, such as pyridostigmine, which do not enter the central nervous system.

  6. Evaluation of the direct actions of HI-6 in reversing soman-induced tetanic fade

    SciTech Connect

    Adler, M.; Maxwell, D.M.; Sweeney, R.E.; Deshpande, S.S.

    1995-12-31

    The most widely accepted mechanism for the acute toxicity of organophosphorus anticholinesterase agents is irreversible inhibition of acetyicholinesterase (AChE), an enzyme present at all known cholinergic synapses (Taylor, 1990). Inhibition of AChE results in accumulation of acetyicholine (ACh), which then leads to aberrant cholinergic transmission (Katz and Miledi, 1973). The precise nature of the abnormality varies with the synapse, and can include depolorization, desensitization, repetitive firing or sustained activation (Hobbiger, 1976; Adler et al., 1992).

  7. The development of new oximes and the evaluation of their reactivating, therapeutic and neuroprotective efficacy against tabun.

    PubMed

    Kassa, Jiri; Kuca, Kamil; Karasova, Jana; Musilek, Kamil

    2008-10-01

    Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to highly toxic organophosphorus compounds misused as chemical warfare agents for military as well as terroristic purposes. The antidotal treatment of tabun acute poisonings still represents a serious problem and the development of new, more effective AChE reactivators to achieve the satisfactorily effective antidotal treatment of acute poisonings with tabun still represents very important goal. Since 2003, we have prepared around 200 new AChE reactivators. Their potency to reactivate tabun-inhibited acetylcholinesterase has been subsequently evaluated using our in vitro screening test. Afterwards, promising compounds were selected and kinetic parameters and reactivation constants were determined. Then, the best reactivators were subjected to the in vivo studies (toxicity test, the evaluation of therapeutic, reactivating and neuroprotective efficacy) and their potency to counteract the acute toxicity of tabun is compared to the therapeutic, reactivating and neuroprotective efficacy of commonly used oximes - obidoxime and the oxime HI-6. According to the results obtained, the newly synthesized oxime K075 showed the highest potency to reduce tabun-induced acute lethal toxicity while the therapeutic potency of obidoxime and the oxime HI-6 was significantly lower. The therapeutic efficacy of oximes studied corresponds to their reactivating efficacy in vivo as well as in vitro. The potency of all newly synthesized oximes to reactivate tabun-inhibited AChE is comparable with obidoxime with the exception of K074 that is significantly more efficacious in the brain. In addition, all newly synthesized oximes combined with atropine seem to be effective antidotes for a decrease in tabun-induced acute neurotoxicity. While the neuroprotective efficacy of obidoxime in combination with atropine is similar to the potency of newly synthesized oximes, the ability of the oxime HI-6 combined with atropine to counteract tabun

  8. A comparison of the reactivating and therapeutic efficacy of chosen combinations of oximes with individual oximes against VX in rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Sepsova, Vendula; Caisberger, Filip; Bajgar, Jiri

    2011-10-01

    The ability of 2 combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate VX-inhibited acetylcholinesterase and reduce acute toxicity of VX was compared with the reactivating and therapeutic efficacy of antidotal treatment involving a single oxime (HI-6, trimedoxime, K203) in rats and mice. Our results showed that the reactivating efficacy of both combinations of oximes studied in rats is significantly higher than the reactivating efficacy of all individual oximes in diaphragm and roughly corresponds to the most effective individual oxime in blood and brain. Both combinations of oximes were found to be more effective in the reduction of acute lethal toxicity of VX in mice than the antidotal treatment involving the most efficacious individual oxime although the difference is not significant. Based on the obtained data, we can conclude that the antidotal treatment involving the chosen combinations of oximes brings benefit for the reactivation of VX-inhibited acetylcholinesterase in rats and for the antidotal treatment of VX-induced acute poisoning in mice.

  9. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase.

    PubMed

    Musilek, Kamil; Holas, Ondrej; Kuca, Kamil; Jun, Daniel; Dohnal, Vlastimil; Opletalova, Veronika; Dolezal, Martin

    2008-02-01

    Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.

  10. Syntheses and in vitro evaluations of uncharged reactivators for human acetylcholinesterase inhibited by organophosphorus nerve agents.

    PubMed

    Renou, Julien; Mercey, Guillaume; Verdelet, Tristan; Păunescu, Emilia; Gillon, Emilie; Arboléas, Mélanie; Loiodice, Mélanie; Kliachyna, Maria; Baati, Rachid; Nachon, Florian; Jean, Ludovic; Renard, Pierre-Yves

    2013-03-25

    Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS). In this study, a series of seven new uncharged oximes reactivators have been synthesized and their in vitro ability to reactivate VX and tabun-inhibited human acetylcholinesterase (hAChE) has been evaluated. The dissociation constant K(D) of inhibited enzyme-oxime complex, the reactivity rate constant kr and the second order reactivation rate constant k(r2) have been determined and have been compared to reference oximes HI-6, Obidoxime and 2-Pralidoxime (2-PAM). Regarding the reactivation of VX-inhibited hAChE, all compounds show a better reactivation potency than those of 2-PAM, nevertheless they are less efficient than obidoxime and HI-6. Moreover, one of seven described compounds presents an ability to reactivate tabun-inhibited hAChE equivalent to those of 2-PAM. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?

    PubMed

    Aurbek, Nadine; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Worek, Franz

    2010-09-06

    The repeated misuse of highly toxic organophosphorus compound (OP) based chemical warfare agents in military conflicts and terrorist attacks poses a continuous threat to the military and civilian sector. The toxic symptomatology of OP poisoning is mainly caused by inhibition of acetylcholinesterase (AChE, E.C. 3.1.1.7) resulting in generalized cholinergic crisis due to accumulation of the neurotransmitter acetylcholine (ACh) in synaptic clefts. Beside atropine as competitive antagonist of ACh at muscarinic ACh receptors oximes as reactivators of OP-inhibited AChE are a mainstay of standard antidotal treatment. However, human AChE inhibited by certain OP is rather resistant to oxime-induced reactivation. The development of more effective oxime-based reactivators may fill the gaps. To get more insight into a potential structure-activity relationship between human AChE, OPs and oximes in vitro studies were conducted to investigate interactions of different tabun and sarin analogues with human AChE and the oximes obidoxime and HI 6 by determination of various kinetic constants. Rate constants for the inhibition of human AChE by OPs, spontaneous dealkylation and reactivation as well as reactivation by obidoxime and HI 6 of OP-inhibited human AChE were determined. The recorded kinetic data did not allow a general statement concerning a structure-activity relationship between human AChE, OP and oximes.

  12. Nanoparticulate Transport of Oximes over an In Vitro Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Kufleitner, Jürgen; Zensi, Anja; Dadparvar, Miriam; Wien, Sascha; Bungert, Judith; Vogel, Tikva; Worek, Franz; Kreuter, Jörg; von Briesen, Hagen

    2010-01-01

    Background Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB. Methodology/Principal Findings In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes. Conclusions/Significance With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulations are promising formulations for the treatment of the peripheral and the CNS after OP poisoning. PMID:21151975

  13. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker: preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase.

    PubMed

    Musilek, Kamil; Holas, Ondrej; Jun, Daniel; Dohnal, Vlastimil; Gunn-Moore, Frank; Opletalova, Veronika; Dolezal, Martin; Kuca, Kamil

    2007-11-01

    Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Fifteen new monooxime reactivators of acetylcholinesterase with a (E)-but-2-ene linker were developed in an effort to extend the properties of K-oxime (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide (K203). The known reactivators (pralidoxime, HI-6, obidoxime, K075, K203) and the new compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monooxime reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation comparable with known compounds for paraoxon poisoning. However, extensive differences were found by a SAR study for various substitutions on the non-oxime part of the reactivator molecule.

  14. Antidotal treatment of GF-agent intoxication in mice with bispyridinium oximes.

    PubMed

    Sevelová, Lucie; Kuca, Kamil; Krejcová-Kunesová, Gabriela

    2005-02-01

    It was shown that intoxications with GF-agent are rather resistant to convential oxime therapy; therefore, the development of new oximes in an effort to improve this unsatisfactory situation continues. Upon screening in vitro reactivation test for oximes, that were either newly synthesized at our department, or those that have never been tested for reactivation of GF-inhibited acetylcholinesterase (AChE), three oximes {(1,4-bis(4-hydroxyiminomethylpyridinium)butane dibromide) (K033); (1-(2-hydroxyiminomethylpyridinium)-3-(3-carbamoylpyridinium)-2-oxa-propane dichloride) (HS-6); and (1-(2-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)-but-2-ene dibromide) (BI-6)} with the highest reactivation potency were chosen for in vivo testing in our study. 1,3-Bis(4-hydroxyiminomethylpyridinium)-2-oxa-propane dibromide) (obidoxime); (1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxa-propane dichloride) (HI-6); and (1,1-bis(4-hydroxyiminomethylpyridinium)-methane dibromide) (methoxime) were chosen for comparison as a standard antidotal treatment. All the oximes were applied at the same proportion of their LD50 value (5%), and because of the different acute toxicity of the oximes, the molar concentrations of their solutions for intramuscular (i.m.) administration were considerably different. The highest therapeutic ratio was achieved for therapeutic regimen consisting of HI-6 and atropine. The significantly (P < 0.05) lowest effectivity in treatment of supralethal GF-agent poisoning in comparison with all the other therapeutic regimens, was surprisingly observed for methoxime. HS-6, K033 and BI-6 as well as obidoxime were comparably effective antidotes against GF-agent intoxication and their therapeutic ratios were similar.

  15. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Singh, Namrata; Acharya, J R; Musilek, Kamil; Kuca, Kamil; Ghosh, Kallol Kumar

    2015-01-01

    Organophosphate (OP) pesticides and nerve agents are responsible for suicidal and accidental poisonings. The acute toxicity of nerve agents leads to progressive inhibition of the enzyme acetylcholinesterase (AChE) by phosphylation of serine residue at the active site of gorge. The recent massive destruction of Syrian civilians by nerve gas sarin, has again renewed the research attention of global science fraternity towards nerve agents, their mode of action and most prominently their therapeutic treatment. This review is principally focused on nerve agent intoxication. The common approach to deal with OP-intoxication is, application of antimuscarinic drug (atropine), anticonvulsant drug (diazepam) and clinically used oximes (pralidoxime, trimedoxime, obidoxime and asoxime). However, the existing therapeutic approach is arguable and has several failings to cure all kinds of nerve agent poisonings. Considering this issue, numerous oximes have been synthesized and screened through various in-vitro and in-vivo studies in last decade to overcome the downsides. At present, only a few oximes (bis pyridinum-oximes) exhibit sound efficacy against selective OPs. In spite of extensive efforts, till date no oxime is available as a universal antidote against all the classes of OPs. This review is centered on the recent developments and structural modification of AChE reactivators against nerve agent toxicity. In particular, a deeper look has been taken into chemical modifications of the reactivators by incorporation of different structural moieties targeted towards the increased reactivation affinity and improved blood brain barrier (BBB) penetration.

  16. Task 89-06: Determination of the Bioequivalence of HI-6 and Atropine When Delivered by Wet/Dry Autoinjector or Syringe in Sheep: A Pharmacokinetic and Efficacy Evaluation

    DTIC Science & Technology

    1991-04-01

    ORGAMLZflON WEORT NUMBSER(S) 6&. ftAAM OF PEFORAiNG ORGANUAlMN 61L OPF4C1 SYMSOL 7S. MAMA Of MO~ITORIMG ORGAJ.LATION Battelle Coluus Operations / U.S. Army...excess leukemia. Containers must say *DANGEP CONTAINS BENZENE CANCER HAZARD." OSHA 8-hr permissible exposure limit (PEL) I ppm, Action Level - 0.5 ppm

  17. Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics.

    PubMed

    Worek, F; Diepold, C; Eyer, P

    1999-02-01

    Human poisoning by organophosphates bearing two methoxy groups, e.g. by malathion, paraoxon-methyl, dimethoate and oxydemeton-methyl, is generally considered to be rather resistant to oxime therapy. Since the oxime effectiveness is influenced not only by its reactivating potential but also by inhibition, aging and spontaneous reactivation kinetics, experiments were performed with human acetyl- (AChE) and butyrylcholinesterase (BChE) to determine the respective kinetic constants. The efficacy of obidoxime in reactivating dimethylphosphoryl-AChE was 40, 9 and 3 times higher than of HI 6, pralidoxime and HLö 7, respectively. Aging (t1/2 3.7 h) and spontaneous reactivation (t1/2 0.7 h) occurred concomitantly, with the portion of the aged enzyme being dependent on the presence of excess inhibitor. Calculation of steady-state AChE activity in the presence of inhibitor and oxime revealed that obidoxime was superior to pralidoxime. In addition, organophosphate concentrations up to 10(-6) M (paraoxon-methyl) and 10(-4) M (oxydemeton-methyl) could be counteracted at clinically relevant oxime concentrations (10 microM). These data indicate that oximes may effectively reactivate human dimethylphosphoryl-AChE. Failure of oximes may be attributed to megadose intoxications and to prolonged time intervals between poison uptake and oxime administration. The potency of the oximes to reactivate dimethylphosphoryl-BChE was much lower and the spontaneous reactivation slower (t1/2 9 h), while aging proceeded at a comparable rate. Thus, BChE activity determination for diagnosis and therapeutic monitoring may give no reliable information on AChE status.

  18. Application of a dynamic in vitro model with real-time determination of acetylcholinesterase activity for the investigation of tabun analogues and oximes.

    PubMed

    Worek, Franz; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Wille, Timo

    2015-12-25

    Tabun-inhibited acetylcholinesterase (AChE) is rather resistant towards reactivation by oximes in vitro while in vivo experiments showed some protection of animals poisoned by this chemical warfare nerve agent after treatment with an oxime and atropine. In addition, AChE inhibited by close tabun analogues, N,N-diethyltabun and N,N-di-n-propyltabun was completely resistant towards reactivation by oximes. In order to get more insight into potential mechanisms of this oxime resistance experiments with these toxic agents and the oximes obidoxime, 2-PAM, MMB-4 and HI-6 were performed utilizing a dynamic model with real-time determination of AChE activity. This experimental setup allowed the investigation of reactivation with minimized side reactions. The determined reactivation constants with tabun-inhibited human AChE were in good agreement with previously reported constants determined with a static model. N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE could not be reactivated by oximes which indicates that the inadequate oxime effect was not due to re-inhibition by phosphonyloximes. Additional experiments with tabun-inhibited human and Rhesus monkey AChE revealed that no reactivation occurred with HI-6. These data give further support to the assumption that an interaction of tabun with residues in the active site gorge of AChE prevents effective reactivation by oximes, a mechanism which may also be the reason for the total oxime resistance of N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE.

  19. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides.

    PubMed

    Wilhelm, Christina M; Snider, Thomas H; Babin, Michael C; Jett, David A; Platoff, Gennady E; Yeung, David T

    2014-12-15

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl₂, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes.

  20. A Comprehensive Evaluation of the Efficacy of Leading Oxime Therapies in Guinea Pigs Exposed to Organophosphorus Chemical Warfare Agents or Pesticides

    PubMed Central

    Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 hours post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman’s method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. PMID:25448441

  1. Estimation of oxime efficacy in nerve agent poisoning: a kinetic approach.

    PubMed

    Worek, Franz; Szinicz, Ladislaus; Thiermann, Horst

    2005-12-15

    Standard treatment of poisoning by organophosphorus compounds (OP) includes the administration of an anti-muscarinic, e.g. atropine, and of an acetylcholinesterase (AChE) reactivator (oxime). Two oximes, obidoxime and pralidoxime (2-PAM), are presently commercially available, yet, these compounds are considered to be of insufficient efficacy against certain nerve agents, e.g. soman and cyclosarin. In the past decades, numerous new oximes were synthesized and tested for their antidotal efficacy. The available data indicate that two Hagedorn oximes, HI 6 and HLö 7, are promising antidotes against various nerve agents. The efficacy of antidotes against nerve agent poisoning cannot be investigated in humans for ethical reasons. Therefore, it is necessary to use surrogate parameters for the evaluation of oxime efficacy. Reactivation of inhibited AChE is considered to be the main mechanism of action of oximes. Clinical data indicate that changes in erythrocyte AChE activity correlate to neuromuscular function indicating that interactions between AChE, inhibitor and oximes can be investigated in vitro with human erythrocyte AChE. Different theoretical models were used for the evaluation of reactivating efficacy of oximes with nerve agent-inhibited human AChE and for estimating effective oxime concentrations. The calculations demonstrate the marked differences between oximes in dependence of the inhibitor and provide a basis for the estimation of the required oxime dose as well as of dosing intervals.

  2. Oximes: Reactivators of phosphorylated acetylcholinesterase and antidotes in therapy against tabun poisoning.

    PubMed

    Kovarik, Zrinka; Calić, Maja; Sinko, Goran; Bosak, Anita; Berend, Suzana; Vrdoljak, Ana Lucić; Radić, Bozica

    2008-09-25

    One of the therapeutic approaches to organophosphate poisoning is to reactivate AChE with site-directed nucleophiles such as oximes. However, pyridinium oximes 2-PAM, HI-6, TMB-4 and obidoxime, found as the most effective reactivators, have limiting reactivating potency in tabun poisoning. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE. Three of our tested pyridinium oximes K027, K048, K074, along with TMB-4, were the most promising for AChE reactivation. Promising oximes were further tested in vivo on tabun poisoned mice not only as antidotes in combination with atropine but also as pretreatment drug. Herein, we showed that a promising treatment in tabun poisoning by selected oximes and atropine could be improved if oximes are also used in pretreatment. Since the reactivating efficacy of the oximes in vitro corresponded to their therapeutic efficacy in vivo, it seems that pharmacological effect of these oximes is indeed primarily related to the reactivation of tabun-phosphorylated AChE.

  3. Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman’s Method

    PubMed Central

    Pohanka, Miroslav; Hrabinova, Martina; Kuca, Kamil; Simonato, Jean-Pierre

    2011-01-01

    Assay of acetylcholinesterase (AChE) activity plays an important role in diagnostic, detection of pesticides and nerve agents, in vitro characterization of toxins and drugs including potential treatments for Alzheimer’s disease. These experiments were done in order to determine whether indoxylacetate could be an adequate chromogenic reactant for AChE assay evaluation. Moreover, the results were compared to the standard Ellman’s method. We calculated Michaelis constant Km (2.06 × 10−4 mol/L for acetylthiocholine and 3.21 × 10−3 mol/L for indoxylacetate) maximum reaction velocity Vmax (4.97 × 10−7 kat for acetylcholine and 7.71 × 10−8 kat for indoxylacetate) for electric eel AChE. In a second part, inhibition values were plotted for paraoxon, and reactivation efficacy was measured for some standard oxime reactivators: obidoxime, pralidoxime (2-PAM) and HI-6. Though indoxylacetate is split with lower turnover rate, this compound appears as a very attractive reactant since it does not show any chemical reactivity with oxime antidots and thiol used for the Ellman’s method. Thus it can be advantageously used for accurate measurement of AChE activity. Suitability of assay for butyrylcholinesterase activity assessment is also discussed. PMID:21731462

  4. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: A modified kinetic approach

    SciTech Connect

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-12-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.

