Sample records for object debris fod

  1. Foreign Object Debris: FOD Prevention QS210LSK-REV

    NASA Technical Reports Server (NTRS)

    Randolph, Sherry; Seaman, John

    2004-01-01

    Housekeeping in the space industry? You may think the idea isn't technical enough for the shuttle program. Yet, eliminating Foreign Object Debris or FOD is an important goal for USA and NASA. The justification for this effort is based on data from the aeronautics industry. Experience has shown that if debris is not controlled, it may later cause a variety of in-flight issues. FOD can result in material damage, or make systems and equipment inoperable unsafe, or less efficient

  2. Decision making model for Foreign Object Debris/Damage (FOD) elimination in aeronautics using quantitative modeling approach

    NASA Astrophysics Data System (ADS)

    Lafon, Jose J.

    (FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.

  3. 75 FR 81708 - Notice of Decision To Issue Buy American Waivers for Foreign Object Debris (FOD) Detection Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Circular 150/5220-24, Airport Foreign Object Debris (FOD) detection equipment, detailing system... produce sufficient and reasonable amounts of stationary FOD detection systems; the FAA issued a notice in... manufacturing stationary FOD detection systems in the United States: Trex Aviation Systems and QinetiQ. Although...

  4. Detecting of foreign object debris on airfield pavement using convolution neural network

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoguang; Gu, Yufeng; Bai, Xiangzhi

    2017-11-01

    It is of great practical significance to detect foreign object debris (FOD) timely and accurately on the airfield pavement, because the FOD is a fatal threaten for runway safety in airport. In this paper, a new FOD detection framework based on Single Shot MultiBox Detector (SSD) is proposed. Two strategies include making the detection network lighter and using dilated convolution, which are proposed to better solve the FOD detection problem. The advantages mainly include: (i) the network structure becomes lighter to speed up detection task and enhance detection accuracy; (ii) dilated convolution is applied in network structure to handle smaller FOD. Thus, we get a faster and more accurate detection system.

  5. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  6. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.

    PubMed

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-03-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.

  7. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement

    PubMed Central

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-01-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment. PMID:29494524

  8. A study of foreign object damage (FOD) and prevention method at the airport and aircraft maintenance area

    NASA Astrophysics Data System (ADS)

    Hussin, R.; Ismail, N.; Mustapa, S.

    2016-10-01

    Foreign object damage (FOD) is common risk for aviation industry since long time ago and it has contributed to many terrible incidents and fatalities. The cost of FOD cases every year is very high, which is around RM 1.2 billion. Therefore, a proper technique and strategy has to be taken by the designated organizations including airlines to further eliminate the FOD occurrences. It is not easy to control FOD due to some circumstances such as inappropriate working behaviour, poor working environment, insufficient technology and also disorganized housekeeping system. The main purpose of this research is to discuss and explain further about FOD and the techniques to prevent FOD. FOD is a universal concern in aviation industry and it is one of the reasons that contribute to aircraft failure and unwanted damages such as fatalities and causalities. Throughout this research, many information related to FOD problems and their impact on aviation industry are gathered and presented.

  9. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  10. View of an eyebolt seen as foreign object debris (FOD) during Expedition 8

    NASA Image and Video Library

    2004-02-15

    ISS008-E-15890 (15 February 2004) --- This image was taken from the International Space Station (ISS) Feb 15 and shows a small piece of debris reported by the Expedition 8 crew. The debris, which has been identified as a two-inch "eyebolt" from a solar array on the Progress cargo craft that recently docked with the Station, drifted slowly away and posed no problems for the complex. The eyebolt is from a system that is used with the arrays during the Progress' launch and serves no function after the arrays are deployed in orbit.

  11. Prediction of Foreign Object Debris/Damage type based in human factors for aeronautics using logistic regression model

    NASA Astrophysics Data System (ADS)

    Romo, David Ricardo

    Foreign Object Debris/Damage (FOD) has been an issue for military and commercial aircraft manufacturers since the early ages of aviation and aerospace. Currently, aerospace is growing rapidly and the chances of FOD presence are growing as well. One of the principal causes in manufacturing is the human error. The cost associated with human error in commercial and military aircrafts is approximately accountable for 4 billion dollars per year. This problem is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access, restrictions of personal items entering designated areas, tool accountability, and the use of technology such as Radio Frequency Identification (RFID) tags, etc. All of the efforts mentioned before, have not show a significant occurrence reduction in terms of manufacturing processes. On the contrary, a repetitive path of occurrence is present, and the cost associated has not declined in a significant manner. In order to address the problem, this thesis proposes a new approach using statistical analysis. The effort of this thesis is to create a predictive model using historical categorical data from an aircraft manufacturer only focusing in human error causes. The use of contingency tables, natural logarithm of the odds and probability transformation is used in order to provide the predicted probabilities of each aircraft. A case of study is shown in this thesis in order to show the applied methodology. As a result, this approach is able to predict the possible outcomes of FOD by the workstation/area needed, and monthly predictions per workstation. This thesis is intended to be the starting point of statistical data analysis regarding FOD in human factors. The purpose of this thesis is to identify the areas where human error is the primary cause of FOD occurrence in order to design and implement accurate solutions. The advantages of the proposed methodology can go from the reduction of cost

  12. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  13. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  14. KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  15. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  16. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  17. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  18. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  19. KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  20. Integrated Work Management: FOD/RLM, Course 31882

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    The facility operations director (FOD) and responsible line manager (RLM) play leadership and functional roles in the integrated work management (IWM) process at Los Alamos National Laboratory (LANL). This course, Integrated Work Management: FOD/RLM (COURSE 31882), describes the IWM roles and responsibilities of the FOD and the RLM; it also discusses IWM requirements that must be met by the FOD and the RLM. Before taking this course, you may want to take COURSE 31881, Integrated Work Management: Overview. This self-study course would be particularly helpful if you are unfamiliar with the IWM process. You should also read Procedure (P) 300,more » Integrated Work Management. This course briefly covers the roles of the preparer and person in charge (PIC). For more in-depth instruction on the preparer’s role, see COURSE 31883, Integrated Work Management: Preparer. For instruction on the PIC’s role, see COURSE 31884, Integrated Work Management: PIC.« less

  1. KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  2. Estimating Foreign-Object-Debris Density from Photogrammetry Data

    NASA Technical Reports Server (NTRS)

    Long, Jason; Metzger, Philip; Lane, John

    2013-01-01

    Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence? By utilizing the Runge-Kutta integration method for velocity and the Verlet integration method for position, a method that suppresses trajectory computational instabilities due to noisy position data was obtained. This combination of integration methods provides a means to extract the best estimate of drag force and drag coefficient under the non-ideal conditions of limited position data. This integration strategy leads immediately to the best possible estimate of object density, within the constraints of unknown particle shape. These types of calculations do not exist in readily available off-the-shelf simulation software, especially where photogrammetry data is needed as an input.

  3. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  4. NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.

    2013-01-01

    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.

  5. Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size

    NASA Technical Reports Server (NTRS)

    Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.

    2008-01-01

    Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.

  6. Data Quality Objectives Process for Designation of K Basins Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WESTCOTT, J.L.

    2000-05-22

    The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less

  7. Object oriented studies into artificial space debris

    NASA Technical Reports Server (NTRS)

    Adamson, J. M.; Marshall, G.

    1988-01-01

    A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.

  8. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  9. Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.

    2018-05-01

    A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.

  10. Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in southern California

    USGS Publications Warehouse

    Staley, Dennis; Kean, Jason W.; Cannon, Susan H.; Schmidt, Kevin M.; Laber, Jayme L.

    2012-01-01

    Rainfall intensity–duration (ID) thresholds are commonly used to predict the temporal occurrence of debris flows and shallow landslides. Typically, thresholds are subjectively defined as the upper limit of peak rainstorm intensities that do not produce debris flows and landslides, or as the lower limit of peak rainstorm intensities that initiate debris flows and landslides. In addition, peak rainstorm intensities are often used to define thresholds, as data regarding the precise timing of debris flows and associated rainfall intensities are usually not available, and rainfall characteristics are often estimated from distant gauging locations. Here, we attempt to improve the performance of existing threshold-based predictions of post-fire debris-flow occurrence by utilizing data on the precise timing of debris flows relative to rainfall intensity, and develop an objective method to define the threshold intensities. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. We identified that (1) there were statistically significant differences between peak storm and triggering intensities, (2) the objectively defined threshold model presents a better balance between predictive success, false alarms and failed alarms than previous subjectively defined thresholds, (3) thresholds based on measurements of rainfall intensity over shorter duration (≤60 min) are better predictors of post-fire debris-flow initiation than longer duration thresholds, and (4) the objectively defined thresholds were exceeded prior to the recorded time of debris flow at frequencies similar to or better than subjective thresholds. Our findings highlight the need to better constrain the timing and processes of initiation of landslides and debris flows for future threshold studies. In addition, the methods used to define rainfall thresholds in this

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Photosensitivity of nanoporous glasses and polymers doped with Eu(fod)3 molecules

    NASA Astrophysics Data System (ADS)

    Gerasimova, V. I.; Zavorotnyi, Yu S.; Rybaltovskii, A. O.; Lemenovskii, Dmitrii A.; Timofeeva, V. A.

    2006-08-01

    The decay kinetics of photoluminescence (PL) of Eu3+ ions (the 5D0→7Fj transition) excited by UV radiation (in particular, by a laser) is studied in a Vycor nanoporous glass and transparent polymers doped with Eu(fod)3 molecules (where fod stands for 6,6,7,7,8,8,8-heptofluor-2,2-dimethyl-3,5-octadionate) using a solution of supercritical CO2. It is found that the decrease in the PL intensity is caused by the photoinduced transformation of the ligand component of the complex (fod), while the decay rate depends significantly on the type of the matrix. Models of mechanisms of photodissociation of the original complex related to excitation to the singlet absorption band of the ligand (S0→S1 transition) in one case and to the ligand—metal charge transfer band in the other case are proposed.

  12. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  13. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Kinetics and quantum yield of photoluminescence of EuFOD3 doped into a nanoporous glass with the help of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Bagratashvili, V. N.; Gerasimova, V. I.; Gordienko, V. M.; Tsypina, S. I.; Chutko, E. A.

    2008-08-01

    The kinetics of photoluminescence of a EuFOD3 metalloorganic compound doped into a nanoporous Vycor glass by the method of supercritical fluid impregnation is studied. The lifetime of luminescence of EuFOD3 molecules in pores excited by an excimer XeCl laser was 40 μs, which is considerably smaller than this lifetime (150—890 μs) in solutions. The quantum yield of luminescence of EuFOD3 was estimate as ≈4×10-4.

  15. A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.

  16. Evaluating the environmental criticality of massive objects in LEO for debris mitigation and remediation

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2018-04-01

    Approximately 95% of the mass in Earth orbit is currently concentrated in about 6700 intact objects, of which nearly 80% are abandoned and more than 90% cannot be maneuvered. The intact objects abandoned in low Earth orbit (LEO) above 650 km, i.e. with an average residual lifetime of more than 25 years, represent the main potential mass reservoir for the generation of new detrimental orbital debris in case of mutual collisions with the existing debris environment, taking into account that an 800 g impactor may be sufficient, in principle, to shatter a 1000 kg spacecraft or rocket stage. Since the 1980's, several mitigation measures were promoted and agreed at the international level in order to prevent the occurrence of new breakups in space and put under control the accumulation of mass abandoned in orbit, but unfortunately the level of compliance with such guidelines, requirements or standards is still far from satisfactory. Moreover, the appearance on the scene of space activity of new private and government actors from a growing number of countries makes the proper management of the circumterrestrial space a task of increasing complexity, taking also into account the rapid emerging of new potential applications, disrupting technologies and operational approaches quite different from the past. In this rapidly evolving environment, it might be useful to have a simple and flexible instrument for evaluating the potential criticality for the environment of massive objects placed or abandoned in LEO. With this goal, in the last few years, a particular effort was devoted to the development of various "criticality indexes", then applied for evaluating many families of rocket bodies and selected spacecraft. In this paper, with the underlining ambition to be simple, intuitive and relevant, from an environmental point of view, a couple of the most complete indexes were coherently applied in order to assess the potential criticality of the most massive objects abandoned in

  17. Wholesale debris removal from LEO

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  18. Object-oriented feature extraction approach for mapping supraglacial debris in Schirmacher Oasis using very high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.

    2016-05-01

    Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.

  19. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  20. KSC-05PD-0365

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for and picking up Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  1. KSC-05PD-0364

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  2. KSC-05PD-0366

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  3. KSC-05PD-0363

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  4. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  5. Foreign Object Damage Behavior of Two Gas-turbine Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2002-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through strength testing of flexure test specimens impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 220 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). Additionally, the FOD response of an equiaxed, fine-grained silicon nitride (NC132) was also investigated to provide further insight. The NC132 silicon nitride exhibited the lowest fracture toughness of the three materials tested, providing further evidence that K(sub IC) is a key material parameter affecting FOD resistance. The observed damage generated by projectile impact was typically in the forms of well- or ill-developed ring or cone cracks with little presence of radial cracks.

  6. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  7. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  8. Foreign Object Damage Identification in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac

    2005-01-01

    This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.

  9. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  10. Orbital debris issues

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    Man-made orbital debris, identified as a potential hazard to future space activities, is grouped into size categories. At least 79 satellites have broken up in orbit to date and, in combination with exploded rocket casings and antisatellite debris, threaten 10 km/sec collisions with other orbiting platforms. Only 5 percent of the debris is connected to payloads. The total population of orbiting objects over 4 cm in diameter could number as high as 15,000, and at 1 cm in diameter could be 32,000, based on NASA and NORAD studies. NASA has initiated the 10 yr Space Debris Assessment Program to characterize the hazards of orbiting debris, the potential damage to typical spacecraft components, and to identify means of controlling the damage.

  11. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  12. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    NASA Astrophysics Data System (ADS)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  13. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  14. High-impact resistance optical sensor windows

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee

    2011-06-01

    Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.

  15. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  16. Active Debris Removal and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  17. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  18. Determination of debris albedo from visible and infrared brightnesses

    NASA Astrophysics Data System (ADS)

    Lambert, John V.; Osteen, Thomas J.; Kraszewski, Butch

    1993-09-01

    The Air Force Phillips Laboratory is conducting measurements to characterize the orbital debris environment using wide-field optical systems located at the Air Force's Maui, Hawaii, Space Surveillance Site. Conversion of the observed visible brightnesses of detected debris objects to physical sizes require knowledge of the albedo (reflectivity). A thermal model for small debris objects has been developed and is used to calculate albedos from simultaneous visible and thermal infrared observations of catalogued debris objects. The model and initial results will be discussed.

  19. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  20. Techniques for debris control

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    1990-01-01

    This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.

  1. Changes of Space Debris Orbits After LDR Operation

    NASA Astrophysics Data System (ADS)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  2. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  3. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  4. Orbital debris removal using ground-based lasers

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.

  5. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  6. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  7. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  8. Debris thickness patterns on debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  9. Small satellites and space debris issues

    NASA Astrophysics Data System (ADS)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  10. X-33 LH2 Tank Failure Investigation Findings

    NASA Technical Reports Server (NTRS)

    Niedermeyer, M.

    2001-01-01

    The X-33 liquid hydrogen tank failure investigation found the following: (1) The inner skin microcracked and hydrogen infiltrated into it; (2) The cracks grew larger under pressure; (3) When pressure was removed, the cracks closed slightly; (4) When the tank was drained and warmed, the cracks closed and blocked the leak path; (5) Foreign object debris (FOD) and debond areas provided an opportunity for a leak path; and (6) There is still hydrogen in the other three lobes today.

  11. Biobjective planning of an active debris removal mission

    NASA Astrophysics Data System (ADS)

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel

    2013-03-01

    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  12. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  13. USA Space Debris Environment, Operations, and Research Updates

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  14. Debris Hazards At Civil Airports

    DOT National Transportation Integrated Search

    1996-07-05

    This advisory circular (AC) discusses problems of debris at airports, gives : information on foreign objects, and tells how to eliminate such objects from operational areas. It also addresses the acquisition of power sweepers : for foreign object dam...

  15. Analyzing costs of space debris mitigation methods

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.

    2004-01-01

    The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim is an estimation of the time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key issues of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.

  16. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  17. Debris characterization diagnostic for the NIF

    NASA Astrophysics Data System (ADS)

    Miller, M. C.; Celeste, J. R.; Stoyer, M. A.; Suter, L. J.; Tobin, M. T.; Grun, J.; Davis, J. F.; Barnes, C. W.; Wilson, D. C.

    2001-01-01

    Generation of debris from targets and by x-ray ablation of surrounding materials will be a matter of concern for experimenters and National Ignition Facility (NIF) operations. Target chamber and final optics protection, for example debris shield damage, drive the interest for NIF operations. Experimenters are primarily concerned with diagnostic survivability, separation of mechanical versus radiation induced test object response in the case of effects tests, and radiation transport through the debris field when the net radiation output is used to benchmark computer codes. In addition, radiochemical analysis of activated capsule debris during ignition shots can provide a measure of the ablator <ρr>. Conceptual design of the Debris Monitor and Rad-Chem Station, one of the NIF core diagnostics, is presented. Methods of debris collection, particle size and mass analysis, impulse measurement, and radiochemical analysis are given. A description of recent experiments involving debris collection and impulse measurement on the OMEGA and Pharos lasers is also provided.

  18. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net

  19. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  20. Radar Measurements of Small Debris from HUSIR and HAX

    NASA Technical Reports Server (NTRS)

    Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  1. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  2. Apparent rotation properties of space debris extracted from photometric measurements

    NASA Astrophysics Data System (ADS)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  3. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  4. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  5. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  6. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  7. Orbiting space debris: Dangers, measurement, and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-01-01

    Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.

  8. Space program: Space debris a potential threat to Space Station and shuttle

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

    1990-01-01

    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

  9. Harnessing Orbital Debris to Sense the Space Environment

    NASA Astrophysics Data System (ADS)

    Mutschler, S.; Axelrad, P.; Matsuo, T.

    A key requirement for accurate space situational awareness (SSA) is knowledge of the non-conservative forces that act on space objects. These effects vary temporally and spatially, driven by the dynamical behavior of space weather. Existing SSA algorithms adjust space weather models based on observations of calibration satellites. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction. The uncontrolled nature of debris makes it particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by inverting observations of debris objects to infer the space environment parameters causing their motion. In addition, this research will produce more accurate predictions of the motion of debris objects. The hypothesis of this research is that it is possible to utilize a "cluster" of debris objects, objects within relatively close proximity of each other, to sense their local environment. We focus on deriving parameters of an atmospheric density model to more precisely predict the drag force on LEO objects. An Ensemble Kalman Filter (EnKF) is used for assimilation; the prior ensemble to the posterior ensemble is transformed during the measurement update in a manner that does not require inversion of large matrices. A prior ensemble is utilized to empirically determine the nonlinear relationship between measurements and density parameters. The filter estimates an extended state that includes position and velocity of the debris object, and atmospheric density parameters. The density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth. This research focuses on LEO object motion, but it can also be extended to additional orbital regimes for observation and refinement of magnetic field and solar radiation models. An observability analysis of the proposed approach is presented in terms of the

  10. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  11. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  12. Space Debris Symposium (A6.) Measurements and Space Surveillance (1.): Measurements of the Small Particle Debris Cloud from the 11 January, 2007 Chinese Anti-satellite Test

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.; Stansbery, Eugene; J.-C Liou; Stokely, Christopher; Horstman, Matthew; Whitlock, David

    2008-01-01

    On January 11, 2007, the Chinese military conducted a test of an anti-satellite (ASAT) system, destroying their own Fengyun-1C spacecraft with an interceptor missile. The resulting hypervelocity collision created an unprecedented number of tracked debris - more than 2500 objects. These objects represent only those large enough for the US Space Surveillance Network (SSN) to track - typically objects larger than about 5-10 cm in diameter. There are expected to be even more debris objects at sizes too small to be seen and tracked by the SSN. Because of the altitude of the target satellite (865 x 845 km orbit), many of the debris are expected to have long orbital lifetimes and contribute to the orbital debris environment for decades to come. In the days and weeks following the ASAT test, NASA was able to use Lincoln Laboratory s Haystack radar on several occasions to observe portions of the ASAT debris cloud. Haystack has the capability of detecting objects down to less than one centimeter in diameter, and a large number of centimeter-sized particles corresponding to the ASAT cloud were clearly seen in the data. While Haystack cannot track these objects, the statistical sampling procedures NASA uses can give an accurate statistical picture of the characteristics of the debris from a breakup event. For years computer models based on data from ground hypervelocity collision tests (e.g., the SOCIT test) and orbital collision experiments (e.g., the P-78 and Delta-180 on-orbit collisions) have been used to predict the extent and characteristics of such hypervelocity collision debris clouds, but until now there have not been good ways to verify these models in the centimeter size regime. It is believed that unplanned collisions of objects in space similar to ASAT tests will drive the long-term future evolution of the debris environment in near-Earth space. Therefore, the Chinese ASAT test provides an excellent opportunity to test the models used to predict the future debris

  13. Improvements to NASA's Debris Assessment Software

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Johnson, Nicholas L.