  5. Supralethal poisoning by any of the classical nerve agents is effectively counteracted by procyclidine regimens in rats.

    PubMed

    Myhrer, Trond; Mariussen, Espen; Enger, Siri; Aas, Pål

    2015-09-01

    A treatment regimen consisting of HI-6, levetiracetam, and procyclidine (termed the triple regimen) has previously been shown to work as a universal therapy against soman poisoning in rats, since it has capacities to function as both prophylactic and therapeutic measure. The purpose of the present study was to examine whether the triple regimen may have antidotal efficacy against intoxication by other classical nerve agents than soman. The treatment was given 1 and 5 min after exposure to a supralethal dose of nerve agents, and the results showed that the triple regimen successfully prevented or terminated seizures and preserved the lives of rats exposed to 5×LD50 of soman, sarin, cyclosarin, or VX, but solely 3×LD50 of tabun was managed by this regimen. To meet the particular antidotal requirements of tabun, the triple regimen was reinforced with obidoxime and was made to a quadruple regimen that effectively treated rats intoxicated by 5×LD50 of tabun. The rats recovered very well and the majority gained pre-exposure body weight within 7 days. Neuropathology was seen in all groups regardless of whether the rats seized or not. The most extensive damage was produced by sarin and cyclosarin. Differentiation between the nerve agents' potency to cause lesions was probably seen because the efficacious treatments ensured survival of supralethal poisoning. A combination of 2 oximes and 2 anticonvulsants may be a prerequisite to counteract effectively high levels of poisoning by any classical nerve agent.

  6. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE).

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind Kumar; Acharya, Jyotiranjan; Satnami, Manmohan L; Ghosh, Kallol K

    2016-11-25

    Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a-5e, 9a-9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated.

  7. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides

    SciTech Connect

    Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.

    2014-12-15

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective antidotes

  8. Limitations and challenges in treatment of acute chemical warfare agent poisoning.

    PubMed

    Thiermann, Horst; Worek, Franz; Kehe, Kai

    2013-12-05

    Recent news from Syria on a possible use of chemical warfare agents made the headlines. Furthermore, the motivation of terrorists to cause maximal harm shifts these agents into the public focus. For incidents with mass casualties appropriate medical countermeasures must be available. At present, the most important threats arise from nerve agents and sulfur mustard. At first, self-protection and protection of medical units from contamination is of utmost importance. Volatile nerve agent exposure, e.g. sarin, results in fast development of cholinergic crisis. Immediate clinical diagnosis can be confirmed on-site by assessment of acetylcholinesterase activity. Treatment with autoinjectors that are filled with 2mg atropine and an oxime (at present obidoxime, pralidoxime, TMB-4 or HI-6) are not effective against all nerve agents. A more aggressive atropinisation has to be considered and more effective oximes (if possible with a broad spectrum or a combination of different oximes) as well as alternative strategies to cope with high acetylcholine levels at synaptic sites should be developed. A further gap exists for the treatment of patients with sustained cholinergic crisis that has to be expected after exposure to persistent nerve agents, e.g. VX. The requirement for long-lasting artificial ventilation can be reduced with an oxime therapy that is optimized by using the cholinesterase status for guidance or by measures (e.g. scavengers) that are able to reduce the poison load substantially in the patients. For sulfur mustard poisoning no specific antidote is available until now. Symptomatic measures as used for treatment of burns are recommended together with surgical or laser debridement. Thus, huge amounts of resources are expected to be consumed as wound healing is impaired. Possible depots of sulfur mustard in tissues may aggravate the situation. More basic knowledge is necessary to improve substantially therapeutic options. The use of stem cells may provide a new

  9. Efficacy assessment of a combined anticholinergic and oxime treatment against topical sarin-induced miosis and visual impairment in rats

    PubMed Central

    Gore, A; Bloch-Shilderman, E; Egoz, I; Turetz, J; Brandeis, R

    2014-01-01

    Background and Purpose Eye exposure to the organophosphorus (OP) irreversible cholinesterase inhibitor sarin results in long-term miosis and impaired visual function. We have previously shown that tropicamide is better at ameliorating this insult than topical atropine or cyclopentolate. However, to minimize side effects associated with repeated tropicamide applications and high treatment doses, we evaluated the effects of oximes (ChE re-activators) alone and combined with tropicamide at ameliorating OP-induced ocular impairments. Experimental approach Rats were topically exposed to sarin, followed by topical treatment with various oximes alone or in combination with tropicamide. Pupil width and light reflex were measured by an infrared-based digital photograph system, while visual performance was assessed by employing the cueing version of the Morris water maze (MWM). Key Results Oxime treatment following sarin ocular exposure induced a slow persistent pupil widening with efficacy in the order of HLö-7 > HI-6 > obidoxime = TMB-4 = MMB-4. In the light reflex test, the ability of the iris to contract following oxime treatment was mostly impaired at 1 h and was back to normal at 4 h following sarin exposure. All oxime treatments ameliorated the sarin-induced visual impairment as tested in the visual task (MWM). The combined topical treatment of tropicamide with an oxime induced a rapid improvement in pupil widening, light reflex and visual performance, and enabled a reduction in tropicamide dose. Conclusions and Implications The use of tropicamide combined with an oxime should be considered as the topical treatment of choice against the toxic effects of ocular OP exposure. PMID:24428128

  10. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  11. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun.

    PubMed

    Carletti, Eugénie; Aurbek, Nadine; Gillon, Emilie; Loiodice, Mélanie; Nicolet, Yvain; Fontecilla-Camps, Juan-Carlos; Masson, Patrick; Thiermann, Horst; Nachon, Florian; Worek, Franz

    2009-06-12

    hBChE [human BChE (butyrylcholinesterase)] naturally scavenges OPs (organophosphates). This bioscavenger is currently in Clinical Phase I for pretreatment of OP intoxication. Phosphylated ChEs (cholinesterases) can undergo a spontaneous time-dependent process called 'aging' during which the conjugate is dealkylated, leading to creation of an enzyme that cannot be reactivated. hBChE inhibited by phosphoramidates such as tabun displays a peculiar resistance to oxime-mediated reactivation. We investigated the basis of oxime resistance of phosphoramidyl-BChE conjugates by determining the kinetics of inhibition, reactivation (obidoxime {1,1'-(oxybis-methylene) bis[4-(hydroxyimino) methyl] pyridinium dichloride}, TMB-4 [1,3-trimethylene-bis(4-hydroxyiminomethylpyridinium) dibromide], HLö 7 {1-[[[4-(aminocarbonyl) pyridinio]methoxy]methyl]-2,4-bis-[(hydroxyimino)methyl] pyridinium dimethanesulfonate)}, HI-6 {1-[[[4-(aminocarbonyl) pyridinio] methoxy] methyl]-2-[(hydroxyimino)methyl]pyridinium dichloride monohydrate} and aging, and the crystal structures of hBChE inhibited by different N-monoalkyl and N,N-dialkyl tabun analogues. The refined structures of aged hBChE conjugates show that aging proceeds through O-dealkylation of the P(R) enantiomer of N,N-diethyl and N-propyl analogues, with subsequent formation of a salt bridge preventing reactivation, similarly to a previous observation made on tabun-ChE conjugates. Interestingly, the N-methyl analogue projects its amino group towards the choline-binding pocket, so that aging proceeds through deamination. This orientation results from a preference of hBChE's acyl-binding pocket for larger than 2-atoms linear substituents. The correlation between the inhibitory potency and the N-monoalkyl chain length is related to increasingly optimized interactions with the acyl-binding pocket as shown by the X-ray structures. These kinetics and X-ray data lead to a structure-activity relationship that highlights steric and electronic

  12. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime.

  13. Defence Reporter. Winter 2012

    DTIC Science & Technology

    2012-01-01

    and GD-induced neuromuscular blockade produced by dichloride and dimethane sulphonate salts of HI-6 and P2S in guinea pig diaphragm preparations...inhibited neuromuscular function in guinea pig diaphragm preparations. Experiments were designed to measure recovery due to cholinesterase reactivation in...degrees of neuromuscular recovery produced by the dimethane sulphonate and dichloride salts of HI-6. In all tests the HI-6 induced recovery of

  14. Synthesis and in vitro evaluation of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide derivatives as reactivators against sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Valiveti, Aditya Kapil; Acharya, Jyotiranjan; Kaushik, Mahabir Parshad

    2014-05-01

    A series of bis-quaternary pyridinium derivatives 3a-3i of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (2) have been synthesized. The synthesized pyridinium compounds have an amide group in conjugation to the oxime moiety. These compounds were evaluated in vitro for their reactivation efficacy against organophosphorus (OP) nerve agents (NAs) (sarin and VX) inhibited human erythrocyte ghost acetylcholinesterase (hAChE) and compared with the reactivation efficacy of 2-PAM and obidoxime. The pKa values of the synthesized compounds were found closer to the pKa values of 2- and 4-pyridinium oxime reactivators such as 2-PAM and obidoxime. Some of the compounds have shown better reactivation efficacy than 2-PAM, and obidoxime against sarin and VX inhibited AChE.

  15. Investigation of kinetic interactions between approved oximes and human acetylcholinesterase inhibited by pesticide carbamates.

    PubMed

    Wille, Timo; Kaltenbach, Lisa; Thiermann, Horst; Worek, Franz

    2013-12-05

    Carbamates are widely used for pest control and act primarily by inhibition of insect and mammalian acetylcholinesterase (AChE). Accidental or intentional uptake of carbamates may result in typical signs and symptoms of cholinergic overstimulation which cannot be discriminated from those of organophosphorus pesticide poisoning. There is an ongoing debate whether standard treatment with atropine and oximes should be recommended for human carbamate poisoning as well, since in vitro and in vivo animal data indicate a deleterious effect of oximes when used in combination with the N-methyl carbamate carbaryl. Therefore, we performed an in vitro kinetic study to investigate the effect of clinically used oximes on carbamoylation and decarbamoylation of human AChE. It became evident that pralidoxime and obidoxime in therapeutic concentrations aggravate the inhibition of AChE by carbaryl and propoxur, with obidoxime being substantially more potent compared to 2-PAM. However, obidoxime had no impact on the decarbamoylation kinetics. Hence, the administration of 2-PAM and especially of obidoxime to severely propoxur and carbaryl poisoned humans cannot be recommended. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Reactivation of human brain homogenate cholinesterases inhibited by Tabun using newly developed oximes K117 and K127.

    PubMed

    Kuca, Kamil; Cabal, Jiri; Jung, Yung Sik; Musilek, Kamil; Soukup, Ondrej; Jun, Daniel; Pohanka, Miroslav; Musilova, Lucie; Karasová, Jana; Novotný, Ladislav; Hrabinova, Martina

    2009-09-01

    Newly developed acetylcholinesterase reactivators K117 [1,5-bis(4-hydroxyiminomethylpyridinium)-3-oxapentane dichloride] and K127 [(1-(4-hydroxyiminomethylpyridinium)-5-(4-carbamoylpyridinium)-3-oxapentane dibromide)] were tested for their potency to reactivate tabun-inhibited human brain cholinesterases. Pralidoxime and trimedoxime were chosen as standard reference reactivators. Human tissue was used, as that was closer on the real treatment of human beings. As a result, oxime K127 was found as the best tested reactivator according to the constant k(r), characterizing the overall reactivation process. On the contrary, the maximal reactivation ability expressed as percentage of reactivation was the best for trimedoxime. This differences were caused as a result of using the enzyme from different species. Due to this, experiments on human tissue should be conducted after in vitro and in vivo tests on animals to eliminate such important failures of promising oximes.

  17. In vitro reactivation potency of novel symmetrical bis-pyridinium oximes for electric eel acetylcholinesterase inhibited by nerve agent sarin.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Kaushik, M P

    2011-12-01

    This communication describes synthesis and in vitro evaluation of a series of novel bis-pyridinium oximes connected by bis-methoxymethyl benzene, 1,4-bis-methoxymethyl (cis)-but-2-ene and 1,4-bis-methoxymethyl but-2-yne linkers as reactivators of sarin inhibited acetylcholinesterase (AChE). The reactivation data of synthesized oximes were compared with those of 2-PAM and obidoxime. The efficacy of oximes such as 1,4-dimethoxy cis-but-2-ene bis-[4,4'-(hydroxyiminomethyl)-pyridinium] dichloride (3g), 1,4-dimethoxy benzene bis-[3,3'-(hydroxyimino-methyl) pyridinium] dichloride (3b) and 1,3-dimethoxy benzene bis-[3,3'-(hydroxy-iminomethyl) pyridinium] dichloride (3e) were found to be more than that of obidoxime in reactivating sarin inhibited AChE. The oxime 3g was able to reactivate 25% of AChE activity in comparison to 20% and 5% reactivation exhibited by 2-PAM and obidoxime respectively at a concentration of 10(-4) M. The pKa of the oximes were determined and correlated with the reactivation potential.

  18. Proceedings of the Annual Chemical Defense Bioscience Review (5th) Held at Columbia, Maryland on 29-31 May 1985. Appendix 1

    DTIC Science & Technology

    1985-06-01

    AND FUNGISTATIC AGENTS (a) METHYL PARABEN (b) PROPYL PARABEN III. BY-PRODUCTS (a) ISONICOTINIC ACID (b) ISONICOTINAMIDE (c) 4-CYANO PYRIDINE (d) 4I...HI-6 o APROPHEN A METHYL PARABEN o3 PROPYL PARABEN UATROPINE SULFATE 100 90 80- 70- 60- c.50- ILu 40- 30- 20 I- 10- 0 4812 16 20 2428 32 364044 48 52...56 6064 68 7278 TIME IN WEEKS FIGURE 6 STABILITY CURVES OF HI-6 (9), APROPHEN (0), HETHYL PARABEN (es), PROPYL PARABEN ( tl ) AND ATROPINE ( 4

  19. Antidotal efficacy of bisquaternary oximes against soman and tabun poisoning in various species

    SciTech Connect

    Amitai, G.; Rabinovitz, I.; Chen, R.; Cohen, G.; Zomber, G.

    1993-05-13

    The introduction of Hagedorn oximes, e.g. HI-6 and HLo-7, was an important milestone in the development of antidotal treatment against soman poisoning. We have developed a series of 'cholinergic receptor-directed' AB-oximes which combine in their molecular structure both AChE reactivation potency and anti-cholinergic properties. Marked antidotal efficacy against soman and tabun poisoning was obtained for AB-8, AB-13, toxogonin, HLo-7 and HI-6 in conjunction with atropine and benactyzine in pyridostigmine (PYR) pretreated mice and guinea pigs. In the absence of PYR, all oximes except for HI-6 in mice or HI-6 and HLo-7 in guinea pigs provided poor protection (PR=1-2) against soman. In tabun poisoning, AB-13, toxogonin and HLO-7 conferred high PR values: 8.6, 21.3 and 21.7, respectively, even without PYR pretreatment. These data are consistent with reactivation potency of these oximes (kr = 12.5, 157 and 18.7 m(1) min(1), respectively) for tabun-inhibited FBS-AChE. Elimination of benactyzine significantly decreased the PR values obtained against soman in guinea pigs.

  20. Preliminary Operational Findings From The Army’s Tier Two Attrition Screen (TTAS) Measure

    DTIC Science & Technology

    2006-11-01

    American Psychological Association , San...meeting of the American Psychological Association , Washington, DC. Young, M. C., McCloy, R.A., Waters, B.K., & White, L.A. (2004). Introduction...J.D. (2004, July). Operational validation of the Army’s new pre-enlistment screening measure. Paper presented at the annual meeting of the American Psychological Association , Honolulu, HI. 6

  1. In vitro reactivation of sarin-inhibited human acetylcholinesterase (AChE) by bis-pyridinium oximes connected by xylene linkers.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Srivastava, Ashish Kumar; Raza, Syed Kalbey

    2011-02-01

    A series of bis-pyridinium oximes connected by xylene linkers were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by nerve agent sarin and the data were compared with 2-PAM and obidoxime. Among the synthesized compounds, N,N'-p-xylene-bis-[(2,2'-hydroxyiminomethyl)pyridinium] dibromide (3c) was found to be the most potent reactivator for hAChE inhibited by sarin. The oxime 3c exhibited 45% regeneration of inhibited hAChE, in comparison to 34% and 24% regeneration by 2-PAM and obidoxime, respectively, at a concentration of 10(-3) M within 10 min. The higher reactivation efficacies of these oximes were attributed to their acid dissociation constants (pKa). The pKa values of all the oximes were determined spectrophotometrically and correlated with their observed reactivation potential. This method involving the in vitro reactivation of inhibited hAChE may be useful for the screening of new oximes as reactivators.

  2. Synthesis and in vitro kinetic study of novel mono-pyridinium oximes as reactivators of organophosphorus (OP) inhibited human acetylcholinesterase (hAChE).

    PubMed

    Valiveti, Aditya Kapil; Bhalerao, Uma M; Acharya, Jyotiranjan; Karade, Hitendra N; Gundapu, Raviraju; Halve, Anand K; Kaushik, Mahabir Parshad

    2015-07-25

    A series of mono pyridinium oximes linked with arenylacetamides as side chains were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by organophosphorus inhibitors (OP) such as sarin, VX and tabun. The reactivation data of the synthesized compounds were compared with those obtained with standard reactivators such as 2-PAM and obidoxime. The dissociation constant (KD) and specific reactivity (kr) of the oximes were also determined by performing reactivation kinetics against OP inhibited hAChE. Among the synthesized compounds, oximes 1-(2-(4-cyanophenylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (12a) and 4-((hydroxyimino)methyl)-1-(2-(4-methoxyphenylamino)-2-oxoethyl)pyridinium chloride (2a) were found most potent reactivators for hAChE inhibited by sarin. In case of VX inhibited hAChE majority of the oximes have shown good reactivation efficacies. Among these oximes 1-(2-(benzylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (18a), 4-((hydroxyimino)methyl)-1-(2-(4-(methoxycarbonyl)phenylamino)-2-oxoethyl)pyridinium-chloride (14a) and 12a were found to surpass the reactivation potential of 2-PAM and obidoxime. However, the synthesized oximes showed marginal reactivation efficacies in case of tabun inhibited hAChE. The pKa value of the oximes were determined and correlated with their observed reactivation potential.