    2007-01-01

    NASA's Debris Assessment Software (DAS) has been substantially revised and expanded. DAS is designed to assist NASA programs in performing orbital debris assessments, as described in NASA s Guidelines and Assessment Procedures for Limiting Orbital Debris. The extensive upgrade of DAS was undertaken to reflect changes in the debris mitigation guidelines, to incorporate recommendations from DAS users, and to take advantage of recent software capabilities for greater user utility. DAS 2.0 includes an updated environment model and enhanced orbital propagators and reentry-survivability models. The ORDEM96 debris environment model has been replaced by ORDEM2000 in DAS 2.0, which is also designed to accept anticipated revisions to the environment definition. Numerous upgrades have also been applied to the assessment of human casualty potential due to reentering debris. Routines derived from the Object Reentry Survival Analysis Tool, Version 6 (ORSAT 6), determine which objects are assessed to survive reentry, and the resulting risk of human casualty is calculated directly based upon the orbital inclination and a future world population database. When evaluating reentry risks, the user may enter up to 200 unique hardware components for each launched object, in up to four nested levels. This last feature allows the software to more accurately model components that are exposed below the initial breakup altitude. The new DAS 2.0 provides an updated set of tools for users to assess their mission s compliance with the NASA Safety Standard and does so with a clear and easy-to-understand interface. The new native Microsoft Windows graphical user interface (GUI) is a vast improvement over the previous DOS-based interface. In the new version, functions are more-clearly laid out, and the GUI includes the standard Windows-style Help functions. The underlying routines within the DAS code are also improved.

  14. Space Debris and Observational Astronomy

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  15. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    NASA Astrophysics Data System (ADS)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects <100cm pose higher risks to sea turtles whereas yellow-red, rigid objects <10cm pose higher risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to

  16. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage

    NASA Astrophysics Data System (ADS)

    Luo, Sihai; Nie, Xiangfan; Zhou, Liucheng; Li, Yiming; He, Weifeng

    2018-03-01

    During their service, titanium alloys are likely to suffer from the foreign object damage (FOD), resulting in a decrease in their fatigue strength. Laser shock peening (LSP) has been proved to effectively increase the damage tolerance of military engine components by introducing a magnitude compressive residual stress in the near-surface layer of alloys. In this paper, smooth specimens of a TC4 titanium alloy were used and treated by LSP and subsequently exposed to FOD, which was simulated by firing a steel sphere with a nominal velocity of 300 m/s, at 90° with the leading edge of the LSP-treated region using a light gas gun. All impacted specimens were then subjected to fatigue loading. The results showed that LSP could effectively improve the fatigue strength of the damaged specimens. The effect of LSP on the fatigue strength was assessed through fracture observations, microhardness tests and residual stress analyses. The residual stresses due to the plastic deformation caused by LSP and the FOD impact, which were found to play a crucial role on the fatigue strength, were determined using the commercial software ABAQUS.

  17. Development of the Space Debris Sensor

    NASA Technical Reports Server (NTRS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2017. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured by the NASA Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 micron to 500 micron in size. This paper describes the SDS features and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  18. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  19. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  20. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  1. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic

  2. An efficient algorithm for orbital evolution of space debris

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Y.; Abd El-Salam, F.

    More than four decades of space exploration have led to accumulation of significant quantities of debris around the Earth. These objects range in size from a tiny piece of junk to a large inoperable satellite, although these objects that have small size they have high are-to-mass ratios, and consequently their orbits are strongly influenced by solar radiation pressure and atmospheric drag. So the increasing population of space debris object in the LEO, MEO and GEO present growing with time, serious hazard for the survival of operating spacecrafts, particularly satellites and astronomical observatories. Since the average collision velocity between any spacecraft orbiting in the LOE and debris objects is about 10 km/s and about 3 km/s in the GEO. Space debris may significantly disturb any satellite operations or cause catastrophic damage to a spacecraft itself. Applying different shielding techniques spacecraft my be protected against impacts of space debris with diameters smaller than 1 cm. For larger debris objects, only one effective method to avoid catastrophic consequence of collision is a manoeuvre that will change the spacecraft orbit. The necessary conditions in this case is to evaluate and predict future positions of the spacecraft and space debris with sufficient accuray. Numerical integration of equations of motion are used until now. Existing analytical methods can solve this problem only with low accuracy. Difficulties are caused mainly by the lack of satisfying analytical solution of the resonance problem for geosynchronous orbit as well as from the lack of efficient analytical theory combining luni-solar perturbation and solar radiation pressure with geopotential attraction. Numerical integration is time consuming in some cases, and then for qualitative analysis of the satellite's and debris's motion it is necessary to apply analytical solution. This is the reason for searching for an accurate model to evaluate the orbital position of the operating

  3. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    NASA Astrophysics Data System (ADS)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  4. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon fire, Colorado, USA

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Kean, Jason W.

    2015-01-01

    We present an objectively defined rainfall intensity-duration (I-D) threshold for the initiation of flash floods and debris flows for basins recently burned in the 2012 Waldo Canyon fire near Colorado Springs, Colorado, USA. Our results are based on 453 rainfall records which include 8 instances of hazardous flooding and debris flow from 10 July 2012 to 14 August 2013. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow or flood occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. The equation I = 11.6D−0.7 represents the I-D threshold (I, in mm/h) for durations (D, in hours) ranging from 0.083 h (5 min) to 1 h for basins burned by the 2012 Waldo Canyon fire. As periods of high-intensity rainfall over short durations (less than 1 h) produced all of the debris flow and flood events, real-time monitoring of rainfall conditions will result in very short lead times for early-warning. Our results highlight the need for improved forecasting of the rainfall rates during short-duration, high-intensity convective rainfall events.

  5. Contribution of explosion and future collision fragments to the orbital debris environment

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Kessler, D. J.

    1985-01-01

    The time evolution of the near-earth man-made orbital debris environment modeled by numerical simulation is presented in this paper. The model starts with a data base of orbital debris objects which are tracked by the NORAD ground radar system. The current untrackable small objects are assumed to result from explosions and are predicted from data collected from a ground explosion experiment. Future collisions between earth orbiting objects are handled by the Monte Carlo method to simulate the range of collision possibilities that may occur in the real world. The collision fragmentation process between debris objects is calculated using an empirical formula derived from a laboratory spacecraft impact experiment to obtain the number versus size distribution of the newly generated debris population. The evolution of the future space debris environment is compared with the natural meteoroid background for the relative spacecraft penetration hazard.

  6. A Simple Model for the Orbital Debris Environment in GEO

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.

    The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic

  7. Orbital Debris: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  8. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm

  9. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  10. Summary of Orbital Debris Workshop

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1982-01-01

    An Orbital Debris Workshop was conducted in July 1982. The working groups established were related to measurements of large particles, modeling of large particles, measurements of small particles, spacecraft hazard and shielding requirements, and space object management. The results of the Orbital Debris Workshop reaffirm the need for research to better understand the character of orbital debris, its effects on future spacecraft, and the related requirements for policy. A clear charter is required for this research to receive the necessary support, focus, and coordination. It was recommended that NASA assume the role of lead agency. The first task is to develop an overall plan with both Department of Defense and the North American Aerospace Defense Command participation.

  11. Mission concept and autonomy considerations for active Debris removal

    NASA Astrophysics Data System (ADS)

    Peters, Susanne; Pirzkall, Christoph; Fiedler, Hauke; Förstner, Roger

    2016-12-01

    Over the last 60 years, Space Debris has become one of the main challenges for the safe operation of satellites in low Earth orbit. To address this threat, guidelines that include a limited debris release during normal operations, minimization of the potential for on-orbit break-ups and post mission disposal have begun to be implemented. However, for the long-term, the amount of debris will still increase due to fragments created by collisions of objects in space. The active removal of space debris of at least five large objects per years is therefore recommended, but not yet included in those guidelines. Even though various technical concepts have been developed over the last years, the question on how to make them reliable and safe or how to finance such mission has not been answered. This paper addresses the first two topics. With Space Debris representing an uncooperative and possibly tumbling target, close proximity becomes absolutely critical, especially when an uninterrupted connection to the ground station is not ensured. This paper therefore defines firstly a mission to remove at least five large objects and secondly introduces a preliminary autonomy concept fitted for this mission.

  12. Engineering and Technology Challenges for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  13. Final Report of the Haystack Orbital Debris Data Review Panel

    NASA Technical Reports Server (NTRS)

    Barton, David K.; Brillinger, David; McDaniel, Patrick; Pollock, Kenneth H.; El-Shaarawi, A. H.; Tuley, Michael T.

    1998-01-01

    The Haystack Orbital Debris Data Review Panel was established in December 1996 to consider the adequacy of the data on orbital debris gathered over the past several years with the Haystack radar, and the accuracy of the methods used to estimate the flux vs. size relationship for this debris. The four specific issues addressed for the Panel were: 1. The number of observations relative to the estimated population of interest 2. The inherent ambiguity between the measured radar cross section (RCS) and the inferred physical size of the object 3. The inherent aspect angle limitation in viewing each object and its relationship to object geometry 4. The adequacy of the sample data set to characterize the debris population's potential geometry. Further discussion and interpretation of these issues, and identification of the detailed questions contributing to them, are discussed in this report.

  14. Reduction of CO2 and orbital debris: can CO2 emission trading principles be applied to debris reduction?

    NASA Astrophysics Data System (ADS)

    Orlando, Giovanni; Kinnersley, Mark; Starke, Juergen; Hugel, Sebastian; Hartner, Gloria; Singh, Sanjay; Loubiere, Vincent; Staebler, Dominik-Markus; O'Brien-Organ, Christopher; Schwindt, Stefan; Serreau, Francois; Sharma, Mohit

    In the past years global pollution and the specific situation of global warming changes have been strongly influencing public opinion and thus obliged politicians to initiate/ negotiate in-ternational agreements to control, avoid or at least reduce the impact of CO2 emissions e.g. The Kyoto Protocol (1997) and the International Copenhagen conference on Climate Change (2009). In the orbital debris area the collision between the Iridium33 and Cosmos 2251 satel-lites in 2009 has again pushed to the forefront the discussion of the space pollution by space debris and the increasing risk of critical and catastrophic events during the nominal life time of space objects. It is shown by simulations that for Low Earth Orbits the critical debris situation is already achieved and the existing space objects will probably produce sufficient space debris elements -big enough -to support the cascade effect (Kessler Syndrome). In anal-ogy with CO2 emissions, potential recommendations / regulations to reduce the production of Space Debris or its permanence in orbit, are likely to open new markets involving Miti-gation and Removal of Space Debris. The principle approach for the CO2 emission trading model will be investigated and the applicability for the global space debris handling will be analysed. The major differences of the two markets will be derived and the consequences in-dicated. Potential alternative solutions will be proposed and discussed. For the example of the CO2 emission trading principles within EU and worldwide legal conditions for space debris (national / international laws and recommendations) will be considered as well as the commer-cial approach from the controlled situation of dedicated orders to a free / competitive market in steps. It is of interest to consider forms of potential industrial organisations and interna-tional co-operations to react on a similar architecture for the debris removal trading including incentives and penalties for the different

  15. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Astrophysics Data System (ADS)

    Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  16. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  17. Activities on space debris in Europe

    NASA Astrophysics Data System (ADS)

    Flury, W.

    2001-10-01

    Activities on space debris in Europe are carried out by ESA, by national space agencies such as ASI (Italy), BNSC (United Kingdom), CNES (France) and DLR (Germany) and by various research groups. The objectives of ESA's activities in the field of space debris have been defined by the Council of ESA in 1989, and were updated in 2000 with the adoption of the Resolution for a European policy on the protection of the space environment from debris. ESA's debris-related activities comprise research, application of debris mitigation measures and international cooperation. The research activities address the knowledge of the terrestrial particulate environment, risk assessment, hypervelocity impacts and protection, and preventative measures. In all these areas substantial progress has been achieved. Examples are the MASTER 99 model, the DISCOS database, beam-park experiments with the FGAN radar, the discovery of a small-size debris population in GEO with the Space Debris telescope at the Teide observatory, and the GORID dust detector in the geostationary orbit. The ESA Space Debris Mitigation Handbook was issued, and in a joint effort of ESA and the national agencies ASI, BNSC, CNES and DLR the European Space Debris Safety and Mitigation Standard (draft) was established. This standard will be harmonized with standards of other agencies through the deliberations in the Inter-Agency Space Debris Coordination Committee (IADC). In order to strengthen the European cooperation, the pilot network of centers - Working Group on Space Debris was created in 2000. The members are ESA, ASI, BNSC, CNES and DLR. An integrated work plan has been established for the period 2001-2003. Global cooperation among the space-faring nations is achieved through the IADC. ESA and its Member States strongly support the deliberations on space debris within the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  18. A CCD search for geosynchronous debris

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; Vilas, Faith

    1986-01-01

    Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.

  20. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  1. Optical Observations of GEO Debris with Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.

    2007-01-01

    For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full

  2. A laser-optical system to re-enter or lower low Earth orbit space debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2014-01-01

    Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.

  3. Analyzing costs of space debris mitigation methods

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.

    The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. This economical background is not always clear to satellite operators and the space industry. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim i an estimation of thes time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key problems of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. The shielding of a satellite can be an effective method to protect the spacecraft against debris impact. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. The key problem is, that it is not possible to provide a simple cost model that can be applied to all types of satellites. Unmanned spacecraft differ very much in mission, complexity of design, payload and operational lifetime. It is important to classify relevant cost parameters and investigate their influence on the respective mission. The theory of empirical cost estimation and existing cost models are discussed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.

  4. Modeling of the Orbital Debris Population of RORSAT Sodium-Potassium Droplets

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Krisko, P. H.; Matney, Mark; Stansbery, E. G.

    2010-01-01

    A large population resident in the orbital debris environment is composed of eutectic sodium-potassium (NaK) droplets, released during the reactor core ejection of 16 nuclear-powered Radar Ocean Reconnaissance Satellites (RORSATs) launched in the 1980s by the former Soviet Union. These electrically conducting RORSAT debris objects are spherical in shape, generating highly polarized radar returns. Their diameters are mostly in the centimeter and millimeter size regimes. Since the Space Surveillance Network catalog is limited to objects greater than 5 cm in low Earth orbit, our current knowledge about this special class of orbital debris relies largely on the analysis of Haystack radar data. This paper elaborates the simulation of the RORSAT debris populations in the new NASA Orbital Debris Engineering Model ORDEM2010, which replaces ORDEM2000. The estimation of the NaK populations uses the NASA NaK-module as a benchmark. It follows the general statistical approach to developing all other ORDEM2010-required LEO populations (for various types of debris and across a wide range of object sizes). This paper describes, in detail, each major step in the NaK-population derivation, including a specific discussion on the conversion between Haystack-measured radar-cross-sections and object-size distribution for the NaK droplets. Modeling results show that the RORSAT debris population is stable for the time period under study and that Haystack data sets are fairly consistent over the observations of multiple years.

  5. Space-based detection of space debris by photometric and polarimetric characteristics

    NASA Astrophysics Data System (ADS)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  6. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  7. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  8. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  9. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  10. Possible Fengyun-1C debris fall

    NASA Astrophysics Data System (ADS)

    Golebiewska, J.; Nowak, M.; Muszyński, A.; Wnuk, E.

    2017-05-01

    A fall of small objects took place on 27th April 2012 in Wargowo village near Oborniki, about 25 km NW from Poznań (Poland). There was only one eye-witness of the fall, who found two separate pieces (ca. 2.7 cm and ca. 2 cm), with several small additional fragments. After microscopic observations and chemical analysis a meteoritic origin of these objects was excluded. They are identified as space debris, therefore man-made. The most probable source of the observed fall was space debris 35127 Fengyun 1C DEB, created during destruction of the Chinese weather satellite Fengyun-1C (FY-1C).

  11. A Sensitivity Study on the Effectiveness of Active Debris Removal in LEO

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Johnson, Nicholas L.

    2007-01-01

    The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.

  12. A deorbiter CubeSat for active orbital debris removal

    NASA Astrophysics Data System (ADS)

    Hakima, Houman; Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-05-01

    This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat's propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471 km (i.e., 100 km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.

  13. Orbital Debris: the Growing Threat to Space Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.

  14. Ground-Based Observing Campaign of Briz-M Debris

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  15. Launch activity and orbital debris mitigation : second quarter 2002 Quarterly Launch Report

    DOT National Transportation Integrated Search

    2002-01-01

    Since the start of human space activity, the number of orbital debris, or artificial objects orbiting Earth that are no longer functional, : has steadily increased. These debris make up 95 percent of all orbiting space objects and consist of spent sa...

  16. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study

    NASA Astrophysics Data System (ADS)

    Gómez, Natalia Ortiz; Walker, Scott J. I.

    2015-08-01

    The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.

  17. Controlling the motion of a spacecraft when approaching a large object of space debris

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Budyanskiy, A. A.; Razumnyi, Yu. N.

    2017-07-01

    The problem of calculating the parameters of maneuvering a spacecraft as it approaches a large object of space debris (LOSD) in close near-circular noncoplanar orbits has been considered. In [1-4], the results of analyzing the problem of the flyby of the separated LOSD groups have been presented. It has been assumed that a collector spacecraft approaches the LOSD and captures it or it is inserted into the nozzle of a small spacecraft that has a proper propulsion system (PS). However, in these papers, the flight from one object to another was only analyzed and the problem of approaching to LOSD with a given accuracy was not considered. This paper is a supplement to the cycle of papers [1-4]. It is assumed that, the final stage of approaching the LOSD is implemented by maneuvering in many orbits (up to several dozens) with low-thrust engines, but the PS operating time is fairly small compared with the orbit period in order to make it possible to use impulse approximation in the calculations.

  18. What's New for Laser Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Lander, Mike

    2011-11-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm is now a reality that we ignore at our peril. The least costly, and most comprehensive, solution is Laser Orbital Debris Removal (LODR). In this approach, a high power pulsed laser on the Earth creates a laser-ablation jet on the debris object's surface which provides the small impulse required to cause it to re-enter and burn up in the atmosphere. The LODR system should be located near the Equator, and includes the laser, a large, agile mirror, and systems for active detection, tracking and atmospheric path correction. In this paper, we discuss advances that have occurred since LODR was first proposed, which make this solution to the debris problem look quite realistic.

  19. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  20. Risk Management of Jettisoned Objects in LEO

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Gray, Charles

    2011-01-01

    The construction and maintenance of the International Space Station (ISS) has led to the release of many objects into its orbital plane, usually during the course of an extra-vehicular activity (EVA). Such releases are often unintentional, but in a growing number of cases, the jettison has been intentional, conducted after a careful assessment of the net risk to the partnership and to other objects in space. Since its launch in 1998 the ISS has contributed on average at least one additional debris object that is simultaneously in orbit with the station, although the number varies widely from zero to eight at any one moment. All of these objects present potential risks to other objects in orbit. Whether it comes from known and tracked orbiting objects or from unknown or untrackable objects, collision with orbital debris can have disastrous consequences. Objects greater than 10cm are generally well documented and tracked, allowing orbiting spacecraft or satellites opportunities to perform evasive maneuvers (commonly known as Debris Avoidance Maneuvers, or DAMs) in the event that imminent collision is predicted. The issue with smaller debris; however, is that it is too numerous to be tracked effectively and yet still poses disastrous consequences if it intercepts a larger object. Due to the immense kinetic energy of any item in orbit, collision with debris as small as 1cm can have catastrophic consequences for many orbiting satellites or spacecraft. Faced with the growing orbital debris threat and the potentially catastrophic consequences of a collision-generated debris shower originating in an orbit crossing the ISS altitude band, in 2007 the ISS program manger asked program specialists to coordinate a multilateral jettison policy amongst the ISS partners. This policy would define the acceptable risk trade rationale for intentional release of a debris object, and other mandatory constraints on such jettisons to minimize the residual risks whenever a jettison was

  1. The world state of orbital debris measurements and modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  2. Modeling the long-term evolution of space debris

    DOEpatents

    Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.

    2017-03-07

    A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.

  3. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    NASA Technical Reports Server (NTRS)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  4. The INAF contribution to the ASI Space Debris program: observational activities.

    NASA Astrophysics Data System (ADS)

    Pupillo, G.; Salerno, E.; Bartolini, M.; Di Martino, M.; Mattana, A.; Montebugnoli, S.; Portelli, C.; Pluchino, S.; Schillirò, F.; Konovalenko, A.; Nabatov, A.; Nechaeva, M.

    Space debris are man made objects orbiting around Earth that pose a serious hazard for both present and future human activities in space. Since 2007 the Istituto Nazionale di Astrofisica (INAF) carried out a number of radar campaigns in the framework of the ASI ``Space Debris'' program. The observations were performed by using bi- and multi-static radars, composed of the INAF 32-m Italian radiotelescopes located at Medicina and Noto (used as receivers) and the 70-m parabolic antenna at Evpatoria (Ukraine) used as transmitter. The 32 m Ventspils antenna in Latvia also participated in the last campaign at the end of June 2010. Several kinds of objects in various orbital regions (radar calibrators, rocket upper stages, debris of different sizes) were observed and successfully detected. Some unknown objects were also discovered in LEO during the beam-park sessions. In this paper we describe some results of the INAF-ASI space debris research activity.

  5. Implementation of an open-scenario, long-term space debris simulation approach

    NASA Astrophysics Data System (ADS)

    Stupl, J.; Nelson, B.; Faber, N.; Perez, A.; Carlino, R.; Yang, F.; Henze, C.; Karacalioglu, A.; O'Toole, C.; Swenson, J.

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance scheme. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps in the order of several (5-15) days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions, space object parameters and orbital parameters of the conjunctions and take place in much smaller timeframes than 5-15 days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in LEO, propagates all objects with high precision, and advances with variable-sized time-steps as small as one second. It allows the assessment of the (potential) impact of changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the

  6. Characterization of Hypervelocity Impact Debris from the DebriSat Tests

    NASA Astrophysics Data System (ADS)

    Adams, P. M.; Sheaffer, P. M.; Lingley, Z.; Radhakrishnan, G.

    The DebriSat program consisted of 3 hypervelocity impact tests conducted in 2 Torr of air with 7 km/s, 600 g aluminum projectiles. In the first test, Pre Preshot, the target consisted of multiple layers of fiberglass, stainless steel and Kevlar fabric. No soft catch foam was used. The subsequent two tests, DebrisLV and DebriSat, were designed to simulate hypervelocity impacts with a launch vehicle upper stage and a modern LEO satellite, respectively. The interior of the chamber was lined with soft catch foam to trap break-up fragments. In all three tests, witness plates were placed near the target to sample impact debris and determine its reflectance, composition and spectral properties. Reflectance measurements are important for calculating the size of orbital hypervelocity impact fragments. The debris from the Pre Preshot test consisted of a two-phase mixture formed from solidified molten silicate and steel droplets. Individual droplets ranged from 100 μm to 10 nm. The reflectance of witness plates dropped from 95% to 20-30% as a result of the debris. Debris collected on witness plates in the DebrisLV and DebriSat tests consisted of μm to nm-sized solidified molten metallic droplets in a matrix of condensed vaporized soft catch. Disordered graphitic carbon was also detected. The reflectance of debris-covered witness plates dropped from 95% to 5%. The dramatic decrease in reflectance for hypervelocity impact debris is attributed to the effect of scattering from μm to nm sized solidified molten metallic droplets and the presence of graphitic carbon, when organics are present. The presence of soft catch in the later tests and the high organic content with graphitic carbon in the debris appear to be responsible for this much lower post-test reflectance. Understanding orbital debris reflectance is critical for estimating size and determining debris detectability.

  7. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.

  8. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  9. Comparison of national space debris mitigation standards

    NASA Astrophysics Data System (ADS)

    Kato, A.

    2001-01-01

    Several national organizations of the space faring nations have established Space Debris Mitigation Standards or Handbooks to promote efforts to deal with the space debris issue. This paper introduces the characteristics of each document and compares the structure, items and level of requirements. The contents of these standards may be slightly different from each other but the fundamental principles are almost the same; they are (1) prevention of on-orbit breakups, (2) removal of mission terminated spacecraft from the useful orbit regions, and (3) limiting the objects released during normal operations. The Inter-Agency Space Debris Coordination Committee has contributed considerably to this trend. The Committee also found out by its recent survey that some commercial companies have begun to adopt the debris mitigation measures for their projects. However, the number of organizations that have initiated this kind of self-control is still limited, so the next challenge of the Committee is to promote the Space Debris Mitigation Guidelines world-wide. IADC initiated this project in October 1999 and a draft is being circulated among the member agencies.

  10. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  11. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  12. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  13. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  14. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in

  15. Optical Studies of Orbital Debris at GEO Using Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K. J.; Rodriquez,H. M.; Barker, E.

    2008-01-01

    Beginning in March, 2007, optical observations of debris at geosynchronous orbit (GEO) were commenced using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan's 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope's field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected on MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope then follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. Objects fainter than 15th are largely uncataloged and have a completely different angular rate distribution than brighter objects. Combining the information obtained for both faint and bright objects yields a more complete picture of the debris environment rather than just concentrating on the faint debris. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. This paper reports on results from two 14 night runs with both telescopes: in March and November 2007: (1) A significant fraction of objects fainter than

  16. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph

    2013-08-01

    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal

  17. Active space debris removal by using laser propulsion

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.

    2013-03-01

    At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.

  18. Post-Newtonian equations of motion for LEO debris objects and space-based acquisition, pointing and tracking laser systems

    NASA Astrophysics Data System (ADS)

    Gambi, J. M.; García del Pino, M. L.; Gschwindl, J.; Weinmüller, E. B.

    2017-12-01

    This paper deals with the problem of throwing middle-sized low Earth orbit debris objects into the atmosphere via laser ablation. The post-Newtonian equations here provided allow (hypothetical) space-based acquisition, pointing and tracking systems endowed with very narrow laser beams to reach the pointing accuracy presently prescribed. In fact, whatever the orbital elements of these objects may be, these equations will allow the operators to account for the corrections needed to balance the deviations of the line of sight directions due to the curvature of the paths the laser beams are to travel along. To minimize the respective corrections, the systems will have to perform initial positioning manoeuvres, and the shooting point-ahead angles will have to be adapted in real time. The enclosed numerical experiments suggest that neglecting these measures will cause fatal errors, due to differences in the actual locations of the objects comparable to their size.

  19. Sizing of "Mother Ship and Catcher" Concepts for LEO Small Debris Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most Low Earth Orbit (LEO) debris lies in a limited number of inclination "bands" associated with launch latitudes, or with specific useful orbit inclinations (such as polar orbits). Such narrow inclination bands generally have a uniform spread over all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. This complicates concept of rendezvous and capture for debris removal. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a base can serve as a single space-based launch facility (a "mother ship") that can tend and then send tiny individual catcher devices for each debris object, as the facility drifts into the same RAAN as the higher object. This presentation will highlight characteristic system requirements of such an architecture, including structural and navigation requirements, power, mass and dV budgets for both the mother ship and the mass-produced common catcher devices that would clean out selected inclination bands. The altitude and inclination regime over which a band is to be cleared, the size distribution of the debris, and the inclusion of additional mission priorities all affect the sizing of the system. It is demonstrated that major LEO hazardous debris reductions can be realized in each band with a single LEO launch of a single mother ship, with simple attached catchers of total mass less than typical commercial LEO launch capability.

  20. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  1. System, Apparatus, and Method for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Hickey, Christopher J. (Inventor); Spehar, Peter T. (Inventor); Griffith, Sr., Anthony D. (Inventor); Kohli, Rajiv (Inventor); Burns, Susan H. (Inventor); Gruber, David J. (Inventor); Lee, David E. (Inventor); Robinson, Travis M. (Inventor); Damico, Stephen J. (Inventor); Smith, Jason T. (Inventor)

    2017-01-01

    Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.

  2. A methodology for selective removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.

    1992-01-01

    Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.

  3. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  4. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  5. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.

  6. Debris mapping sensor technology project summary: Technology flight experiments program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.

  7. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  8. The Small Size Debris Population at GEO from Optical Observations

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2017-01-01

    We have observed the geosynchronous orbit (GEO) debris population at sizes smaller than 10 cm using optical observations with the 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile. The IMACS f/2 imaging camera with a 0.5-degree diameter field of view has been used in small area surveys of the GEO regime to study the population of optically faint GEO debris. The goal is to estimate the population of GEO debris that is fainter than can be studied with 1-meter class telescopes. A significant population of objects fainter than R = 19th magnitude has been found. These objects have observed with angular rates consistent with circular orbits and orbital inclinations up to 15 degrees at GEO. A sizeable number of these objects have significant brightness variations ("flashes") during the 5-second exposure, which suggest rapid changes in the albedo-projected size product.

  9. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    NASA Technical Reports Server (NTRS)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  10. Remote sensing-based detection and quantification of roadway debris following natural disasters

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan A. N.; Aros-Vera, Felipe; Holguín-Veras, José

    2016-05-01

    Rapid knowledge of road network conditions is vital to formulate an efficient emergency response plan following any major disaster. Fallen buildings, immobile vehicles, and other forms of debris often render roads impassable to responders. The status of roadways is generally determined through time and resource heavy methods, such as field surveys and manual interpretation of remotely sensed imagery. Airborne lidar systems provide an alternative, cost-effective option for performing network assessments. The 3D data can be collected quickly over a wide area and provide valuable insight about the geometry and structure of the scene. This paper presents a method for automatically detecting and characterizing debris in roadways using airborne lidar data. Points falling within the road extent are extracted from the point cloud and clustered into individual objects using region growing. Objects are classified as debris or non-debris using surface properties and contextual cues. Debris piles are reconstructed as surfaces using alpha shapes, from which an estimate of debris volume can be computed. Results using real lidar data collected after a natural disaster are presented. Initial results indicate that accurate debris maps can be automatically generated using the proposed method. These debris maps would be an invaluable asset to disaster management and emergency response teams attempting to reach survivors despite a crippled transportation network.

  11. Predicting debris

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1988-01-01

    The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.

  12. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  13. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  14. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 has reignited interest in using active debris removal to remediate the near-Earth orbital debris environment. A recent NASA study shows that, in order to stabilize the environment in the low Earth orbit (LEO) region for the next 200 years, active debris removal of about five large and massive (1 to more than 8 metric tons) objects per year is needed. To develop the capability to remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development.

  15. Modeling the space debris environment with MASTER-2009 and ORDEM2010

    NASA Astrophysics Data System (ADS)

    Flegel, Sven Kevin; Krisko, Paula; Gelhaus, Johannes; Wiedemann, Carsten; Moeckel, Marek; Krag, Holger; Klinkrad, Heiner; Xu, Yu-Lin; Horstman, Matthew; Matney, Mark; Vörsmann, Peter

    The two software tools MASTER-2009 and ORDEM2010 are the ESA and NASA reference software tools respectively which describe the earth's debris environment. The primary goal of both programs is to allow users to estimate the object flux onto a target object for mission planning. The current paper describes the basic distinctions in the model philosophies. At the core of each model lies the method by which the object environment is established. Cen-tral to this process is the role played by the results from radar/telescope observations or impact fluxes on surfaces returned from earth orbit. The ESA Meteoroid and Space Debris Terrestrial Environment Reference Model (MASTER) is engineered to give a realistic description of the natural and the man-made particulate environment of the earth. Debris sources are simulated based on detailed lists of known historical events such as fragmentations or solid rocket motor firings or through simulation of secondary debris such as impact ejecta or the release of paint flakes from degrading spacecraft surfaces. The resulting population is then validated against historical telescope/radar campaigns using the ESA Program for Radar and Optical Observa-tion Forecasting (PROOF) and against object impact fluxes on surfaces returned from space. The NASA Orbital Debris Engineering Model (ORDEM) series is designed to provide reliable estimates of orbital debris flux on spacecraft and through telescope or radar fields-of-view. Central to the model series is the empirical nature of the input populations. These are derived from NASA orbital debris modeling but verified, where possible, with measurement data from various sources. The latest version of the series, ORDEM2010, compiles over two decades of data from NASA radar systems, telescopes, in-situ sources, and ground tests that are analyzed by statistical methods. For increased understanding of the application ranges of the two programs, the current paper provides an overview of the two

  16. Fleet Debris Levels

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  17. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    NASA Astrophysics Data System (ADS)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  18. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years

  19. Observing Strategies for Focused Orbital Debris Surveys Using the Magellan Telescope

    NASA Technical Reports Server (NTRS)

    Frith, James; Cowardin, Heather; Buckalew, Brent; Anz-Meador, Phillip; Lederer, Susan; Matney, Mark

    2017-01-01

    A breakup of the Titan 3C-17 Transtage rocket body was reported to have occurred on June 4th, 2014 at 02:38 UT by the Space Surveillance Network (SSN). Five objects were associated with this breakup and this is the fourth breakup known for this class of object. There are likely many more objects associated with this event that are not within the Space Surveillance Network's ability to detect and have not been catalogued. Several months after the breakup, observing time was obtained on the Magellan Baade 6.5 meter telescope to be used for observations of geosynchronous (GEO) space debris targets. Using the NASA Standard Satellite Breakup Model (SSBM), a simulated debris cloud of the recent Transtage breakup was produced and propagated forward in time. This provided right ascension, declination, and tracking rate predictions for where debris associated with this breakup may be more likely to be found in the sky over Magellan for our observing run. Magellan observations were then optimized using the angles and tracking rates from the model predictions to focus the search for Transtage debris. Data were collected and analysed and preliminary comparisons made between the number of objects detected and the number expected from the model. We present our results here.

  20. Space Object Query Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    STI is for a fact sheet on the Space Object Query Tool being created by the MDC. When planning launches, NASA must first factor in the tens of thousands of objects already in orbit around the Earth. The number of human-made objects, including nonfunctional spacecraft, abandoned launch vehicle stages, mission-related debris and fragmentation debris orbiting Earth has grown steadily since Sputnik 1 was launched in 1957. Currently, the U.S. Department of Defenses Joint Space Operations Center, or JSpOC, tracks over 15,000 distinct objects and provides data for more than 40,000 objects via its Space-Track program, found at space-track.org.

  1. Active Debris Removal System Based on Polyurethane Foam

    NASA Astrophysics Data System (ADS)

    Rizzitelli, Federico; Valdatta, Marcelo; Bellini, Niccolo; Candini Gian, Paolo; Rastelli, Davide; Romei, Fedrico; Locarini, Alfredo; Spadanuda, Antonio; Bagassi, Sara

    2013-08-01

    Space debris is an increasing problem. The exponential increase of satellite launches in the last 50 years has determined the problem of space debris especially in LEO. The remains of past missions are dangerous for both operative satellites and human activity in space. But not only: it has been shown that uncontrolled impacts between space objects can lead to a potentially dangerous situation for civil people on Earth. It is possible to reach a situation of instability where the big amount of debris could cause a cascade of collisions, the so called Kessler syndrome, resulting in the infeasibility of new space missions for many generations. Currently new technologies for the mitigation of space debris are under study: for what concerning the removal of debris the use of laser to give a little impulse to the object and push it in a graveyard orbit or to be destroyed in the atmosphere. Another solution is the use of a satellite to rendezvous with the space junk and then use a net to capture it and destroy it in the reentry phase. In a parallel way the research is addressed to the study of deorbiting solutions to prevent the formation of new space junk. The project presented in this paper faces the problem of how to deorbit an existing debris, applying the studies about the use of polyurethane foam developed by Space Robotic Group of University of Bologna. The research is started with the Redemption experiment part of last ESA Rexus program. The foam is composed by two liquid components that, once properly mixed, trig an expansive reaction leading to an increase of volume whose entity depends on the chemical composition of the two starting components. It is possible to perform two kind of mission: 1) Not controlled removal: the two components are designed to react producing a low density, high expanded, spongy foam that incorporates the debris. The A/m ratio of the debris is increased and in this way also the ballistic parameter. As a consequence, the effect of

  2. Active Removal of Large Debris: Electrical Propulsion Capabilities

    NASA Astrophysics Data System (ADS)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi

    2013-08-01

    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  3. The New NASA Orbital Debris Engineering Model ORDEM2000

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.

    2002-01-01

    The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.

  4. Space Debris Senso

    NASA Image and Video Library

    2017-12-11

    Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. Simultaneous Multi-Filter Optical Photometry of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira; Kelecy, Thomas

    2011-01-01

    Information on the physical characteristics of unresolved pieces of debris comes from an object's brightness, and how it changes with time and wavelength. True colors of tumbling, irregularly shaped objects can be accurately determined only if the intensity at all wavelengths is measured at the same time. In this paper we report on simultaneous photometric observations of objects at geosynchronous orbit (GEO) using two telescopes at Cerro Tololo Inter-American Observatory (CTIO). The CTIO/SMARTS 0.9-m observes in a Johnson B filter, while the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope) observes in a Cousins R filter. The two CCD cameras are electronically synchronized so that the exposure start time and duration are the same for both telescopes. Thus we obtain the brightness as a function of time in two passbands simultaneously, and can determine the true color of the object at any time. We will report here on such calibrated measurements made on a sample of GEO objects and what is the distribution of the observed B-R colors. In addition, using this data set, we will show what colors would be observed if the observations in different filters were obtained sequentially, as would be the case for conventional imaging observations with a single detector on a single telescope. Finally, we will compare our calibrated colors of GEO debris with colors determined in the laboratory of selected materials actually used in spacecraft construction.

  6. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  7. Final design of a space debris removal system

    NASA Astrophysics Data System (ADS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-12-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  8. Final design of a space debris removal system

    NASA Technical Reports Server (NTRS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-01-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  9. Adaption from LWIR to visible wavebands of methods to describe the population of GEO belt debris

    NASA Astrophysics Data System (ADS)

    Meng, Kevin; Murray-Krezan, Jeremy; Seitzer, Patrick

    2018-05-01

    Prior efforts to characterize the number of GEO belt debris objects by statistically analyzing the distribution of debris as a function of size have relied on techniques unique to infrared measurements of the debris. Specifically the infrared measurement techniques permitted inference of the characteristic size of the debris. This report describes a method to adapt the previous techniques and measurements to visible wavebands. Results will be presented using data from a NASA optical, visible band survey of objects near the geosynchronous orbit, GEO belt. This survey used the University of Michigan's 0.6-m Curtis-Schmidt telescope, Michigan Orbital DEbris Survey Telescope (MODEST), located at Cerro Tololo Inter-American Observatory in Chile. The system is equipped with a scanning CCD with a field of view of 1.6°×1.6°, and can detect objects smaller than 20 cm diameter at GEO.

  10. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  11. Evolution of large, organic debris after timber harvest: Maybeso Creek, 1949 to1978

    Treesearch

    Mason D. Bryant

    1980-01-01

    The Maybeso Creek valley was logged from 1953 to 1960. Stream maps showing large accumulations of debris and stream channel features were made in 1949 and updated to 1960. The objectives of this paper are to document the effects of natural and logging debris on channel morphome try and to examine the fate of logging debris during and after logging. Map sections from...

  12. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  13. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  14. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  15. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  16. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  17. Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.

    2006-01-01

    Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.

  18. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  19. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  20. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Abercromby, Kira J.; Abell, Paul

    2009-01-01

    A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer

  1. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    NASA Astrophysics Data System (ADS)

    Albercromby, Kira J.; Abell, Paul; Barker, Ed

    2009-03-01

    A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but

  2. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  3. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  4. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    NASA Technical Reports Server (NTRS)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  5. Highway Safety Program Manual: Volume 16: Debris Hazard Control and Cleanup.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 16 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on debris hazard control and cleanup. The purpose and objectives of such a program are outlined. Federal authority in the area of highway safety and policies regarding a debris control…

  6. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).

    PubMed

    Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental

    2018-03-01

    Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Active space debris removal by a hybrid propulsion module

    NASA Astrophysics Data System (ADS)

    DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.

    2013-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of

  8. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  9. Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M.

    The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.

  10. Observations of GEO Debris with the Magellan 6.5-m Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Burkhardt, Andrew; Cardonna, Tommaso; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Optical observations of geosynchronous orbit (GEO) debris are important to address two questions: 1. What is the distribution function of objects at GEO as a function of brightness? With some assumptions, this can be used to infer a size distribution. 2. Can we determine what the likely composition of individual GEO debris pieces is from studies of the spectral reflectance of these objects? In this paper we report on optical observations with the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile that attempt to answer both questions. Imaging observations over a 0.5 degree diameter field-of-view have detected a significant population of optically faint debris candidates with R > 19th magnitude, corresponding to a size smaller than 20 cm assuming an albedo of 0.175. Many of these objects show brightness variations larger than a factor of 2, suggesting either irregular shapes or albedo variations or both. The object detection rate (per square degree per hour) shows an increase over the rate measured in the 0.6-m MODEST observations, implying an increase in the population at optically fainter levels. Assuming that the albedo distribution is the same for both samples, this corresponds to an increase in the population of smaller size debris. To study the second issue, calibrated reflectance spectroscopy has been obtained of a sample of GEO and near GEO objects with orbits in the public U.S. Space Surveillance Network catalog. With a 6.5-m telescope, the exposures times are short (30 seconds or less), and provide simultaneous wavelength coverage from 4500 to 8000 Angstroms. If the observed objects are tumbling, then simultaneous coverage and short exposure times are essential for a realistic assessment of the object fs spectral signature. We will compare the calibrated spectra with lab-based measurements of simple spacecraft surfaces composed of a single material.

  11. Roll Call Debris - Race

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  12. Special Report Debris - Race

    EPA Pesticide Factsheets

    Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.

  13. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    NASA Technical Reports Server (NTRS)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  14. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly

  15. Predicting sediment delivery from debris flows after wildfire

    NASA Astrophysics Data System (ADS)

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.

    2015-12-01

    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the

  16. Approaches to dealing with meteoroid and orbital debris protection on the Space Station

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1990-01-01

    Viewgraphs and discussion on approaches to dealing with meteoroid and orbital debris protection on the space station are presented. The National Space Policy of February, 1988, included the following: 'All sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments, and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness.' The policy also tasked the National Security Council, which established an Interagency Group, which in turn produced an Interagency Report. NASA and DoD tasks to establish a joint plan to determine techniques to measure the environment, and techniques to reduce the environment are addressed. Topics covered include: orbital debris environment, meteoroids, orbital debris population, cataloged earth satellite population, USSPACECOM cataloged objects, and orbital debris radar program.

  17. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  18. F.I.D.O. Focused Integration for Debris Observation

    NASA Astrophysics Data System (ADS)

    Ploschnitznig, J.

    2013-09-01

    The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively "Teaching an old dog (FIDO), new tricks." Far too often, we are justly criticized for never "stepping out of the box". The philosophy of "if it's not broke, don't fix it" works great if you assume that we are not broke. The assumption that in order to "Find" new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high

  19. Debris disc constraints on planetesimal formation

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  20. Space Shuttle Debris Transport

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

  1. Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forest

    Treesearch

    Travis W. Idol; Phillip E. Pope; Rebecca A. Figler; Felix Ponder Jr.

    1999-01-01

    Coarse woody debris is an important component influencing forest nutrient cycling and contributes to long-term soil productivity. The common practice of classifying coarse woody debris into different decomposition classes has seldom been related to the chemistry/biochemistry of the litter, which is the long term objective of our research. The objective of this...

  2. Mid- and long-term debris environment projections using the EVOLVE and CHAIN models

    NASA Astrophysics Data System (ADS)

    Eichler, Peter; Reynolds, Robert C.

    1995-06-01

    Results of debris environment projections are of great importance for the evaluation of the necessity and effectiveness of debris mitigation measures. EVOLVE and CHAIN are two models for debris environment projections that have been developed independently using different conceptual approaches. A comparison of results from these two models therefore provides a means of validating debris environment projections which they have made. EVOLVE is a model that requires mission model projections to describe future space operation; these projections include launch date, mission orbit altitude and inclimation, mission duration, vehicle size and mass, and classification as an object capable of experiencing breakup from on-board stored energy. EVOLVE describes the orbital debris environment by the orbital elements of the objects in the environment. CHAIN is an analytic model that bins the debris environemnt in size and altitude rather than following the orbit evolution of individual debris fragments. The altitude/size bins are coupled by the initial spreading of fragments by collisions and the following orbital decay behavior. A set of test cases covering a variety of space usage scenarios have been defined for the two models. In this paper, a comparison of the results will be presented and sources of disagreement identified and discussed. One major finding is that despite differences in the results of the two models, the basic tendencies of the environment projections are independent of modeled uncertainties, leading to the demand of debris mitigation measures--explosion suppression and de-orbit of rocket bodies and payloads after mission completion.