  3. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential.

  4. Catalytic soman scavenging by Y337A/F338A acetylcholinesterase mutant assisted with novel site-directed aldoximes

    PubMed Central

    Kovarik, Zrinka; Hrvat, Nikolina Maček; Katalinić, Maja; Sit, Rakesh K.; Paradyse, Alexander; Žunec, Suzana; Musilek, Kamil; Fokin, Valery V.; Taylor, Palmer; Radić, Zoran

    2016-01-01

    Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin and paraoxon inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 minutes when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of forty-two pyridinium aldoximes, and five imidazole 2-aldoxime N-propyl pyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2–3 –fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack. PMID:25835984

  5. Novel dual-mode immunomagnetic method for studying reactivation of nerve agent-inhibited butyrylcholinesterase.

    PubMed

    Abney, Carter W; Knaack, Jennifer L S; Ali, Ahmed A I; Johnson, Rudolph C

    2013-05-20

    A novel immunomagnetic method has been developed for the simultaneous measurement of organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BuChE) and free OPNAs in serum. This new approach, deemed dual-mode immunomagnetic analysis (Dual-Mode IMA), combines immunomagnetic separation (IMS) and immunomagnetic scavenging (IMSc) and has been used to measure the effectiveness of cholinesterase reactivators on OPNA-inhibited BuChE in serum. BuChE inhibited by the nerve agent VX, uninhibited BuChE, and unbound VX were measured up to 1 h after the addition of oxime reactivators pralidoxime (2-PAM) and obidoxime. IMS experiments consisted of extracting BuChE and VX-BuChE serum adducts using antibutyrylcholinesterase monoclonal antibodies conjugated to protein-G ferromagnetic particles. In a parallel set of experiments using IMSc, BuChE-coated magnetic beads were used to extract free VX from protein-depleted serum. Adducts from both IMS and IMSc were analyzed using a published IMS liquid chromatography tandem mass spectrometry (IMS-LC-MS/MS) protocol, which has also been demonstrated with other OPNAs. By applying this Dual-Mode IMA approach, 2-PAM was observed to be more potent than obidoxime in reactivating VX-adducted BuChE. VX-BuChE peptide concentrations initially measured at 19.7 ± 0.7 ng/mL decreased over 1 h to 10.6 ± 0.6 ng/mL when reactivated with 2-PAM and 14.4 ± 1.2 ng/mL when reactivated with obidoxime. These experiments also show that previously published IMS-LC-MS/MS analyses are compatible with serum treated with oximes. Dual-Mode IMA is the first immunoaffinity method developed for the simultaneous measurement of OPNA adducted BuChE, unadducted BuChE, and free nerve agent in serum and is a promising new tool for studying reactivator effectiveness on cholinesterases inhibited by nerve agents.

  6. Assessing the therapeutic efficacy of oxime therapies against percutaneous organophosphorus pesticide and nerve agent challenges in the Hartley guinea pig

    PubMed Central

    Snider, Thomas H.; Wilhelm, Christina M.; Babin, Michael C.; Platoff, Gennady E.; Yeung, David T.

    2016-01-01

    Given the rapid onset of symptoms from intoxication by organophosphate (OP) compounds, a quick-acting, efficacious therapeutic regimen is needed. A primary component of anti-OP therapy is an oxime reactivator to rescue OP-inhibited acetylcholinesterases. Male guinea pigs, clipped of hair, received neat applications of either VR, VX, parathion, or phorate oxon (PHO) at the 85th percentile lethal dose, and, beginning with presentation of toxicosis, received the human equivalent dose therapy by intramuscular injection with two additional follow-on treatments at 3-hr intervals. Each therapy consisted of atropine free base at 0.4 mg/kg followed by one of eight candidate oximes. Lethality rates were obtained at 24 hr after VR, VX and PHO challenges, and at 48 hr after challenge with parathion. Lethality rates among symptomatic, oxime-treated groups were compared with that of positive control (OP-challenged and atropine-only treated) guinea pigs composited across the test days. Significant (p ≤ 0.05) protective therapy was afforded by 1,1-methylene bis(4(hydroxyimino- methyl)pyridinium) dimethanesulfonate (MMB4 DMS) against challenges of VR (p ≤ 0.001) and VX (p ≤ 0.05). Lethal effects of VX were also significantly (p ≤ 0.05) mitigated by treatments with oxo-[[1-[[4-(oxoazaniumylmethylidene)pyridin-1-yl] methoxymethyl]pyridin-4-ylidene]methyl]azanium dichloride (obidoxime Cl2) and 1-(((4-(aminocarbonyl) pyridinio)methoxy)methyl)-2,4-bis((hydroxyimino)methyl)pyridinium dimethanesulfonate (HLö-7 DMS). Against parathion, significant protective therapy was afforded by obidoxime dichloride (p ≤ 0.001) and 1,1′-propane-1,3-diylbis{4-[(E)-(hydroxyimino)methyl]pyridinium} dibromide (TMB-4, p ≤ 0.01). None of the oximes evaluated was therapeutically effective against PHO. Across the spectrum of OP chemicals tested, the oximes that offered the highest level of therapy were MMB4 DMS and obidoxime dichloride. PMID:26558457

  7. New bispyridinium oximes: in vitro and in vivo evaluation of their biological efficiency in soman and tabun poisoning.

    PubMed

    Berend, Suzana; Vrdoljak, Ana Lucić; Radić, Bozica; Kuca, Kamil

    2008-09-25

    Improving the efficacy of antidotal treatment of poisonings with nerve agents is still a challenge for the scientific community. This study investigated the interactions of four bispyridinium oximes with human erythrocyte acetylcholinesterase (AChE) and their effects on soman- and tabun-poisoned mice. Oximes HI-6 and TMB-4 were used for comparison. These oximes inhibited AchE with inhibitory potency (IC(50)) ranging from 0.02 to 1.0 mM. The best reactivating potency (%R) was obtained with K074, when AChE was inhibited by tabun. The protective potency (P(50)) of all oximes in human erythrocyte AChE inhibited by soman and tabun could not be determined. In tabun-poisoned mice very good antidotal efficacy was obtained with K027, K048, and K074, which makes them interesting for future investigation. The combination of HI-6 and atropine is the therapy of choice for soman poisoning.

  8. Comparative Kinetics and Distribution to Target Tissues of Organophosphates Using Physiologically - Based Pharmacokinetic Modeling

    DTIC Science & Technology

    2008-03-01

    to action and toxicological target tissues? What are the levels of acetylcholine (ACh) in target tissues as a resulting from different exposure...the toxicological effects of low-level exposure to 27 chemical warfare agents (Genovese, 2004, Henderson, 2002). Genovese (2004) defines a “low...the efficacy of HI 6 in percutaneous VX poisoning,” Toxicology , 224: 74-80. Calvert, J.B. (2002). Chemical Warfare. Retrieved June 20, 2007

  9. Oxime effects on the rate constants of carbamylation and decarbamylation of acetylcholinesterase for pyridostigmine, physostigmine and insecticidal carbamates.

    PubMed

    Dawson, R M

    1995-06-01

    The effects of the oximes 2-pyridine aldoxime methiodide (PAM), HI-6, HS-6, toxogonin and TMB-4 on the rate of carbamylation of membrane-bound bovine erythrocyte acetylcholinesterase were studied. The second-order rate constant of carbamylation (ki) and the first-order rate constant of decarbamylation (k3) were calculated from the proportion of free acetylcholinesterase at equilibrium and the rate of approach to equilibrium. Twenty insecticidal carbamates plus physostigmine and pyridostigmine were studied. The oximes increased ki for several carbamates, with HI-6 causing an increase in the most number of cases (12) and PAM the least (3). HI-6 was also a potent accelerator of decarbamylation (increase in k3) in all cases, whereas PAM caused a significant decrease in k3 in 15 cases and a nonsignificant decrease in the other 7. Toxogonin and TMB-4 increased k3 or had no significant effect. The results were generally consistent with a proposal in the literature that there is a correlation between increased ki and increased toxicity of the carbamate in the presence of an oxime.

  10. Preclinical pharmacodynamic and pharmacokinetic studies of investigational new drugs. Annual report, 1 November 1993-31 October 1994

    SciTech Connect

    Noker, P.E.

    1994-11-11

    During the past year of this contract pharmacokinetic, pharmacodynamic, bioavailability and metabolism studies have been conducted on two anti-cyanotic agents (WR242511 and p-aminohetanophenone (PAHP)) and one nerve agent antidote (HI-6) which are under consideration for clinical development by the U.S. Army. Radiolabeled formulations of WR242511, PAHP and HI-6 were used in these investigations. Information has been obtained on the half-lives of absorption and elimination of both radioactivity and the parent compound following oral and i.v. administration of these three compounds to dogs and, for PAHP, also to rats. In addition, the rates and extent of urinary and fecal elimination of the agents has been characterized; the pharmacodynamics, as assessed by the production of methemoglobin, of two compounds (WR242511 and PAHP) has been studied; and the metabolism of each compound has been investigated. Data obtained to date indicate that: WR242511 does not directly produce methemoglobinemia but a metabolite sequestered in red cells is the responsible agent; dogs appear to metabolize PAHP differently than do rats; the major urinary metabolite of HI-6 is 2-pyridine aldoxime. Further efforts to isolate and identify the metabolites of all three compounds are in progress.

  11. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.

    PubMed

    Artursson, Elisabet; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Ekström, Fredrik

    2009-11-30

    The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HLö-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HLö-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HLö-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE.

  12. Anticholinergic drugs--functional antidotes for the treatment of tabun intoxication.

    PubMed

    Krejcová, Gabriela; Kassa, Jirí

    2004-01-01

    1. To study the influence of antidotes on tabun-induced neurotoxicity, the rats were injected intramuscularly with organophosphate tabun (LD50). The efficacy of choice antidotal treatment consisting of acetylcholinesterase reactivator obidoxime and one of four anticholinergic drugs (atropine, benactyzine, biperiden, scopolamine) was compared. 2. Testing of tabun-induced neurotoxicity progress was carried out using the method Functional observational battery. The experimental animals as well as controls were observed at 24 hours and 7 days following tabun or saline administration. 3. The results were compared to the condition of animals without anticholinergic drug (oxime alone) and control rats that received physiological solution instead of tabun and treatment. Antidotal treatment involving centrally acting anticholinergic drugs (benactyzine, biperiden, scopolamine) showed significantly higher neuroprotective efficacy compared to antidotal treatment containing atropine.

  13. A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel.

    PubMed

    Zamfir, Lucian-Gabriel; Rotariu, Lucian; Bala, Camelia

    2011-04-15

    A novel, low potential and highly sensitive acetylcholinesterase (AChE) biosensor was developed based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotube composite gel thiocholine sensor. Composite gel promoted electron transfer reaction at a lower potential (+50 mV) and catalyzed electrochemical oxidation of thiocholine with high sensitivity. AChE was immobilized in sol-gel matrix that provides a good support for enzyme without any inhibition effect from the ionic liquid. The amount of immobilized enzyme and incubation time with chlorpyrifos were optimized. Chlorpyrifos could be determined in the range of 10(-8)-10(-6)M with a detection limit of 4 nM. Fast and efficient enzyme reactivation was obtained at low obidoxime concentration (0.1mM). Moreover, the biosensor exhibited a good stability and reproducibility and could be use for multiple determinations of pesticide with no loss of the enzyme activity.

  14. The influence of antidotal treatment of low-level tabun exposure on cognitive functions in rats using a water maze.

    PubMed

    Kassa, J; Kunesova, G

    2006-01-01

    In this study, the influence of antidotal treatment of tabun poisoning on cognitive function, in the case of low-level tabun exposure, was studied. The impairment of cognitive function was evaluated by the measurement of spatial learning and memory in rats poisoned with a sublethal dose of tabun and treated with atropine alone or in combination with newly developed oximes {K027 [1-(4-hydroxyiminomethyl- pyridinium)-3-(4-carbamoylpyridinium) propane dibromide] and K048 [1-(4-hydroxyimino- methylpyridinium)-3-(4-carbamoylpyridinium) butane dibromide]} or currently available oxime (trimedoxime), using the Morris water maze. While atropine alone caused an impairment of studied cognitive functions, the addition of an oxime to atropine contributes to the improvement of cognitive performance of treated tabun-poisoned rats regardless of the type of oxime. The differences in the ameliorative effects of oximes on atropine-induced mnemonic deficits were not significant. Therefore, each low-level nerve agent exposure should be treated by complex antidotal treatment consisting of anticholinergic drug and oxime.

  15. Bis-quaternary oximes amplify the effectiveness of acetylcholinesterase to detoxify organophosphorus compounds

    SciTech Connect

    Caranto, G.R.; Waibel, K.H.; Asher, J.M.; Larrison, R.W.; Brecht, K.M.

    1993-05-13

    Pretreatment of rhesus monkeys with fetal bovine serum acetylcholinesterase (FBS AChE) provides complete protection against 5 LD(50), of organophosphate (OP) without any signs of toxicity or performance decrements as measured by serial probe recognition tests or primate equilibrium platform performance (7,8). Although such use of enzyme as a single pretreatment drug for OP toxicity is sufficient to provide complete protection, a relatively large (stoichiometric) amount of enzyme was required in vivo to neutralize OP. To improve the efficacy of ChEs as pretreatment drugs, we have developed an approach in which the catalytic activity of OP-inhibited FBS AChE was rapidly and continuously restored, thus detoxifying the OP and minimizing enzyme aging by having sufficient amounts of appropriate oxime present. The efficacy of FBS AChE to detoxify several OPs was amplified by addition of bisquaternary oximes, particularly HI-6. When mice were pretreated with sufficient amounts of FBS AChE and HI-6 and challenged with repeated doses of sarin, the OP was continuously detoxified so long as the molar concentration of the sarin dose was less than the molar concentration of AChE in circulation. The in vitro experiments showed that the stoichiometry of sarin:FBS AChE was higher than 3200:1 and in vivo stoichiometry with mice was as high as 57:1. Addition of HI-6 to FBS AChE as a pretreatment drug amplified the efficacy of enzyme as a scavenger of nerve agents.

  16. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity.

    PubMed

    Calić, Maja; Vrdoljak, Ana Lucić; Radić, Bozica; Jelić, Dubravko; Jun, Daniel; Kuca, Kamil; Kovarik, Zrinka

    2006-02-15

    The increased concern about terrorist use of nerve agents prompted us to search for new more effective oximes against tabun and soman poisoning. We investigated the interactions of five bispyridinium oximes: K027 [1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide], K048 [1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide], K033 [1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide], TMB-4 [1,3-bis(4-hydroxyiminomethylpyridinium) propane dibromide] and HI-6 [(1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride)] with human erythrocyte acetylcholinesterase (AChE; E.C. 3.1.1.7) and their effects on tabun- and soman-poisoned mice. All the oximes reversibly inhibited AChE, and the enzyme-oxime dissociation constants were between 17 and 180 microM. Tabun-inhibited AChE was completely reactivated by TMB-4, K027 and K048, with the overall reactivation rate constants of 306, 376 and 673 min(-1)M(-1), respectively. The reactivation of tabun-inhibited AChE by K033 reached 50% after 24h, while HI-6 failed to reactivate any AChE at all. Soman-inhibited AChE was resistant to reactivation by 1mM oximes. All studied oximes protected AChE from phosphorylation with both soman and tabun. In vivo experiments showed that the studied oximes were relatively toxic to mice; K033 was the most toxic (LD50=33.4 mg/kg), while K027 was the least toxic (LD50=672.8 mg/kg). The best antidotal efficacy was obtained with K048, K027 and TMB-4 for tabun poisoning, and HI-6 for soman poisoning. Moreover, all tested oximes showed no cytotoxic effect on several cell lines in concentrations up to 0.8mM. The potency of the oximes K048 and K027 to protect mice from five-fold LD50 of tabun and their low toxicity make these compounds leading in the therapy of tabun poisoning. The combination of HI-6 and atropine is the therapy of choice for soman poisoning.

  17. In Vivo Reactivation by Oximes of Inhibited Blood, Brain and Peripheral Tissue Cholinesterase Activity Following Exposure to Nerve Agents in Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    nerve agent intoxication ( salivation , rhinorrhea, tremors,muscle asciculations, convulsions) at 60min following the 1.0× LD50 dose f GB, GF, VR or VX...reactivation of GF-, soman-, or VR-inhibited enzyme byHI-6 andHLö7. However, these in vitro experiments [24,25] were conducted with a pH of 8.0 at 25 ◦C...data. Even the study of Worek et al. [23] that was performed at a pH of 7.4 at 37 ◦C, whose in vitro kinetic data obtained from guinea pig RBC ghosts

  18. Laser-Based Diagnostics for Transient Species in Hydrocarbon Flames

    DTIC Science & Technology

    1989-12-01

    SRI________________ Aem Pronigonnand Pnwer I abnratory 6c. ADDRESS (City, State, and ZIP Code ) 7b. ADORES$S(CiMy State. and ZIP Code ) 333 Ravenswood Avenue Wright...POSOIN 8b.OFFCSYBLý PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZA rION (if appika le hI.)-6 - -2 4 Or- ADDRESS (City, State. and ZIP Code ) 10...Year, Monek Daey) IS. PAGE COUNT PniIFROM ll/R TO--UR 1 90R 236 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 1S. SUBJECT TERMS (Comnwiu on rewew if

  19. A comparison of the efficacy of pyridostigmine alone and the combination of pyridostigmine with anticholinergic drugs as pharmacological pretreatment of tabun-poisoned rats and mice.

    PubMed

    Kassa, Jirí; Vachek, J

    2002-08-15

    The ability of two types of pharmacological pretreatment (pyridostigmine alone or pyridostigmine in combination with two anticholinergic drugs) to increase the resistance of rats and mice against tabun and to increase the therapeutic efficacy of common antidotal treatment of tabun-poisoned rats and mice was compared. A significant decrease in the LD50 values of tabun was observed when mice as well as rats were pretreated with the prophylactic antidotal mixture consisting of pyridostigmine, benactyzine and trihexyphenidyle, designated PANPAL. Pyridostigmine-pretreated rats were also more resistant against acute lethal effects of tabun but pyridostigmine-induced resistance of rats was not so high as PANPAL-induced resistance. In addition, the pharmacological pretreatment with pyridostigmine alone was not able to protect mice against tabun-induced acute toxicity. The pharmacological pretreatment with pyridostigmine alone was able to increase the efficacy of currently used antidotal treatment (obidoxime in combination with atropine and diazepam) of tabun-induced poisoning, but PANPAL-induced increase in the efficacy of the same antidotal treatment was significantly higher than an increase induced by pyridostigmine alone. PANPAL-induced increase in the efficacy of antidotal treatment of tabun poisoning was also observed in mice. These findings confirm that PANPAL pretreatment of tabun-poisoned rats and mice seems to be much more suitable than currently used pyridostigmine alone.

  20. Neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in tabun-poisoned rats.

    PubMed

    Krejcová, G; Kassa, J

    2003-03-14

    To study the influence of pharmacological pretreatment (PANPAL) and antidotal treatment (obidoxime plus atropine) on tabun-induced neurotoxicity, male albino rats were poisoned with a lethal dose of tabun (280 microg/kg i.m.; 100% of LD(50) value) and observed at 24 h and 7 days following tabun challenge. The neurotoxicity of tabun was evaluated using a functional observational battery (FOB) and an automatic measurement of motor activity. Pharmacological pretreatment as well as antidotal treatment were able to eliminate most of tabun-induced neurotoxic effects observed at 24 h following tabun poisoning. However, there was not significant difference between the efficacy of PANPAL and antidotal treatment to eliminate tabun-induced neurotoxicity in rats. The combination of PANPAL pretreatment and antidotal treatment seems to be slightly more effective in the elimination of tabun-induced neurotoxicity in rats at 24 h following tabun challenge in comparison with the administration of PANPAL pretreatment or antidotal treatment alone. At 7 days following tabun poisoning, very few neurotoxic signs in tabun-poisoned rats were observed regardless of administration of pharmacological pretreatment or antidotal treatment. Thus, our findings confirm that the combination of pharmacological pretreatment and antidotal treatment is not only able to protect the experimental animals from the lethal effects of tabun but also to eliminate most of tabun-induced signs of neurotoxicity in tabun-poisoned rats.

  1. Evaluation of oxime efficacy in nerve agent poisoning: Development of a kinetic-based dynamic model

    SciTech Connect

    Worek, Franz . E-mail: FranzWorek@Bundeswehr.org; Szinicz, Ladislaus; Eyer, Peter; Thiermann, Horst

    2005-12-15

    The widespread use of organophosphorus compounds (OP) as pesticides and the repeated misuse of highly toxic OP as chemical warfare agents (nerve agents) emphasize the necessity for the development of effective medical countermeasures. Standard treatment with atropine and the established acetylcholinesterase (AChE) reactivators, obidoxime and pralidoxime, is considered to be ineffective with certain nerve agents due to low oxime effectiveness. From obvious ethical reasons only animal experiments can be used to evaluate new oximes as nerve agent antidotes. However, the extrapolation of data from animal to humans is hampered by marked species differences. Since reactivation of OP-inhibited AChE is considered to be the main mechanism of action of oximes, human erythrocyte AChE can be exploited to test the efficacy of new oximes. By combining enzyme kinetics (inhibition, reactivation, aging) with OP toxicokinetics and oxime pharmacokinetics a dynamic in vitro model was developed which allows the calculation of AChE activities at different scenarios. This model was validated with data from pesticide-poisoned patients and simulations were performed for intravenous and percutaneous nerve agent exposure and intramuscular oxime treatment using published data. The model presented may serve as a tool for defining effective oxime concentrations and for optimizing oxime treatment. In addition, this model can be useful for the development of meaningful therapeutic animal models.

  2. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis

    SciTech Connect

    Worek, F. . E-mail: FranzWorek@Bundeswehr.org; Eyer, P.; Aurbek, N.; Szinicz, L.; Thiermann, H.

    2007-03-15

    The availability of highly toxic organophosphorus (OP) warfare agents (nerve agents) underlines the necessity for an effective medical treatment. Acute OP toxicity is primarily caused by inhibition of acetylcholinesterase (AChE). Reactivators (oximes) of inhibited AChE are a mainstay of treatment, however, the commercially available compounds, obidoxime and pralidoxime, are considered to be rather ineffective against various nerve agents, e.g. soman and cyclosarin. This led to the synthesis and investigation of numerous oximes in the past decades. Reactivation of OP-inhibited AChE is considered to be the most important reaction of oximes. Clinical data from studies with pesticide-poisoned patients support the assumption that the various reactions between AChE, OP and oxime, i.e. inhibition, reactivation and aging, can be investigated in vitro with human AChE. In contrast to animal experiments such in vitro studies with human tissue enable the evaluation of oxime efficacy without being affected by species differences. In the past few years numerous in vitro studies were performed by different groups with a large number of oximes and methods were developed for extrapolating in vitro data to different scenarios of human nerve agent poisoning. The present status in the evaluation of new oximes as antidotes against nerve agent poisoning will be discussed.

  3. In vitro evaluation of bis-pyridinium oximes bearing methoxy alkane linker as reactivators of sarin inhibited human acetylcholinesterase.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Raza, Syed Kalbey

    2010-09-01

    A series of bis-pyridinium oximes connected by methoxy alkane linkers were synthesized and their in vitro reactivation efficacy was evaluated against sarin-inhibited human AChE, and data were compared with 2-PAM and obidoxime. Among the synthesized compounds, 1,2-dimethoxy ethylene bis-[4,4'-(hydroxyiminomethyl) pyridinium] dichloride (4P-2) and 1,2-dimethoxy ethylene bis-[3,3'-(hydroxyiminomethyl) pyridinium] dichloride (3P-2) were found to be the most potent reactivators of human AChE inhibited by nerve agent sarin. The oximes 4P-2 and 3P-2 exhibited 41% and 36% regeneration of sarin-inhibited AChE, respectively, whereas 2-PAM showed 32% regeneration. The higher reactivation efficacy of the oximes was attributed to their acid dissociation constants (pK(a)). The pK(a) values of all the oximes were determined by UV-vis spectrophotometric method and correlated with their observed reactivation potential. Overall, the study reveals that the oxime 4P-2 may have therapeutic potential in the reactivation of human AChE inhibited by sarin.

  4. Synthesis and in vitro kinetic evaluation of N-thiazolylacetamido monoquaternary pyridinium oximes as reactivators of sarin, O-ethylsarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Valiveti, Aditya Kapil; Bhalerao, Uma M; Acharya, Jyotiranjan; Karade, Hitendra N; Acharya, Badri Narayan; Raviraju, G; Halve, Anand K; Kaushik, Mahabir Parshad

    2015-08-01

    Presently available medications for treatment of organiphosphorus poisoning are not sufficiently effective due to various pharmacological and toxicological reasons. In this regard, herein we report the synthesis of a series of N-thiazolylacetamide monoquaternary pyridinium oximes and its analogs (1a-1b to 6a-6b) with diversely substituted thiazole ring and evaluation of their in vitro reactivation efficacies against nerve agent (sarin, O-ethylsarin and VX) inhibited human erythrocyte acetylcholinesterase (hAChE). Reactivation kinetics was performed to determine dissociation constant (KD), reactivity rate constant (kr) and the second order rate constant (kr2) for all the compounds and compared their efficacies with commercial antidotes viz. 2-PAM and obidoxime. All the newly synthesized oximes were evaluated for their physicochemical parameters (pKa) and correlated with their respective reactivation efficacies to assess the capability of the oxime reactivator. Three of these novel compounds showed promising reactivation efficacies toward OP inhibited hAChE. Molecular docking studies were performed in order to correlate the reactivation efficacies with their interactions in the active site of the AChE.

  5. Effects of intracellular pH on ATP-sensitive K+ channels in mouse pancreatic beta-cells.

    PubMed Central

    Proks, P; Takano, M; Ashcroft, F M

    1994-01-01

    1. The effects of intracellular pH (pHi) on the ATP-sensitive K+ channel (K+ATP channel) from mouse pancreatic beta-cells were examined in inside-out patches exposed to symmetrical 140 mM K+ solutions. 2. The relationship between channel activity and pHi was described by the Hill equation with half-maximal inhibition (Ki) at pHi 6.25 and a Hill coefficient of 3.7. 3. Following exposure to pHi < 6.8, channel activity did not recover to its original level. Subsequent application of trypsin to the intracellular membrane surface restored channel activity to its initial level or above. 4. At -60 mV the relationship between pHi and the single-channel current amplitude was described by a modified Hill equation with a Hill coefficient of 2.1, half-maximal inhibition at pHi 6.48 and a maximum inhibition of 18.5%. 5. A decrease in pHi reduced the extent of channel inhibition by ATP: Ki was 18 microM at pH 7.2 and 33 microM at pH 6.4. The Hill coefficient was also reduced, being 1.65 at pH 7.2 and 1.17 at pH 6.4. 6. When channel activity was plotted as a function of ATP4- (rather than total ATP) there was no effect of pHi on the relationship. This suggests that ATP4- is the inhibitory ion species and that the effects of reducing pHi are due to the lowered concentration of ATP4-. 7. Changes in external pH had little effect on either single-channel or whole-cell K+ATP currents. 8. The effects of pHi do not support a role for H+ in linking glucose metabolism to K+ATP channel inhibition in pancreatic beta-cells. PMID:8189391

  6. Intestinal ion transport and intracellular pH during acute respiratory alkalosis and acidosis.

    PubMed

    Kurtin, P; Charney, A N

    1984-07-01

    Acute respiratory alkalosis and acidosis alter rat ileal and colonic but not jejunal electrolyte transport. To examine the role of altered intracellular pH, pHi, and HCO3 concentration, (HCO3)i, we measured pHi in mucosa scraped from the jejunum, ileum, and colon of anesthetized, mechanically ventilated Sprague-Dawley rats. During states of respiratory alkalosis (Pco2 24.9 +/- 0.8 mmHg, pH 7.586 +/- 0.014), respiratory acidosis (Pco2 67.8 +/- 1.2 mmHg, pH 7.228 +/- 0.007), and normocapnia (Pco2 41.1 +/- 0.7 mmHg, pH 7.401 +/- 0.006), pHi was measured by determining the distribution of 5,5-dimethyl[2-14C]oxazolidine-2,4-dione, using [3H]inulin as a marker of extracellular space. (HCO3)i was calculated using portal vein Pco2. In the ileum, the pHi of 6.901 +/- 0.029 was similar in alkalosis [(HCO3)i 5.4 +/- 0.3 mM], acidosis [(HCO3)i 12.4 +/- 0.6 mM], and normocapnia [(HCO3)i 8.6 +/- 0.8 mM). In both the jejunum and colon, pHi was increased in alkalosis [pHi 6.998 +/- 0.038, (HCO3)i 6.7 +/- 0.6 mM] and decreased in acidosis [pHi 6.789 +/- 0.024, (HCO3)i 10.4 +/- 0.6 mM] as compared with normocapnia [pHi 6.915 +/- 0.026, (HCO3)i 8.9 +/- 0.7 mM] (colon data given). Net electrolyte transport measured by in vivo perfusion revealed that ileal and colonic, but not jejunal, net Na and Cl absorption was decreased during alkalosis and increased during acidosis. These data suggest that, during respiratory acidosis and alkalosis, pHi is maintained in a qualitatively similar way in the jejunum, ileum, and colon with quantitatively greater or lesser changes in (HCO3)i.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The evaluation of prophylactic efficacy of newly developed reversible inhibitors of acetylcholinesterase in soman-poisoned mice - a comparison with commonly used pyridostigmine.

    PubMed

    Kassa, Jiri; Korabecny, Jan; Sepsova, Vendula; Tumova, Martina

    2014-12-01

    The ability of four newly developed reversible inhibitors of acetylcholinesterase (PC-37, PC-48, JaKo 39, JaKo 40) and currently available carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was evaluated and compared. No reversible inhibitor of acetylcholinesterase studied was able to decrease the LD50 value of soman in mice. Thus, the pharmacological pre-treatment with pyridostigmine or newly synthesized inhibitors of acetylcholinesterase was not able to significantly protect mice against soman-induced lethal acute toxicity. In addition, neither pyridostigmine nor new reversible inhibitors of acetylcholinesterase was able to increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice. These findings demonstrate that pharmacological pre-treatment of soman-poisoned mice with tested reversible inhibitors of acetylcholinesterase is not promising. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Cholinesterases as scavengers for organophosphorus compounds: protection of primate performance against soman toxicity.

    PubMed

    Doctor, B P; Blick, D W; Caranto, G; Castro, C A; Gentry, M K; Larrison, R; Maxwell, D M; Murphy, M R; Schutz, M; Waibel, K

    1993-06-01

    The present treatment for poisoning by organophosphates consists of multiple drugs such as carbamates, antimuscarinics, and reactivators in pre- and post-exposure modalities. Recently an anticonvulsant, diazapam, has been included as a post-exposure drug to reduce convulsions and increase survival. Most regimens are effective in preventing lethality from organophosphate exposure but do not prevent toxic effects and incapacitation observed in animals and likely to occur in humans. Use of enzymes such as cholinesterases as pretreatment drugs for sequestration of highly toxic organophosphate anticholinesterases and alleviation of side effects and performance decrements was successful in animals, including non-human primates. Pretreatment of rhesus monkeys with fetal bovine serum acetylcholinesterase protected them against lethal effects of soman (up to 5 LD50) and prevented signs of OP toxicity. Monkeys pretreated with fetal bovine serum acetylcholinesterase were devoid of behavioral incapacitation after soman exposure, as measured by serial probe recognition or primate equilibrium platform performance tasks. Use of acetylcholinesterase as a single pretreatment drug provided greater protection against both lethal and behavioral effects of potent organophosphates than current multicomponent drug treatments that prevent neither signs of toxicity nor behavioral deficits. Although use of cholinesterases as single pretreatment drugs provided complete protection, its use for humans may be limited, since large quantities will be required, due to the approximately 1:1 stoichiometry between organophosphate and enzyme. Bisquaternary oximes, particularly HI-6, have been shown to reactivate organophosphate-inhibited acetylcholinesterase at a rapid rate. We explored the possibility that enzyme could be continually reactivated in animals pretreated with fetal bovine serum acetylcholinesterase, followed by an appropriate dose of reactivator, and challenged with repeated doses of

  9. Pharmacokinetic profile and quantitation of protection against soman poisoning by the antinicotinic compound MB327 in the guinea-pig.

    PubMed

    Price, Matthew E; Docx, Cerys J; Rice, Helen; Fairhall, Sarah J; Poole, Sarah J C; Bird, Michael; Whiley, Luke; Flint, Daniel P; Green, A Christopher; Timperley, Christopher M; Tattersall, John E H

    2016-02-26

    Current organophosphorus nerve agent medical countermeasures do not directly address the nicotinic effects of poisoning. A series of antinicotinic bispyridinium compounds has been synthesized in our laboratory and screened in vitro. Their actions can include open-channel block at the nicotinic receptor which may contribute to their efficacy. The current lead compound from these studies, MB327 1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) as either the diiodide (I2) or dimethanesulfonate (DMS) has been examined in vivo for efficacy against nerve agent poisoning. MB327 I2 (0-113mgkg(-1)) or the oxime HI-6 DMS (0-100mgkg(- 1)), in combination with atropine and avizafone (each at 3mgkg(-1)) was administered to guinea-pigs 1min following soman poisoning. Treatment increased the LD50 of soman in a dose-dependent manner. The increase was statistically significant (p<0.01) at the 33.9mgkg(-1) (MB327) or 30mgkg(-1) (HI-6) dose with a comparable degree of protection obtained for both compounds. Following administration of 10mgkg(-1) (i.m.), MB327 DMS reached plasma Cmax of 22μM at 12min with an elimination t1/2 of 22min. In an adverse effect study, in the absence of nerve agent poisoning, a dose of 100mgkg(-1) or higher of MB327 DMS was lethal to the guinea-pigs. A lower dose of MB327 DMS (30mgkg(-1)) caused flaccid paralysis accompanied by respiratory impairment. Respiration normalised by 30min, although the animals remained incapacitated to 4h. MB327 or related compounds may be of utility in treatment of nerve agent poisoning as a component of therapy with atropine, anticonvulsant and oxime, or alternatively as an infusion under medical supervision.

  10. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose.

    PubMed

    Shih, Tsung-Ming; Skovira, Jacob W; O'Donnell, John C; McDonough, John H

    2009-09-01

    The capability of several oximes (HI-6, HLö7, MMB-4, TMB-4, carboxime, ICD 585, ICD 692, ICD 3805, and 2-PAM) to reactivate in vivo AChE inhibited by the nerve agents sarin, cyclosarin, VX, or VR in blood, brain regions, and peripheral tissues in guinea pigs was examined and compared. Animals were injected subcutaneously with 1.0 LD(50) of sarin, cyclosarin, VR, or VX, and treated intramuscularly 5 min later with one of these compounds. Toxic signs and lethality were monitored, and tissue AChE activities were determined at 60 min after nerve agent. The animals exposed to sarin or cyclosarin, alone or with non-oxime treatment, some died within 60 min; however, when treated with an oxime, no animal died. For VR or VX, all animals survived for 60 min after exposure, with or without non-oxime or oxime therapy. These nerve agents caused differential degrees of inhibition: in whole blood sarin = cyclosarin > VR = VX; in brain regions sarin > cyclosarin > VX > VR; and in peripheral tissues sarin > VX > cyclosarin > VR. These oximes exhibited differential potency in reactivating nerve agent-inhibited AChE in various peripheral tissues, but not AChE activity in the brain regions. There was no difference in the AChE reactivating potency between the dichloride and dimethanesulfonate salts of HI-6. AChE inhibited by sarin was the most and cyclosarin the least susceptible to oxime reactivation. Overall, MMB-4 appeared to be, among all oximes tested, the most effective in vivo AChE reactivator against the broadest spectrum of nerve agents.

  11. Immobilization of Russian VX skin depots by localized cooling: implications for decontamination and medical countermeasures.