  3. Shielding against debris

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G.; Avans, Sherman L.

    1988-01-01

    The damage to spacecraft caused by debris and design of the Space Station to minimize damage from debris are discussed. Although current estimates of the debris environment show that fragments bigger than 2 cm are not likely to hit the Space Station, orbital debris from about 0.5 mm to 2 cm will pose a hazard, especially on brittle surfaces, such as glass. Spacesuits are being designed to reduce debris caused dangers to astronauts during EVA. About 5 cm of high-strength aluminum are needed to prevent penetration by a 1 cm piece of aluminum with a mass near 1.5 g colliding at 10 km/sec. Because aluminum bumpers have the drawback of metallic debris ejected outward after a hypervelocity collision, the use of nonmetallic materials for bumpers is being studied. Methods of reducing the weight and volume of the shield for the Space Station are also being researched. A space station habitation module using bumpers has a 99.6 percent chance of avoiding penetration during its lifetime.

  4. Experimental evaluation of a system for human life detection under debris

    NASA Astrophysics Data System (ADS)

    Joju, Reshma; Konica, Pimplapure Ramya T.; Alex, Zachariah C.

    2017-11-01

    It is difficult to for the human beings to be found under debris or behind the walls in case of military applications. Due to which several rescue techniques such as robotic systems, optical devices, and acoustic devices were used. But if victim was unconscious then these rescue system failed. We conducted an experimental analysis on whether the microwaves could detect heart beat and breathing signals of human beings trapped under collapsed debris. For our analysis we used RADAR based on by Doppler shift effect. We calculated the minimum speed that the RADAR could detect. We checked the frequency variation by placing the RADAR at a fixed position and placing the object in motion at different distances. We checked the frequency variation by using objects of different materials as debris behind which the motion was made. The graphs of different analysis were plotted.

  5. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1993-01-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  6. The Top 10 Questions for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.

    2010-01-01

    This slide presentation reviews the requirement and issues around removal of debris from the earth orbital environment. The 10 questions discussed are: 1. Which region (LEO/MEO/GEO) has the fastest projected growth rate and the highest collision activities? 2. Can the commonly-adopted mitigation measures stabilize the future environment? 3. What are the objectives of active debris removal (ADR)? 4. How can effective ADR target selection criteria to stabilize the future LEO environment be defined? 5. What are the keys to remediate the future LEO environment? 6. What is the timeframe for ADR implementation? 7. What is the effect of practical/operational constraints? 8. What are the collision probabilities and masses of the current objects? 9. What are the benefits of collision avoidance maneuvers? 10. What is the next step?

  7. Tethers as Debris: Hydrocode Simulation of Impacts of Polymer Tether Fragments on Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    2003-01-01

    Tethers promise to find use in a variety of space applications. Despite being narrow objects, their great lengths result in them having large total areas. Consequently, tethers are very susceptible to being severed by orbital debris. Extensive work has been done designing tethers that resist severs by small debris objects, in order to lengthen their working lives. It is from this perspective that most recent work has considered the tether - debris question. The potential of intact tethers, or severed tether fragments, as debris, to pose a significant collision risk to other spacecraft has been less well studied. Understanding the consequences of such collisions is important in assessing the risks tethers pose to other spacecraft. This paper discusses the damage that polymer tethers may produce on aluminum plates, as revealed by hypervelocity impact simulations using the SPHC hydrodynamic code.

  8. A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew

    2017-01-01

    Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (<300 km), where atmospheric drag rapidly removes debris, and at very high altitudes beyond GEO (geostationary), where debris is practically non-existent. The vagueness of these boundaries has prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of penetrating a millimeter thick aluminum plate for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids in near Earth space.

  9. Flyby of large-size space debris objects and their transition to the disposal orbits in LEO

    NASA Astrophysics Data System (ADS)

    Baranov, Andrey A.; Grishko, Dmitriy A.; Razoumny, Yury N.; Jun, Li

    2017-06-01

    The article focuses on the flyby issue involving large-size space debris (LSSD) objects in low Earth orbits. The data on overall sizes of the known upper-stages and last stages of launch-vehicles make it possible to emphasize five compact groups of such objects from the Satellite catalogue in 600-2000 km altitude interval. The flyby maneuvers are executed by a single space vehicle (SV) that transfers the current captured LSSD object to the specially selected circular or elliptical disposal orbit (DO) and after a period of time returns to capture a new one. The flight is always realized when a value of the Right Ascension of the Ascending Node (RAAN) is approximately the same for the current DO and for an orbit of the following LSSD object. Distinctive features of changes in mutual distribution of orbital planes of LSSD within a group are shown on the RAAN deviations' evolution portrait. In case of the first three groups (inclinations 71°, 74° and 81°), the lines describing the relative orientation of orbital planes are quasi-parallel. Such configuration allows easy identification of the flyby order within a group, and calculation of the mission duration and the required total ΔV. In case of the 4th and the 5th groups the RAAN deviations' evolution portrait represents a conjunction of lines chaotically intersecting. The article studies changes in mission duration and in the required ΔV depending on the catalogue number of the first object in the flyby order. The article also contains a comparative efficiency analysis of the two world-wide known schemes applicable to LSSD objects' de-orbiting; the analysis is carried out for all 5 distinguished LSSD groups.

  10. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    comprehensive perturbation model was used topropagate all objects to a reference epoch. SDPA 2000The Russian Space Debris Prediction and Analysis (SDPA) model is the semi-analytical stochastic tool for medium- and long-term forecast of the man-madedebris environment (with size larger than 1 mm), for construction of spatialdensity and velocity distribution in LEO and GEO as well as for risk evaluation.The last version of SDPA 2000 consists of ten individual modules related to theaforementioned tasks. The total characteristics of space debris of the differentsizes are considered (without partition of these characteristics into specificsources). The current space debris environment is characterised a) by the spatialdensity dependence on the altitude and latitude of a point, as well as on size ofobjects and b) by a statistical distribution of the magnitude and direction of spaceobjects velocities in an inertial geocentric coordinate system. Thesecharacteristics are constructed on the basis of the complex application of theaccessible measuring information and series of a priori data. The comparison is performed by applying the models to a large number of target orbits specified by a grid in terms of impactor size (6 gridpoints), target orbit perigee altitude (16 gridpoints), and target orbit inclination (15 gridpoints). These result provide a characteristic diagram of integral fluxes for all models, which will be compared. Further to this, the models are applied to orbits of particular interest, namely the ISS orbit, and a sun-synchronous orbit. For these cases, the comparison will include the comparison of flux directionality and velocity. References 1. Liou, J.-C., M. J. Matney, P. D. Anz-Meador, D. Kessler, M. Jansen, and J. R.Theall, 2001, "The New NASA Orbital Debris Engineering ModelORDEM2000", NASA/TP-2002-210780. 2. P. Wegener, J. Bendisch, K.D. Bunte, H. Sdunnus; Upgrade of the ESAMASTER Model; Final Report of ESOC/TOS-GMA contract 12318/97/D/IM;May 2000 3. A.I. Nazarenko

  11. Human reaming debris: a source of multipotent stem cells.

    PubMed

    Wenisch, Sabine; Trinkaus, Katja; Hild, Anne; Hose, Dirk; Herde, Katja; Heiss, Christian; Kilian, Olaf; Alt, Volker; Schnettler, Reinhard

    2005-01-01

    The biological characteristics of human reaming debris (HRD) generated in the course of surgical treatment of long bone diaphyseal fractures and nonunions are still a matter of dispute. Therefore, the objective of the present investigation has been to characterize the intrinsic properties of human reaming debris in vitro. Samples of reaming debris harvested from 12 patients with closed diaphyseal fractures were examined ultrastucturally and were cultured under standard conditions. After a lag phase of 4-7 days, cells started to grow out from small bone fragments and established a confluent monolayer within 20-22 days. The cells were characterized according to morphology, proliferation capacity, cell surface antigen profile, and differentiation repertoire. The results reveal that human reaming debris is a source of multipotent stem cells which are able to grow and proliferate in vitro. The cells differentiate along the osteogenic pathway after induction and can be directed toward a neuronal phenotype, as has been shown morphologically and by the expression of neuronal markers after DMSO induction. These findings have prompted interest in the use of reaming debris-derived stem cells in cell and bone replacement therapies.

  12. Discrete Element Modelling of Floating Debris

    NASA Astrophysics Data System (ADS)

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed

    2016-04-01

    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  13. Comparison of Orbital Parameters for GEO Debris Predicted by LEGEND and Observed by MODEST: Can Sources of Orbital Debris be Identified?

    NASA Technical Reports Server (NTRS)

    Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.

    2006-01-01

    Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and

  14. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  15. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira J.; Rodriguez-Cowardin, Heather M.; Barker, Ed; Foreman, Gary; Horstman, Matt

    2009-01-01

    We report on optical observations of debris at geosynchronous Earth orbit (GEO) using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan s 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope s field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected with MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit and calibrated colors for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials.

  16. The New NASA Orbital Debris Engineering Model ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.

    2014-01-01

    The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2000, now referred to as ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 micron through larger than 1 m in non-GEO and 10 cm through larger than 1 m in GEO are available. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours of data from existing sources and from new sources than past ORDEM versions. The object data range in size from 10 µm to larger than 1 m, and include in situ and remote measurements. The in situ data reveals material characteristics of small particles. Mass densities are grouped in ORDEM 3.0 in terms of 'high-density', represented by 7.9 g/cc, 'medium-density' represented by 2.8 g/cc and 'low-density' represented by 1.4 g/cc. Supporting models have also advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intact spacecraft and rocket bodies, mission related debris, and explosion and collision event fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific populations are added from sodium potassium droplet releases, recent major accidental and deliberate collisions, and known anomalous debris events. This paper elaborates on the upgrades of this model over previous versions. Sample validation results with remote and in situ measurements are shown, and the consequences of including material density are discussed as it relates to heightened risks to crewed and robotic spacecraft

  17. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  18. Triggering conditions and mobility of debris flows associated to complex earthflows

    NASA Astrophysics Data System (ADS)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging

  19. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  20. Foreign Object Damage Behavior of a SiC/SiC Composite at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Pereira, J. Michael; Gyekenyesi, John P.; Choi, Sung R.

    2004-01-01

    Foreign object damage (FOD) behavior of a gas-turbine grade SiC/SiC ceramic matrix composite (CMC) was determined at 25 and 1316 C, employing impact velocities from 115 to 440 meters per second by 1.59-mm diameter stell-ball projectiles. Two different types of specimen support were used at each temperature: fully supported and partially supported. For a given temperature, the degree of post-impact strength degradation increased with increasing impact velocity, and was greater in a partially supported configuration than in a fully supported one. The elevated-temperature FOD resistance of the composite, particularly under partially supported loading at higher impact velocities greater than or equal to 350 meters per second, was significantly less than the ambient-temperature counterpart, attributed to a weakening effect of the composite. For fully supported loading, frontal contact stress played a major role in generating composite damage; whereas, for partially supported loading, both frontal contact and backside bending stresses were combined sources of damage generation. The SiC/SiC composite was able to survive higher energy impacts without complete structural failure but suffered more strength affecting damage from low energy impacts than AS800 and SN282 silicon nitrides.

  1. Economic analysis requirements in support of orbital debris regulatory policy

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  2. Recent Measurements of the Orbital Debris Environment at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stansbery, E. G.; Settecerri, T. J.; Africano, J. L.

    1999-01-01

    Space debris presents many challenges to current space operations. Although, the probability of collision between an operational spacecraft and a piece of space debris is quite small, the potential losses can be quite high. Prior to 1990, characterization of the orbital debris environment was divided into two categories. Objects larger than 10 cm are monitored by the United States Space Surveillance Network (SSN) and documented in the U.S. Space Command (USSPACECOM) catalog. Knowledge of debris smaller than 0.1 cm has come from the analyses of returned surfaces. The lack of information about the debris environment in the size range from 0.1 to 1 0 cm led to a joint NASA-DOD effort for orbital debris measurements using the Haystack radar and the unbuilt Haystack Auxiliary (HAX) radars. The data from these radars have been critical to the design of shielding for the International Space Station and have been extensively used in the creation of recent models describing the orbital debris environment. Recent debris campaigns have been conducted to verify and validate through comparative measurements, the results and conclusions drawn from the Haystack/HAX measurements. The Haystack/HAX measurements and results will be described as well as the results of the recent measurement campaigns.

  3. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  4. A search for debris disks in the Herschel-ATLAS

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Smith, D. J. B.; Stevens, J. A.; Jarvis, M. J.; Vidal Perez, E.; Marshall, J.; Dunne, L.; Eales, S.; White, G. J.; Leeuw, L.; Sibthorpe, B.; Baes, M.; González-Solares, E.; Scott, D.; Vieiria, J.; Amblard, A.; Auld, R.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; de Zotti, G.; Dye, S.; Eales, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Ibar, E.; Ivison, R. J.; Lagache, G.; Lopez-Caniego, M.; Maddox, S.; Negrello, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Samui, S.; Serjeant, S.; Temi, P.; Valtchanov, I.; Verma, A.

    2010-07-01

    Aims: We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  5. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  6. A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew

    2017-01-01

    Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (less than 300 km), where atmospheric drag rapidly removes debris, and at very high altitudes (beyond geostationary), where debris is practically non-existent. The vagueness of these boundaries and repeated questions from spacecraft projects have prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of producing a millimeter-deep crater in aluminum for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids throughout near-Earth space.

  7. Pay Me Now or Pay Me More Later: Start the Development of Active Orbital Debris Removal Now

    NASA Astrophysics Data System (ADS)

    McKnight, D.

    2010-09-01

    The objective of this paper is to examine when the aerospace community should proceed to develop and deploy active debris removal solutions. A two-prong approach is taken to examine both (1) operational hazard thresholds and (2) economic triggers. Research in the paper reinforces work by previous investigators that show accurately determining a hazard metric, and an appropriate threshold for that metric that triggers an imperative to implement active debris removal options, is difficult to formulate. A new operational hazard threshold defined by the doubling of the “lethal” debris environment coupled with the threshold that would affect insurance premiums is disclosed for the first time. The doubling of the lethal hazard at 850km and the annual probability of collision in the 650-1000km region may both occur as early as 2035. A simple static (i.e. no temporal dimension) economic threshold is derived that provides the clearest indicator that active debris removal solutions development and deployment should start immediately. This straightforward observation is based on the fact that it will always be at least an order of magnitude less expensive, quicker to execute, and operationally beneficial to remove mass from orbit as one large (several thousand kilograms) object rather than as the result of tens of thousands of fragments that would be produced from a catastrophic collision. Additionally, the ratio of lethal fragments to trackable objects is only ~1,000x yet there is a need for the collection efficiency to be ~10,000x so “sweeping” of lethal fragments is not viable. The practicality of the large object removal is tempered by the observation that one may have to remove ~10-50x derelict objects to prevent a single collision. This fact forces the imperative that removal needs to start now due to the delays that will be necessary not only to perfect/deploy approaches to debris removal and establish supporting policies/regulations but also because of the

  8. Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling

    NASA Astrophysics Data System (ADS)

    Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.

    2016-02-01

    In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.

  9. Effects of perturbations on space debris in supersynchronous storage orbits

    NASA Astrophysics Data System (ADS)

    Luu, Khanh Kim

    1998-12-01

    Accumulation of space debris in the geosynchronous region (GEO) has raised attention among spacefaring nations. The current mitigation measure supported is to boost satellites into supersynchronous orbits in the time before station-keeping fuel is expected to be exhausted. Because this solution does not remove mass from space, debris generation by fragmentation events remains a possibility. The collision hazard between inactive satellites in the supersynchronous region raises questions about the consequences of collisions in this regime and possible interaction with GEO. In considering the use of supersynchronous orbits for satellite disposal, the first concern is to determine the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with the GEO population in the future. This involves defining the useful GEO area and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' orbits. This document summarizes background information on debris in the GEO region, sources and management strategies, and then addresses the problem: Will orbits of fragments from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at what altitude should the storage orbit occupy such that collision fragments will not interfere with the GEO population? The methods and tools by which the effects of collisions in the supersynchronous region can be analyzed are discussed. A low-velocity collision model is employed to provide delta-velocities imparted to the fragments. An analytical study of perturbation effects, including solar and lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation pressure, follows in order to evaluate the magnitude of these

  10. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  11. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  12. Woody debris

    Treesearch

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  13. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  14. Cost-effective and robust mitigation of space debris in low earth orbit

    NASA Astrophysics Data System (ADS)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  15. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  16. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  17. Incidence of Debris Discs Around FGK Stars in the Solar Neighbourhood

    NASA Technical Reports Server (NTRS)

    Montesinos, B.; Eiroa, C.; Krivov, A. V.; Marshall, J. P.; Pilbratt, G. L.; Liseau, R.; Mora, A.; Maldonado, J.; Wolf, S.; Ertel, S.; hide

    2016-01-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighborhood. Methods. The full sample of 177 FGK stars with d approx. less than 20 pc proposed for the DUst around NEarby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 micrometers were obtained, and were complemented in some cases with data at 70 micrometers and at 250, 350, and 500 micrometer SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analyzed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d approx. less than 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26(+0.21/-0.14) (6 objects with excesses out of 23 F stars), 0.21(+0.17/-0.11) (7 out of 33 G stars), and 0.20(+0.14/-0.09) (10 out of 49 K stars); the fraction for all three spectral types together is 0.22(+0.08/-0.07) (23 out of 105 stars).The uncertainties correspond to a 95 confidence level. The medians of the upper limits of L(sub dust)/L(sub *) for each spectral type are 7.8 x 10(exp -7) (F), 1.4 x 10(exp -6) (G), and 2.2 x 10(exp -6) (K); the lowest values are around 4.0 x 10(exp -7). The incidence of debris

  18. Identification of a Debris Cloud from the Nuclear Powered SNAPSHOT Satellite with Haystack Radar Measurements

    NASA Technical Reports Server (NTRS)

    Stokely, C.; Stansbery, E.

    2006-01-01

    Data from the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar) have been used in the past to examine families of objects from individual satellite breakups or families of orbiting objects that can be isolated in altitude and inclination. This is possible because for some time after a breakup, the debris cloud of particles can remain grouped together in similar orbit planes. This cloud will be visible to the radar, in fixed staring mode, for a short time twice each day, as the orbit plane moves through the field of view. There should be a unique three-dimensional pattern in observation time, range, and range rate which can identify the cloud. Eventually, through slightly differing precession rates of the right ascension of ascending node of the debris cloud, the observation time becomes distributed so that event identification becomes much more difficult. Analyses of the patterns in observation time, range, and range rate have identified good debris candidates released from the polar orbiting SNAPSHOT satellite (International Identifier: 1965-027A). For orbits near 90o inclination, there is essentially no precession of the orbit plane. The SNAPSHOT satellite is a well known nuclear powered satellite launched in 1965 to a near circular 1300 km orbit with an inclination of 90.3o. This satellite began releasing debris in 1979 with new pieces being discovered and cataloged over the years. 51 objects are still being tracked by the United States Space Surveillance Network. An analysis of the Haystack data has identified at least 60 pieces of debris separate from the 51 known tracked debris pieces, where all but 2 of the 60 pieces have a size less than 10cm. The altitude and inclination (derived from range-rate with a circular orbit assumption) are consistent with the SNAPSHOT satellite and its tracked debris cloud.

  19. Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through post-impact strength testing for thin disks impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). The critical impact velocity in which the corresponding post-impact strength yielded the lowest value was V(sub c) approx. 440 and 300 m/s for AS800 and SN282, respectively. A unique lower-strength regime was typified for both silicon nitrides depending on impact velocity, attributed to significant radial cracking. The damages generated by projectile impact were typically in the forms of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike thick (3 mm) flexure bar specimens used in the previous studies, thin (2 mm) disk target specimens exhibited a unique backside radial cracking occurring on the reverse side just beneath the impact sites at and above impact velocity of 160 and 220 m/s for SN282 and AS800, respectively.

  20. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2012-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.

  1. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  2. Ingestion of plastic marine debris by longnose lancetfish (Alepisaurus ferox) in the North Pacific Ocean.

    PubMed

    Jantz, Lesley A; Morishige, Carey L; Bruland, Gregory L; Lepczyk, Christopher A

    2013-04-15

    Plastic marine debris affects species on most trophic levels, including pelagic fish. While plastic debris ingestion has been investigated in planktivorous fish in the North Pacific Ocean, little knowledge exists on piscivorous fish. The objectives of this study were to determine the frequency of occurrence and the composition of ingested plastic marine debris in longnose lancetfish (Alepisaurus ferox), a piscivorous fish species captured in the Hawaii-based pelagic longline fishery. Nearly a quarter (47 of 192) of A. ferox sampled contained plastic marine debris, primarily in the form of plastic fragments (51.9%). No relationship existed between size (silhouette area) or amount of plastic marine debris ingested and morphometrics of A. ferox. Although A. ferox are not consumed by humans, they are common prey for fish commercially harvested for human consumption. Further research is needed to determine residence time of ingested plastic marine debris and behavior of toxins associated with plastic debris. Published by Elsevier Ltd.

  3. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  4. The International Space Station and the Space Debris Environment: 10 Years On

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Klinkrad, Heiner

    2009-01-01

    For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be

  5. Final payload test results for the RemoveDebris active debris removal mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2017-09-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  6. Major safety and operational concerns for fuel debris criticality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonoike, K.; Sono, H.; Umeda, M.

    2013-07-01

    It can be seen from the criticality control viewpoint that the requirement divides the decommissioning work into two parts. One is the present condition where it is requested to prevent criticality and to monitor subcritical condition while the debris is untouched. The other is future work where the subcritical condition shall be ensured even if the debris condition is changed intentionally by raising water level, debris retrieval, etc. Repair of damages on the containment vessel (CV) walls is one of the most important objectives at present in the site. On completion of this task, it will become possible to raisemore » water levels in the CVs and to shield the extremely high radiation emitted from the debris but there is a dilemma: raising the water level in the CVs implies to bring the debris closer to criticality because of the role of water for slowing down neutrons. This may be solved if the coolant water will start circulating in closed loops, and if a sufficient concentration of soluble neutron poison (borated water for instance) will be introduced in the loop. It should be still noted that this solution has a risk of worsening corrosion of the CV walls. Design of the retrieval operation of debris should be proposed as early as possible, which must include a neutron poison concentration required to ensure that the debris chunk is subcritical. In parallel, the development of the measurement system to monitor subcritical condition of the debris chunk should be conducted in case the borated water cannot be used continuously. The system would be based on a neutron counter with a high sensitivity and an appropriate shield for gamma-rays, and the adequate statistical signal processing.« less

  7. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  8. Making Debris Avoidance Decisions for ESMO's EOS Mission Set

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    The presentation will cover the aspects of making debris risk decisions from the NASA Mission Director's perspective, specifically for NASA Earth Science Mission Operations (ESMO) Earth Observing System (EOS) mission set. ESMO has been involved in analyzing potential debris risk conjunctions with secondary objects since the inception of this discipline. Through the cumulated years of experience and continued exposure to various debris scenarios, ESMO's understanding of the problem and process to deal with this issue has evolved. The presentation will describe the evolution of the ESMO process, specifically as it relates to the maneuver execution and spacecraft risk management decision process. It will briefly cover the original Drag Make-Up Maneuver, several day, methodical manually intensive, ramp up waive off approach, to the present day more automated, pre-canned onboard command, tools based approach. The presentation will also cover the key information needed to make debris decisions and challenges in doing so while still trying to meet science goals, constellation constraints and manage resources. A slide or two at the end of the presentation, will be devoted to discussing what further improvements could be helpful to improve decision making and future process improvement plans challenges.

  9. Particle swarm optimization based space debris surveillance network scheduling

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  10. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  11. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    NASA Astrophysics Data System (ADS)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  12. Baseline for beached marine debris on Sand Island, Midway Atoll.

    PubMed

    Ribic, Christine A; Sheavly, Seba B; Klavitter, John

    2012-08-01

    Baseline measurements were made of the amount and weight of beached marine debris on Sand Island, Midway Atoll, June 2008-July 2010. On 23 surveys, 32,696 total debris objects (identifiable items and pieces) were collected; total weight was 740.4 kg. Seventy-two percent of the total was pieces; 91% of the pieces were made of plastic materials. Pieces were composed primarily of polyethylene and polypropylene. Identifiable items were 28% of the total; 88% of the identifiable items were in the fishing/aquaculture/shipping-related and beverage/household products-related categories. Identifiable items were lowest during April-August, while pieces were at their lowest during June-August. Sites facing the North Pacific Gyre received the most debris and proportionately more pieces. More debris tended to be found on Sand Island when the Subtropical Convergence Zone was closer to the Atoll. This information can be used for potential mitigation and to understand the impacts of large-scale events such as the 2011 Japanese tsunami. Published by Elsevier Ltd.

  13. Probing the debris disks of nearby stars with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Riley, Alexander; Strigari, Louis; Porter, Troy; Blandford, Roger

    2018-01-01

    Many nearby stars are known to host circumstellar debris disks, similar to our Sun's asteroid and Kuiper belts, that are believed to be the birthplace of extrasolar planets. The bodies in these objects passively emit gamma radiation resulting from interactions with cosmic rays, as previously observed from measurements of the gamma ray albedo of the Moon. We apply a point source analysis to four nearby debris disks using the past nine years of data taken by Fermi-LAT, and report on the updated prospects for detecting gamma-ray emission from these sources.

  14. Seasonal trends in abundance and composition of marine debris in selected public beaches in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mobilik, Julyus-Melvin; Ling, Teck-Yee; Husain, Mohd-Lokman Bin; Hassan, Ruhana

    2015-09-01

    The abundance and composition of marine debris were investigated at Saujana (in the state of Negeri Sembilan) and Batu Rakit (in the state of Terengganu) beaches during surveys conducted in December 2012 (northeast monsoon), May 2013 (intermediate monsoon) and July 2013 (southwest monsoon). A total of 4,682 items of debris weighing 231.4 kg were collected and sorted. Batu Rakit received substantially greater quantities of debris (815±717 items/km or 40.4±13.0 kg/km) compared to Saujana (745±444 items/km or 36.7±18.0 kg/km). Total debris item was more abundant during the southwest monsoon (SWM) (1,122±737 items/km) compared to the northeast monsoon (NEM) (825±593 items/ km) and the intermediate monsoon (IM) (394±4 items/km) seasons. Plastic category (88%) was the most numerous items collected and object items contributed 44.18% includes packaging, plastic fragments, cups, plastic shopping bags, plastic food wrapper, clear plastic bottles from the total debris items collected. Object items associated with common source (47%) were the highest debris accumulated, followed by terrestrial (30%) and marine (23%) sources. The high percentage of common and terrestrial sources during SWM season requires immediate action by marine environment stakeholders to develop and introduce strategies to reduce if not totally eliminates the marine debris in the marine environment. Awareness should be continued and focused on beach users and vessels' crew to alert them on the alarming accumulation rate of marine debris and its pathways into the marine environment.

  15. Floating Marine Debris in waters of the Mexican Central Pacific.

    PubMed

    Díaz-Torres, Evelyn R; Ortega-Ortiz, Christian D; Silva-Iñiguez, Lidia; Nene-Preciado, Alejandro; Orozco, Ernesto Torres

    2017-02-15

    The presence of marine debris has been reported recently in several oceans basins; there is very little information available for Mexican Pacific coasts, however. This research examined the composition, possible sources, distribution, and density of Floating Marine Debris (FMD) during nine research surveys conducted during 2010-2012 in the Mexican Central Pacific (MCP). Of 1820 floating objects recorded, 80% were plastic items. Sources of FMD were determined using key objects, which indicated that the most were related to the presence of the industrial harbor and of a growing fishing industry in the study area. Densities were relatively high, ranging from 40 to 2440objects/km 2 ; the highest densities were recorded in autumn. FMD were distributed near coastal regions, mainly in Jalisco, influenced by river outflow and surface currents. Our results seem to follow worldwide trends and highlight the need for further studies on potential ecological impacts within coastal waters of the MCP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An Attempt to Observe Debris from the Breakup of a Titan 3C-4 Transtage

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Matney, M. J.; Yanagisawa, T.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Horstman, M. F.; Seitzer, P.

    2007-01-01

    In February 2007 dedicated observations were made of the orbital space predicted to contain debris from the breakup of the Titan 3C-4 transtage back on February 21, 1992. These observations were carried out on the Michigan Orbital DEbris Survey Telescope (MODEST) in Chile with its 1.3deg field of view. The search region or orbital space (inclination and right ascension of the ascending node (RAAN) was predicted using NASA#s LEGEND (LEO-to-GEO Environment Debris) code to generate a Titan debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. Barker, et. al, (AMOS Conference Proceedings, 2006, pp. 596-604) used similar LEGEND predictions to correlate survey observations made by MODEST (February 2002) and found several possible night-to-night correlations in the limited survey dataset. One conc lusion of the survey search was to dedicate a MODEST run to observing a GEO region predicted to contain debris fragments and actual Titan debris objects (SSN 25000, 25001 and 30000). Such a dedicated run was undertaken with MODEST between February 17 and 23, 2007 (UT dates). MODEST#s limiting magnitude of 18.0 (S\\N approx.10) corresponds to a size of 22cm assuming a diffuse Lambertian albedo of 0.2. However, based on observed break-up data, we expect most debris fragments to be smaller than 22cm which implies a need to increase the effective sensitivity of MODEST for smaller objects. MODEST#s limiting size can be lowered by increasing the exposure time (20 instead of 5 seconds) and applying special image processing. The special processing combines individual CCD images to detect faint objects that are invisible on a single CCD image. Sub-images are cropped from six

  17. Debris Object Orbit Initialization Using the Probabilistic Admissible Region with Asynchronous Heterogeneous Observations

    NASA Astrophysics Data System (ADS)

    Zaidi, W. H.; Faber, W. R.; Hussein, I. I.; Mercurio, M.; Roscoe, C. W. T.; Wilkins, M. P.

    One of the most challenging problems in treating space debris is the characterization of the orbit of a newly detected and uncorrelated measurement. The admissible region is defined as the set of physically acceptable orbits (i.e. orbits with negative energies) consistent with one or more measurements of a Resident Space Object (RSO). Given additional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo uncertainty representation approach using topocentric spherical coordinates. Ultimately, a PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital propagations in a multiple hypothesis tracking framework such as Finite Set Statistics (FISST). To date, measurements used to build the PAR have been collected concurrently and by the same sensor. In this paper, we allow measurements to have different time stamps. We also allow for non-collocated sensor collections; optical data can be collected by one sensor at a given time and radar data collected by another sensor located elsewhere. We then revisit first principles to link asynchronous optical and radar measurements using both the conservation of specific orbital energy and specific orbital angular momentum. The result from the proposed algorithm is an implicit-Bayesian and non-Gaussian representation of orbital state uncertainty.

  18. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from publicly...

  19. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from publicly...

  20. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from publicly...

  1. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from publicly...

  2. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from publicly...

  3. Confronting Space Debris: Strategies and Warnings from Comparable Examples Including Deepwater Horizon

    DTIC Science & Technology

    2010-01-01

    Horizon (DH) was an ultra deepwater , semisubmers- ible offshore drilling rig contracted to BP by its owner, Transocean. The rig was capable of...Warnings from Comparable Examples Including Deepwater Horizon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...research quality and objectivity. StrategieS and WarningS from Comparable exampleS inCluding deepWater Horizon Confronting SpaCe DebriS dave baiocchi

  4. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    PubMed

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  5. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

    NASA Astrophysics Data System (ADS)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  6. Drift analysis of MH370 debris in the southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Mu, Lin; Bao, Xianwen; Song, Jun; Ding, Yang

    2018-05-01

    Malaysian Airlines Flight MH370 disappeared on 8 March 2014, while flying from Kuala Lumpur to Beijing. A flaperon from the flight was found on Reunion Island in July 2015. Two more confirmed pieces of debris were found in Mauritius and Tanzania, and 19 unconfirmed items were found off Mozambique, South Africa, and Madagascar. Drift buoys originating from the designated underwater search area arrived in Reunion Island, Mauritius, and Tanzania. Some of these buoys took a similarly long time as did real debris to reach these destinations, following a heading northeast and then west. For the present study, a maritime object drift prediction model was developed. "High resolution surface currents, Stokes drift, and winds" were processed, and a series of model experiments were constructed. The predicted trajectories of the modeled objects were similar to the observed trajectories of the drift buoys. Many modeled objects drifted northward then westward, ending up in Reunion Island, Mauritius, and Tanzania with probabilities of 5‰, 5‰, and 19‰, respectively. At the end of the simulation, most objects were located near 10°S in the western Indian Ocean. There were significant differences between experiments with different leeway factors, possibly because of the influence of southeast trade winds. The north part of the underwater search area is most likely to be the crash site, because the predicted trajectories of objects originating here are consistent with the many pieces of debris found along the east coast of Africa and the absence of such findings on the west coast of Australia.

  7. Need for a network of observatories for space debris dynamical and physical characterization

    NASA Astrophysics Data System (ADS)

    Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick

    2016-01-01

    Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit

  8. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for

  9. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  10. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  11. ESA activities on satellite laser ranging to non-cooperative objects

    NASA Astrophysics Data System (ADS)

    Flohrer, Tim; Krag, Holger; Funke, Quirin; Jilete, Beatriz; Mancas, Alexandru

    2016-07-01

    Satellite laser ranging (SLR) to non-cooperative objects is an emerging technology that can contribute significantly to operational, modelling and mitigation needs set by the space debris population. ESA is conducting various research and development activities in SLR to non-cooperative objects. ESA's Space Situational Awareness (SSA) program supports specific activities in the Space Surveillance and Tracking (SST) segment. Research and development activities with operational aspects are run by ESA's Space Debris Office. At ESA SSA/SST comprises detecting, cataloguing and predicting the objects orbiting the Earth, and the derived applications. SST aims at facilitating research and development of sensor and data processing technologies and of related common components while staying complementary with, and in support of, national and multi-national European initiatives. SST promotes standardisation and interoperability of the technology developments. For SLR these goals are implemented through researching, developing, and deploying an expert centre. This centre shall coordinate the contribution of system-external loosely connected SLR sensors, and shall provide back calibration and expert evaluation support to the sensors. The Space Debris Office at ESA is responsible for all aspects related to space debris in the Agency. It is in charge of providing operational support to ESA and third party missions. Currently, the office studies the potential benefits of laser ranging to space debris objects to resolve close approaches to active satellites, to improve re-entry predictions of time and locations, and the more general SLR support during contingency situations. The office studies the determination of attitude and attitude motion of uncooperative objects with special focus on the combination of SLR, light-curve, and radar imaging data. Generating sufficiently precise information to allow for the acquisition of debris objects by a SLR sensor in a stare

  12. Distribution and assessment of marine debris in the deep Tyrrhenian Sea (NW Mediterranean Sea, Italy).

    PubMed

    Angiolillo, Michela; Lorenzo, Bianca di; Farcomeni, Alessio; Bo, Marzia; Bavestrello, Giorgio; Santangelo, Giovanni; Cau, Angelo; Mastascusa, Vincenza; Cau, Alessandro; Sacco, Flavio; Canese, Simonepietro

    2015-03-15

    Marine debris is a recognized global ecological concern. Little is known about the extent of the problem in the Mediterranean Sea regarding litter distribution and its influence on deep rocky habitats. A quantitative assessment of debris present in the deep seafloor (30-300 m depth) was carried out in 26 areas off the coast of three Italian regions in the Tyrrhenian Sea, using a Remotely Operated Vehicle (ROV). The dominant type of debris (89%) was represented by fishing gears, mainly lines, while plastic objects were recorded only occasionally. Abundant quantities of gears were found on rocky banks in Sicily and Campania (0.09-0.12 debris m(-2)), proving intense fishing activity. Fifty-four percent of the recorded debris directly impacted benthic organisms, primarily gorgonians, followed by black corals and sponges. This work provides a first insight on the impact of marine debris in Mediterranean deep ecosystems and a valuable baseline for future comparisons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Legal Consequences of the Pollution of Outer Space with Space Debris

    NASA Astrophysics Data System (ADS)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  14. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption

    PubMed Central

    Rochman, Chelsea M.; Tahir, Akbar; Williams, Susan L.; Baxa, Dolores V.; Lam, Rosalyn; Miller, Jeffrey T.; Teh, Foo-Ching; Werorilangi, Shinta; Teh, Swee J.

    2015-01-01

    The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health. PMID:26399762

  15. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  16. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  17. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  18. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    NASA Astrophysics Data System (ADS)

    Springer, H.; Miller, W.; Levatin, J.; Pertica, A.; Olivier, S.

    2010-09-01

    disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.

  19. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  20. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software

  1. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software

  2. Thermophysical Properties of Terrestrial Rock and Debris-covered Glaciers as Analogs for Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Piatek, J. L.

    2009-03-01

    A survey of the thermophysical properties of terrestrial rock and debris-covered glaciers suggests these properties may be used to distinguish between massive debris-covered ice and intimate rock/ice mixtures in martian lobate debris aprons.

  3. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  4. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  5. A new debris sensor based on dual excitation sources for online debris monitoring

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian

    2015-09-01

    Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.

  6. Space Debris Mitigation CONOPS Development

    DTIC Science & Technology

    2013-06-01

    SPACE DEBRIS MITIGATION CONOPS DEVELOPMENT THESIS Earl B. Alejandro, Capt, USAF AFIT-ENV-13-J...04DL SPACE DEBRIS MITIGATION CONOPS DEVELOPMENT THESIS Presented to the Faculty Department of Systems Engineering and Management...June 2013 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENV-13-J-04DL SPACE DEBRIS

  7. Impact Forces from Tsunami-Driven Debris

    NASA Astrophysics Data System (ADS)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  8. Detecting debris flows using ground vibrations

    USGS Publications Warehouse

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  9. NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy

    NASA Technical Reports Server (NTRS)

    Gavin, Richard T.

    2010-01-01

    NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.

  10. Remote Sensing of Plastic Debris

    NASA Astrophysics Data System (ADS)

    Garaba, S. P.; Dierssen, H. M.

    2016-02-01

    Plastic debris is becoming a nuisance in the environment and as a result there has been a dire need to synoptically detect and quantify them in the ocean and on land. We investigate the possible utility of spectral information determined from hand held, airborne and satellite remote sensing tools in the detection and identification polymer source of plastic debris. Sampled debris will be compared to our derived spectral library of typical raw polymer sources found at sea and in household waste. Additional work will be to determine ways to estimate the abundance of plastic debris in target areas. Implications of successful remote detection, tracking and quantification of plastic debris will be towards validating field observations over large areas and at repeated time intervals both on land and at sea.

  11. Rocky Planetary Debris Around Young WDs

    NASA Astrophysics Data System (ADS)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  12. A Hurricane Hits Home: An Interactive Science Museum Exhibit on Ocean Mapping and Marine Debris

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Vasta, D. J.; Gager, N. C.; Fruth, B. W.; LeClair, J.

    2016-12-01

    As part of the outreach component for a project involving the detection and analysis of marine debris generated by Super Storm Sandy, The Center for Coastal and Ocean Mapping / Joint Hydrographic Center partnered with The Seacoast Science Center to develop an interactive museum exhibit that engages the public with a touchscreen based game revolving around the detection and identification of marine debris. "A Hurricane Hits Home" is a multi-station touchscreen exhibit geared towards children, and integrates a portion of a historical wooden shipwreck into its physical design. The game invites museum guests to examine a number of coastal regions and harbors in Sandy affected areas. It teaches visitors about modern mapping technology by having them control boats with multibeam sonars and airplanes with lidar sensors. They drag these vehicles around maps to reveal the underlying bathymetry below the satellite photos. They learn the applications and limitations of sonar and lidar by where the vehicles can and cannot collect survey data (e.g. lidar doesn't work in deep water, and the boat can't go in shallow areas). As users collect bathymetry data, they occasionally reveal marine debris objects on the seafloor. Once all the debris objects in a level have been located, the game challenges them to identify them based on their appearance in the bathymetry data. They must compare the simulated bathymetry images of the debris targets to photos of possible objects, and choose the correct matches to achieve a high score. The exhibit opened January 2016 at the Seacoast Science Center in Rye, NH.

  13. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    NASA Technical Reports Server (NTRS)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  14. The New NASA Orbital Debris Engineering Model ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.

    2014-01-01

    The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 microns through 1 m in non-GEO and 10 cm through 1 m in GEO are modeled. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours from existing data sources and from new sources that weren't available to past versions. Returned surfaces, ground tests, and remote sensors all contribute data. The returned surface and ground test data reveal material characteristics of small particles. Densities of fragmentation debris particles smaller than 10 cm are grouped in ORDEM 3.0 in terms of high-, medium-, and lowdensities, along with RORSAT sodium-potassium droplets. Supporting models have advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intacts, mission related debris (MRD), and explosion and collision fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific, well defined populations are added like the Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium (NaK) droplets, recent major accidental and deliberate collision fragments, and known anomalous debris event fragments. For microdebris of sizes 10 microns to 1 mm the ODPO uses an in-house Degradation/Ejecta model in which a MLE technique is used with returned surface data to estimate populations. This paper elaborates on the upgrades of this model over previous versions highlighting the material density splits and consequences of

  15. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  16. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  17. Deformation of debris-ice mixtures

    NASA Astrophysics Data System (ADS)

    Moore, Peter L.

    2014-09-01

    Mixtures of rock debris and ice are common in high-latitude and high-altitude environments and are thought to be widespread elsewhere in our solar system. In the form of permafrost soils, glaciers, and rock glaciers, these debris-ice mixtures are often not static but slide and creep, generating many of the landforms and landscapes associated with the cryosphere. In this review, a broad range of field observations, theory, and experimental work relevant to the mechanical interactions between ice and rock debris are evaluated, with emphasis on the temperature and stress regimes common in terrestrial surface and near-surface environments. The first-order variables governing the deformation of debris-ice mixtures in these environments are debris concentration, particle size, temperature, solute concentration (salinity), and stress. A key observation from prior studies, consistent with expectations, is that debris-ice mixtures are usually more resistant to deformation at low temperatures than their pure end-member components. However, at temperatures closer to melting, the growth of unfrozen water films at ice-particle interfaces begins to reduce the strengthening effect and can even lead to profound weakening. Using existing quantitative relationships from theoretical and experimental work in permafrost engineering, ice mechanics, and glaciology combined with theory adapted from metallurgy and materials science, a simple constitutive framework is assembled that is capable of capturing most of the observed dynamics. This framework highlights the competition between the role of debris in impeding ice creep and the mitigating effects of unfrozen water at debris-ice interfaces.

  18. Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit

    NASA Technical Reports Server (NTRS)

    Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle

    1990-01-01

    The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.