    PubMed

    Mikler, J; Tenn, C; Worek, F; Reiter, G; Thiermann, H; Garrett, M; Bohnert, S; Sawyer, T W

    2011-09-25

    The chemical weapon nerve agent known as Russian VX (VR) is a potent organophosphorus (OP) compound that is much less studied than its VX analogue with respect to toxicity, as well as to the effectiveness of several known countermeasures against it. An anaesthetized domestic swine model was utilized to assess several approaches in mitigating its toxicity, including the utility of cooling VR treated skin to increase the therapeutic window for treatment. The 6h LD₅₀ for VR topically applied on the ear was 100 μg/kg. Treatment of VR exposed animals (5 × LD₅₀) with pralidoxime (2PAM) very poorly regenerated inhibited blood cholinesterase activity, but was partially effective in preventing signs of OP poisoning and increasing survival. In contrast, treatment with the Hagedorn oxime HI-6 reactivated cholinesterase, eliminated all signs of poisoning and prevented death. Decontamination with the Reactive Skin Decontaminant Lotion (RSDL) 15 min after VR exposure was completely effective in preventing death. Cooling of the VR exposure sites for 2 or 6h prevented signs of OP poisoning and death during the cooling period. However, these animals died very quickly after the cessation of cooling, unless they were treated with oxime or decontaminated with RSDL. Blood analyses showed that cooling of agent exposure sites delayed the entry of VR into the bloodstream. Medical treatment with HI-6 and to a lesser extent 2PAM, or decontamination with RSDL are effective in protecting against the toxic effects of cutaneous exposure to VR. Immobilizing this agent (and related compounds) within the dermal reservoir by cooling the exposure sites, dramatically increases the therapeutic window in which these medical countermeasures are effective.

  12. Chromatographic preparation and kinetic analysis of interactions between tabun enantiomers and acetylcholinesterase.

    PubMed

    Tenberken, O; Thiermann, H; Worek, F; Reiter, G

    2010-06-02

    The easy accessibility to highly toxic OP (organophosphorus)-type chemical warfare agents (nerve agents) underlines the necessity for an effective medical treatment. Acute OP toxicity is primarily caused by inhibition of acetylcholinesterase (AChE, EC 3.1.1.7). Reactivators (oximes) of inhibited AChE are a mainstay of treatment. However, the commercially available compounds, obidoxime and pralidoxime, are considered rather ineffective against various nerve agents, including tabun. OP-type chemical warfare agents include an asymmetrical P-atom and consist of at least two stereoisomers. Previous studies with the nerve agents sarin and soman showed marked differences between (-)- and (+)-P isomers regarding AChE inhibition and stability in biological matrices. Hence, stereoselectivity is a key parameter for the development of optimized treatment. In the present study, the tabun enantiomers were isolated by semi-preparative liquid-chromatography (LC) with offline analysis by GC-PCI-MS and final characterization of optical purity (99.98% (-)-tabun and 99.83% (+)-tabun) and specific optical rotation. The inhibition and reactivation kinetics of the tabun enantiomers were determined with human and swine AChE and the aging kinetics with human AChE. The results show a large difference in the inhibitory potency between (-)- and (+)-tabun. The determination of reactivation and aging kinetics indicates that both reactions are at least in part determined by the residual (-)-tabun contamination (0.17%) of the (+)-tabun preparation. These data provide further insight into the kinetic interactions between tabun enantiomers and AChE and may contribute to the development of more effective treatment options.

  13. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase.

    PubMed

    Scheffel, Corinna; Thiermann, Horst; Worek, Franz

    2015-02-03

    Poisoning by organophosphorus compounds (OP) used as pesticides and nerve agents is due to irreversible inhibition of the enzyme acetylcholinesterase (AChE). Oximes have been widely recognized for their potency to reactivate the inhibited enzyme. The limited efficacy of currently available oximes against a broad spectrum of OP-compounds initiated novel research efforts to improve oxime-based treatment. Hereby, oxime-induced reactivation of OP-inhibited non-human AChE was reported to be accelerated by different AChE-ligands. To investigate this concept with AChE from human source, the inhibitory potency, binding properties and the potential enhancement of oxime-induced reactivation of OP-inhibited AChE by structurally different AChE-ligands was assessed. Several ligands competed with the oxime for the AChE binding-site impairing reactivation of OP-inhibited AChE whereas a markedly accelerated reactivation of sarin-inhibited enzyme by obidoxime was recorded in the presence of edrophonium, galanthamine and donepezil. Enhancement of oxime-induced reactivation with ligands was presumably subject to prevention of re-inhibition by the reaction product phosphonyloxime (POX). In the end, the results of the present study did not confirm that AChE-ligands directly accelerate the reactivation of OP-inhibited AChE by oximes, but indirectly by prevention of re-inhibition by the reaction product POX. This may be due to different experimental conditions and species differences between human and non-human AChE of previous experiments with non-human AChE.

  14. Development of a dynamic model for real-time determination of membrane-bound acetylcholinesterase activity upon perfusion with inhibitors and reactivators.

    PubMed

    Eckert, Saskia; Eyer, Peter; Mückter, Harald; Worek, Franz

    2006-07-28

    Quantitative predictions of the course of acetylcholinesterase (AChE) activity, following interference of inhibitors and reactivators, are usually obscured by the time-dependent changes of all reaction partners. To mimic these dynamics we developed an in vitro model. Immobilized human erythrocyte ghosts in a bioreactor were continuously perfused while AChE activity was monitored by a modified Ellman method. The perfusion system consisted of two HPLC pumps with integrated quaternary low-pressure gradient formers that were programmed by a computer using commercial HPLC software. The combined eluates passed a particle filter (Millex-GS, 0.22 microm) containing a thin layer of erythrocytes that was immersed in a temperature-controlled water bath. The effluent passed a flow cell in a UV-vis detector, the signal of which was digitized, written to disc and calculated with curve fitting programs. AChE activity decreased by 3.4% within 2.5 h. The day-to-day variation of the freshly prepared bioreactor using the same enzyme source was +/-3.3%. Residual activity of 0.2% marked the limit of quantification. Following perfusion with paraoxon, pseudo first-order rate constants of inhibition were established that did not differ from results obtained in conventional assays. The same holds true for reactivation with obidoxime. The set-up presented allows freely programmable time-dependent changes of up to eight solvents to mimic pharmacokinetic profiles without accumulation of products. Due to some hysteresis in the system, reaction half-lives should be >3 min and concentration changes in critical compounds should exceed half-lives of 5 min. Otherwise, the system offers much flexibility and operates with high precision.

  15. Transient outwardly rectifying A currents are involved in the firing rate response to altered CO2 in chemosensitive locus coeruleus neurons from neonatal rats

    PubMed Central

    Li, Ke-Yong

    2013-01-01

    The effect of hypercapnia on outwardly rectifying currents was examined in locus coeruleus (LC) neurons in slices from neonatal rats [postnatal day 3 (P3)–P15]. Two outwardly rectifying currents [4-aminopyridine (4-AP)-sensitive transient current and tetraethyl ammonium (TEA)-sensitive sustained current] were found in LC neurons. 4-AP induced a membrane depolarization of 3.6 ± 0.6 mV (n = 4), while TEA induced a smaller membrane depolarization of 1.2 ± 0.3 mV (n = 4). Hypercapnic acidosis (HA) inhibited both currents. The maximal amplitude of the TEA-sensitive current was reduced by 52.1 ± 4.5% (n = 5) in 15% CO2 [extracellular pH (pHo) 7.00, intracellular pH (pHi) 6.96]. The maximal amplitude of the 4-AP-sensitive current was reduced by 34.5 ± 3.0% (n = 6) in 15% CO2 (pHo 7.00, pHi 6.96), by 29.4 ± 6.8% (n = 6) in 10% CO2 (pHo 7.15, pHi 7.14), and increased by 29.0 ± 6.4% (n = 6) in 2.5% CO2 (pHo 7.75, pHi 7.35). 4-AP completely blocked hypercapnia-induced increased firing rate, but TEA did not affect it. When LC neurons were exposed to HA with either pHo or pHi constant, the 4-AP-sensitive current was inhibited. The data show that the 4-AP-sensitive current (likely an A current) is inhibited by decreases in either pHo or pHi. The change of the A current by various levels of CO2 is correlated with the change in firing rate induced by CO2, implicating the 4-AP-sensitive current in chemosensitive signaling in LC neurons. PMID:23948777

  16. Na(+)-H+ exchanger kinetics in adrenal glomerulosa cells and its activation by angiotensin II

    SciTech Connect

    Conlin, P.R.; Kim, S.Y.; Williams, G.H.; Canessa, M.L. )

    1990-07-01

    We have studied the kinetic properties of basal and angiotensin II (ANG II) stimulated Na(+)-H+ exchange in adrenal glomerulosa cells by measuring changes in cytosolic pH (pHi) and initial rates of 22Na uptake in the presence or absence of dimethylamiloride (DMA). The cells were studied under basal conditions, at constant pHi with varied external sodium (Na+o), and at varied pHi with constant Na+o (50 mM). In 2,7-biscarboxyethyl-5(6)-carboxyfluorescein loaded cells under basal conditions, pHi rose from 7.09 +/- 0.02 to 7.19 +/- 0.02. Similarly, DMA-sensitive Na influx was enhanced from 9.2 +/- 1.3 to 14.8 +/- 2.1 nmol Na+/mg protein x min (P less than 0.01) by ANG II. In cells acid-loaded by preincubation in Na(+)-free media (pHi 6.8), addition of varying Na+o resulted in a rapid H+ efflux that was markedly inhibited by DMA. DMA-sensitive Na+ influx into these acidified cells with varied Na+o exhibited a Michaelis-Menten constant (Km) of 23 mM and a maximum velocity (Vmax) of 43 nmol Na+/mg protein x min. By varying pHi (from pHi 7.1 to 6.2), DMA-sensitive Na+ influx likewise showed activation with cellular acidification with a pK at pHi 7.09. At pHi 6.8, ANG II decreased the Km for Na+o from 23 to 17 mM and increased the Vmax from 43 to 53 nmol Na+/mg protein x min. The pHi dependence of DMA-sensitive Na+ influx was not affected by ANG II (pK at pHi 7.03). DMA also inhibited AII-stimulated aldosterone secretion and Na+ influx similarly. These results indicate that Na(+)-H+ exchange in adrenal glomerulosa cells is functioning under basal conditions, and is modulated by ANG II with enhanced Na+o affinity and Vmax but without a shift in pHi dependence (similar to ANG II effects on vascular smooth muscle cells). These effects suggest an important role for Na(+)-H+ exchange during ANG II stimulation of aldosterone production by glomerulosa cells.

  17. Anticonvulsant efficacy of antihistamine cyproheptadine in rats exposed to the chemical warfare nerve agent soman.

    PubMed

    Winkler, Jennifer L; Skovira, Jacob W; Kan, Robert K

    2017-01-01

    Organophosphate compounds, such as soman and sarin, are highly toxic chemical warfare nerve agents that cause a build-up of acetylcholine in synapses and neuromuscular junctions. Current therapies aim to prevent seizures and protect against brain injury following exposure. The present study was designed to evaluate the effectiveness of the antihistamine cyproheptadine in improving survival and controlling seizures in rats exposed to soman. Rats were pretreated with the oxime reactivator HI-6 (125mg/kg, ip) 30min prior to soman exposure (225μg/kg, sc) and then treated with atropine methylnitrate (AMN, 2.0mg/kg, im) 1min after soman. Cyproheptadine (10, 13, 16 or 20mg/kg, ip) was given at one of three time points: 1min after soman intoxication, at the onset of soman-induced seizures or 5min after seizure onset. Control animals were exposed to soman and given an equivalent volume of sterile water instead of cyproheptadine. The incidence of seizures, mortality, neuron counts, neuropathology and apoptosis in specific regions of the brain were evaluated. In animals given HI-6 and AMN the incidence of soman-induced seizure and mortality rate within the first 24h were 100%. When cyproheptadine was given at a dose of 13 or 20mg/kg 1min after soman exposure, the incidence of seizures was reduced from 100% to 13% and 30%, respectively. In addition, cyproheptadine given at 1min after soman exposure increased the survival rate to 100% regardless of dose. When cyproheptadine was administered at seizure onset, seizures were terminated in 100% of the animals at doses above 10mg/kg. The survival rate with cyproheptadine treatment at the onset of seizure was ≥83%. Seizures terminated in ≥75% of the animals that received cyproheptadine 5min after soman-induced seizure onset. When given at 5min after seizure onset the survival rate was 100% at all tested doses of cyproheptadine. The neuropathology scores and the number of TUNEL positive cells in the brain regions examined

  18. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex

    SciTech Connect

    Soleimani, M.; Bergman, J.A.; Hosford, M.A.; McKinney, T.D. )

    1990-10-01

    Most HCO3- reabsorption in proximal tubules occurs via electroneutral Na+/H+ exchange in brush border membranes (BBMS) and electrogenic Na+:CO3=:HCO3- cotransport in basolateral membranes (BLMS). Since potassium depletion (KD) increases HCO3- reabsorption in proximal tubules, we evaluated these transport systems using BBM and BLM vesicles, respectively, from control (C) and KD rats. Feeding rats a potassium deficient diet for 3-4 wk resulted in lower plasma (K+) (2.94 mEq/liter, KD vs. 4.47 C), and higher arterial pH (7.51 KD vs. 7.39 C). KD rats gained less weight than C but had higher renal cortical weight. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0, 10% CO2, 90% N2) into BLM vesicles was 44% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was DIDS sensitive, suggesting that Na+:CO3=:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.2 mM in KD vs. 7.6 mM in C and Vmax of 278 nmol/min/mg protein in KD vs. 177 nmol/min/mg protein in C. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0) into BBM vesicles was 34% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 6.2 mM in KD vs. 7.1 mM in C and Vmax of 209 nmol/min/mg protein in KD vs. 144 nmol/min/mg protein in C. Uptakes of Na(+)-dependent (3H)glucose into BBM and (14C)succinate into BLM vesicles were not different in KD and C groups, suggesting that the Na+/H+ exchanger and Na+:CO3=:HCO3- cotransporter activities were specifically altered in KD.

  19. Organophosphate poisoning in the developed world - a single centre experience from here to the millennium.

    PubMed

    Hrabetz, Heidi; Thiermann, Horst; Felgenhauer, Norbert; Zilker, Thomas; Haller, Bernhard; Nährig, Jörg; Saugel, Bernd; Eyer, Florian

    2013-12-05

    Organophosphate (OP) poisoning is still associated with high morbidity and mortality rates, both in resource-poor settings and in well-developed countries. Despite numerous publications dealing with this particular poison, detailed clinical data on more severe overdoses with these agents are relatively sparsely reported. A retrospective study was consequently conducted on 33 patients with OP poisoning admitted to our intensive care unit (ICU) to provide additional data on clinical features. We included moderate to severe poisonings between 2000 and 2012 who required admission to ICU. Patients ingested dimethyl-OPs in 19 cases, diethyl-OPs in 8 cases and otherwise classified OPs in 6 cases. Death (5/33) occurred rather late and only one of these fatalities died during on-going cholinergic crisis. Of the survivors (28/33), 71% recovered fully while 29% showed predominantly neurological disabilities before being transferred to neurologic rehabilitation. Aspiration pneumonia predominated in 27/33 patients and one patient died in refractory acute respiratory distress syndrome (ARDS). The intermediate syndrome occurred twice and cardiopulmonary resuscitation had to be performed in 6/33 patients. Fatalities showed a higher Poison-severity-score, APACHE-II-score and SOFA-score on admission compared with survivors and they showed significantly longer QTc-time in the ECG, lower systolic blood pressure and heart rate, a lower pH and a lower base excess on admission. Patients with diethyl-OPs required intubation significantly earlier and showed lower and more sustained inhibited activity of the plasma-cholinesterase on admission compared with patients ingesting dimethyl-OPs. Treatment with atropine and obidoxime was comparable between these groups and severity of poisoning, outcome, hemodynamics on admission, duration of mechanical ventilation and length of stay in the ICU did not significantly differ between the involved group of dimethyl- and diethyl-OPs. We conclude that

  20. Choice of approaches in developing novel medical countermeasures for nerve agent poisoning.

    PubMed

    Myhrer, Trond; Aas, Pål

    2014-09-01

    During the establishment of a research branch, all relevant matters encountered will be of interest to study. After having acquired a body of basal knowledge, it becomes possible to derive ideas or hypotheses for further elaboration of information. The purpose of the present study was to show that therapies for nerve agent poisoning based on specific neuropharmacological approaches can have greater probability for being successful than treatment regimens based on fragmental research or serendipitous discoveries. By following the guidelines for research in experimental epilepsy, neuronal target areas for nerve agents have been identified through lesion studies, and critical receptors for pharmacological treatment have been specified through microinfusion studies of rats. Subsequent experimentations have shown that the results achieved from microinfusion studies are transferable to systemic administration. It is demonstrated that a treatment regimen developed through the novel approach is more efficacious than regimens derived from conventional research on countermeasures. A therapy consisting of HI-6, levetiracetam, and procyclidine that has been worked out along the new lines, exerts powerful anticonvulsant capacity and appears to have universal utility as a stand-alone therapy against soman intoxication in rats. It would be of great interest to examine whether the latter findings can be expanded to other animal species than rats and other classical nerve agents than soman.

  1. Cl-HCO3 exchange in choroid plexus: analysis by the DMO method for cell pH

    SciTech Connect

    Johanson, C.E.; Parandoosh, Z.; Smith, Q.R.

    1985-10-01

    ( UC)DMO distribution was used to measure steady-state intracellular pH (pHi) and (HCO3)i in adult rat choroid plexus (CP) incubated in synthetic cerebrospinal fluid (CSF) for 30 min. In controls at 37 degrees C, mean pHi (6.95 at PCO2 = 30 mmHg) was close to corresponding in vivo values; and (HCO3)i/(HCO3)csf, i.e., rHCO3, was 0.37. At normal (HCO3)csf = 18 mM, cell HCO3 was accumulated threefold above electrochemical equilibrium. (HCO3)i decreased proportionally with (HCO3)csf, as the latter was altered from 47 to 9 mM; in severe extracellular acidosis (( HCO3)csf = 3.7 mM), (HCO3)i was not reduced further and so rHCO3 rose to 0.66. Except in low (HCO3)csf, acetazolamide and ouabain (10(-4) M) caused small depletion of cell HCO3. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid lowered (HCO3)i by 60%, thus decreasing rHCO3 (0.16) and rCl (0.25) to values close to estimated equilibrium distribution (0.15). Augmented PCO2 associated with temperature reduction to 15 degrees C elevated (HCO3)i, thereby increasing rHCO3 (to 0.66) as well as rCl. Anion distribution ratios indicate heteroanion exchange in mammalian CP.