  19. An optical survey for space debris on highly eccentric and inclined MEO orbits

    NASA Astrophysics Data System (ADS)

    Schildknecht, Thomas; Flohrer, Tim; Hinze, Andreas; Vananti, Alessandro; Silha, Jiri

    Optical surveys for space debris in high-altitude orbits have been conducted since more than fifteen years. Originally these efforts concentrated mainly on the geostationary ring (GEO) and its close region. Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed and, eventually, optical observations were conducted in the framework of an ESA study using ESA' Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits was performed between January and August 2013. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly

  20. Current orbital debris environment

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1989-01-01

    NASA has instituted a plan for the definition of activities and resources required over the coming decade for the deepening of current understanding of anthropogenic orbital debris, and its effects on future mission operations. This understanding will be the basis of policy definition and policy implementation efforts. The most immediate requirement is the definition of the debris environment, with emphasis on data for debris sizes smaller than 4 cm. Systems-damage criteria and hypervelocity-impact theory will then be used to define the hazard to specific spacecraft.

  1. Current and Future Impact Risks from Small Debris to Operational Satellites

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  2. Space Debris: Its Causes and Management

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2002-01-01

    Orbital debris is internationally recognized as an environmental issue which needs to be addressed today to preserve near-Earth space for future generations. All major space agencies are committed to mitigating the growth of the debris environment. Many commercial space system operators have responded positively to orbital debris mitigation principles and recommendations. Orbital debris mitigation measures are most cost-effective if included in the design development phase.

  3. Near-Earth Object (NEO) Hazard Background

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.

    2005-01-01

    The fundamental problem regarding NEO hazards is that the Earth and other planets, as well as their moons, share the solar system with a vast number of small planetary bodies and orbiting debris. Objects of substantial size are typically classified as either comets or asteroids. Although the solar system is quite expansive, the planets and moons (as well as the Sun) are occasionally impacted by these objects. We live in a cosmic shooting gallery where collisions with Earth occur on a regular basis. Because the number of smaller comets and asteroids is believed to be much greater than larger objects, the frequency of impacts is significantly higher. Fortunately, the smaller objects, which are much more numerous, are usually neutralized by the Earth's protective atmosphere. It is estimated that between 1000 and 10,000 tons of debris fall to Earth each year, most of it in the form of dust particles and extremely small meteorites. With no atmosphere, the Moon's surface is continuously impacted with dust and small debris. On November 17 and 18, 1999, during the annual Leonid meteor shower, several lunar surface impacts were observed by amateur astronomers in North America. The Leonids result from the Earth's passage each year through the debris ejected from Comet Tempel-Tuttle. These annual showers provide a periodic reminder of the possibility of a much more consequential cosmic collision, and the heavily cratered lunar surface acts a constant testimony to the impact threat. The impact problem and those planetary bodies that are a threat have been discussed in great depth in a wide range of publications and books, such as The Spaceguard Survey , Hazards Due to Comets and Asteroids, and Cosmic Catastrophes. This paper gives a brief overview on the background of this problem and address some limitations of ground-based surveys for detection of small and/or faint near-Earth objects.

  4. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  5. Micrometeoroids and debris

    NASA Technical Reports Server (NTRS)

    Potter, Andrew

    1989-01-01

    The materials with vulnerability to micrometeoroids and space debris are discussed. It is concluded that all materials are vulnerable to hypervelocity impacts and that the importance of these impacts depends on the function of material. It is also concluded that low earth orbits are the most significant region relative to orbital debris. The consequences of aerospace environment effects are discussed.

  6. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  7. Debris-flow generation from recently burned watersheds

    USGS Publications Warehouse

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  8. Development of the NASA MCAT Auxiliary Telescope for Orbital Debris Research

    NASA Technical Reports Server (NTRS)

    Frith, James; Lederer, Sue; Cowardin, Heather; Buckalew, Brent; Hickson, Paul; Anz-Meador, Phillip

    2016-01-01

    The National Aeronautical Space Administration has deployed the Meter Class Autonomous Telescope (MCAT) to Ascension Island with plans for it to become fully operational by summer 2016. This telescope will be providing data in support of research being conducted by the Orbital Debris Program Office at the Johnson Space Center. In addition to the main observatory, a smaller, auxiliary telescope is being deployed to the same location to augment and support observations generated by MCAT. It will provide near-simultaneous photometry and astrometry of debris objects, independent measurements of the seeing conditions, and offload low priority targets from MCAT's observing queue. Its hardware and software designs are presented here The National Aeronautical and Space Administration (NASA) has recently deployed the Meter Class Autonomous Telescope (MCAT) to Ascension Island. MCAT will provide NASA with a dedicated optical sensor for observations of orbital debris with the goal of statistically sampling the orbital and photometric characteristics of the population from low Earth to Geosynchronous orbits. Additionally, a small auxiliary telescope, co-located with MCAT, is being deployed to augment its observations by providing near-simultaneous photometry and astrometry, as well as offloading low priority targets from MCAT's observing queue. It will also serve to provide an independent measurement of the seeing conditions to help monitor the quality of the data being produced by the larger telescope. Comprised of off-the-shelf-components, the MCAT Auxiliary Telescope will have a 16-inch optical tube assembly, Sloan g'r'i'z' and Johnson/Cousins BVRI filters, and a fast tracking mount to help facilitate the tracking of objects in low Earth orbit. Tracking modes and tasking will be similar to MCAT except an emphasis will be placed on observations that provide more accurate initial orbit determination for the objects detected by MCAT. The near-simultaneous observations will

  9. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  10. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    PubMed

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A Phenomenological Approach to Wear Debris Analysis

    DTIC Science & Technology

    1996-04-01

    Ferrography ; oil analysis; wear debris analysis Introduction: Wear debris analysis is an important subject in maintenance, especially condition...diagnostic ol can be traced to Ferrography developed in the early 1970’s. Westcott and Seifert [1] state e heart and soul of Ferrography , or optical debris...monitoring, as follows. The key to Ferrography or optical examination of wear debris is to find marks or features on wear debris which suggest likely

  12. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis

    PubMed Central

    Western, J. Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    Background: All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Objectives: Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. Methodology: An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms “Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems.” A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Results: Statistically significant difference was seen in the following comparisons: SAF < Wave One, SAF < Rotary ProTaper. Conclusions: Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One. PMID:28761250

  13. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  14. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  15. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  16. Catastrophe on the Horizon: A Scenario-Based Future Effect of Orbital Space Debris

    DTIC Science & Technology

    2010-04-01

    real. In fact, the preliminary results of a recent NASA risk assessment of the soon to be decommissioned Space Shuttle puts the risk of a manned...Section 1 – Introduction Orbital Space Debris Defined Orbital space debris can be defined as dead satellites, discarded rocket parts, or simply flecks...of paint or other small objects orbiting the earth. It is simply space ―junk,‖ but junk that can be extremely dangerous to space assets. Most of the

  17. Foreign Object Damage in Disks of Two Gas-turbine-grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine-grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through postimpact strength testing of disks impacted by steel ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (k(sub Ic)). The critical impact velocity V(sub c) for which the corresponding postimpact strength was the lowest was V(sub c) approximately equal to 440 and 300 m/s AS800 and SN282, respectively. A unique lower strength regime was typified for both silicon nitrides depending on impact velocity and was attributed to significant radial cracking. The damage generated by projectile impact was typically in the form of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike the thick (4 millimeters) flexure bar specimens used in our previous studies, the thin (2 millimeter) disk target specimen exhibited a unique back-side radial cracking on the reverse side just beneath the impact sites at and above impact velocities of 160 meters per second for SN282 and 220 meters per second AS800.

  18. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.; ,

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  19. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Treesearch

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  20. Backwater development by woody debris

    NASA Astrophysics Data System (ADS)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  1. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  2. Experimental verification of high energy laser-generated impulse for remote laser control of space debris.

    PubMed

    Lorbeer, Raoul-Amadeus; Zwilich, Michael; Zabic, Miroslav; Scharring, Stefan; Eisert, Lukas; Wilken, Jascha; Schumacher, Dennis; Roth, Markus; Eckel, Hans-Albert

    2018-05-31

    Walking along a beach one may notice debris being washed ashore from the vast oceans. Then, turning your head up at night you even might noticed a shooting star or a bright spot passing by. Chances are, that you witnessed space debris, endangering future space flight in lower earth orbit. If it was possible to turn cm-sized debris into shooting stars the problem might be averted. Unfortunately, these fragments counting in the 100 thousands are not controllable. To possibly regain control we demonstrate how to exert forces on a free falling debris object from a distance by ablating material with a high energy ns-laser-system. Thrust effects did scale as expected from simulations and led to speed gains above 0.3 m/s per laser pulse in an evacuated micro-gravity environment.

  3. NASA's New Orbital Debris Engineering Model, ORDEM2010

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  4. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  5. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  6. Phase Function Determination in Support of Orbital Debris Size Estimation

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Cowardin, H. M.; Stansbery, Eugene G.

    2012-01-01

    To recover the size of a space debris object from photometric measurements, it is necessary to determine its albedo and basic shape: if the albedo is known, the reflective area can be calculated; and if the shape is known, the shape and area taken together can be used to estimate a characteristic dimension. Albedo is typically determined by inferring the object s material type from filter photometry or spectroscopy and is not the subject of the present study. Object shape, on the other hand, can be revealed from a time-history of the object s brightness response. The most data-rich presentation is a continuous light-curve that records the object s brightness for an entire sensor pass, which could last for tens of minutes to several hours: from this one can see both short-term periodic behavior as well as brightness variations with phase angle. Light-curve interpretation, however, is more art than science and does not lend itself easily to automation; and the collection method, which requires single-object telescope dedication for long periods of time, is not well suited to debris survey conditions. So one is led to investigate how easily an object s brightness phase function, which can be constructed from the more survey-friendly point photometry, can be used to recover object shape. Such a recovery is usually attempted by comparing a phase-function curve constructed from an object s empirical brightness measurements to analytically-derived curves for basic shapes or shape combinations. There are two ways to accomplish this: a simple averaged brightness-versus phase curve assembled from the empirical data, or a more elaborate approach in which one is essentially calculating a brightness PDF for each phase angle bin (a technique explored in unpublished AFRL/RV research and in Ojakangas 2011); in each case the empirical curve is compared to analytical results for shapes of interest. The latter technique promises more discrimination power but requires more data; the

  7. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  8. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  9. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  10. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    PubMed

    Kuo, Fan-Jun; Huang, Hsiang-Wen

    2014-06-15

    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Does bone debris in anterior cruciate ligament reconstruction really matter? A cohort study of a protocol for bone debris debridement

    PubMed Central

    Imam, Mohamed A.; Abdelkafy, Ashraf; Dinah, Feroz; Adhikari, Ajeya

    2015-01-01

    Background: The purpose of the current study was to determine whether a systematic five-step protocol for debridement and evacuation of bone debris during anterior cruciate ligament reconstruction (ACLR) reduces the presence of such debris on post-operative radiographs. Methods: A five-step protocol for removal of bone debris during arthroscopic assisted ACLR was designed. It was applied to 60 patients undergoing ACLR (Group 1), and high-quality digital radiographs were taken post-operatively in each case to assess for the presence of intra-articular bone debris. A control group of 60 consecutive patients in whom no specific bone debris protocol was applied (Group 2) and their post-operative radiographs were also checked for the presence of intra-articular bone debris. Results: In Group 1, only 15% of post-operative radiographs showed residual bone debris, compared to 69% in Group 2 (p < 0.001). Conclusion: A five-step systematic protocol for bone debris removal during arthroscopic assisted ACLR resulted in a significant decrease in residual bone debris seen on high-quality post-operative radiographs. PMID:27163060

  12. Debris dams and the relief of headwater streams.

    Treesearch

    S.T. Lancaster; G.E. Grant

    2005-01-01

    In forested, mountain landscapes where debris flows are common, valley-spanning debris dams formed by debris-flow deposition are a common feature of headwater valleys. In this paper, we examine how wood and boulder steps, i.e., debris dams, affect longitudinal profile relief and gradient at the debris-flow-fluvial transition in three sites in the Oregon Coast Range,...

  13. Man-Made Debris In and From Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  14. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  15. Orbital debris removal and meteoroid deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1998-11-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.

  16. Space debris mitigation - engineering strategies

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  17. Debris-flow mobilization from landslides

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  18. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,

    2003-01-01

    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  19. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  20. Active space debris removal—A preliminary mission analysis and design

    NASA Astrophysics Data System (ADS)

    Castronuovo, Marco M.

    2011-11-01

    The active removal of five to ten large objects per year from the low Earth orbit (LEO) region is the only way to prevent the debris collisions from cascading. Among the three orbital regions near the Earth where most catastrophic collisions are predicted to occur, the one corresponding to a sun-synchronous condition is considered the most relevant. Forty-one large rocket bodies orbiting in this belt have been identified as the priority targets for removal. As part of a more comprehensive system engineering solution, a space mission dedicated to the de-orbiting of five rocket bodies per year from this orbital regime has been designed. The selected concept of operations envisages the launch of a satellite carrying a number of de-orbiting devices, such as solid propellant kits. The satellite performs a rendezvous with an identified object and mates with it by means of a robotic arm. A de-orbiting device is attached to the object by means of a second robotic arm, the object is released and the device is activated. The spacecraft travels then to the next target. The present paper shows that an active debris removal mission capable of de-orbiting 35 large objects in 7 years is technically feasible, and the resulting propellant mass budget is compatible with many existing platforms.

  1. Evaluation of Fairchild's Gate Drive Optocoupler, Type FOD3150, Under Wide Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Adhad; Panko, Scott

    2010-01-01

    An optocoupler is a semiconductor device that is used to transfer a signal between different parts of a circuit that need to be electrically isolated from one another - for example, where a high voltage is to be switched with a low voltage control signal. Optocouplers often can be used in place of relays. These optocouplers utilize an infrared LED (light emitting diode) and a photodetector such as a silicon controlled rectifier or photosensitive silicon diode for the transfer of the electronic signal between components of a circuit by means of a short optical transmission channel. For maximum coupling, the wave-length responses of the LED and the detector should be very similar. In switch-mode power supply applications, optocouplers offer advantages over transformers by virtue of simpler circuit design, reduced weight, and DC coupling capability. The effects of extreme temperature exposure and thermal cycling on the performance of a commercial-off-the-shelf (COTS) optocoupler, Fairchild FOD3150, were evaluated in this work. This 1.0 A output current, high noise immunity gate drive optocoupler utilizes an aluminum gallium arsenide (AlGaAs) LED, is capable of driving most 800V/20A IGBT/MOSFETs, and is suited for fast switching in motor control inverter applications and high performance power systems. Some of the specifications of the isolator chip are listed. The device was evaluated in terms of output response, output rise (t(sub r)) and fall times (t(sub f)), and propagation delays (using a 50% level between input and output during low to high (t(sub PLH)) and high to low (t(sub PLH)) transitions). The output supply current was also obtained. These parameters were recorded at various test temperatures between -190 C and +110 C.

  2. The Effect of a Potentially Low Solar Cycle #24 on Orbital Lifetimes of Fengyun 1-C Debris

    NASA Technical Reports Server (NTRS)

    Whitlock, David; Johnson, Nicholas; Matney, Mark; Krisko, Paula

    2008-01-01

    The magnitude of Solar Cycle #24 will have a non-trivial impact on the lifetimes of debris pieces that resulted from the intentional hypervelocity impact of the Fengyun 1-C satellite in January 2007. Recent solar flux measurements indicate Solar Cycle #24 has begun in the last few months, and will continue until approximately 2019. While there have been differing opinions on whether the intensity of this solar cycle will be higher or lower than usual, the Space Weather Prediction Center within the National Oceanic Atmospheric Administration (NOAA/SWPC) has recently forecast unusually low solar activity, which would result in longer orbital lifetimes. Using models for both the breakup of Fengyun 1-C and the propagation of the resultant debris cloud, the Orbital Debris Program Office at NASA Johnson Space Center conducted a study to better understand the impact of the solar cycle on lifetimes for pieces as small as 1 mm. Using a modified collision breakup model and PROP3D propagation software, the orbits of nearly 2 million objects 1 mm and larger were propagated for up to 200 years. By comparing a normal solar cycle with that of the NOAA/SWPC forecast low cycle, the effect of the solar flux on the lifetimes of the debris pieces is evaluated. The modeling of the low solar cycle shows an additional debris count of 12% for pieces larger than 10 cm by 2019 when compared to the resultant debris count using a normal cycle. The difference becomes more exaggerated (over 15%) for debris count in the smaller size regimes. However, in 50 years, the models predict the differences in debris count from differing models of Solar Cycle #24 to be less than 10% for all size regimes, with less variance in the smaller sizes. Understanding the longevity of the debris cloud will affect collision probabilities for both operational spacecraft and large derelict objects over the next century and beyond.

  3. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  4. Assessing Compliance with United States Government Orbital Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2015-01-01

    There are currently no exceptions or special considerations for CubeSats in the United States Government (USG) Orbital Debris (OD) Mitigation Guidelines. For all objects launched into space the 2010 United States Space Policy requires that any failure to comply with the USG OD Mitigation Guidelines requires approval by the head of the launching agency. In addition it requires that the US Secretary of State be notified of any non-compliance. For these reasons it is important that missions consider these policies during their design phase. This paper will discuss methods to assess compliance with USG OD mitigation guidelines as they apply to CubeSat missions using tools such as the NASA Debris Assessment Software (DAS).

  5. Modeling and Observations of Debris Disks

    NASA Astrophysics Data System (ADS)

    Moro-Martín, Amaya

    2009-08-01

    Debris disks are disks of dust observed around mature main sequence stars (generally A to K2 type). They are evidence that these stars harbor a reservoir of dust-producing plantesimals on spatial scales that are similar to those found for the small-body population of our solar system. Debris disks present a wide range of sizes and structural features (inner cavities, warps, offsets, rings, clumps) and there is growing evidence that, in some cases, they might be the result of the dynamical perturbations of a massive planet. Our solar system also harbors a debris disk and some of its properties resemble those of extra-solar debris disks. The study of these disks can shed light on the diversity of planetary systems and can help us place our solar system into context. This contribution is an introduction to the debris disk phenomenon, including a summary of debris disks main properties (§1-based mostly on results from extensive surveys carried out with Spitzer), and a discussion of what they can teach us about the diversity of planetary systems (§2).

  6. External tank space debris considerations

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Baillif, F.; Robinson, J.

    1992-01-01

    Orbital debris issues associated with maintaining a Space Shuttle External Tank (ET) on orbit are presented. The first issue is to ensure that the ET does not become a danger to other spacecraft by generating space debris, and the second is to protect the pressurized ET from penetration by space debris or meteoroids. Tests on shield designs for penetration resistance showed that when utilized with an adequate bumper, thermal protection system foam on the ET is effective in preventing penetration.

  7. The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered

  8. Sampling supraglacial debris thickness using terrestrial photogrammetry

    NASA Astrophysics Data System (ADS)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  9. A deployable mechanism concept for the collection of small-to-medium-size space debris

    NASA Astrophysics Data System (ADS)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small

  10. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  11. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    USGS Publications Warehouse

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  12. Orbital Debris Quarterly News, Volume 13, Issue 4

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)

    2009-01-01

    Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).

  13. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  14. Forecasting inundation from debris flows that grow during travel, with application to the Oregon Coast Range, USA

    USGS Publications Warehouse

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne

    2016-01-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  15. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.; ,

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  16. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  17. Sources of debris flow material in burned areas

    USGS Publications Warehouse

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are

  18. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  19. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  20. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optical Properties of High Area-to-Mass Objects at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Schildknecht, Thomas; Musci, Reto; Flohrer, Tim; Barker, Ed; Stansbery, Eugene; Agapov, Vladimir; Rumyantsev, Vasilij; Biryukov, Vadym; Abercromby, Kira; hide

    2007-01-01

    There exists at GEO a significant population of faint debris (R > 15th magnitude) with high area-to-mass ratios (AMR) (1 to 30 sq m/kg). Their orbital elements (particularly eccentricity and inclination) are observed to change on the time-scale of a week. The consensus is that these objects may be fragments of multi-layer insulation (MLI) blankets. Their orbits are primarily perturbed by solar radiation pressure. In this paper we will report preliminary results from an international collaboration to investigate the unresolved optical properties of these objects. This population was originally discovered by the ESA Space Debris Telescope, and the bulk of the objects to be described here are based on discoveries made with this telescope. Additional objects were supplied by both Russia and the US Air Force. Follow-up optical observations were obtained for a sample of a dozen objects by MODEST (the Michigan Orbital DEbris Survey Telescope) located at Cerro Tololo Inter-American Observatory in Chile. Sequences of calibrated observations in filters B, V, Broad R, and I were obtained under photometric conditions. Multi-color photometric observations in B, V, R, and I band of the same objects were also acquired at the Zimmerwald 1-meter telescope, located near Bern, Switzerland. Light curves of selected high AMR objects will be shown with a temporal resolution of a few seconds and typically span about 10 minutes. Photometric observations of these objects were acquired at the Crimean Astrophysical Observatory (CrAO). This data set includes light curves of objects having high variability of brightness and observed with 2.6 m and 0.64 m class instruments. We will present an analysis of the observed magnitudes and colors, and their correlations (or lack of correlation) with orbital elements, and with predicted values for MLI fragments. This represents the first such collaborative observational program on faint debris at GEO.

  2. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.

    2017-01-01

    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  3. Sources of orbital debris and the projected environment for future spacecraft

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1980-01-01

    The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.

  4. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  5. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah

    2015-01-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.

  6. Evolution of the Debris Cloud Generated by the Fengyun-1C Fragmentation Event

    NASA Technical Reports Server (NTRS)

    Pardini, Carmen; Anselmo, Luciano

    2007-01-01

    The cloud of cataloged debris produced in low earth orbit by the fragmentation of the Fengyun-1C spacecraft was propagated for 15 years, taking into account all relevant perturbations. Unfortunately, the cloud resulted to be very stable, not suffering substantial debris decay during the time span considered. The only significant short term evolution was the differential spreading of the orbital planes of the fragments, leading to the formation of a debris shell around the earth approximately 7-8 months after the breakup, and the perigee precession of the elliptical orbits. Both effects will render the shell more "isotropic" in the coming years. The immediate consequence of the Chinese anti-satellite test, carried out in an orbital regime populated by many important operational satellites, was to increase significantly the probability of collision with man-made debris. For the two Italian spacecraft launched in the first half of 2007, the collision probability with cataloged objects increased by 12% for AGILE, in equatorial orbit, and by 38% for COSMO-SkyMed 1, in sun-synchronous orbit.

  7. Discovery of a substellar companion to the nearby debris disk host HR 2562

    DOE PAGES

    Konopacky, Quinn M.; Rameau, Julien; Duchêne, Gaspard; ...

    2016-09-14

    Here, we present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3 ± 0.3 au (more » $$0\\buildrel{\\prime\\prime}\\over{.} 618\\pm 0\\buildrel{\\prime\\prime}\\over{.} 004$$) from the star. With the high astrometric precision afforded by GPI, we have confirmed, to more than 5σ, the common proper motion of HR 2562B with the star, with only a month-long time baseline between observations. Spectral data in the J-, H-, and K-bands show a morphological similarity to L/T transition objects. We assign a spectral type of L7 ± 3 to HR 2562B and derive a luminosity of log(L $${}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-4.62\\pm 0.12$$, corresponding to a mass of 30 ± 15 $${M}_{\\mathrm{Jup}}$$ from evolutionary models at an estimated age of the system of 300–900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle that is consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown-dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk.« less

  8. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Chen, Xiao-qian; Chen, Li-hu

    2014-12-01

    The mission planning of GEO debris removal with multiple servicing spacecrafts (SScs) is studied in this paper. Specifically, the SScs are considered to be initially on the GEO belt, and they should rendezvous with debris of different orbital slots and different inclinations, remove them to the graveyard orbit and finally return to their initial locations. Three key problems should be resolved here: task assignment, mission sequence planning and transfer trajectory optimization for each SSc. The minimum-cost, two-impulse phasing maneuver is used for each rendezvous. The objective is to find a set of optimal planning schemes with minimum fuel cost and travel duration. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed. A modified multi-objective particle swarm optimization is employed to address the model. Numerous examples are carried out to demonstrate the effectiveness of the model and solution method. In this paper, single-SSc and multiple-SSc scenarios with the same amount of fuel are compared. Numerous experiments indicate that for a definite GEO debris removal mission, that which alternative (single-SSc or multiple-SSc) is better (cost less fuel and consume less travel time) is determined by many factors. Although in some cases, multiple-SSc scenarios may perform worse than single-SSc scenarios, the extra costs are considered worth the gain in mission safety and robustness.

  10. The extreme mobility of debris avalanches: A new model of transport mechanism

    NASA Astrophysics Data System (ADS)

    Perinotto, Hélène; Schneider, Jean-Luc; Bachèlery, Patrick; Le Bourdonnec, François-Xavier; Famin, Vincent; Michon, Laurent

    2015-12-01

    Large rockslide-debris avalanches, resulting from flank collapses that shape volcanoes and mountains on Earth and other object of the solar system, are rapid and dangerous gravity-driven granular flows that travel abnormal distances. During the last 50 years, numerous physical models have been put forward to explain their extreme mobility. The principal models are based on fluidization, lubrication, or dynamic disintegration. However, these processes remain poorly constrained. To identify precisely the transport mechanisms during debris avalanches, we examined morphometric (fractal dimension and circularity), grain size, and exoscopic characteristics of the various types of particles (clasts and matrix) from volcanic debris avalanche deposits of La Réunion Island (Indian Ocean). From these data we demonstrate for the first time that syn-transport dynamic disintegration continuously operates with the increasing runout distance from the source down to a grinding limit of 500 µm. Below this limit, the particle size reduction exclusively results from their attrition by frictional interactions. Consequently, the exceptional mobility of debris avalanches may be explained by the combined effect of elastic energy release during the dynamic disintegration of the larger clasts and frictional reduction within the matrix due to interactions between the finer particles.

  11. Is It Time for Space Debris Reduction Capabilities?

    DTIC Science & Technology

    2009-04-01

    The original document contains color images . 14. ABSTRACT For over 50 years, space-faring nations have launched objects into space, resulting in...have seen an increased risk of collision. Most debris resides in low earth orbit (the satellite freeway where bulk of imaging satellites reside... imaging , radar, etc). The close proximity to the Earth allows for images and photographs to be captured in greater detail than higher orbits

  12. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    NASA Astrophysics Data System (ADS)

    Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  13. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    PubMed Central

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O’Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2017-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce’s utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  14. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective.

    PubMed

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  15. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches.

    PubMed

    Fauziah, S H; Liyana, I A; Agamuthu, P

    2015-09-01

    Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.

  16. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for

  17. A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha

    2017-02-01

    We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}⊙ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca II triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}⊙ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.

  18. Structure of the Iconic Vega Debris Disk

    NASA Astrophysics Data System (ADS)

    Su, Kate

    2015-10-01

    Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.

  19. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    NASA Astrophysics Data System (ADS)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  20. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    NASA Astrophysics Data System (ADS)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  1. In Situ Measurement Activities at the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.

    2009-01-01

    The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.

  2. Is the Sky Really Falling? An Overview of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2015-01-01

    Orbital debris has been a prominent topic for a while, even before the movie Gravity came out. An anti-satellite test and a collision with an operational satellite both produced large highly-publicized debris clouds within recent years. While large objects like abandoned satellites and rocket bodies may be the most recognizable and identifiable concerns, a majority of the daily threat comes from the much more numerous smaller particles. In fact, small particle penetration continues to rank among the leading risks for manned space missions to the International Space Station and beyond. How much 'stuff' is up there, where did it come from, what harm can it do, and what is being done about it? These questions and more will be discussed.

  3. DebriSat Project Update and Planning

    NASA Technical Reports Server (NTRS)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  4. Semi-automatic recognition of marine debris on beaches

    PubMed Central

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433

  5. Semi-automatic recognition of marine debris on beaches

    NASA Astrophysics Data System (ADS)

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-05-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.

  6. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  7. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  8. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  9. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal

    DTIC Science & Technology

    2014-01-08

    objects larger than the size of a softball and hundreds of thousands of smaller fragments. This population of space debris potentially threatens U.S...catalogues objects as small as about 10 cm ( softball size) in LEO and as small as 1 meter in Geosynchronous Orbit.12 Today, the Space Surveillance

  10. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Mulrooney, M.; Schildknecht, T.

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an objects orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (> 0.9 m2/kg). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations -- a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such objects can vary greatly (even for

  11. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Rodriquez-Cowardin, H.; Abercromby, K.; Barker, E.; Mulrooney, M.; Seitzer, P.; Schildknecht, T.

    2009-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA s Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an object's orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (greater than 0.9 square meters per kilogram). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such

  12. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  13. Quantitative assessment of apical debris extrusion and intracanal debris in the apical third, using hand instrumentation and three rotary instrumentation systems.

    PubMed

    H K, Sowmya; T S, Subhash; Goel, Beena Rani; T N, Nandini; Bhandi, Shilpa H

    2014-02-01

    Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third.

  14. NASA's Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry

    2012-01-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple

  15. Orbital Debris Characterization via Laboratory Optical Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Healther

    2011-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter,wavelength regime,and altitude range). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. These data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital objects is a key objective of NASA's Optical Measurement Program, and the primary reason for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations.

  16. Millimeter Studies of Nearby Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann

    2017-03-01

    At least 20% of nearby main sequence stars are known to be surrounded by disks of dusty material resulting from the collisional erosion of planetesimals, similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies, like planets, in the system through collisions and gravitational perturbations. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since the large grains that dominate emission at these long wavelengths reliably trace the underlying planetesimal distribution. In this thesis, I have used state-of-the-art observations at millimeter wavelengths to address three related questions concerning debris disks and planetary system evolution: 1) How are wide-separation, substellar companions formed? 2) What is the physical nature of the collisional process in debris disks? And, 3) Can the structure and morphology of debris disks provide probes of planet formation and subsequent dynamical evolution? Using ALMA observations of GQ Lup, a pre-main sequence system with a wide-separation, substellar companion, I have placed constraints on the mass of a circumplanetary disk around the companion, informing formation scenarios for this and other similar systems (Chapter 2). I obtained observations of a sample of fifteen debris disks with both the VLA and ATCA at centimeter wavelengths, and robustly determined the millimeter spectral index of each disk and thus the slope of the grain size distribution, providing the first observational test of collision models of debris disks (Chapter 3). By applying an MCMC modeling framework to resolved millimeter observations with ALMA and SMA, I have placed the first constraints on the position, width, surface density gradient, and any asymmetric structure of the AU Mic, HD 15115, Epsilon Eridani, Tau Ceti, and Fomalhaut debris disks (Chapters 4–8). These observations of individual systems hint at trends in

  17. Characterization of marine debris in North Carolina salt marshes.

    PubMed

    Viehman, Shay; Vander Pluym, Jenny L; Schellinger, Jennifer

    2011-12-01

    Marine debris composition, density, abundance, and accumulation were evaluated in salt marshes in Carteret County, North Carolina seasonally between 2007 and 2009. We assessed relationships between human use patterns and debris type. Wave effects on marine debris density were examined using a GIS-based forecasting tool. We assessed the influence of site wave exposure, period, and height on debris quantity. Presence and abundance of debris were related to wave exposure, vegetation type and proximity of the strata to human population and human use patterns. Plastic pieces accounted for the majority of all debris. Small debris (0-5 cm) was primarily composed of foam pieces and was frequently affiliated with natural wrack. Large debris (>100 cm) was encountered in all marsh habitat types surveyed and was primarily composed of anthropogenic wood and derelict fishing gear. Marsh cleanup efforts should be targeted to specific habitat types or debris types to minimize further damage to sensitive habitats. Published by Elsevier Ltd.

  18. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  19. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  20. The Effect of Debris-Flow Composition on Runout Distance

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2014-12-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, debris-flow composition had a larger effect on runout distance than topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  1. The effect of debris-flow composition on runout distance

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  2. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  3. Evaluating the impacts of marine debris on cetaceans.

    PubMed

    Baulch, Sarah; Perry, Clare

    2014-03-15

    Global in its distribution and pervading all levels of the water column, marine debris poses a serious threat to marine habitats and wildlife. For cetaceans, ingestion or entanglement in debris can cause chronic and acute injuries and increase pollutant loads, resulting in morbidity and mortality. However, knowledge of the severity of effects lags behind that for other species groups. This literature review examines the impacts of marine debris on cetaceans reported to date. It finds that ingestion of debris has been documented in 48 (56% of) cetacean species, with rates of ingestion as high as 31% in some populations. Debris-induced mortality rates of 0-22% of stranded animals were documented, suggesting that debris could be a significant conservation threat to some populations. We identify key data that need to be collected and published to improve understanding of the threat that marine debris poses to cetaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Marine debris in five national parks in Alaska.

    PubMed

    Polasek, L; Bering, J; Kim, H; Neitlich, P; Pister, B; Terwilliger, M; Nicolato, K; Turner, C; Jones, T

    2017-04-15

    Marine debris is a management issue with ecological and recreational impacts for agencies, especially on remote beaches not accessible by road. This project was implemented to remove and document marine debris from five coastal National Park Service units in Alaska. Approximately 80km of coastline were cleaned with over 10,000kg of debris collected. Marine debris was found at all 28 beaches surveyed. Hard plastics were found on every beach and foam was found at every beach except one. Rope/netting was the next most commonly found category, present at 23 beaches. Overall, plastic contributed to 60% of the total weight of debris. Rope/netting (14.6%) was a greater proportion of the weight from all beaches than foam (13.3%). Non-ferrous metal contributed the smallest amount of debris by weight (1.7%). The work forms a reference condition dataset of debris surveyed in the Western Arctic and the Gulf of Alaska within one season. Copyright © 2017. Published by Elsevier Ltd.

  5. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  6. Space Debris Removal Using Multi-Mission Modular Spacecraft

    NASA Astrophysics Data System (ADS)

    Savioli, L.; Francesconi, A.; Maggi, F.; Olivieri, L.; Lorenzini, E.; Pardini, C.

    2013-08-01

    The study and development of ADR missions in LEO have become an issue of topical interest to the attention of the space community since the future space flight activities could be threatened by collisional cascade events. This paper presents the analysis of an ADR mission scenario where modular remover kits are employed to de-orbit some selected debris in SSO, while a distinct space tug performs the orbital transfers and rendezvous manoeuvres, and installs the remover kits on the client debris. Electro-dynamic tether and electric propulsion are considered as de-orbiting alternatives, while chemical propulsion is employed for the space tug. The total remover mass and de-orbiting time are identified as key parameters to compare the performances of the two de-orbiting options, while an optimization of the ΔV required to move between five selected objects is performed for a preliminary design at system level of the space tug. Final controlled re-entry is also considered and performed by means of a hybrid engine.

  7. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  8. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of

  9. Understanding sources, sinks, and transport of marine debris

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  10. Effects on the orbital debris environment due to solar activity

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.; Anz-Meador, Phillip D.

    1990-01-01

    The rate that earth-orbiting debris is removed from the environment is dependent on a number of factors which include orbital altitude and solar activity. It is generally believed that at lower altitudes and especially during periods of high solar activity, debris generated in the past will be eliminated from the environment. While some debris is eliminated, most is replaced by old debris from higher altitudes or new debris from recent launches. Some low altitude debris, which would reenter if the debris were in circular orbits, does not reenter because the debris is in higher-energy elliptical orbits.

  11. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  12. POST Earthquake Debris Management — AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  13. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris

    PubMed Central

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  14. The influence of solid rocket motor retro-burns on the space debris environment

    NASA Astrophysics Data System (ADS)

    Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.

  15. Marine Debris Composition on Remote Alaskan National Park Shores

    NASA Astrophysics Data System (ADS)

    Pister, B.; Kunisch, E.; Polasek, L.; Bering, J.; Kim, S.; Neitlich, P.; Nicolato, K.

    2016-02-01

    Marine debris is a pervasive problem along coastlines around the world. The National Park Service manages approximately 3500 miles of shoreline in Alaska's national park units combined. Most of these shores are remote, difficult and expensive to access. In 2011 the Tohoku earthquake hit Japan and generated a devastating tsunami that washed an estimated 150 million tons of debris out to sea. Much of the debris washed ashore in Alaska. The tsunami brought new attention to the long standing problem of marine debris. In 2015 the National Park Service mounted a two pronged effort to remove as much debris as possible from the shores of five park units in Alaska, and initiate education programs about the issue. Almost 11,000 kg of debris were removed from the shores of: Wrangell-St. Elias National Park, Kenai Fjords National Park, Katmai National Park, Bering Land Bridge National Preserve and Cape Krusenstern National Monument. Approximately 58% of the debris was plastic. Although much of the debris resembled items expected as a result of the tsunami, a great percentage of the debris was clearly from other sources, such as fishing and shipping. Preliminary analysis suggests that debris composition varied significantly between parks, possibly from locally-derived sources. This can influence how the National Park Service creates educational outreach programs that focus on marine debris prevention exercises.

  16. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  17. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  18. The detection of earth orbiting objects by IRAS

    NASA Technical Reports Server (NTRS)

    Dow, Kimberly L.; Sykes, Mark V.; Low, Frank J.; Vilas, Faith

    1990-01-01

    A systematic examination of 1836 images of the sky constructed from scans made by the Infrared Astronomical Satellite has resulted in the detection of 466 objects which are shown to be in earth orbit. Analysis of the spatial and size distribution and thermal properties of these objets, which may include payloads, rocket bodies and debris particles, is being conducted as one step in a feasibility study for space-based debris detection technologies.

  19. DebriSat Laboratory Analyses

    DTIC Science & Technology

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  20. Quantitative Assessment of Apical Debris Extrusion and Intracanal Debris in the Apical Third, Using Hand Instrumentation and Three Rotary Instrumentation Systems

    PubMed Central

    H.K., Sowmya; T.S., Subhash; Goel, Beena Rani; T.N., Nandini; Bhandi, Shilpa H.

    2014-01-01

    Introduction: Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Methodology: Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. Results: The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Conclusion: Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one

  1. Small satellite debris catalog maintenance issues

    NASA Technical Reports Server (NTRS)

    Jackson, Phoebe A.

    1991-01-01

    The United States Space Command (USSPACECOM) is a unified command of the Department of Defense, and one of its tasks is to detect, track, identify, and maintain a catalog of all man-made objects in Earth orbit. This task is called space surveillance, and the most important tool for space surveillance is the satellite catalog. The command's reasons for performing satellite catalog maintenance is presented. A satellite catalog is described, and small satellite-debris catalog-maintenance issues are identified. The underlying rationale is to describe the catalog maintenance services so that the members of the community can use them with assurance.

  2. Jupiter After the 2009 Impact: Hubble Space Telescope Imaging of the Impact-Generated Debris and Its Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Wong, M. H.; Clarke, J. T.; de Pater, I.; Fletcher, L. N.; Hueso, R.; Noll, K.; Orton, G. S.; Perez-Hoyos, S.; Sanchez-Lavega, A.; hide

    2010-01-01

    We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July, The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions.

  3. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  4. Apical Extrusion of Intracanal Debris Using Two Engine Driven and Step-Back Instrumentation Techniques: An In-Vitro Study

    PubMed Central

    Kustarci, Alper; Akdemir, Neslihan; Siso, Seyda Herguner; Altunbas, Demet

    2008-01-01

    Objectives The purpose of this study was to compare in-vitro the amount of debris extruded apically from extracted teeth, using K3, Protaper rotary instruments and manual step-back technique. Methods Forty five human single-rooted mandibular premolar teeth were randomly divided into 3 groups. The teeth in 3 groups were instrumented until reaching the working length with K3, Protaper rotary instruments and K-type stainless steel instruments with manual step-back technique, respectively. Debris extruded from the apical foramen was collected into centrifuge tubes and the amount was determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests, with P=.05 as the level for statistical significance. Results Statistically significant difference was observed between K3, Protaper and step-back groups in terms of debris extrusion (P<.05). Step-back group had the highest mean debris weight, which was significantly different from the K3 and Protaper groups (P<.05). The lowest mean debris weight was related to K3 group, which was significantly different from the Protaper group (P<.05). Conclusions: Based on the results, all instrumentation techniques produced debris extrusion. The engine-driven Ni-Ti systems extruded significantly less apical debris than step-back technique. However, Protaper rotary instruments extruded significantly more debris than K3 rotary instruments. PMID:19212528

  5. Linking effects of anthropogenic debris to ecological impacts

    PubMed Central

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  6. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  7. Characterizing Debris in the Infrared with UKIRT

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jah, M.; Kendrick, R.; Buckalew, B.; Frith, J. M.; Cowardin, H. M.; Bold, M.

    2015-01-01

    The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5µm) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt

  8. An Overview of NASA's Oribital Debris Environment Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.

  9. Standard operating procedures for female orgasmic disorder: consensus of the International Society for Sexual Medicine.

    PubMed

    Laan, Ellen; Rellini, Alessandra H; Barnes, Tricia

    2013-01-01

    As the field of sexual medicine evolves, it is important to continually improve patient care by developing contemporary "standard operating procedures" (SOPs), reflecting the consensus view of experts in sexual medicine. Few, if any, consensus SOPs have been developed for the diagnosis and treatment of Female Orgasmic Disorder (FOD). The objective is to provide standard operating procedures for FOD. The SOP Committee was composed of a chair, selected by the International Society for the Study of Sexual Medicine, and two additional experts. To inform its key recommendations, the Committee used systematic reviews of available evidence and discussions during a group meeting, conference calls and e-mail communications. The Committee received no corporate funding or remuneration. A total of 12 recommendations for the assessment and treatment of FOD were generated, including suggestions for further research. Evidence-based, practice recommendations for the treatment of FOD are provided that will hopefully inform clinical decision making for those treating this common condition. © 2012 International Society for Sexual Medicine.

  10. The 1999 UNCOPUOS "Technical report on space debris" and the new work plan on space debris (2002 - 2005): perspectives and legal consequences

    NASA Astrophysics Data System (ADS)

    Benkö, Marietta; Schrogl, Kai-Uwe

    2001-10-01

    In February 1999, the Scientific and Technical Subcommittee (STSC) of the UN Committee on the Peaceful Uses of Outer Space (UNCOPUOS) adopted a "Technical Report on Space Debris". This was the result of intensive negotiations during a multi-year workplan on space debris, which had been the centerpiece of the technical work of the STSC during these years. The Report is the first document on space debris, presenting the status of space debris research and the problems resulting from space debris. It has the status of an analysis accepted by all governments. Following its adoption, the Report was presented to UNISPACE III and provided the basis for discussions in this Inter-governmental Conference as well as in the Technical Forum, which - at the same time - dealt with the technical as well as the legal aspects of the exploration and use of outer space. The adoption of the Conference Report finalized the workplan in the STSC, but the subject of space debris still remains on the agenda, where until now every year a special aspect is discussed in detail. The Report does not suggest the establishment of an agenda item "space debris" in the UNCOPUOS Legal Subcommittee (LSC). It is very reluctant in even mentioning legal aspects of the space debris issue. The strict and full concentration on technical aspects was a precondition made by a number of Member States for their constructive participation in the elaboration to establish an agenda item on space debris there, were completely detached from that process. Those, who had expected that the adoption of the Report would inevitably lead to formal negotiations in the LSC were deceived so far. Nevertheless, the Report provides a number of starting points for drafting regulation concerning the prevention of space debris as well as debris mitigation measures which also built on work already done by the Inter-Agency Space Debris Coordination Committee (IADC) and its member agencies. This paper describes the status of the

  11. Post-fire "Hillslope Debris Flows": evidence of a distinct erosion process

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Phil; Vandersant, Rene; Lane, Patrick; Sheridan, Gary

    2017-04-01

    Debris flows occurring soon after fire have been associated with a somewhat mysterious erosion process upslope of their initiation zone that some authors have called 'miniature debris flows on hillslopes', and that leave behind levee-lined rills. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objective of this study was to present evidence of this process from field observations, to analyse its initiation, movement and form through runoff experiments and video, explore the role of fire severity and runoff rate, and to propose a conceptual model of the process. Hillslope debris flows (HDF) consist of a lobe of gravel- to cobble-sized material 0.2 - 1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. They occur at relatively steep slope gradients (0.4 - 0.8), on a variety of geologies, and after fire of at least moderate intensity, where all litter is burnt and the soil surface becomes non-cohesive. HDF are a threshold process, and runoff rates of less than 0.5 L s-1 to more than 1 L s-1 were required for their initiation during the experiments. Char and ash lower the threshold considerably. Our conceptual model highlights HDF as a geomorphic process distinct from channel debris flows and classical rill erosion. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff-driven bedload transport in rills.