  2. Caramiphen edisylate as adjunct to standard therapy attenuates soman-induced seizures and cognitive deficits in rats.

    PubMed

    Schultz, M K; Wright, L K M; de Araujo Furtado, M; Stone, M F; Moffett, M C; Kelley, N R; Bourne, A R; Lumeh, W Z; Schultz, C R; Schwartz, J E; Lumley, L A

    2014-01-01

    The progression of epileptiform activity following soman (GD) exposure is characterized by a period of excessive cholinergic activity followed by excessive glutamatergic activity resulting in status epilepticus, which may lead to neuropathological damage and behavioral deficits. Caramiphen edisylate is an anticholinergic drug with antiglutamatergic properties, which conceptually may be a beneficial therapeutic approach to the treatment of nerve agent exposure. In the present study, rats were exposed to 1.2 LD50 GD or saline, treated with atropine sulfate (2mg/kg, im) and HI-6 (93.6mg/kg, im) 1min after GD exposure, and monitored for seizure activity. Rats were treated with diazepam (10mg/kg, sc) and caramiphen (0, 20 or 100mg/kg, im) 30min after seizure onset. Following GD exposure, performance was evaluated using a battery of behavioral tests to assess motor coordination and function, sensorimotor gating, and cognitive function. Caramiphen as adjunct to diazepam treatment attenuated GD-induced seizure activity, neuropathological damage, and cognitive deficits compared to diazepam alone, but did not attenuate the GD-induced sensorimotor gating impairment. These findings show that physiological, behavioral, and neuropathological effects of GD exposure can be attenuated by treatment with caramiphen as an adjunct to therapy, even if administration is delayed to 30min after seizure onset. Published by Elsevier Inc.

  3. Cell-free synthesis and characterization of human adrenocortical pro-adrenodoxin.

    PubMed

    Pascal, O; Monnier, N; Chambaz, E M

    1986-04-14

    Poly(A+)-RNAs were extracted from human hyperplasic adrenocortical tissue and translated in a wheat germ cell-free system in the presence of [35S]-methionine. Labeled immuno-reactive adrenodoxin (ADX)-like material was immunoisolated and examined following mono and bi-dimensional electrophoretic analysis. Bovine mRNA translation products were analysed under similar conditions. While it was confirmed that bovine ADX was synthesized as a precursor of Mr 21 kDa, human pro-ADX was characterized for the first time as a somewhat larger moiety (24 kDa). On the other hand, both human and bovine mature mitochondrial ADX showed a Mr of 12 kDa. Electrophoretic study disclosed that the human, as well as the bovine pro-ADX could be resolved into several components differing by their pHi (6.5 and 6.9 for h-proADX and 5.9, 6.1 and 6.2 for b-proADX, respectively). This molecular heterogeneity might be explained by discrete disparity in the pro-adrenodoxin amino acid contents.

  4. Anticonvulsant actions of anticholinergic drugs in soman poisoning. (Reannouncement with new availability information)

    SciTech Connect

    Capacio, B.R.; Shih, T.M.

    1991-12-31

    The acute effects of the organophosphorus cholinesterase inhibitor soman include hypersecretions, convulsions, and death. The purpose of this study was to evaluate the anticholinergic compounds, aprophen, atropine sulfate, azaprophen, benactyzine, benztropine, biperiden, scopolamine HBr, and trihexyphenidyl for their efficacy in preventing soman-induced hypersecretions and convulsions. Male rats were injected with the oxime HI-6 (125 mg/kg, i.p.), to increase survival time, along with various intramuscular doses of the anticholinergics 30 min prior to a dose of soman that produced 100% convulsions. Signs of intoxication as well as the time-to-onset of convulsions were observed. The calculated anticonvulsant median effective dose values were 0.18, 0.33, 0.36, 0.55, 2.17, 2.30, 2.45, and 31.09 micro mol per kilogram for scopolamine HBr, biperiden, trihexyphenidy, benactyzine, benztropine, azaprophen, aprophen, and atropine sulfate, respectively. The same rank order by potency for inhibition of hypersecretions among these compounds was observed.

  5. Changes in proton currents in murine microglia induced by cytoskeletal disruptive agents.

    PubMed

    Klee, R; Heinemann, U; Eder, C

    1998-05-15

    Voltage-gated proton currents (IPR) were investigated in cultured murine microglia using the whole-cell configuration of the patch clamp technique. At a gradient of 1.5 between intracellular (pHi = 6.0) and extracellular pH (pHo = 7.5) values, outward IPR were detected at depolarizing potentials, while the activation threshold of IPR was -40 mV. Time-dependent activation of IPR was fitted by a single exponential with a time constant of 661 ms at +40 mV. An increase in the activation time constant of IPR was seen after exposure of microglia to the cytoskeletal disruptive agents cytochalasin D or colchicine. Moreover, the current density of IPR was significantly reduced by 49% in cells treated with cytochalasin D and by 27% in cells treated with colchicine for 24 h. In contrast, voltage-dependence of steady-state activation of IPR was unchanged after disruption of the cytoskeleton. Exposure of microglia to the cytoskeletal stabilizers phalloidin and taxol did not affect IPR of microglia.

  6. A comparison of the efficacy of newly developed reversible inhibitors of acetylcholinesterase with commonly used pyridostigmine as pharmacological pre-treatment of soman-poisoned mice.

    PubMed

    Kassa, Jiri; Musilek, Kamil; Koomlova, Marketa; Bajgar, Jiri

    2012-04-01

    The ability of three newly developed reversible inhibitors of acetylcholinesterase (AChE) (K298, K344 and K474) and currently available carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was compared. Neither pyridostigmine nor new reversible inhibitors of AChE were able to increase the LD(50) value of soman. Thus, the pharmacological pre-treatment with pyridostigmine or newly synthesized inhibitors of AChE was not able to protect mice against soman-induced lethal acute toxicity. The pharmacological pre-treatment with pyridostigmine alone or with K474 was able to slightly increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice, but the increase in the efficacy of antidotal treatment was not significant. The other newly developed reversible inhibitors of AChF (K298, K344) were completely ineffective. These findings demonstrate that pharmacological pre-treatment of soman-poisoned mice with tested reversible inhibitors of AChF is not promising. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  7. The Evaluation of Benefit of Newly Prepared Reversible Inhibitors of Acetylcholinesterase and Commonly Used Pyridostigmine as Pharmacological Pretreatment of Soman-Poisoned Mice.

    PubMed

    Kassa, Jiří; Korábečný, Jan; Nepovimová, Eugenie

    The ability of four newly prepared reversible inhibitors of acetylcholinesterase (6-chlorotacrine, 7-phenoxytacrine, compounds 1 and 2) and currently used carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was evaluated. The evaluation of the effect of pharmacological pretreatment is based on the identification of changes of soman-induced toxicity that was evaluated by the assessment of its LD50 value and its 95% confidence limit using probitlogarithmical analysis of death occurring within 24 h after administration of soman. 6-chlorotacrine was only able to markedly protect mice against acute toxicity of soman. In addition, the pharmacological pretreatment with 6-chlorotacrine or compound 2 was able to increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice. The other newly prepared reversible inhibitors of acetylcholinesterase (7-phenoxytacrine, compound 1) as well as commonly used pyridostigmine did not influence the efficacy of antidotal treatment. These findings demonstrate that pharmacological pretreatment of somanpoisoned mice can be promising and useful in the case of administration of 6-chlorotacrine and partly compound 2.

  8. The therapeutic use of localized cooling in the treatment of VX poisoning.

    PubMed

    Sawyer, T W; Mikler, J; Worek, F; Reiter, G; Thiermann, H; Tenn, C; Weatherby, K; Bohnert, S

    2011-07-04

    The organophosphate (OP) nerve agent VX is a weaponized chemical warfare agent that has also been used by terrorists against civilians. This contact poison produces characteristic signs of OP poisoning, including miosis, salivation, mastication, dysrhythmias and respiratory distress prior to death. Although successful treatment of OP poisoning can be obtained through decontamination and/or oxime reactivation of agent-inhibited cholinesterase, medical countermeasures that increase the therapeutic window for these measures would be of benefit. An anaesthetized swine model was utilized to examine the effects of lethal VX exposure to the skin, followed by cooling the exposure site prior to decontamination or treatment. The cooling was simply accomplished by using crushed ice in grip-seal plastic bags applied to the exposure sites. Cooling of skin exposed to lethal doses of VX significantly increased the window of opportunity for successful decontamination using the Reactive Skin Decontaminant Lotion(®) (RSDL(®)) or treatment with the oxime antidotes HI-6 and 2PAM. Analyses of blood VX levels showed that cooling acted to slow or prevent the entry of VX into the bloodstream from the skin. If the exposure site is known, the simple and non-invasive application of cooling provides a safe means with which to dramatically increase the therapeutic window in which decontamination and/or antidote treatment against VX are life-saving.

  9. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  10. [Chemical weapons: antidotes. View about the real means, perspectives].

    PubMed

    Ricordel, I; Meunier, J

    2000-01-01

    Chemical methods remain a credible threat in 1999. The doctrine for their use not only includes the battlefield but also domestic terrorism as was disclosed during the Tokyo metro attempt in 1995. International Treaties have not yet proven their efficacy. The arsenal of chemical weapons has changed little since the second World War but is now dispersed into many high-risk zones throughout the world. There has also been little change in antidotes: therapeutic prevention with pyridostigmine against organo-phosphorus compounds, protective treatment for seizure-induced brain lesions using anticonvulsants in association with oxime for acetylcholinesterase reactivation, and atropine are combined in a three-compartment syringe. Preventive measures against vesicants and other suffocating or toxic intracellular substances (CN, AsH(3), fluorocarbons.) can only be achieved with protective skin covering or protective breathing devices. There is no specific treatment and we often have to use symptomatic medications. Future perspectives include: phosphotriesterases as organo-phosphorus scavengers, huperzine as pretreatment and gacyclidine (GCK 11) which would effectively complete emergency multiple drug therapy against nerve agents. A new two-compartment syringe is now prepared with atropine, avisafone and HI6 or pralidoxine. A gel made of cyclodextrines for external and eventually internal use is under study.

  11. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    SciTech Connect

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-05-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of (/sup 35/S)t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 ..mu..M. The binding sites of (/sup 35/S)TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of (/sup 35/S)TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of (/sup 35/S)TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel.

  12. Impaired auditory and contextual fear conditioning in soman-exposed rats.

    PubMed

    Moffett, Mark C; Schultz, Mark K; Schwartz, Julia E; Stone, Michael F; Lumley, Lucille A

    2011-03-01

    Exposure to soman (GD) can result in prolonged seizures and subsequent neuropathology in a variety of brain regions including the amygdala and hippocampus. Both regions are believed to play important roles in the development and expression of fear conditioning. The purpose of this experiment was to test these conditioning tasks as a possible behavioral correlate of the observed neuropathology. Male rats were exposed to GD (1.0 or 1.2×LD50) or saline followed with injections of atropine sulfate, the oxime HI-6 and diazepam. Fear conditioning was conducted on post-exposure day (PED) 8 followed by measuring freezing to contextual and auditory conditioned stimuli on PED 9 and 10 respectively. Contextual and auditory fear conditioning was severely impaired in both the 1.0×LD50 and 1.2×LD50 GD groups. Both GD groups spent less time freezing than controls when returned to the context in which conditioning occurred. The 1.0×LD50 and 1.2×LD50 groups had very low levels of freezing following presentation of the auditory conditioned stimulus. Neuronal fiber degeneration was present in the piriform cortex, thalamus, and amygdala in GD-exposed animals regardless of dose. The present study suggests that contextual and auditory fear conditioning is impaired in GD-exposed rats possibly due to neuropathology observed in the hippocampus, amygdala and thalamus.

  13. Distribution, sources and health risk assessment of mercury in kindergarten dust

    NASA Astrophysics Data System (ADS)

    Sun, Guangyi; Li, Zhonggen; Bi, Xiangyang; Chen, Yupeng; Lu, Shuangfang; Yuan, Xin

    2013-07-01

    Mercury (Hg) contamination in urban area is a hot issue in environmental research. In this study, the distribution, sources and health risk of Hg in dust from 69 kindergartens in Wuhan, China, were investigated. In comparison with most other cities, the concentrations of total mercury (THg) and methylmercury (MeHg) were significantly elevated, ranging from 0.15 to 10.59 mg kg-1 and from 0.64 to 3.88 μg kg-1, respectively. Among the five different urban areas, the educational area had the highest concentrations of THg and MeHg. The GIS mapping was used to identify the hot-spot areas and assess the potential pollution sources of Hg. The emissions of coal-power plants and coking plants were the main sources of THg in the dust, whereas the contributions of municipal solid waste (MSW) landfills and iron and steel smelting related industries were not significant. However, the emission of MSW landfills was considered to be an important source of MeHg in the studied area. The result of health risk assessment indicated that there was a high adverse health effect of the kindergarten dust in terms of Hg contamination on the children living in the educational area (Hazard index (HI) = 6.89).

  14. Human plasma-derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning.

    PubMed

    Mumford, Helen; Docx, Cerys J; Price, Matthew E; Green, A Christopher; Tattersall, John E H; Armstrong, Stuart J

    2013-03-25

    Potent organophosphorous (OP) agents, such as VX, are hazardous by absorption through the skin and are resistant to conventional pharmacological antidotal treatments. The residence time of a stoichiometric bioscavenger, human butyrylcholinesterase (huBuChE), in the plasma more closely matches that of VX than do the residence times of conventional therapy drugs (oxime, anti-muscarinic, anticonvulsant). Intramuscular (i.m.) huBuChE afforded almost complete protection when administered prior to the onset of observable cholinergic signs of VX poisoning, but once signs of poisoning became evident the efficacy of i.m. huBuChE decreased. A combination of nerve agent therapy drugs (oxime, anti-muscarinic, anticonvulsant) with huBuChE (i.m.) protected 100% (8/8) of guinea-pigs from a lethal dose of VX (0.74 mg/kg) to 48 h, even when administered on signs of poisoning. Survival was presumed to be due to immediate alleviation of the cholinergic crisis by the conventional pharmacological treatment drugs, in conjunction with bioscavenger that prevented further absorbed agent reaching the AChE targets. Evidence to support this proposed mechanism of action was obtained from PKPD experiments in which multiple blood samples and microdialysate samples were collected from individual conscious ambulatory animals. Plasma concentrations of intramuscularly-administered atropine, diazepam and HI-6 reached a peak within 15 min and were eliminated rapidly within 4h. Plasma concentrations of huBuChE administered by the i.m. route took approximately 24h to reach a peak, but were well-maintained over the subsequent 7days. Thus, the pharmacological therapy rapidly treated the initial signs of poisoning, whilst the bioscavenger provided prolonged protection by neutralising further nerve agent entering the bloodstream and preventing it from reaching the target organs.

  15. Pretreatment with pyridinium oximes improves antidotal therapy against tabun poisoning.

    PubMed

    Lucić Vrdoljak, Ana; Calić, Maja; Radić, Bozica; Berend, Suzana; Jun, Daniel; Kuca, Kamil; Kovarik, Zrinka

    2006-11-10

    Oximes K033 [1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide] and K048 [1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide] were tested as pretreatment drugs in tabun-poisoned mice followed by treatment with atropine plus K033, K048, K027 [1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide], TMB-4 [1,3-bis(4-hydroxyiminomethylpyridinium) propane dibromide] and HI-6 [(1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride)]. Oxime doses of 25% or 5% of its LD(50) were used for pretreatment 15 min before tabun-poisoning and for treatment 1 min after tabun administration to mice. The best therapeutic effect was obtained when oxime K048 (25% of its LD(50)) was used in both pretreatment and treatment with atropine. This regiment insured survival of all tested animals after the application of 10 LD(50) of tabun. In addition, since butyrylcholinesterase (BChE; EC 3.1.1.8) is considered an endogenous bioscavenger of anticholinesterase compounds and its interactions with oximes could be masked by AChE interactions, we evaluated kinetic parameters for interactions of tested oximes with native and tabun-inhibited human plasma BChE and compared them with results obtained previously for human erythrocyte acetylcholinesterase (AChE; EC 3.1.1.7). Progressive inhibition of BChE by tabun was slightly faster than that of AChE. The reactivation of tabun-inhibited BChE by oximes was very slow, and BChE binding affinity for oximes was lower than AChE's. Therefore, BChE could scavenge tabun prior to AChE inhibition, but fast oxime-assisted reactivation of tabun-inhibited AChE or protection of AChE by oxime against inhibition with tabun would not be obstructed by interaction between BChE and oximes.

  16. Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects.

    PubMed

    Poton, Roberto; Polito, Marcos Doederlein

    2016-05-01

    To compare the hemodynamic response during resistance exercise at high intensity (HI), low intensity (LI) and low intensity with blood flow restriction (LI-BFR) in healthy subjects. Twelve men performed three sets of unilateral knee extension exercises at LI-BFR and LI (15 repetitions; 20% of 1RM) and HI (8 repetitions; 80% of 1RM). The blood flow restriction was accomplished using a sphygmomanometer positioned on the thigh and inflated to the point of blood flow interruption (167·9 ± 16·6 mmHg). The hemodynamic variables were obtained by continuous beat-to-beat photoplethysmography. Rating of perceived exertion (RPE) and blood lactate were also measured. The HI session showed higher values (P<0·05) in all sets than the LI and LI-BFR for diastolic blood pressure, heart rate and rate-pressure product. The LI-BFR showed higher values than the LI only in the 3rd set for systolic blood pressure, heart rate and rate-pressure product. Blood lactate was higher in the HI (4·2 ± 0·2 mmol) and LI-BFR (4·1 ± 0·3 mmol) than the LI (3·5 ± 0·3 mmol). Rating of perceived exertion was higher in the LI-BFR (7·9 ± 0·3) than the HI (6·4 ± 0·4) and LI (3·2 ± 0·4). The LI-BFR session exhibited similar blood lactate to the HI, a higher rating of perceived response than the HI and LI, and equal or lower hemodynamic responses than the HI. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. Prolonged high iodine intake is associated with inhibition of type 2 deiodinase activity in pituitary and elevation of serum thyrotropin levels.

    PubMed

    Li, Ningna; Jiang, Yaqiu; Shan, Zhongyan; Teng, Weiping

    2012-03-01

    Our previous epidemiological study indicated that excessive intake of iodine could potentially lead to hypothyroidism. In the present study, we aimed to investigate the time and dose effect of iodine intake on serum thyrotropin (thyroid-stimulating hormone, TSH) levels and to explore the non-autoimmune regulation of serum TSH by pituitary type 2 deiodinase (D2). A total of 360 Wistar rats were randomly divided into five groups depending on administered iodine dosages (folds of physiological dose): normal iodine (NI), 3-fold iodine (3HI), 6-fold iodine (6HI), 10-fold iodine (10HI) and 50-fold iodine (50HI). At 4, 8, 12 and 24 weeks after administration of sodium iodide, blood was collected for serum TSH measurement by chemiluminescent immunoassay. Pituitaries were also excised for measurement of TSHβ subunit expression, D2 expression and activity, monocarboxylate transporter 8 (MCT8) and thyroid hormone receptor β2 isoform (TRβ2) levels. The results showed that iodine intake of 10HI and 50HI significantly increased pituitary and serum TSH levels from 8 to 24 weeks (P < 0·05 v. NI). Excess iodine had no effect on D2 mRNA or protein expression; however, 10HI and 50HI administration significantly inhibited pituitary D2 activities from 8 to 24 weeks (P < 0·05 v. NI). Iodine had no effect on MCT8 or TRβ2 protein levels. We conclude that prolonged high iodine intake inhibits pituitary D2 activity and induces elevation of serum TSH levels. These findings may provide a potential mechanism of iodine excess-induced overt and subclinical hypothyroidism.

  18. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    PubMed

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  19. Tetraethylammonium transport in renal brush border membrane vesicles of the rabbit.

    PubMed

    Rafizadeh, C; Roch-Ramel, F; Schäli, C

    1987-01-01

    The mechanisms involved in the transport of tetraethylammonium (TEA) in the rabbit renal brush border were investigated by using membrane vesicles. Transport of [14C]TEA (0.2 mM) was measured by a rapid filtration method. We have reported previously that an imposed pH gradient (pHi = 6, pHo = 7.4) stimulates the uptake of TEA markedly, yielding a transient overshoot of 200% above the equilibrium value. Here we demonstrate that an overshoot of similar magnitude can also be obtained in the presence of indirectly induced proton gradients, via the naturally occurring Na+/H+ exchanger or via the artificial K+/H+ exchanger nigericin. The TEA exchange mechanism is shown to be electroneutral, temperature-dependent and saturable [Km, 0.328 (CL for P less than .05: 0.250-0.425) mM; Vmax, 2.13 (CL for P less than .05: 1.98-2.32) nmole/mg of protein X 15 sec]. Other organic cations interact with this exchange mechanism: mepiperphenidol and morphine both cis-inhibited and trans-stimulated TEA uptake. Quinine, which was the most potent inhibitor of TEA uptake (57% inhibition at 10(-5) M), did not trans-stimulate. The mechanism appears to be specific for organic cations inasmuch as the organic anion p-aminohippurate did not cis-inhibit or trans-stimulate TEA uptake. These results demonstrate the presence of a H+/TEA exchange mechanism in the rabbit renal brush border membrane showing many similarities with that shown to be present in the rat.

  20. Intravesicular pH changes in submitochondrial particles induced by monovalent cations: relationship to the Na+/H+ and K+/H+ antiporters.

    PubMed

    Brierley, G P; Davis, M H; Jung, D W

    1988-08-01

    The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.

  1. Effects of acidosis and NO on nicorandil-activated KATP channels in guinea-pig ventricular myocytes

    PubMed Central

    Moncada, Gustavo A; Kishi, Yukio; Numano, Fujio; Hiraoka, Masayasu; Sawanobori, Tohru

    2000-01-01

    Nicorandil is a hybrid compound of K+ channel opener and nitrate. We investigated a possible interaction of acidosis and nitric oxide (NO)-donors on the nicorandil-activated ATP-sensitive K+ channel (KATP) in guinea-pig ventricular myocytes using the patch-clamp technique.In whole-cell recordings, external application of 300 μM nicorandil activated KATP in the presence of 2 mM intracellular ATP concentration ([ATP]i) at external pH (pHo) 7.4, but the activated current was decreased by reducing pHo to 6.5–6.0.Single-channel recordings of inside-out patches revealed decreased open-state probability (Po) of KATP activated by nicorandil with reducing internal pH (pHi) from 7.2 to 6.0, whilst the channel activity increased at low pHi in the absence of nicorandil.Application of NO donors, 1 mM-sodium nitroprusside (SNP) or -NOR-3 to the membrane cytoplasmic side at pHi 7.2 increased the channel activity but decreased it at pHi 6.5–6.0. Neither removal of the drugs nor application of NO-scavengers reversed depression of channel activity induced by NO-donors.We conclude that an increase in pHo and pHi depresses rather than stimulates the nicorandil-activated KATP. Since NO-donors at low pHi exhibited a similar trend, involvement of H+ and NO interaction can be considered as a mechanism of decreased KATP activated by nicorandil. PMID:11082116

  2. Avian influenza H9N2 seroprevalence among pig population and pig farm staff in Shandong, China.

    PubMed

    Li, Song; Zhou, Yufa; Zhao, Yuxin; Li, Wenbo; Song, Wengang; Miao, Zengmin

    2015-03-01

    Shandong province of China has a large number of pig farms with the semi-enclosed houses, allowing crowds of wild birds to seek food in the pig houses. As the carriers of avian influenza virus (AIV), these wild birds can easily pass the viruses to the pigs and even the occupational swine-exposed workers. However, thus far, serological investigation concerning H9N2 AIV in pig population and pig farm staff in Shandong is sparse. To better understand the prevalence of H9N2 AIV in pig population and pig farm staff in Shandong, the serum samples of pigs and occupational pig-exposed workers were collected and tested for the antibodies for H9N2 AIV by both hemagglutination inhibition (HI) and micro-neutralization (MN) assays. When using the antibody titers ≥40 as cut-off value, 106 (HI: 106/2176, 4.87%) and 84 (MN: 84/2176, 3.86%) serum samples of pigs were tested positive, respectively; 6 (HI: 6/287, 2.09%) and 4 (MN: 4/287, 1.39%) serum samples of the pig farm staff were positive, respectively; however, serum samples from the control humans were tested negative in both HI and MN assays. These findings revealed that there were H9N2 AIV infections in pig population and pig farm staff in Shandong, China. Therefore, it is of utmost importance to conduct the long-term surveillance of AIV in pig population and the pig farm staff.

  3. Amiloride transport in rabbit renal brush-border membrane vesicles

    SciTech Connect

    Wright, S.H.; Wunz, T.M.

    1989-03-01

    Rabbit renal brush-border membrane vesicles (BBMV) were used to study amiloride transport across the luminal membrane of proximal tubular cells. An outwardly directed H+ gradient (pHi 6.0; pHo 7.5) stimulated 8 microM (/sup 14/C)-amiloride uptake into BBMV and supported a transient active accumulation of substrate consistent with the presence of an amiloride-H+ exchange process. Uptake was inhibited, in the presence or absence of a pH gradient, by 1 mM unlabeled amiloride or 20 mM tetraethylammonium (TEA). Amiloride transport was not directly affected by the presence of 100 mM Na+ in the extravesicular medium, suggesting that Na-H exchange did not mediate amiloride flux. Amiloride transport was a saturable process with a maximal flux (under pH gradient conditions) of 3 nmol.mg-1.min-1 and an apparent Kt of 8 microM. TEA acted as a competitive inhibitor of this process with an apparent Ki of approximately 80 microM, similar to the Kt of TEA transport via the TEA-H+ exchanger. Likewise, amiloride acted as a competitive inhibitor of TEA uptake with an apparent Ki of approximately 11 microM. Preloading BBMV with 1-2 mM TEA stimulated the rate of amiloride uptake and supported a transient active accumulation of amiloride. We conclude that amiloride and TEA are transported by a common pathway in BBMV, which involves a carrier-mediated exchange with H+ and which may play a role in the tubular secretion of these compounds.

  4. Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling

    PubMed Central

    Saegusa, Noriko; Garg, Vivek

    2013-01-01

    The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132

  5. Efficacy of the GluK1/AMPA Receptor Antagonist LY293558 against Seizures and Neuropathology in a Soman-Exposure Model without Pretreatment and its Pharmacokinetics after Intramuscular Administration

    PubMed Central

    Apland, James P.; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Green, Carol E.; Swezey, Robert; Yang, Chun; Qashu, Felicia

    2013-01-01

    Control of brain seizures after exposure to nerve agents is imperative for the prevention of brain damage and death. Animal models of nerve agent exposure make use of pretreatments, or medication administered within 1 minute after exposure, in order to prevent rapid death from peripheral toxic effects and respiratory failure, which then allows the testing of anticonvulsant compounds. However, in a real-case scenario of an unexpected attack with nerve agents, pretreatment would not be possible, and medical assistance may not be available immediately. To determine if control of seizures and survival are still possible without pretreatment or immediate pharmacologic intervention, we studied the anticonvulsant efficacy of the GluK1 (GluR5)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid (LY293558) in rats that did not receive any treatment until 20 minutes after exposure to the nerve agent soman. We injected LY293558 intramuscularly, as this would be the most likely route of administration to humans. LY293558 (15 mg/kg), injected along with atropine and the oxime HI-6 at 20 minutes after soman exposure, stopped seizures and increased survival rate from 64% to 100%. LY293558 also prevented neuronal loss in the amygdala and hippocampus, and reduced neurodegeneration in a number of brain regions studied 7 days after soman exposure. Analysis of the LY293558 pharmacokinetics after intramuscular administration showed that this compound readily crosses the blood–brain barrier. There was good correspondence between the time course of seizure suppression by LY293558 and the brain levels of the compound. PMID:23042954

  6. LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety.

    PubMed

    Prager, Eric M; Figueiredo, Taiza H; Long, Robert P; Aroniadou-Anderjaska, Vassiliki; Apland, James P; Braga, Maria F M

    2015-02-01

    Exposure to nerve agents can cause brain damage due to prolonged seizure activity, producing long-term behavioral deficits. We have previously shown that LY293558, a GluK1/AMPA receptor antagonist, is a very effective anticonvulsant and neuroprotectant against nerve agent exposure. In the present study, we examined whether the protection against nerve agent-induced seizures and neuropathology conferred by LY293558 translates into protection against pathophysiological alterations in the basolateral amygdala (BLA) and the development of anxiety, which is the most prevalent behavioral deficit resulting from exposure. LY293558 (15 mg/kg) was administered to rats, along with atropine and HI-6, at 20 min after exposure to soman (1.2 × LD50). At 24 h, 7 days, and 30 days after exposure, soman-exposed rats who did not receive LY293558 had reduced but prolonged evoked field potentials in the BLA, as well as increased paired-pulse ratio, suggesting neuronal damage and impaired synaptic inhibition; rats who received LY293558 did not differ from controls in these parameters. Long-term potentiation of synaptic transmission was impaired at 7 days after exposure in the soman-exposed rats who did not receive anticonvulsant treatment, but not in the LY293558-treated rats. Anxiety-like behavior assessed by the open field and acoustic startle response tests was increased in the soman-exposed rats at 30 and 90 days after exposure, while rats treated with LY293558 did not differ from controls. Along with our previous findings, the present data demonstrate the remarkable efficacy of LY293558 in counteracting nerve agent-induced seizures, neuropathology, pathophysiological alterations in the BLA, and anxiety-related behavioral deficits. Published by Elsevier Ltd.

  7. Oxime-induced reactivation of carboxylesterase inhibited by organophosphorus compounds

    SciTech Connect

    Maxwell, D.M.; Lieske, C.N.; Brecht, K.M.

    1994-06-01

    A structure-activity analysis of the ability of oximes to reactivate rat plasma carboxylesterase (CaE) that was inhibited by organophosphorus (OP) compounds revealed that uncharged oximes, such as 2,3-butanedione monoxime (diacetylmonoxime) or monoisonitrosoacetone, were better reactivators than cationic oximes. Cationic oximes that are excellent reactivators of OP-inhibited acetylcholinesterase, such as pyridine-2-aldoxime or the bis-pyridine aldoximes, HI-6 and TMB. 4, produced poor reactivation of OP-inhibited CaE. The best uncharged reactivator was 2,3. butanedione monoxime, which produced complete reactivation at 0.3 mM in 2 h of CaE that was inhibited by phosphinates, alkoxy-containing phosphates, and alkoxy-containing phosphonates. Complete reactivation of CaE could be achieved even after inhibition by phosphonates with highly branched alkoxy groups, such as sarin and soman, that undergo rapid aging with acetylcholinesterase. CaE that was inhibited by phosphonates or phosphates that contained aryloxy groups were reactivated to a lesser extent. The cause of this decreased reactivation appears to be an oxime-induced aging reaction that competes with the reactivation reaction. This oxime-induced aging reaction is accelerated by electron-withdrawing substituents on the aryloxy groups of phosphonates and by the presence of multiple aryloxy groups on phosphates. Thus, reactivation and aging of OP-inhibited CaE differ from the same processes for OP- inhibited acetylcholinesterase in both their oxime specificity and inhibitor specificity and, presumably, in their underlying mechanisms.

  8. Surgical correction of 639 pectus excavatum cases via the Nuss procedure

    PubMed Central

    Zhang, Dong-Kun; Tang, Ji-Ming; Ben, Xiao-Song; Xie, Liang; Zhou, Hai-Yu; Ye, Xiong; Zhou, Zi-Hao; Shi, Rui-Qing; Xiao, Pu

    2015-01-01

    Background To review the clinical experience and short- to middle-term effects of the Nuss procedure for correction of pectus excavatum (PE). Methods From September 2006 to August 2014, 639 patients with PE were treated using the Nuss procedure. Of these, 546 were male and 93 were female. The mean age was 15.3±5.8 years (2.5-49 years). Preoperative chest CT scans Haller index (HI) was 4.3±1.7 (2.9-17.4), with 75 cases of mild PE (HI <3.2), 114 cases of moderate PE (HI 3.2-3.5), 393 cases of severe PE (HI 3.6-6.0), and 57 cases of extremely severe PE (HI >6.0). Results A total of 638 patients successfully completed the surgery, an 11-year-old male patient who died after the surgery had undergone ventricular septal defect closure surgery through a sternal incision 7 years ago. The mean operative time was 64.3±41.7 min (40-310 min). Excluding the patient who died, the average blood loss was 24.5±17.8 mL (10-160 mL). The average length of postoperative hospital stay was 5.2±2.9 days (4-36 days). A total of 484 cases (75.7%) required 1 steel bar insertion, 153 cases (24.0%) required 2 steel bars, and 2 cases (0.3%) required 3 bars. Postoperative evaluation of the surgery outcomes revealed the following: excellent in 504 cases, good in 105, fair in 28 and poor in 2, good quality rate was 95.3%. Conclusions Correction of PE via the Nuss procedure is minimally invasive and simple to perform with good short and mid-term effects, while long-term efficacy remains to be determined. PMID:26543607

  9. Antibodies against the cardiac sodium/bicarbonate co-transporter (NBCe1) as pharmacological tools

    PubMed Central

    De Giusti, Verónica C; Orlowski, Alejandro; Villa-Abrille, María C; de Cingolani, Gladys E Chiappe; Casey, Joseph R; Alvarez, Bernardo V; Aiello, Ernesto A

    2011-01-01

    BACKGROUND AND PURPOSE Na+/HCO3- co-transport (NBC) regulates intracellular pH (pHi) in the heart. We have studied the electrogenic NBC isoform NBCe1 by examining the effect of functional antibodies to this protein. EXPERIMENTAL APPROACH We generated two antibodies against putative extracellular loop domains 3 (a-L3) and 4 (a-L4) of NBCe1 which recognized NBCe1 on immunoblots and immunostaining experiments. pHi was monitored using epi-fluorescence measurements in cat ventricular myocytes. Transport activity of total NBC and of NBCe1 in isolation were evaluated after an ammonium ion-induced acidosis (expressed as H+ flux, JH, in mmol·L−1 min−1 at pHi 6.8) and during membrane depolarization with high extracellular potassium (potassium pulse, expressed as ΔpHi) respectively. KEY RESULTS The potassium pulse produced a pHi increase of 0.18 ± 0.006 (n = 5), which was reduced by the a-L3 antibody (0.016 ± 0.019). The a-L-3 also decreased JH by 50%. Surprisingly, during the potassium pulse, a-L4 induced a higher pHi increase than control,(0.25 ± 0.018) whereas the recovery of pHi from acidosis was faster (JH was almost double the control value). In perforated-patch experiments, a-L3 prolonged and a-L4 shortened action potential duration, consistent with blockade and stimulation of NBCe1-carried anionic current respectively. CONCLUSIONS AND IMPLICATIONS Both antibodies recognized NBCe1, but they had opposing effects on the function of this transporter, as the a-L3 was inhibitory and the a-L4 was excitatory. These antibodies could be valuable in studies on the pathophysiology of NBCe1 in cardiac tissue, opening a path for their potential clinical use. PMID:21595652

  10. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte

    PubMed Central

    Leem, Chae Hun; Lagadic-Gossmann, Dominique; Vaughan-Jones, Richard D

    1999-01-01

    Intracellular pH was recorded fluorimetrically by using carboxy-SNARF-1, AM-loaded into superfused ventricular myocytes isolated from guinea-pig heart. Intracellular acid and base loads were induced experimentally and the changes of pHi used to estimate intracellular buffering power (β). The rate of pHi recovery from acid or base loads was used, in conjunction with the measurements of β, to estimate sarcolemmal transporter fluxes of acid equivalents. A combination of ion substitution and pharmacological inhibitors was used to dissect acid effluxes carried on Na+-H+ exchange (NHE) and Na+-HCO3− cotransport (NBC), and acid influxes carried on Cl−-HCO3− exchange (AE) and Cl−-OH− exchange (CHE). The intracellular intrinsic buffering power (βi), estimated under CO2/HCO3−-free conditions, varied inversely with pHi in a manner consistent with two principal intracellular buffers of differing concentration and pK. In CO2/HCO3−-buffered conditions, intracellular buffering was roughly doubled. The size of the CO2-dependent component (βCO2) was consistent with buffering in a cell fully open to CO2. Because the full value of βCO2 develops slowly (2·5 min), it had to be measured under equilibrium conditions. The value of βCO2 increased monotonically with pHi. In 5 % CO2/HCO3−-buffered conditions (pHo 7·40), acid extrusion on NHE and NBC increased as pHi was reduced, with the greater increase occurring through NHE at pHi < 6·90. Acid influx on AE and CHE increased as pHi was raised, with the greater increase occurring through AE at pHi > 7·15. At resting pHi (7·04-7·07), all four carriers were activated equally, albeit at a low rate (about 0·15 mM min−1). The pHi dependence of flux through the transporters, in combination with the pHi and time dependence of intracellular buffering (βi+βCO2), was used to predict mathematically the recovery of pHi following an intracellular acid or base load. Under several conditions the mathematical predictions

  11. Structure-activity relationship of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel complex.

    PubMed

    Albuquerque, E X; Aracava, Y; Cintra, W M; Brossi, A; Schönenberger, B; Deshpande, S S

    1988-01-01

    , the better is its protection against OP toxicity. A reversible open channel blockade combined with some agonist property helps to decrease the effect of ACh at its agonist site and to reduce the ion permeability of open channels. It should be pointed out that, during the later phase of OP poisoning, AChR desensitization should be most prevalent. Thus, a drug that can remove the AChR from this rather irreversible state to a more reversible blocked state should be a better protector. Indeed, oximes such as 2-PAM and a more potent analog, HI-6, produce multiple alterations in AChR function that comprise increased channel activation and open-channel blockade.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Troglitazone's rapid and sustained activation of ERK1/2 induces cellular acidosis in LLC-PK1-F+ cells: physiological responses.

    PubMed

    Oliver, Robert; Friday, Ellen; Turturro, Francesco; Lacy, Ashley; Welbourne, Tomas

    2005-06-01

    We studied the signal pathway through which troglitazone (TRO) acts in inducing cellular acidosis in LLC-PK1-F+ cells in relation to ammoniagenesis and DNA synthesis. Cells were grown to confluent monolayers in 30-mm chambers and monitored for intracellular pH (pHi) by the BCECF assay and activated ERK by phospo-ERK1/2 antibodies. TRO induces a severe cellular acidosis (pHi 6.68 +/- 0.10 vs. 7.28 +/- 0.07 time control at 4 min, P < 0.01), whereas phospho-ERK1/2 to total ERK1/2 ratio increases 3.4-fold (P < 0.01). To determine whether ERK1/2 was activated by cellular acidosis or TRO was acting via MEK1/2 to activate ERK1/2, cells were pretreated with specific inhibitors of MEK1/2 activity, PD-098059 and U-0126, followed by the addition of TRO or vehicle. With MEK1/2 activity inhibited, TRO treatment failed to activate ERK1/2. Preventing ERK1/2 activation abrogated the TRO-induced cellular acidosis and maintained the pHi within the low normal range (7.06 +/- 0.11). To determine whether blocking ERK activation prevents TRO's inhibitory effect on NHE activity, cells were acid-loaded and the recovery response was monitored as DeltapHi/t over a 4-min recovery period. TRO inhibited NHE activity by 85% (P < 0.01), whereas blocking ERK activation restored the response. We measured activated ERK levels and pHi after 3- and 18-h exposure to TRO or extracellular acidosis (pHe = 6.95) to determine whether ERK activation was sustained. Whereas both TRO and extracellular acidosis increased activated ERK and decreased pHi after 3 h, only TRO sustained this response at 18 h. Furthermore, both enhanced ammoniagenesis and decreased DNA synthesis reflected the effect of TRO to induce and sustain a cellular acidosis.

  13. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease

    PubMed Central

    Olteanu, Dragos; Liu, Xiaofen; Liu, Wen; Roper, Venus C.; Sharma, Neeraj; Yoder, Bradley K.; Satlin, Lisa M.; Schwiebert, Erik M.

    2012-01-01

    Pathophysiological anomalies in autosomal dominant and recessive forms of polycystic kidney disease (PKD) may derive from impaired function/formation of the apical central monocilium of ductal epithelia such as that seen in the Oak Ridge polycystic kidney or orpk (Ift88Tg737Rpw) mouse and its immortalized cell models for the renal collecting duct. According to a previous study, Na/H exchanger (NHE) activity may contribute to hyperabsorptive Na+ movement in cilium-deficient (“mutant”) cortical collecting duct principal cell monolayers derived from the orpk mice compared with cilium-competent (“rescued”) monolayers. To examine NHE activity, we measured intracellular pH (pHi) by fluorescence imaging with the pH-sensitive dye BCECF, and used a custom-designed perfusion chamber to control the apical and basolateral solutions independently. Both mutant and rescued monolayers exhibited basolateral Na+-dependent acid-base transporter activity in the nominal absence of CO2/HCO3−. However, only the mutant cells displayed appreciable apical Na+-induced pHi recoveries from NH4+ prepulse-induced acid loads. Similar results were obtained with isolated, perfused collecting ducts from orpk vs. wild-type mice. The pHi dependence of basolateral cariporide/HOE-694-sensitive NHE activity under our experimental conditions was similar in both mutant and rescued cells, and 3.5- to 4.5-fold greater than apical HOE-sensitive NHE activity in the mutant cells (pHi 6.23–6.68). Increased apical NHE activity correlated with increased apical NHE1 expression in the mutant cells, and increased apical localization in collecting ducts of kidney sections from orpk vs. control mice. A kidney-specific conditional cilium-knockout mouse produced a more acidic urine compared with wild-type littermates and became alkalotic by 28 days of age. This study provides the first description of altered NHE activity, and an associated acid-base anomaly in any form of PKD. PMID:22301060

  14. Reduction of intracellular pH is not the mechanism for the synergistic interaction between photodynamic therapy and nigericin.

    PubMed

    Varnes, M E; Bayne, M T; Bright, G R

    1996-11-01

    Previous studies showed that photodynamic therapy (PDT) sensitized by aluminum phthalocyanine can be dramatically potentiated by the K+/H+ ionophore nigericin. Nigericin equilibrates intracellular pH (pHi) and extracellular pH (pHe) and is most effective in potentiating PDT damage when cells are in an acidic environment (pH 6.5-6.7). We therefore hypothesized that the ability of nigericin to lower pHi is causally related to its ability to potentiate PDT. To test this, the pHi of A549 cells was reduced using pHe-adjusted growth medium, with or without addition of amiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, inhibitors of the membrane-based exchangers responsible for regulating pHi. Using fluorescence ratio imaging, we found that pHi can be equilibrated to within +/- 0.05 pH unit, in the pH range of 6.0-6.8, for up to 1 h after pHe adjustment. Cells equilibrated to various pHi were subjected to PDT at various light fluences, then plated for clonogenic survival immediately after PDT treatment. There is no significant effect of lowering pHi, to values as low as 6.23, on the toxicity of PDT, regardless of whether pHi is lowered by adjustment of the medium alone or by addition of exchange inhibitors. However, cells equilibrated to pHi 6.0 are more sensitive to PDT, with survival reduced by 1 log at 20 kJ/m2 and 1.5 log at 30 kJ/m2, relative to cells treated at a pHi of 6.8 (controls). In contrast, 20 microM nigericin in medium at pHe 6.7 reduces pHi to 6.55, but reduces the surviving fraction at 20 kJ/m2 by nearly 3 logs relative to controls. These data conclusively demonstrate that the ability of nigericin to potentiate PDT is not directly related to its ability to lower pHi. Furthermore, they show that the expression of PDT damage is independent of pHi, except at the very low value of 6.0. Photodynamic therapy does not induce apoptosis in A549 cells, at surviving fractions of 0.1 to 0.01, under any of the treatment conditions used in this study.

  15. Changes in Plasma Aldosterone and Electrolytes Following High-Volume and High-Intensity Resistance Exercise Protocols in Trained Men.

    PubMed

    Boone, Carleigh H; Hoffman, Jay R; Gonzalez, Adam M; Jajtner, Adam R; Townsend, Jeremy R; Baker, Kayla M; Fukuda, David H; Stout, Jeffrey R

    2016-07-01

    Boone, CH, Hoffman, JR, Gonzalez, AM, Jajtner, AR, Townsend, JR, Baker, KM, Fukuda, DH, and Stout, JR. Changes in plasma aldosterone and electrolytes following high-volume and high-intensity resistance exercise protocols in trained men. J Strength Cond Res 30(7): 1917-1923, 2016-Program variables such as training intensity, volume, and rest interval length are known to elicit distinct hormonal, metabolic, and physical responses. However, little is known regarding resistance exercise (RE) program design and the fluid regulatory response. This investigation aimed to compare the plasma aldosterone (ALD), electrolyte, plasma volume (PV), and osmolality (Posm) responses following high-volume (HV; 4-6 × 10-12 reps, 70% 1 repetition maximum [1RM], 60-s rest) and high-intensity (HI; 6 × 3-5 reps, 90% 1RM, 180-second rest) RE protocols. Ten experienced, resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) performed each protocol in a random, counterbalanced order. Blood samples were obtained at baseline (BL), immediately (IP), 30 minutes (30P), and 1 hour (1H) postexercise. Significant trial × time interactions (p < 0.01) were observed in Posm, sodium (Na), and potassium (K), whereas a trend (p = 0.06) was observed for ALD. The PV shift from BL-30P was greater than BL-IP and BL-1H (p ≤ 0.05), but no significant between-trial differences were noted. Comparisons between RE protocols revealed significantly greater (p ≤ 0.05) elevations during HV vs. HI in Posm at IP, 30P, and 1H; and Na at IP and 30P. During HV, significant reductions (p ≤ 0.05) were noted in K at IP compared with HI. Area under the curve analysis indicates a trend (p = 0.07) toward a higher ALD response following HV compared with HI. Results of this study indicate that high-volume, moderate-intensity resistance exercise seems to augment the fluid regulatory response to a greater extent than low-volume, high-intensity training.

  16. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females.

    PubMed

    Kim, Eonho; Gregg, Lee D; Kim, Ldaeyeol; Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2014-01-01

    The purpose of this study was to determine whether the acute hormone response to exercise differed between low intensity blood flow restricted resistance exercise and traditional high-intensity resistance exercise in college-aged women. A total of 13 healthy women (aged 18-25 yrs), who were taking oral contraceptives, volunteered for this randomized crossover study. Subjects performed a session of low intensity blood flow restricted resistance exercise (BFR) (20% of 1-RM, 1 set 30 reps, 2 sets 15 reps) and a session of traditional high intensity resistance exercise without blood flow restriction (HI) (3 sets of 10 repetitions at 80% of 1-RM) on separate days. Fasting serum cortisol and growth hormone (GH) and blood lactate responses were measured in the morning pre and post exercise sessions. GH (Change: HI: 6.34 ± 1.72; BFR: 4.22 ± 1.40 ng·mL(-1)) and cortisol (Change: HI: 4.46 ± 1.53; BFR: 8.10 ± 2.30 ug·dL(-1)) significantly (p < 0.05) increased immediately post exercise for both protocols compared to baseline and there were no significant differences between the protocols for these responses. In contrast, blood lactate levels (HI: 7.35 ± 0.45; BFR: 4.02 ± 0.33 mmol·L(-1)) and ratings of perceived exertion were significantly (p < 0.01) higher for the HI protocol. In conclusion, acute BFR restricted resistance exercise stimulated similar increases in anabolic and catabolic hormone responses in young women. Key PointsGrowth hormone and cortisol levels significantly increased after a single bout of low intensity blood flow restricted resistance exercise in young women.There were no significant differences in hormone responses between the low intensity blood flow restricted protocol and the traditional high intensity higher total workload protocol.Low intensity blood flow restricted resistance exercise provides a sufficient stimulus to elicit anabolic and catabolic hormone responses in young women.

  17. LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety

    PubMed Central

    Prager, Eric M.; Figueiredo, Taiza H.; Long, Robert P.; Aroniadou-Anderjaska, Vassiliki; Apland, James P.; Braga, Maria F.M.

    2014-01-01

    Without timely pharmacological treatment, nerve agent exposure can cause a large number of casualties, as occurred in the recent sarin attack in Syria. Nerve agent-induced seizures are initiated due to inhibition of acetylcholinesterase, but they become quickly refractory to muscarinic antagonists, and their suppression by benzodiazepines can be only temporary. Therefore, novel treatments are necessary to stop seizures and prevent brain damage and the resulting long-term behavioral deficits. We have previously shown that LY293558, a GluK1/AMPA receptor antagonist, is a very effective anticonvulsant and neuroprotectant against nerve agent exposure. In the present study, we examined whether the protection against nerve agent-induced seizures and neuropathology conferred by LY293558 translates into protection against pathophysiological alterations in the basolateral amygdala (BLA) and the development of anxiety, which is the most prevalent behavioral deficit resulting from exposure. LY293558 (15 mg/kg) was administered to rats along with atropine and the oxime HI-6, at 20 min after exposure to soman (1.2 x LD50). At 24 h, 7 days, and 30 days after exposure, soman-exposed rats that did not receive LY293558 had reduced but prolonged evoked field potentials in the BLA, as well as increased paired-pulse ratio, suggesting neuronal damage and impaired synaptic inhibition. In contrast, soman-exposed rats that received LY293558 did not differ from controls in these parameters. Similarly, long-term potentiation of synaptic transmission was impaired at 7 days after exposure in the soman-exposed rats that did not receive anticonvulsant treatment, while this impairment was not present in the LY293558-treated rats. Anxiety-like behavior assessed by the open field and acoustic startle response tests was increased in the soman-exposed rats at 30 and 90 days after exposure, while soman-exposed rats treated with LY293558 did not differ from controls. Along with our previous findings

  18. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium [published erratum appears in J Gen Physiol 1993 Jan;101(1):following 144

    PubMed Central

    1992-01-01

    The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5- (N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity. PMID:1294152

  19. Functional roles of Na+ and H+ in SO2-4 transport by rabbit ileal brush border membrane vesicles.

    PubMed

    Ahearn, G A; Murer, H

    1984-01-01

    Sulphate uptake by rabbit ileal brush border membrane vesicles was stimulated by a transmembrane sodium gradient [( Na+]o greater than [Na+]i), but not by a similar potassium gradient. 35SO4(-2) influx ( JSO4 oi ) from outside (o) to inside (i) these vesicles was a hyperbolic function of [SO4-2]o and the affinity constant for anion transport was strongly influenced by [Na+]o (100 mM Na+, KSO4 t = 0.52 mM SO4 -2; 10 mM Na+, KSO4 t = 4.32 mM SO4-2). JSO4 oi was a sigmoidal function of [Na+]o at pH 7.4 for both low (0.2 M) and high (4.0 mM) [SO4-2]o. The Na+-dependency of JSO4 oi was examined at pH 6.0, 7.4, and 8.0 (same pH inside and outside). At pH 6.0 and 7.4 sigmoidal Na+-dependent JSO4 oi exhibited nonlinear Eadie-Hofstee plots indicative of a transport mechanism capable of binding a variable number of sodium ions over the [Na+]o range used. Hill plots of anion transport under these conditions displayed slopes near unity at low [Na+]o and slopes approximating 2.0 at higher cation concentrations. At pH 8.0, Na+-dependent JSO4 oi was hyperbolic and showed linear Eadie-Hofstee and Hill plots, the latter with a single slope near 1.0. When a H+ gradient was imposed across the vesicle wall (pHi = 8.0, pHo = 6.0), Na+-dependent JSO4 oi was hyperbolic and significantly increased at each [Na+]o over values observed using bilateral pH 8.0. In contrast, a H+ gradient oriented in the opposite direction (pHi = 6.0, pHo = 8.0) led to Na+-dependent JSO4 oi that was sigmoidal and significantly lower at each [Na+]o than values found using bilateral pH 6.0. Electrogenicity of JSO4 oi at pH 8.0 for both high and low [Na+]o was demonstrated by using a valinomycin-induced transmembrane electrical potential difference. At pH 6.0, electrogenic JSO4 oi occurred only at low [Na+]o (5 mM); anion transfer was electroneutral at 50 mM Na+. A model is proposed for proton regulation of sodium sulphate cotransport where flux stoichiometry is controlled by [H+]i and sodium binding affinity is

  20. Stratigraphic relationships of Cretaceous and early Tertiary rocks of a part of northwestern San Juan basin

    USGS Publications Warehouse

    Baltz, Elmer Harold

    1953-01-01

    sandstone facies of the Nacimiento and San Jose formations are correlated with similar facies of these formations on the east side of the San Juan Basin. Folding along the borders of the Central basin was completed prior to deposition of the youngest San Joss beds, and they were probably widely distributed outside of the Central Basin in Eocene time. In Pliocene time, the San Juan region was beveled by the San Juan peneplain. Rejuvenation of the San Juan Mountains in late Pliocene time caused erosion in the mountains and deposition of the Bridgetimber gravel in the San Juan Basin. Uplift in Pleistocene time caused large-scale erosion in the Bridge Timber Mountain area and gravel-covered terraces represent the various stages of uplift and erosion. The stratigraphic relationships of uppermost Cretaceous and lower Tertiary rocks in the Bridge Timber Mountain area are similar to recently described relationships of equivalent rocks in other parts of the San Juan Basin. The southwestern lobe of the Pictured Cliffs sandstone was derived from older Cretaceous source areas to the southwest and deposited in the seaway which was retreating northeastward. The northeastern lobe consists of reworked Cretaceous sediments eroded from the flanks of the rising San Juan zone and Sangre de Cristo upwarp and deposited in an arm of the sea which was isolated by uplift of the mountain masses. This arm of the sea was forced to retreat to the southeast as sediments of the Fruitland, Kirtland, Animas, and Ojo Alamo formations were deposited in' the basin. The Animas formation which was derived from hi6hlands to the northeast spread progressively to the southwest and interfingered with lesser amounts of Fruitland and Kirtland sediments derived from the southwest. In latest Cretaceous or earliest Paleocene time folding began along the Hogback 'monocline' in northern and western San Juan Basin and sediments were eroded from the uplifted platforms around the margin of the Central Basin and rede

  1. pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats.

    PubMed Central

    Bevensee, M O; Cummins, T R; Haddad, G G; Boron, W F; Boyarsky, G

    1996-01-01

    1. We used the pH-sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) to study the regulation of intracellular pH (pHi) in single pyramidal neurons freshly isolated from the hippocampal CA1 region of immature (2- to 10-day-old) and more mature (21- to 30-day-old) rats. 2. Whether isolated from immature or mature rats, neurons had a broad range of initial pHi values (6.3-7.7) when the cells were examined in solutions buffered with Hepes and no CO2/HCO3-. The initial pHi distribution for neurons isolated from immature rats was best fitted with a Gaussian distribution with a mean of 6.95. In contrast, the initial pHi distribution for neurons isolated from mature rats was best fitted with the sum of two Gaussian distributions with means of 6.68 and 7.32. 3. When neurons with a relatively low initial pHi in Hepes-buffered solutions were acid loaded, pHi recovered very slowly. Neurons with a relatively high initial pHi recovered rapidly. The rate constant for the exponential pHi recovery increased with initial pHi. All pHi recoveries required Na+. 4. Both for neurons with a relatively high (> or = 7.05) and a relatively low (< 7.05) initial pHi, net acid extrusion rates (Jtotal = dpHi/dt x buffering power) decreased linearly with increasing pHi. Compared with the line for neurons with a relatively low initial pHi, that for neurons with a relatively high pHi had a significantly greater slope and was alkaline shifted by 0.6-0.7 pH units. 5. Removing external Na+ in the absence of CO2/HCO3- caused pHi to decrease by approximately 0.3 in neurons with a relatively low initial pHi, and by approximately 0.5 in neurons with a relatively high initial pHi. This initial acidification was followed by a slower, partial pHi recovery in approximately 32% of neurons with a relatively low initial pHi, but only approximately 14% of neurons with a relatively high pHi. 6. When exposed to CO2/HCO3-, all neurons initially acidified. Neurons with a relatively low