  12. Effects of debris-flow composition on runout and erosion

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Kleinhans, M. G.

    2016-12-01

    Predicting debris-flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout depends on debris-flow composition (i.e., particle-size distribution and water content), but how is poorly understood. Moreover, debris flows can grow greatly in size by entrainment of bed material, enhancing their volume and thereby runout and hazardous impact. Debris-flow erosion rates also depend on debris-flow composition, but the relation between the two is largely unexplored. Composition thus strongly affects the dynamics of debris flows. We experimentally investigate the effects of composition on debris-flow runout and erosion. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. We further find that debris-flow runout depends at least as much on composition as on topography. In general, erosion depth increases with basal shear stress in our experiments, while there is no correlation with grain collisional stress. There are substantial differences in the scour caused by different types of debris flows. Mean and maximum erosion depths generally become larger with increasing water fraction and grain size and decrease with increasing clay content. However, the erodibility of the very coarse-grained experimental debris flows is unrelated to basal shear stress. This relates to the relatively large influence of grain-collisional stress to the total bed stress in these flows (30-50%). The relative effect of grain-collisional stress is low in the other experimental debris flows (<5%) causing erosion to be largely controlled by basal shear stress. These

  13. Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Marchant, David R.

    2014-01-01

    Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating

  14. Space debris tracking based on fuzzy running Gaussian average adaptive particle filter track-before-detect algorithm

    NASA Astrophysics Data System (ADS)

    Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You

    2017-02-01

    Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.

  15. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  16. CDOT rapid debris removal research project.

    DOT National Transportation Integrated Search

    2014-07-01

    Highway debris represents a traffic safety problem that requires a prompt response from state or local transportation : agencies. The most common practice for debris removal currently is for agency personnel to leave their vehicles and : remove the d...

  17. Fusarium oxysporum f. sp. dianthi virus 1 accumulation is correlated with changes in virulence and other phenotypic traits of its fungal host.

    PubMed

    Lemus-Minor, Carlos German; Cañizares-Nolasco, Carmen; García-Pedrajas, Maria D D; Pérez-Artés, Encarnación

    2018-03-08

    Fusarium oxysporum f. sp. dianthi virus 1 (FodV1) was detected in isolate Fod 116 (Fod 116V + ) of Fusarium oxysporum f. sp. dianthi (Fod), reaching such a high accumulation level that it was clearly visible after agarose gel electrophoresis of total DNA extracts. FodV1 consists of four double-stranded RNA segments, that correspond to a new mycovirus in the Chrysoviridae family. We obtained an isolate of Fod 116 (Fod 116V - ) with only a residual level of FodV1 RNA accumulation by single-conidia selection. Compared to the Fod 116V - , isolate Fod 116V + showed significant phenotypic alterations in vegetative growth and virulence. The presence of a high titer of mycovirus FodV1 thus associated with a modified morphology and a reduced growth of the colonies on solid medium, and with a diminished conidiation in liquid medium. Inoculation of four susceptible carnation cultivars with either Fod 116V - or Fod 116V + showed that the presence of a high titer of FodV1 was also correlated with a significantly reduced virulence of its fungal host. All the results suggest that FodV1 could be associated with hypovirulence, identifying it as a potential biocontrol agent against Fusarium wilt of carnation. This is the first report of a mycovirus potentially associated to the induction of hypovirulence in the species Fusarium oxysporum.

  18. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah

    2014-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  19. Modeling and control of a flexible space robot to capture a tumbling debris

    NASA Astrophysics Data System (ADS)

    Dubanchet, Vincent

    After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the "Kessler syndrome", states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a

  20. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  1. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  2. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  3. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  4. Depositional processes in large-scale debris-flow experiments

    USGS Publications Warehouse

    Major, J.J.

    1997-01-01

    This study examines the depositional process and characteristics of deposits of large-scale experimental debris flows (to 15 m3) composed of mixtures of gravel (to 32 mm), sand, and mud. The experiments were performed using a 95-m-long, 2-m-wide debris-flow flume that slopes 31??. Following release, experimental debris flows invariably developed numerous shallow (???10 cm deep) surges. Sediment transported by surges accumulated abruptly on a 3?? runout slope at the mouth of the flume. Deposits developed in a complex manner through a combination of shoving forward and shouldering aside previously deposited debris and through progressive vertical accretion. Progressive accretion by the experimental flows is contrary to commonly assumed en masse sedimentation by debris flows. Despite progressive sediment emplacement, deposits were composed of unstratified accumulations of generally unsorted debris; hence massively textured, poorly sorted debris-flow deposits are not emplaced uniquely en masse. The depositional process was recorded mainly by deposit morphology and surface texture and was not faithfully registered by interior sedimentary texture; homogeneous internal textures could be misinterpreted as the result of en masse emplacement by a single surge. Deposition of sediment by similar, yet separate, debris flows produced a homogenous, massively textured composite deposit having little stratigraphic distinction. Similar deposit characteristics and textures are observed in natural debris-flow deposits. Experimental production of massively textured deposits by progressive sediment accretion limits interpretations that can be drawn from deposit characteristics and casts doubt on methods of estimating flow properties from deposit thickness or from relations between particle size and bed thickness.

  5. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  6. NASA's Orbital Debris Optical and IR Ground-based Observing Program: Utilizing the MCAT, UKIRT, and Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Cowardin, H.; Buckalew, B.; Frith, J.; Hickson, P.; Pace, L.; Matney, M.; Anz-Meador, P.; Seitzer, P.; Stansbery, E.; Glesne, T.

    2016-09-01

    Characterizing debris in Earth-orbit has become increasingly important as the growing population of debris poses greater threats to active satellites each year. Currently, the Joint Space Operations is tracking > 23,000 objects ranging in size from 1-meter and larger in Geosychronous orbits (GEO) to 10-cm and larger at low-Earth orbits (LEO). Model estimates suggest that there are hundreds of thousands of pieces of spacecraft debris larger than 10 cm currently in orbit around the Earth. With such a small fraction of the total population being tracked, and new break-ups occurring from LEO to GEO, new assets, techniques, and approaches for characterizing this debris are needed. With this in mind, NASA's Orbital Debris Program Office has actively tasked a suite of telescopes around the world. In 2015, the newly-built 1.3m optical Meter Class Autonomous Telescope (MCAT) came on-line on Ascension Island and is now being commissioned. MCAT is designed to track Earth-orbiting objects above 200km, conduct surveys at GEO, and work with a co-located Raven-class commercial-off-the-shelf system, a 0.4m telescope with a field-of-view similar to MCAT's and research-grade instrumentation designed to complement MCAT. The 3.8m infrared UKIRT telescope on Mauna Kea, Hawaii has been heavily tasked to collect data on individual targets and in survey modes to study both the general GEO population and a break-up event. Data collected include photometry and spectroscopy in the near-Infrared (0.85 - 2.5μm) and the mid-infrared (8-16μm). Finally, the 6.5-m Baade Magellan telescope at Las Campanas Observatory in Chile was used to collect optical photometric survey data in October 2015 of two GEO Titan transtage breakups, focusing on locations of possible debris concentrations as indicated by the NASA standard break-up model.

  7. Analysis of a space debris laser removal system

    NASA Astrophysics Data System (ADS)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  8. The impact of debris on the Florida manatee

    USGS Publications Warehouse

    Beck, C.A.; Barros, N.B.

    1991-01-01

    The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.

  9. Evidence of micro-debris ingestion by Sargassum-associated fishes in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vick, P.; Hernandez, F., Jr.; Muffelman, S.; Lestrade, O.

    2016-02-01

    Sargassum natans and S. fluitans collectively form a pelagic macroalgae complex (Sargassum) which is commonly found in surface waters of the Western-Central Atlantic Ocean (including the Gulf of Mexico). Mats and windrows of Sargassum support large and diverse assemblages of marine fishes and invertebrates, including many early life stages which use Sargassum as nursery areas. Sargassum is a near-surface habitat, and therefore is subject to oceanographic processes (e.g., Langmuir cells, frontal zones) that aggregate floating objects, including marine debris. Relatively little is known about the impacts of marine debris (which often gets broken down into "micro-debris") within Sargassum communities, although micro-debris particles may serve as vectors for toxic compounds if consumed by organisms. Here we present preliminary results from a pilot study examining the frequency of micro-debris occurrence in the stomachs of Sargassum-associated fishes. Neuston and plankton purse seine nets were used to collect Sargassum and associated fauna during surveys in the northern Gulf of Mexico (May, June and July 2014). Marine debris was present in all Sargassum collections, and ranged from relatively large items (e.g., soda bottles) to smaller particles (e.g., microplastics, monofilament threads). The associated fish community was dominated by relatively few taxa, including pipefishes, filefishes and the Sargassumfish, which collectively comprised approximately 85% of the total catch. Stomach contents from juvenile fishes contained mostly natural prey items, including copepods, small decapods, hydroids, and fishes. Micro-debris particles were observed in the stomachs of eight fish species, including juvenile Mahi Mahi, Planehead Filefish and Bermuda chub, among others. Overall, our initial observations suggest that there is some ingestion of micro-debris by fishes associated with Sargassum, although the frequency of occurrence is relatively low.

  10. Scales of Spatial Heterogeneity of Plastic Marine Debris in the Northeast Pacific Ocean

    PubMed Central

    Goldstein, Miriam C.; Titmus, Andrew J.; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability

  11. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean.

    PubMed

    Goldstein, Miriam C; Titmus, Andrew J; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the "Great Pacific Garbage Patch," has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20-40°N, 120-155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m(-2) and in Fall 2010 was 0.021 particles m(-2), but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm(2). Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability

  12. An Overview of NASA's Orbital Debris Engineering Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).

  13. Linking effects of anthropogenic debris to ecological impacts.

    PubMed

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Updating the NASA LEO Orbital Debris Environment Model with Recent Radar and Optical Observations and in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Anz-Meador, P.; Matney, M. J.; Kessler, D. J.; Theall, J.; Johnson, N. L.

    2000-01-01

    The Low Earth Orbit (LEO, between 200 and 2000 km altitudes) debris environment has been constantly measured by NASA Johnson Space Center's Liquid Mirror Telescope (LMT) since 1996 (Africano et al. 1999, NASA JSC-28826) and by Haystack and Haystack Auxiliary radars at MIT Lincoln Laboratory since 1990 (Settecerri et al. 1999, NASA JSC-28744). Debris particles as small as 3 mm can be detected by the radars and as small as 3 cm can be measured by LMT. Objects about 10 cm in diameter and greater are tracked and catalogued by the US Space Surveillance Network. Much smaller (down to several micrometers) natural and debris particle populations can be estimated based on in situ measurements, such as Long Duration Exposure Facility, and based on analyses of returned surfaces, such as Hubble Space Telescope solar arrays, European Retrievable Carrier, and Space Shuttles. To increase our understanding of the current LEO debris environment, the Orbital Debris Program Office at NASA JSC has initiated an effort to improve and update the ORDEM96 model (Kessler et al. 1996, NASA TM-104825) utilizing the recently available data. This paper gives an overview of the new NASA orbital debris engineering model, ORDEM2000.

  15. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  16. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  17. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  18. Drone Use in Monioring Open Ocean Surface Debris, Including Paired Manta and Tucker Trawls for Relateing Sea State to Vertical Debris Distribution

    NASA Astrophysics Data System (ADS)

    Lattin, G.

    2016-02-01

    Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.

  19. Active debris removal: Recent progress and current trends

    NASA Astrophysics Data System (ADS)

    Bonnal, Christophe; Ruault, Jean-Marc; Desjean, Marie-Christine

    2013-04-01

    According to all available findings at international level, the Kessler syndrome, increase of the number of space debris in Low Earth Orbits due to mutual collisions, appears now to be a fact, triggered mainly by several major break-ups in orbit which occurred since 2007. The time may have come to study how to clean this fundamentally useful orbital region in an active way. CNES has studied potential solutions for more than 12 years! The paper aims at reviewing the current status of these activities. The high level requirements are fundamental, and have to be properly justified. The working basis, as confirmed through IADC studies consists in the removal of 5-10 integer objects from the overcrowded orbits, spent upper stages or old satellites, as identified by NASA. The logic of CNES activities consider a stepped approach aiming at progressively gaining the required Technological Readiness Level on the features required for Active Debris Removal which have not yet been demonstrated in orbit. The rendezvous with a non-cooperative, un-prepared, tumbling debris is essential. Following maturation gained with Research and Technology programs, a set of small orbital demonstrators could enable a confidence high enough to perform a full end to end demonstration performing the de-orbiting of a large debris and paving the way for the development of a first generation operational de-orbiter. The internal CNES studies, led together by the Toulouse Space Centre and the Paris Launcher Directorate, have started in 2008 and led to a detailed System Requirements Document used for the Industrial studies. Three industrial teams did work under CNES contract during 2011, led by Thales Alenia Space, Bertin Technologies and Astrium Space Transportation, with numerous sub-contractors. Their approaches were very rich, complementary, and innovative. The second phase of studies began mid-2012. Some key questions nevertheless have to be resolved, and correspond generally to current IADC

  20. LEGEND, a LEO-to-GEO Environment Debris Model

    NASA Technical Reports Server (NTRS)

    Liou, Jer Chyi; Hall, Doyle T.

    2013-01-01

    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  1. Using PVDF to locate the debris cloud impact position

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Liu, Zhidong

    2010-03-01

    With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  2. Preliminary Assessment of New Orbital Debris Shielding for Unmanned Satellites

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.; Stokes, H.; Walker, R.

    The numerous rocket launches and spacecraft deployments carried out since the dawn of the space age have generated a large orbiting population of man-made debris. Without the adoption of mitigation measures, it is likely that this population will continue to increase in the future. The ever-growing collision threat posed to operating spacecraft from these debris objects is therefore fast becoming a driver in the design of new spacecraft missions. DERA, under contract from the European Space Agency (ESA), is developing new techniques to provide mass- and cost-effective solutions to this spacecraft protection problem. Direct shielding methods such as enhancing a spacecraft's thermal blankets with strong materials and adapting the honeycomb panel structure are being investigated, as are indirect shielding methods such as reconfiguration of critical or susceptible units. This paper reports the latest results of the direct shielding research.

  3. Debris mitigation methods for bridge piers.

    DOT National Transportation Integrated Search

    2012-06-01

    Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can a...

  4. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  5. Geographic information system (GIS) simulation of emergency power production from disaster debris in a combined heat and power (CHP) system

    NASA Astrophysics Data System (ADS)

    Ryals, Christopher Shannon

    The objective of this study is to determine a predicted energy capacity of disaster debris for the production of emergency power using a combined heat and power (CHP) unit. A prediction simulation using geographic information systems (GIS) will use data from past storms to calculate an estimated amount of debris along with an estimated energy potential of said debris. Rather than the expense and burden of transporting woody debris such as downed trees and wood framing materials offsite, they can be processed (sorting and chipping) to provide an onsite energy source to provide power to emergency management facilities such as shelters in schools and hospitals. A CHP unit can simultaneously produce heat, cooling effects and electrical power using various biomass sources. This study surveys the quantity and composition of debris produced for a given classification of disaster and location. A comparison of power efficiency estimates for various disasters is conducted.

  6. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    NASA Astrophysics Data System (ADS)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  7. Effects of 1997 debris floods in two Klamath Mountain streams: A large woody debris mass-balance approach

    Treesearch

    Zackary J. Mondry; Susan J. Hilton

    2000-01-01

    Large landslides and debris flows in January 1997 produced contrasting downstream debris flood effects in two adjacent Northern California Klamath Mountain streams. Valley morphology and riparian forests were examined on post-flood 1:3000 air photos along two approximately 8 km survey reaches.

  8. Space Shuttle crew compartment debris-contamination

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Villarreal, Leopoldo J.

    1992-01-01

    Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.

  9. Collector/Compactor for Waste or Debris

    NASA Technical Reports Server (NTRS)

    Mangialiardi, John K.

    1987-01-01

    Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.

  10. Assessing marine debris in deep seafloor habitats off California.

    PubMed

    Watters, Diana L; Yoklavich, Mary M; Love, Milton S; Schroeder, Donna M

    2010-01-01

    Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water. Published by Elsevier Ltd.

  11. Assessment Study of Small Space Debris Removal by Laser Satellites

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Papa, Richard S.

    2011-01-01

    Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube ( 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement

  12. Modernization of Deployable Airfield Debris Removal Equipment

    DTIC Science & Technology

    2017-04-01

    cleared the debris away from the crater by lowering the front bucket and setting the bottom blade at a 45-deg angle. The debris was pushed...the Komatsu WA 150 baseline loader. The crater clearing process involved the loader orienting the bucket blade at approximately 45 deg to the...wider than the track’s width (Figure 30). This caused debris to run under the track and lift the equipment, potentially throwing the operator. The final

  13. Airborne sensors for detecting large marine debris at sea.

    PubMed

    Veenstra, Timothy S; Churnside, James H

    2012-01-01

    The human eye is an excellent, general-purpose airborne sensor for detecting marine debris larger than 10 cm on or near the surface of the water. Coupled with the human brain, it can adjust for light conditions and sea-surface roughness, track persistence, differentiate color and texture, detect change in movement, and combine all of the available information to detect and identify marine debris. Matching this performance with computers and sensors is difficult at best. However, there are distinct advantages over the human eye and brain that sensors and computers can offer such as the ability to use finer spectral resolution, to work outside the spectral range of human vision, to control the illumination, to process the information in ways unavailable to the human vision system, to provide a more objective and reproducible result, to operate from unmanned aircraft, and to provide a permanent record that can be used for later analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  15. The origins of Late Quaternary debris avalanche and debris flow deposits from Cofre de Perote volcano, México

    USGS Publications Warehouse

    Diaz-Castellon, Rodolfo; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Rodríguez-Vargas, José Luis

    2012-01-01

    Cofre de Perote volcano is a compound, shield-like volcano located in the northeastern Trans-Mexican volcanic belt. Large debris avalanche and lahar deposits are associated with the evolution of Cofre. The two best preserved of these debris-avalanche and debris-flow deposits are the ∼42 ka “Los Pescados debris flow” deposit and the ∼11–13 ka “Xico avalanche” deposit, both of which display contrasting morphological and textural characteristics, source materials, origins and emplacement environments. Laboratory X-ray diffraction and visible-infrared reflectance spectroscopy were used to identify the most abundant clay, sulfate, ferric-iron, and silica minerals in the deposits, which were either related to hydrothermal alteration or chemical weathering processes. Cloud-free Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing imagery, supporting EO-1 Hyperion image spectra, and field ground truth samples were used to map the mineralogy and distribution of hydrothermally altered rocks on the modern summit of Cofre de Perote. The results were then compared to minerals identified in the two debris-avalanche and debris-flow deposits in order to assess possible source materials and origins for the two deposits.The older Los Pescados debris-flow deposit contains mostly halloysite and hydrous silica minerals, which match the dominant mineralogy of soils and weathered volcanic deposit in the surrounding flanks of Cofre de Perote. Its source materials were most likely derived from initially noncohesive or clay-poor flows, which subsequently bulked with clay-rich valley soils and alluvium in a manner similar to lahars from Nevado del Ruiz in 1985, but on a larger scale. The younger Xico avalanche deposit contains abundant smectite, jarosite, kaolinite, gypsum, and mixed-layered illite/smectite, which are either definitely or most likely of hydrothermal alteration origin. Smectite in particular appears to be the most abundant and

  16. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  17. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  18. Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)

    NASA Technical Reports Server (NTRS)

    Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

    2010-01-01

    MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be

  19. Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, W.

    2017-12-01

    Knowledge of the meteorology and energy fluxes of debris-free and debris-covered glaciers is important for understanding the varying response of glaciers to climate change. Field measurements at the debris-free Parlung No. 4 Glacier and the debris-covered 24K Glacier in the southeastern Tibetan Plateau were carried out to compare the meteorology and surface energy fluxes and to understand the factors controlling the melting process. The meteorological comparisons displayed temporally synchronous fluctuations in air temperature, relative humidity, incoming longwave radiation (Lin), but notable differences in precipitation, incoming shortwave radiation (Sin) and wind speed. Under the prevailing regional precipitation and debris conditions, more Lin (42 W/m2) was supplied from warmer and more humid air and more Sin (58 W/m2) was absorbed at the 24K Glacier. The relatively high energy supply led mainly to an increased energy output via turbulent heat fluxes and outgoing longwave radiation, rather than glacier melting beneath the thick debris. The sensitivity experiment showed that melting rates were sensitive to variations in energy supply with debris thicknesses of less than 10 cm. In contrast, energy supply to the ablation zone of the Parlung No. 4 Glacier mainly resulted in snow/ice melting, the magnitude of which was significantly influenced by the energy supplied by Sin and the sensible heat flux.

  20. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Matney, Mark J.

    2008-01-01

    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed