Sample records for object dynamic deformation

  1. Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.

    PubMed

    Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi

    2017-03-01

    Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.

  2. Dynamic deformation inspection of a human arm by using a line-scan imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Eryi

    2009-11-01

    A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.

  3. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  4. Fluid Surface Deformation by Objects in the Cheerios Effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  5. Numerical simulation of deformation and failure processes of a complex technical object under impact loading

    NASA Astrophysics Data System (ADS)

    Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.

    2018-04-01

    The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.

  6. Robophysical study of jumping dynamics on granular media

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2016-03-01

    Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.

  7. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2015-03-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial

  8. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  9. Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera

    NASA Astrophysics Data System (ADS)

    Aranchuk, Vyacheslav; Lal, Amit K.; Hess, Cecil F.; Trolinger, James Davis; Scott, Eddie

    2018-02-01

    We developed a pulsed digital shearography system that utilizes the spatial phase-shifting technique. The system employs a commercial micropolarizer camera and a double pulse laser, which allows for instantaneous phase measurements. The system can measure dynamic deformation of objects as large as 1 m at a 2-m distance during the time between two laser pulses that range from 30 μs to 30 ms. The ability of the system to measure dynamic deformation was demonstrated by obtaining phase wrapped and unwrapped shearograms of a vibrating object.

  10. Multi-classification of cell deformation based on object alignment and run length statistic.

    PubMed

    Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang

    2014-01-01

    Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.

  11. Obtaining information by dynamic (effortful) touching

    PubMed Central

    Turvey, M. T.; Carello, Claudia

    2011-01-01

    Dynamic touching is effortful touching. It entails deformation of muscles and fascia and activation of the embedded mechanoreceptors, as when an object is supported and moved by the body. It is realized as exploratory activities that can vary widely in spatial and temporal extents (a momentary heft, an extended walk). Research has revealed the potential of dynamic touching for obtaining non-visual information about the body (e.g. limb orientation), attachments to the body (e.g. an object's height and width) and the relation of the body both to attachments (e.g. hand's location on a grasped object) and surrounding surfaces (e.g. places and their distances). Invariants over the exploratory activity (e.g. moments of a wielded object's mass distribution) seem to ground this ‘information about’. The conception of a haptic medium as a nested tensegrity structure has been proposed to express the obtained information realized by myofascia deformation, by its invariants and transformations. The tensegrity proposal rationalizes the relative indifference of dynamic touch to the site of mechanical contact (hand, foot, torso or probe) and the overtness of exploratory activity. It also provides a framework for dynamic touching's fractal nature, and the finding that its degree of fractality may matter to its accomplishments. PMID:21969694

  12. Efficiency of extracting stereo-driven object motions

    PubMed Central

    Jain, Anshul; Zaidi, Qasim

    2013-01-01

    Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues. PMID:23325345

  13. A motion artefact study and locally deforming objects in computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-11-01

    Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.

  14. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  15. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  16. A computational procedure for the dynamics of flexible beams within multibody systems. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Downer, Janice Diane

    1990-01-01

    The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.

  17. Using Ground Radar Interferometry for Precise Determining of Deformation and Vertical Deflection of Structures

    NASA Astrophysics Data System (ADS)

    Talich, Milan

    2017-12-01

    The paper describes possibilities of the relatively new technics - ground based radar interferometry for precise determining of deformation of structures. Special focus on the vertical deflection of bridge structures and on the horizontal movements of high-rise buildings and structural objects is presented. The technology of ground based radar interferometry can be used in practice to the contactless determination of deformations of structures with accuracy up to 0.01 mm in real time. It is also possible in real time to capture oscillations of the object with a frequency up to 50 Hz. Deformations can be determined simultaneously in multiple places of the object, for example a bridge structure at points distributed on the bridge deck at intervals of one or more meters. This allows to obtain both overall and detailed information about the properties of the structure during the dynamic load and monitoring the impact of movements either individual vehicles or groups. In the case of high-rise buildings, it is possible to monitor the horizontal vibration of the whole object at its different height levels. It is possible to detect and determine the compound oscillations that occur in some types of buildings. Then prevent any damage or even disasters in these objects. In addition to the necessary theory basic principles of using radar interferometry for determining of deformation of structures are given. Practical examples of determining deformation of bridge structures, water towers reservoirs, factory chimneys and wind power plants are also given. The IBIS-S interferometric radar of the Italian IDS manufacturer was used for the measurements.

  18. Smart grid initialization reduces the computational complexity of multi-objective image registration based on a dual-dynamic transformation model to account for large anatomical differences

    NASA Astrophysics Data System (ADS)

    Bosman, Peter A. N.; Alderliesten, Tanja

    2016-03-01

    We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.

  19. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  20. Static Aeroelastic Predictions for a Transonic Transport Model Using an Unstructured-Grid Flow Solver Coupled With a Structural Plate Technique

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Cavallo, Peter A.

    2003-01-01

    An equivalent-plate structural deformation technique was coupled with a steady-state unstructured-grid three-dimensional Euler flow solver and a two-dimensional strip interactive boundary-layer technique. The objective of the research was to assess the extent to which a simple accounting for static model deformations could improve correlations with measured wing pressure distributions and lift coefficients at transonic speeds. Results were computed and compared to test data for a wing-fuselage model of a generic low-wing transonic transport at a transonic cruise condition over a range of Reynolds numbers and dynamic pressures. The deformations significantly improved correlations with measured wing pressure distributions and lift coefficients. This method provided a means of quantifying the role of dynamic pressure in wind-tunnel studies of Reynolds number effects for transonic transport models.

  1. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  2. Deformation-Induced Precession of a Robot Moving on Curved Space

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  3. Quantifying Dynamic Deformity After Dual Plane Breast Augmentation.

    PubMed

    Cheffe, Marcelo Recondo; Valentini, Jorge Diego; Collares, Marcus Vinicius Martins; Piccinini, Pedro Salomão; da Silva, Jefferson Luis Braga

    2018-06-01

    Dynamic breast deformity (DBD) is characterized by visible distortion and deformity of the breast due to contraction of the pectoralis major muscle after submuscular breast augmentation; fortunately, in most cases, this is not a clinically significant complaint from patients. The purpose of this study is to present a simple method for objectively measuring DBD in patients submitted to dual plane breast augmentation (DPBA). We studied 32 women, between 18 and 50 years old, who underwent primary DPBA with at least 1 year of follow-up. Anthropometric landmarks of the breast were marked, creating linear segments. Standardized photographs were obtained both during no pectoralis contraction (NPC) and during maximum pectoralis muscle contraction (MPC); measurements of the linear segments were taken through ImageJ imaging software, and both groups were compared. We found statistically significant differences in all analyzed segments when comparing measurements of the breasts during NPC and MPC (p < 0.001). Our study proposes a novel, standardized method for measuring DBD after DPBA. This technique is reproducible, allowing for objective quantification of the deformity in any patient, which can be valuable for both patients and surgeons, as it allows for a more thorough discussion on DBD, both pre- and postoperatively, and may help both patients and surgeons to make more informed decisions regarding potential animation deformities after breast augmentation. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  4. Convexities move because they contain matter.

    PubMed

    Barenholtz, Elan

    2010-09-22

    Figure-ground assignment to a contour is a fundamental stage in visual processing. The current paper introduces a novel, highly general dynamic cue to figure-ground assignment: "Convex Motion." Across six experiments, subjects showed a strong preference to assign figure and ground to a dynamically deforming contour such that the moving contour segment was convex rather than concave. Experiments 1 and 2 established the preference across two different kinds of deformational motion. Additional experiments determined that this preference was not due to fixation (Experiment 3) or attentional mechanisms (Experiment 4). Experiment 5 found a similar, but reduced bias for rigid-as opposed to deformational-motion, and Experiment 6 demonstrated that the phenomenon depends on the global motion of the effected contour. An explanation of this phenomenon is presented on the basis of typical natural deformational motion, which tends to involve convex contour projections that contain regions consisting of physical "matter," as opposed to concave contour indentations that contain empty space. These results highlight the fundamental relationship between figure and ground, perceived shape, and the inferred physical properties of an object.

  5. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard

    2008-01-01

    The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.

  6. Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick

    2014-11-01

    When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.

  7. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  8. A deformation model of flexible, HAMR objects for accurate propagation under perturbations and the self-shadowing effects

    NASA Astrophysics Data System (ADS)

    Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco

    2018-02-01

    A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth's gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100 days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.

  9. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. On the Problem of Deformed Spherical Systems in Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Ko, Chung-Ming

    2016-04-01

    Based on Newtonian dynamics, observations show that the luminous masses of astrophysical objects that are the size of a galaxy or larger are not enough to generate the measured motions which they supposedly determine. This is typically attributed to the existence of dark matter, which possesses mass but does not radiate (or absorb radiation). Alternatively, the mismatch can be explained if the underlying dynamics is not Newtonian. Within this conceptual scheme, Modified Newtonian Dynamics (MOND) is a successful theoretical paradigm. MOND is usually expressed in terms of a nonlinear Poisson equation, which is difficult to analyze for arbitrary matter distributions. We study the MONDian gravitational field generated by slightly non-spherically symmetric mass distributions based on the fact that both Newtonian and MONDian fields are conservative (which we refer to as the compatibility condition). As the non-relativistic version of MOND has two different formulations (AQUAL and QuMOND) and the compatibility condition can be expressed in two ways, there are four approaches to the problem in total. The method involves solving a suitably defined linear deformation potential, which generally depends on the choice of MOND interpolation function. However, for some specific form of the deformation potential, the solution is independent of the interpolation function.

  11. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    PubMed Central

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    Summary We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane (TM). PMID:21898459

  12. Lectures and Simulation Laboratories to Improve Learners' Conceptual Understanding

    ERIC Educational Resources Information Center

    Brophy, Sean P.; Magana, Alejandra J.; Strachan, Alejandro

    2013-01-01

    We studied the use of online molecular dynamics simulations (MD) to enhance student abilities to understand the atomic processes governing plastic deformation in materials. The target population included a second-year undergraduate engineering course in the School of Materials Engineering at Purdue University. The objectives of the study were to…

  13. Dynamics of flexible fibers transported in confined viscous flows

    NASA Astrophysics Data System (ADS)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  14. Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao

    2014-09-01

    The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.

  15. A Novel Method for Quantifying Human In Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry.

    PubMed

    Alshareef, Ahmed; Giudice, J Sebastian; Forman, Jason; Salzar, Robert S; Panzer, Matthew B

    2018-03-01

    Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite element (FE) models of the brain have been crucial for understanding concussion and for developing injury mitigation systems; however, the experimental brain deformation data currently used to validate these models are limited. The objective of this study was to develop a methodology for the investigation of in situ three-dimensional brain deformation during pure rotational loading of the head, using sonomicrometry. Sonomicrometry uses ultrasonic pulses to measure the dynamic distances between piezoelectric crystals implanted in any sound-transmitting media. A human cadaveric head-neck specimen was acquired 14 h postmortem and was instrumented with an array of 32 small sonomicrometry crystals embedded in the head: 24 crystals were implanted in the brain, and 8 were fixed to the inner skull. A dynamic rotation was then applied to the head using a closed-loop controlled test device. Four pulses with different severity levels were applied around three orthogonal anatomical axes of rotation. A repeated test of the highest severity rotation was conducted in each axis to assess repeatability. All tests were completed within 56 h postmortem. Overall, the combined experimental and sonomicrometry methods were demonstrated to reliably and repeatedly capture three-dimensional dynamic deformation of an intact human brain. These methods provide a framework for using sonomicrometry to acquire multidimensional experimental data required for FE model development and validation, and will lend insight into the deformations sustained by the brain during impact.

  16. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less

  17. Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huili, Sun; Volinsky, Alex A.; Tian, Baohong; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-03-01

    To study the workability and to optimize the hot deformation processing parameters of the Cu-Cr-Zr-Y alloy, the strain hardening effect and dynamic softening behavior of the Cu-Cr-Zr-Y alloy were investigated. The flow stress increases with the strain rate and stress decreases with deformation temperature. The critical conditions, including the critical strain and stress for the occurrence of dynamic recrystallization, were determined based on the alloy strain hardening rate. The critical stress related to the onset of dynamic recrystallization decreases with temperature. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Dynamic recrystallization appears at high temperatures and low strain rates. The addition of Y can refine the grain and effectively accelerate dynamic recrystallization. Dislocation generation and multiplication are the main hot deformation mechanisms for the alloy. The deformation temperature increase and the strain rate decrease can promote dynamic recrystallization of the alloy.

  18. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  19. Importance of tread inertia and damping on the tyre/road contact stiffness

    NASA Astrophysics Data System (ADS)

    Winroth, J.; Andersson, P. B. U.; Kropp, W.

    2014-10-01

    Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model.

  20. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  1. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  2. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.

    PubMed

    Flores-Moreno, J M; Furlong, Cosme; Rosowski, John J; Harrington, Ellery; Cheng, Jeffrey T; Scarpino, C; Santoyo, F Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nanodisplacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology, and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using the Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane. SCANNING 33: 342-352, 2011. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  3. Red blood cell dynamics: from cell deformation to ATP release.

    PubMed

    Wan, Jiandi; Forsyth, Alison M; Stone, Howard A

    2011-10-01

    The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011

  4. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. Copyright © 2014. Published by Elsevier Inc.

  5. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  6. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, Michael C.

    1992-01-01

    The two principal objectives of this research were to achieve an improved understanding of the mechanisms involved in the onset and development of dynamic stall under compressible flow conditions, and to investigate the feasibility of employing adaptive airfoil geometry as an active flow control device in the dynamic stall engine. Presented here are the results of a quantitative (PDI) study of the compressibility effects on dynamic stall over the transiently pitching airfoil, as well as a discussion of a preliminary technique developed to measure the deformation produced by the adaptive geometry control device, and bench test results obtained using an airfoil equipped with the device.

  7. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  8. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  9. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  10. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  11. Biodynamics of deformable human body motion

    NASA Technical Reports Server (NTRS)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  12. Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects

    PubMed Central

    Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.

    2012-01-01

    There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939

  13. Superpropulsion of Droplets and Soft Elastic Solids

    NASA Astrophysics Data System (ADS)

    Raufaste, Christophe; Chagas, Gabriela Ramos; Darmanin, Thierry; Claudet, Cyrille; Guittard, Frédéric; Celestini, Franck

    2017-09-01

    We investigate the behavior of droplets and soft elastic objects propelled with a catapult. Experiments show that the ejection velocity depends on both the projectile deformation and the catapult acceleration dynamics. With a subtle matching given by a peculiar value of the projectile/catapult frequency ratio, a 250% kinetic energy gain is obtained as compared to the propulsion of a rigid projectile with the same engine. This superpropulsion has strong potentialities: actuation of droplets, sorting of objects according to their elastic properties, and energy saving for propulsion engines.

  14. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  15. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    PubMed

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  16. An efficient predictor-corrector-based dynamic mesh method for multi-block structured grid with extremely large deformation and its applications

    NASA Astrophysics Data System (ADS)

    Guo, Tongqing; Chen, Hao; Lu, Zhiliang

    2018-05-01

    Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.

  17. Application of ESPI techniques for the study of dynamic vibrations

    NASA Astrophysics Data System (ADS)

    Krupka, Rene

    2004-06-01

    Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.

  18. Models of determining deformations

    NASA Astrophysics Data System (ADS)

    Gladilin, V. N.

    2016-12-01

    In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.

  19. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  20. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra

    PubMed Central

    Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.

    2016-01-01

    Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036

  1. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  2. A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, R. Harold

    1996-01-01

    Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.

  3. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    NASA Astrophysics Data System (ADS)

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  4. Hamiltonian dynamics of extended objects

    NASA Astrophysics Data System (ADS)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  5. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  6. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  7. A multi-resolution strategy for a multi-objective deformable image registration framework that accommodates large anatomical differences

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan

    2014-03-01

    Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.

  8. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  9. Instantaneous phase mapping deflectometry for dynamic deformable mirror characterization

    NASA Astrophysics Data System (ADS)

    Trumper, Isaac; Choi, Heejoo

    2017-09-01

    We present an instantaneous phase mapping deflectometry (PMD) system in the context of measuring a continuous surface deformable mirror (DM). Deflectometry has a high dynamic range, enabling the full range of surfaces generated by the DM to be measured. The recent development of an instantaneous PMD system leverages the simple setup of the PMD system to measure dynamic objects with accuracy similar to an interferometer. To demonstrate the capabilities of this technology, we perform a linearity measurement of the actuator motion in a continuous surface DM, which is critical for closed loop control in adaptive optics applications. We measure the entire set of actuators across the DM as they traverse their full range of motion with a Shack-Hartman wavefront sensor, thereby obtaining the influence function. Given the influence function of each actuator, the DM can produce specific Zernike terms on its surface. We then measure the linearity of the Zernike modes available in the DM software using the instantaneous PMD system. By obtaining the relationship between modes, we can more accurately generate surface profiles composed of Zernike terms. This ability is useful for other dynamic freeform metrology applications that utilize the DM as a null component.

  10. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  11. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  12. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  13. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and manually installing a small assembly carrying 2 infrared mirrors and an objective lens. Using this system we have performed two pilot studies recording texture and lattice strain development during deformation of FeO up to 1300 K and 45 GPa and bridgmanite up to 1600 K and 80 GPa.

  14. Dynamical Energy Gap Engineering in Graphene via Oscillating Out-of-Plane Deformations

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Zhai, Dawei

    The close relation between electronic properties and mechanical deformations in graphene has been the topic of active research in recent years. Interestingly, the effect of deformations on electronic properties can be understood in terms of pseudo-magnetic fields, whose spatial distribution and intensity are controllable via the deformation geometry. Previous results showed that electromagnetic fields (light) have the potential to induce dynamical gaps in graphene's energy bands, transforming graphene from a semimetal to a semiconductor. However, laser frequencies required to achieve these regimes are in the THz regime, which imposes challenges for practical purposes. In this talk we report a novel method to create dynamical gaps using oscillating mechanical deformations, i.e., via time-dependent pseudo-magnetic fields. Using the Floquet formalism we show the existence of a dynamical gap in the band structure at energies set by the frequency of the oscillation, and with a magnitude tuned by the geometry of the deformation. This dynamical-mechanical manipulation strategy appears as a promising venue to engineer electronic properties of suspended graphene devices. Work supported by NSF-DMR 1508325.

  15. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  16. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  17. Finite strain calculations of continental deformation. I - Method and general results for convergent zones. II - Comparison with the India-Asia collision zone

    NASA Technical Reports Server (NTRS)

    Houseman, G.; England, P.

    1986-01-01

    The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.

  18. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    PubMed Central

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.

    2014-01-01

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798

  19. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less

  20. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  1. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  2. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  3. Cardiac fluid dynamics meets deformation imaging.

    PubMed

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  4. Mechanics of forearc basins

    NASA Astrophysics Data System (ADS)

    Cassola, Teodoro; Willett, Sean D.; Kopp, Heidrun

    2010-05-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between wedge deformation and forearc basin formation. The aim of this work is to gain an insight into the dynamics of the formation of the forearc basin, in particular the mechanism of formation of accommodation space and the preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle and thermally-dependent viscosity. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy of the basin will also be studied, because in underfilled conditions the sediments are more likely to undergo tectonic deformation due to inner wedge deformation. We compare the numerical model with basins along the Sunda-Java Trench. This margin shows a variety of structural-settings and basin types including underfilled and overfilled basins and different wedge geometries. We interpret and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available through the IFM-GEOMAR and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR). One important aspect of these margins that we observe is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stable field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  5. In Situ Time-Resolved Measurements of Extension Twinning During Dynamic Compression of Polycrystalline Magnesium

    NASA Astrophysics Data System (ADS)

    Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.

    2018-04-01

    We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.

  6. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  7. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  8. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  9. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.

    PubMed

    Tawbe, Bilal; Cretu, Ana-Maria

    2017-05-11

    The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.

  10. Steps Towards Understanding Large-scale Deformation of Gas Hydrate-bearing Sediments

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Deusner, C.; Haeckel, M.; Kossel, E.

    2016-12-01

    Marine sediments bearing gas hydrates are typically characterized by heterogeneity in the gas hydrate distribution and anisotropy in the sediment-gas hydrate fabric properties. Gas hydrates also contribute to the strength and stiffness of the marine sediment, and any disturbance in the thermodynamic stability of the gas hydrates is likely to affect the geomechanical stability of the sediment. Understanding mechanisms and triggers of large-strain deformation and failure of marine gas hydrate-bearing sediments is an area of extensive research, particularly in the context of marine slope-stability and industrial gas production. The ultimate objective is to predict severe deformation events such as regional-scale slope failure or excessive sand production by using numerical simulation tools. The development of such tools essentially requires a careful analysis of thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments at lab-scale, and its stepwise integration into reservoir-scale simulators through definition of effective variables, use of suitable constitutive relations, and application of scaling laws. One of the focus areas of our research is to understand the bulk coupled behavior of marine gas hydrate systems with contributions from micro-scale characteristics, transport-reaction dynamics, and structural heterogeneity through experimental flow-through studies using high-pressure triaxial test systems and advanced tomographical tools (CT, ERT, MRI). We combine these studies to develop mathematical model and numerical simulation tools which could be used to predict the coupled hydro-geomechanical behavior of marine gas hydrate reservoirs in a large-strain framework. Here we will present some of our recent results from closely co-ordinated experimental and numerical simulation studies with an objective to capture the large-deformation behavior relevant to different gas production scenarios. We will also report on a variety of mechanically relevant test scenarios focusing on effects of dynamic changes in gas hydrate saturation, highly uneven gas hydrate distributions, focused fluid migration and gas hydrate production through depressurization and CO2 injection.

  11. Shock Response and Dynamic Failure of Spatially Tailored Aero-Thermal Structures

    DTIC Science & Technology

    2012-09-15

    Deformation Behavior of Nanolaminated Titanium Aluminum Carbide. 36th International Conference and Exposition on Advanced Ceramics and Composites ...Deformation Behavior of Nanolaminated Titanium Aluminum Carbide. Effect of Strain-rate and Temperature on Dynamic Deformation of Nanolaminated...conditions, we are unaware of any studies published in the open literature on the effect of high strain rate deformation behavior of Ti2AlC at room or

  12. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.

  13. Three-dimensional dynamic deformation monitoring using a laser-scanning system

    NASA Astrophysics Data System (ADS)

    Al-Hanbali, Nedal N.; Teskey, William F.

    1994-10-01

    Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.

  14. Deformation measurement for a rotating deformable lap based on inverse fringe projection

    NASA Astrophysics Data System (ADS)

    Liao, Min; Zhang, Qican

    2015-03-01

    The active deformable lap (also namely stressed lap) is an efficient polishing tool in optical manufacturing. To measure the dynamic deformation caused by outside force on a deformable lap is important and helpful to the opticians to ensure the performance of a deformable lap as expected. In this paper, a manual deformable lap was designed to simulate the dynamic deformation of an active stressed lap, and a measurement system was developed based on inverse projected fringe technique to restore the 3D shape. A redesigned inverse fringe has been projected onto the surface of the measured lap, and the deformations of the tested lap become much obvious and can be easily and quickly evaluated by Fourier fringe analysis. Compared with the conventional projection, this technique is more obvious, and it should be a promising one in the deformation measurement of the active stressed lap in optical manufacturing.

  15. State diagram for adhesion dynamics of deformable capsules under shear flow.

    PubMed

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca < 0.0075), whole-capsule deformation confers the capsule a flattened bottom in contact with the functionalized surface, which hence promotes the rolling-to-firm-adhesion transition. It is consistent with the observations from previous studies that cell deformation promotes the adhesion of cells lying in the rolling regime. However, it is surprising to find that, at relatively high capillary numbers (e.g. 0.0075 < Ca < 0.0175), the effect of capsule deformability on its adhesion dynamics is far more complex than just promoting adhesion. High deformability of capsules makes their bottom take a concave shape with no adhesion bond formation in the middle. The appearance of this specific capsule shape inhibits the transitions of both rolling-to-firm-adhesion and detachment-to-rolling, and it means that capsule deformation no longer promotes the capsule adhesion. Besides, it is interesting to note that, when the capillary number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape.

  16. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Sun, T.; Fezzaa, K.

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less

  17. Effect of the Rate of Hot Compressive Deformation on the Kinetics of Dynamic and Static Recrystallization of Novel Medium-Carbon Medium-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Khlusova, E. I.; Zisman, A. A.; Knyazyuk, T. V.; Novoskol'tsev, N. N.

    2018-03-01

    Dynamic and static recrystallization occurring under hot deformation at a rate of 1 and 100 sec - 1 in high-strength medium-carbon wear-resistant steels developed at CRISM "Prometey" for die forming of parts of driven elements of tillage machines is studied. The critical strain of dynamic recrystallization and the threshold temperatures and times of finish of static recrystallization are determined for the studied deformation rates at various temperatures.

  18. Online phase measuring profilometry for rectilinear moving object by image correction

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin

    2015-11-01

    In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.

  19. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khon, Yury A., E-mail: khon@ispms.tsc.ru; Kaminskii, Petr P., E-mail: ppk@ispms.tsc.ru

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  20. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The long term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate motions and intraplate deformation. The approach is to combine realistic modeling studies with an analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also briefly reported on is progress made in using GPS measurements to densify SLR observations in the Eastern Mediterranean.

  1. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianbo, E-mail: lijianbo1205@163.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Wang, Yan, E-mail: wangyan@csu.edu.cn

    2014-11-15

    High temperature compressive deformation behaviors of as-cast Ti–43Al–4Nb–1.4W–0.6B alloy were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s{sup −1} to 1 s{sup −1}. Electron back scattered diffraction technique, scanning electron microscopy and transmission electron microscopy were employed to investigate the microstructural evolutions and nucleation mechanisms of the dynamic recrystallization. The results indicated that the true stress–true strain curves show a dynamic flow softening behavior. The dependence of the peak stress on the deformation temperature and the strain rate can well be expressed by a hyperbolic-sine type equation. The activation energy decreases withmore » increasing the strain. The size of the dynamically recrystallized β grains decreases with increasing the value of the Zener–Hollomon parameter (Z). When the flow stress reaches a steady state, the size of β grains almost remains constant with increasing the deformation strain. The continuous dynamic recrystallization plays a dominant role in the deformation. In order to characterize the evolution of dynamic recrystallization volume fraction, the dynamic recrystallization kinetics was studied by Avrami-type equation. Besides, the role of β phase and the softening mechanism during the hot deformation was also discussed in details. - Highlights: • The size of DRXed β grains decreases with increasing the value of the Z. • The CDRX plays a dominant role in the deformation. • The broken TiB{sub 2} particles can promote the nucleation of DRX.« less

  2. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    PubMed

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  3. Single-camera displacement field correlation method for centrosymmetric 3D dynamic deformation measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaye; Wen, Huihui; Liu, Zhanwei; Rong, Jili; Xie, Huimin

    2018-05-01

    Three-dimensional (3D) deformation measurements are a key issue in experimental mechanics. In this paper, a displacement field correlation (DFC) method to measure centrosymmetric 3D dynamic deformation using a single camera is proposed for the first time. When 3D deformation information is collected by a camera at a tilted angle, the measured displacement fields are coupling fields of both the in-plane and out-of-plane displacements. The features of the coupling field are analysed in detail, and a decoupling algorithm based on DFC is proposed. The 3D deformation to be measured can be inverted and reconstructed using only one coupling field. The accuracy of this method was validated by a high-speed impact experiment that simulated an underwater explosion. The experimental results show that the approach proposed in this paper can be used in 3D deformation measurements with higher sensitivity and accuracy, and is especially suitable for high-speed centrosymmetric deformation. In addition, this method avoids the non-synchronisation problem associated with using a pair of high-speed cameras, as is common in 3D dynamic measurements.

  4. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-03-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  5. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  6. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    NASA Astrophysics Data System (ADS)

    Guo, Qingmiao; Li, Defu; Guo, Shengli; Peng, Haijian; Hu, Jie

    2011-07-01

    Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 °C and 1200 °C with different true strains and a strain rate of 0.1 s -1. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the original boundaries.

  7. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  8. A continuum dislocation dynamics framework for plasticity of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Askari, Hesam Aldin

    The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.

  9. A new method to quantify liner deformation within a prosthetic socket for below knee amputees.

    PubMed

    Lenz, Amy L; Johnson, Katie A; Bush, Tamara Reid

    2018-06-06

    Many amputees who wear a leg prosthesis develop significant skin wounds on their residual limb. The exact cause of these wounds is unclear as little work has studied the interface between the prosthetic device and user. Our research objective was to develop a quantitative method for assessing displacement patterns of the gel liner during walking for patients with transtibial amputation. Using a reflective marker system and a custom clear socket, evaluations were conducted with a clear transparent test socket mounted over a plaster limb model and a deformable limb model. Distances between markers placed on the limb were measured with a digital caliper and then compared with data from the motion capture system. Additionally, the rigid plaster set-up was moved in the capture volume to simulate walking and evaluate if inter-marker distances changed in comparison to static data. Dynamic displacement trials were then collected to measure changes in inter-marker distance due to vertical elongation of the gel liner. Static and dynamic inter-marker distances within day and across days confirmed the ability to accurately capture displacements using this new approach. These results encourage this novel method to be applied to a sample of amputee patients during walking to assess displacements and the distribution of the liner deformation within the socket. The ability to capture changes in deformation of the gel liner will provide new data that will enable clinicians and researchers to improve design and fit of the prosthesis so the incidence of pressure ulcers can be reduced. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  11. Dynamic and Static Shape Test/Analysis Correlation of a 10 Meter Quadrant Solar Sail

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Lively, Peter S.; Gaspar, James L.; Murphy, David M.; Trautt, Thomas A.

    2005-01-01

    This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 10-meter quadrant solar sail system. Thin film membranes and booms were analyzed at the component and system-level. The objective was to verify the design and structural responses of the sail system and to mature solar sail technology to a TRL 5. The focus of this paper is in test/analysis correlation.

  12. Swinging motion of active deformable particles in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-08-01

    Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.

  13. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.

  14. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  15. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  16. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  17. A computational model of amoeboid cell swimming in unbounded medium and through obstacles

    NASA Astrophysics Data System (ADS)

    Campbell, Eric; Bagchi, Prosenjit

    2017-11-01

    Pseudopod-driven motility is commonly observed in eukaryotic cells. Pseudopodia are actin-rich protrusions of the cellular membrane which extend, bifurcate, and retract in cycles resulting in amoeboid locomotion. While actin-myosin interactions are responsible for pseudopod generation, cell deformability is crucial concerning pseudopod dynamics. Because pseudopodia are highly dynamic, cells are capable of deforming into complex shapes over time. Pseudopod-driven motility represents a multiscale and complex process, coupling cell deformation, protein biochemistry, and cytoplasmic and extracellular fluid motion. In this work, we present a 3D computational model of amoeboid cell swimming in an extracellular medium (ECM). The ECM is represented as a fluid medium with or without obstacles. The model integrates full cell deformation, a coarse-grain reaction-diffusion system for protein dynamics, and fluid interaction. Our model generates pseudopodia which bifurcate and retract, showing remarkable similarity to experimental observations. Influence of cell deformation, protein diffusivity and cytoplasmic viscosity on the swimming speed is analyzed in terms of altered pseudopod dynamics. Insights into the role of matrix porosity and obstacle size on cell motility are also provided. Funded by NSF CBET 1438255.

  18. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  19. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-03-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  20. Ferrite grain refinement in low carbon Cu–P–Cr–Ni–Mo weathering steel at various temperatures in the (α + γ) region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunling, E-mail: zhangchl@ysu.edu.cn; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401; Zhang, Mengmeng

    2016-03-15

    Self-designed Cu–P–Cr–Ni–Mo weathering steel was subjected to compression test to determine the mechanism of ferrite grain refinement from 750 °C to 925 °C. Optical microscopic images showed that ferrite grain size declined, whereas the ferrite volume fraction increased with increasing compression temperature. Electron backscatter diffraction patterns revealed that several low-angle boundaries shifted to high-angle boundaries, thereby generating fine ferrite grains surrounded by high-angle boundaries. Numerous low-angle boundaries were observed within ferrite grains at 750 °C, which indicated the existence of pre-eutectoid ferrite. Results showed that ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775more » °C, and deformation-induced ferrite transformation could be the main mechanism at 800 °C and 850 °C. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were produced in the (α + γ) dual-phase region. - Graphical abstract: There is a close relationship between the microstructure evolution and flow curves during deformation. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were achieved in the (α + γ) dual-phase region. Ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775 °C, and deformation-induced ferrite transformation at 800 °C and 850 °C. The occurrence of deformation-induced ferrite transformation and continuous dynamic recrystallization can be monitored by analysis of flow curves and microstructures. Deformation-induced ferrite transformation leads to the dynamic softening in flow curve when temperature just below A{sub r3}, while the dynamic softening in flow curve is ferrite continuous dynamic recrystallization (Special Fig. 5b). - Highlights: • Compression deformation was operated at temperatures from 750 °C to 925 °C at a strain rate of 0.1 s–1, and a strain of 1.2. • Fine equiaxed ferrite grains of ~1.77–2.19 μm were obtained at 750 °C and 775 °C via continuous dynamic recrystallization. • Ferrite grain size of ~2.31–2.69 μm at 800 °C and 850 °C can be obtained by deformation-induced ferrite transformation. • With decreasing deformation temperature the average grain size of ferrite decreased while volume fraction increased. • Ferrite refinement was from deformation-induced ferrite to continuous dynamic recrystallization as temperature reduced.« less

  1. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Huang, J. Y.; Bie, B. X.

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  2. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE PAGES

    E, J. C.; Huang, J. Y.; Bie, B. X.; ...

    2016-08-02

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  3. Simulating 3D deformation using connected polygons

    NASA Astrophysics Data System (ADS)

    Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.

    2018-03-01

    In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.

  4. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  5. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  6. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  7. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  8. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  9. A review of virtual cutting methods and technology in deformable objects.

    PubMed

    Wang, Monan; Ma, Yuzheng

    2018-06-05

    Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  11. On impact by a hard cone on elasto-viscoplastic material, leading to the generation of a conical crack

    NASA Astrophysics Data System (ADS)

    Verveiko, N. D.; Shashkin, A. I.; Krupenko, S. E.

    2018-03-01

    The destruction of solid physical objects is a complex process in which mechanical, chemical, thermobaric and other matter transformations take place. Under mechanical destruction is understood the violation of the integrity of the object due to the occurrence of cracks. High-speed impact of a solid body on deformable materials is accompanied by the spread of cracks and is of a wave nature. This article presents an analysis of the dynamic stress-strain state in an elastoviscoplastic (EVP) material near the leading edge of a moving crack, approximated by a zone of continuous deformation. An analysis of the distribution of the intensity of tangential stresses and plastic deformations that occur behind the front of the longitudinal and shear head waves of a spherical shape generated by the impact of the vertex of the solid cone is carried out on the model EVP of the medium by the ray method. It is shown that the presence of a maximum of the jump of the tangential velocity component on the shear wave leads to a development with time of a jump in the displacements of the tangents to the front of the shear wave. This can be interpreted as the moment of initiation of the head part of a crack running along with the front of the elastic wave with the velocity of shear waves.

  12. Helium release during shale deformation: Experimental validation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This paper describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measuredmore » using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.« less

  13. Control and dynamics study for the satellite power system. Volume 1: MPTS/SPS collector dynamic analysis and surface deformation

    NASA Technical Reports Server (NTRS)

    Wang, S. J.

    1980-01-01

    The basic dynamic properties and performance characteristics of the microwave power transmission satellite antenna were analyzed in an effort to develop criteria, requirements, and constraints for the control and structure design. The vibrational properties, the surface deformation, and the corresponding scan loss under the influence of disturbances are considered.

  14. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  15. Modeling drop impacts on inclined flowing soap films

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  16. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    PubMed Central

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  17. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement

    PubMed Central

    Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.

    2015-01-01

    Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192

  18. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    PubMed

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  19. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  20. Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashitkov, Sergei I; Komarov, P S; Ovchinnikov, A V

    An interferometric method is developed and realised using a frequency-modulated pulse for diagnosing a dynamics of fast deformations with a spatial and temporal resolution under the action of a single laser pulse. The dynamics of a free surface of a submicron-thick aluminium film is studied under an action of the ultrashort compression pulse with the amplitude of up to 14 GPa, excited by a femtosecond laser heating of the target surface layer. The spallation strength of aluminium was determined at a record high deformation rate of 3 Multiplication-Sign 10{sup 9} s{sup -1}. (extreme light fields and their applications)

  1. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  2. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.

    PubMed

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-05-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. © 2015. Published by The Company of Biologists Ltd.

  3. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    PubMed

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  4. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  5. Control of articulated snake robot under dynamic active constraints.

    PubMed

    Kwok, Ka-Wai; Vitiello, Valentina; Yang, Guang-Zhong

    2010-01-01

    Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.

  6. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  7. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Günther, P.; Nöthen, M.; Czarske, J.

    2010-02-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained.

  8. Grain size distribution in sheared polycrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, Tanmoy; Biswas, Santidan; Chaudhuri, Pinaki; Sain, Anirban

    2017-12-01

    Plastic deformation in solids induced by external stresses is of both fundamental and practical interest. Using both phase field crystal modeling and molecular dynamics simulations, we study the shear response of monocomponent polycrystalline solids. We subject mesocale polycrystalline samples to constant strain rates in a planar Couette flow geometry for studying its plastic flow, in particular its grain deformation dynamics. As opposed to equilibrium solids where grain dynamics is mainly driven by thermal diffusion, external stress/strain induce a much higher level of grain deformation activity in the form of grain rotation, coalescence, and breakage, mediated by dislocations. Despite this, the grain size distribution of this driven system shows only a weak power-law correction to its equilibrium log-normal behavior. We interpret the grain reorganization dynamics using a stochastic model.

  9. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  10. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  11. Consideration of Optimal Input on Semi-Active Shock Control System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  12. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  13. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  14. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  15. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space

    PubMed Central

    Zheng, Wei; Zhang, Xiaoya; Lu, Qi

    2015-01-01

    This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR) composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones. PMID:26011618

  16. Investigation of Deformation Dynamics in a Wrought Magnesium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Qiao, Hua; An, Ke

    2014-11-01

    In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less

  17. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  18. Generation of deformation time series from SAR data sequences in areas affected by large dynamics: insights from Sierra Negra caldera, Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manconi, Andrea; Pepe, Antonio; Lanari, Riccardo

    2010-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is a remote sensing technique that allows producing spatially dense deformation maps of the Earth surface, with centimeter accuracy. To this end, the phase difference of SAR image pairs acquired before and after a deformation episode is properly exploited. This technique, originally applied to investigate single deformation events, has been further extended to analyze the temporal evolution of the deformation field through the generation of displacement time-series. A well-established approach is represented by the Small BAseline Subset (SBAS) technique (Berardino et al., 2002), whose capability to analyze deformation events at low and full spatial resolution has largely been demonstrated. However, in areas where large and/or rapid deformation phenomena occur, the exploitation of the differential interferograms, thus also of the displacement time-series, can be strongly limited by the presence of significant misregistration errors and/or very high fringe rates, making unfeasible the phase unwrapping step. In this work, we propose advances on the generation of deformation time-series in areas affected by large deformation dynamics. We present an extension of the amplitude-based Pixel-Offset analyses by applying the SBAS strategy, in order to move from the investigation of single (large) deformation events to that of dynamic phenomena. The above-mentioned method has been tested on an ENVISAT SAR data archive (Track 61, Frames 7173-7191) related to the Galapagos Islands, focusing on Sierra Negra caldera (Galapagos Islands), an active volcanic area often characterized by large and rapid deformation events leading to severe image misregistration effects (Yun et al., 2007). Moreover, we present a cross-validation of the retrieved deformation estimates comparing our results to continuous GPS measurements and to synthetic deformation obtained by independently modeling the interferometric phase information when available. References: P. Berardino et al., (2002), A new algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, 11, pp. 2375-2383. S-H. Yun et al., (2007), Interferogram formation in the presence of complex and large deformation, Geophys. Res. Lett., vol. 34, L12305.

  19. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  20. A 4DCT imaging-based breathing lung model with relative hysteresis

    PubMed Central

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-01-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811

  1. A 4DCT imaging-based breathing lung model with relative hysteresis

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.

  2. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, H. J.; Proud, W. G.

    2006-07-28

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less

  3. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, N.L.; Officer, C.B.; Chesner, C.A.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processesmore » may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.« less

  4. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  5. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1988-01-01

    The long-term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate movements and intraplate deformation. The approach is to combine realistic modeling studies with analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also reported on briefly is progress in the use of the Global Positioning System to densify SLR observations in the Eastern Mediterranean. Reference is made to the previous annual report for a discussion of modeling results.

  6. Dynamic soft tissue deformation estimation based on energy analysis

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Yao, Bin

    2016-10-01

    The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful for compensating the needle-targeting error in the rigid needle insertion procedure, especially for percutaneous needle insertion into organs.

  7. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  8. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).

  9. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    PubMed

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.

  10. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    NASA Astrophysics Data System (ADS)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.

  11. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    PubMed

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  12. One-dimensional reduction of viscous jets. II. Applications

    NASA Astrophysics Data System (ADS)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  13. Origami-Based Reconfigurable Metamaterials for Tunable Chirality.

    PubMed

    Wang, Zuojia; Jing, Liqiao; Yao, Kan; Yang, Yihao; Zheng, Bin; Soukoulis, Costas M; Chen, Hongsheng; Liu, Yongmin

    2017-07-01

    Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping

    2003-04-01

    A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.

  15. Hostile environments and high temperature measurements; Proceedings of the Conference, Kansas City, MO, Nov. 6-8, 1989

    NASA Astrophysics Data System (ADS)

    Topics presented include the identification of stagnant region in a fluidized bed combustor, high sensitivity objective grating speckle, an X-ray beam method for displacement and strain distributions using the moire method, and high-temperature deformation of a Ti-alloy composite under complex loading. Also addressed are a hybrid procedure for dynamic characterization of ceramics at elevated temperature, thermo-structural measurements in a SiC coated carbon-carbon hypersonic glide vehicle, and recent experience with elevated-temperature foil strain gages with application to thin-gage materials.

  16. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  17. The Lamb wave bandgap variation of a locally resonant phononic crystal subjected to thermal deformation

    NASA Astrophysics Data System (ADS)

    Zhu, Yun; Li, Zhen; Li, Yue-ming

    2018-05-01

    A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.

  18. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  19. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  20. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  1. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.; ...

    2017-04-04

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  2. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB

  3. Higher-dimensional phase imaging

    NASA Astrophysics Data System (ADS)

    Huntley, Jonathan M.

    2010-04-01

    Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.

  4. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  5. Influence of georeference for saturated excess overland flow modelling using 3D volumetric soft geo-objects

    NASA Astrophysics Data System (ADS)

    Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail

    2011-04-01

    Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.

  6. Hydrodynamical simulations of strong tides in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Guillochon, James

    2013-07-01

    At the simplest level, gravitational sources are considered to be point-like and in solitude, with a radial force that falls off as r -2. In reality, all astrophysical objects aside from black holes are extended in space, and can be deformed by the tidal forces arising from the proximity of companion objects with large average densities. When these forces are weak, the response of an object to a tide can be through a decomposition into basis functions, but this approach fails when the tide is strong enough to deform an object by a distance equal to its own size. Under these circumstances, a hydrodynamical representation of the object is required to understand the true tidal response. In this thesis, we present a number of examples of physical systems in which tides dominate the dynamics. First, we consider the case of a star that encounters a supermassive black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that produces shocks that would be observable in the X-ray. Second, we present the results of hydrodynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we investigate the survival prospects of giant planets that have been scattered into highly eccentricity orbits and are exposed to a strong tide applied by their parent star. Fourth, we systematically map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use what we have learned about the feeding rate to model determine the highest-likelihood model for an observed prototypical tidal disruption event.

  7. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    PubMed

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the motion along the non-preferred directions, the target deformation is tracked actively. The proposed DVF for an admittance-type manipulator is capable of assisting the operator to deal with skilled operations in a deforming environment.

  8. DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.

    PubMed

    Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou

    2016-07-07

    In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.

  9. Towards the Implementation of Semi-Dynamic Datum for Malaysia

    NASA Astrophysics Data System (ADS)

    Shariff, N. S.; Gill, J.; Amin, Z. M.; Omar, K. M.

    2017-10-01

    A semi-dynamic datum provides positions with respect to time while taking into account the secular and non-secular deformations, making it the best approach to adapt with the dynamic processes of the earth. Malaysia, as yet, employs a static datum, i.e., GDM2000, at epoch 2000; though Malaysia has evidently been affected by seismic activity for the past decade. Therefore, this paper seeks to propose a design for implementing a semi-dynamic datum for Malaysia. Methodologically, GPS time series analyses are carried out to investigate the seismic activity of Malaysia, which essentially contributes to the proposed design of the semi-dynamic datum for Malaysia. The implications of implementing a semi-dynamic datum for Malaysia are discussed as well. The results indicate that Malaysia undergoes a complex deformation; whereby the earthquakes - primarily the 2004 Sumatra-Andaman, 2005 Nias and 2012 Northern Sumatra earthquakes - have affected the underlying secular velocities of Malaysia. Consequently, from this information, the proposed design, particularly the secular and non-secular deformation models, is described in detail. The proposed semi-dynamic datum comprises a transformation, temporal, and spatial module, and utilizes a bilinear interpolation method. Overall, this paper aims to contribute to the feasibility of a semi-dynamic datum approach for Malaysia.

  10. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  11. Deformation Twins in Nanocrystalline Body-Centered Cubic Mo as Predicted by Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tonks; Bulent biner; Yongfeng Zhang

    2012-10-01

    This work studies deformation twins in nanocrystalline body-centered cubic Mo, including the nucleation and growth mechanisms as well as their effects on ductility, through molecular dynamics simulations. The deformation processes of nanocrystalline Mo are simulated using a columnar grain model with three different orientations. The deformation mechanisms identified, including dislocation slip, grain-boundary-mediated plasticity, deformation twins and martensitic transformation, are in agreement with previous studies. In (1 1 0) columnar grains, the deformation is dominated by twinning, which nucleates primarily from the grain boundaries by successive emission of twinning partials and thickens by jog nucleation in the grain interiors. Upon arrestmore » by a grain boundary, the twin may either produce continuous plastic strain across the grain boundary by activating compatible twinning/slip systems or result in intergranular failure in the absence of compatible twinning/slip systems in the neighboring grain. Multiple twinning systems can be activated in the same grain, and the competition between them favors those capable of producing continuous deformation across the grain boundary.« less

  12. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

    PubMed Central

    Dorronsoro, Carlos; Pascual, Daniel; Pérez-Merino, Pablo; Kling, Sabine; Marcos, Susana

    2012-01-01

    A new technique is presented for the non-invasive imaging of the dynamic response of the cornea to an air puff inducing a deformation. A spectral OCT instrument combined with an air tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal evolution of the corneal apex. The entire deformation process can be dynamically visualized. A quantitative analysis allows direct extraction of several deformation parameters, such as amplitude, diameter and volume of the maximum deformation, as well as duration and speed of the increasing deformation period and the recovery period. The potential of the technique is demonstrated on porcine corneas in vitro under constant IOP for several conditions (untreated, after riboflavin instillation and under cross-linking with ultraviolet light), as well as on human corneas in vivo. The new technique has proved very sensitive to detect differences in the deformation parameters across conditions. We have confirmed non-invasively that Riboflavin and UV-cross-linking induce changes in the corneal biomechanical properties. Those differences appear to be the result of changes in constituent properties of the cornea, and not a consequence of changes in corneal thickness, geometry or IOP. These measurements are a first step for the estimation of the biomechanical properties of corneal tissue, at an individual level and in vivo, to improve diagnosis and prognosis of diseases and treatments involving changes in the biomechanical properties of the cornea. PMID:22435096

  13. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  14. Mechanistic Insights into Human Brain Impact Dynamics through Modal Analysis

    NASA Astrophysics Data System (ADS)

    Laksari, Kaveh; Kurt, Mehmet; Babaee, Hessam; Kleiven, Svein; Camarillo, David

    2018-03-01

    Although concussion is one of the greatest health challenges today, our physical understanding of the cause of injury is limited. In this Letter, we simulated football head impacts in a finite element model and extracted the most dominant modal behavior of the brain's deformation. We showed that the brain's deformation is most sensitive in low frequency regimes close to 30 Hz, and discovered that for most subconcussive head impacts, the dynamics of brain deformation is dominated by a single global mode. In this Letter, we show the existence of localized modes and multimodal behavior in the brain as a hyperviscoelastic medium. This dynamical phenomenon leads to strain concentration patterns, particularly in deep brain regions, which is consistent with reported concussion pathology.

  15. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  16. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  17. Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Dennis, D. J.

    2014-12-01

    Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.

  18. Three-dimensional simulation of pseudopod-driven swimming of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Campbell, Eric; Bagchi, Prosenjit

    2016-11-01

    Pseudopod-driven locomotion is common in eukaryotic cells, such as amoeba, neutrophils, and cancer cells. Pseudopods are protrusions of the cell body that grow, bifurcate, and retract. Due to the dynamic nature of pseudopods, the shape of a motile cell constantly changes. The actin-myosin protein dynamics is a likely mechanism for pseudopod growth. Existing theoretical models often focus on the acto-myosin dynamics, and not the whole cell shape dynamics. Here we present a full 3D simulation of pseudopod-driven motility by coupling a surface-bound reaction-diffusion (RD) model for the acto-myosin dynamics, a continuum model for the cell membrane deformation, and flow of the cytoplasmic and extracellular fluids. The whole cell is represented as a viscous fluid surrounded by a membrane. A finite-element method is used to solve the membrane deformation, and the RD model on the deforming membrane, while a finite-difference/spectral method is used to solve the flow fields inside and outside the cell. The fluid flow and cell deformation are coupled by the immersed-boundary method. The model predicts pseudopod growth, bifurcation, and retraction as observed for a swimming amoeba. The work provides insights on the role of membrane stiffness and cytoplasmic viscosity on amoeboid swimming. Funded by NSF CBET 1438255.

  19. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    NASA Astrophysics Data System (ADS)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  20. Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel During Hot Compression

    NASA Astrophysics Data System (ADS)

    Shahriari, Babak; Vafaei, Reza; Mohammad Sharifi, Ehsan; Farmanesh, Khosro

    2018-03-01

    The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850-1100 °C and under strain rates varying from 0.001 to 1 s-1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s-1. A very good correlation between the flow stress and Zener-Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol-1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov-Johnson-Mehl-Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.

  1. Computational aeroelastic analysis of aircraft wings including geometry nonlinearity

    NASA Astrophysics Data System (ADS)

    Tian, Binyu

    The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen in those plots. The movement of shock changes the aerodynamic load distribution on the wing. The effect of viscous on aeroelastic analysis is also discussed. Also compared are the flutter solutions with, or without the structural nonlinearity. As can be seen, linear structural solution goes to infinite, which can not be true in reality. The nonlinear solution is more realistic and can be used to understand the fluid and structure interaction behavior, to control, or prevent disastrous events. (Abstract shortened by UMI.)

  2. PBxplore: a tool to analyze local protein structure and deformability with Protein Blocks

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel Praveen; Jallu, Vincent

    2017-01-01

    This paper describes the development and application of a suite of tools, called PBxplore, to analyze the dynamics and deformability of protein structures using Protein Blocks (PBs). Proteins are highly dynamic macromolecules, and a classical way to analyze their inherent flexibility is to perform molecular dynamics simulations. The advantage of using small structural prototypes such as PBs is to give a good approximation of the local structure of the protein backbone. More importantly, by reducing the conformational complexity of protein structures, PBs allow analysis of local protein deformability which cannot be done with other methods and had been used efficiently in different applications. PBxplore is able to process large amounts of data such as those produced by molecular dynamics simulations. It produces frequencies, entropy and information logo outputs as text and graphics. PBxplore is available at https://github.com/pierrepo/PBxplore and is released under the open-source MIT license. PMID:29177113

  3. An enhanced flexible dynamic model and experimental verification for a valve train with clearance and multi-directional deformations

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Hu, Bo; Chen, Siyu; He, Liping

    2017-12-01

    An enhanced flexible dynamic model for a valve train with clearance and multi-directional deformations is proposed based on finite element method (FEM), and verified by experiment. According to the measured cam profile, the available internal excitations in numerical solution to the model are achieved by using piecewise cubic Hermite interpolating polynomial. The comparative analysis demonstrates that the bending deformation of the rocker arm is much larger than the radial deformation, signifying the necessities of multi-directional deformations in dynamic analysis for the valve train. The effects of valve clearance and cam rotation speed on contact force, acceleration and dynamic transmission error (DTE) are investigated. Both theoretical predictions and experimental measurements show that the amplitudes and fluctuations of contact force, acceleration and DTE become larger, when the valve clearance or cam speed increases. It is found that including the elasticity and the damping will weaken the impact between the rocker arm and the valve on the components (not adjacent to the valve) at either unseating or seating scenario. Additionally, as valve clearance or cam rotation speed becomes larger, the valve lift and the working phase decrease, which eventually leads to inlet air reduction. Furthermore, our study shows that the combustion rate improvement, input torque, and components durability can be improved by tuning valve clearance or adjustment the cam profile.

  4. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, A. J.; Wei, Y. G.

    2006-07-24

    Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries providemore » sequential twining mechanism, which results in fivefold deformation twins.« less

  5. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Han, Qinkai; Zhou, Daning

    2017-02-01

    In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.

  6. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  7. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  8. The fluid dynamic approach to equidistribution methods for grid generation and adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delzanno, Gian Luca; Finn, John M

    2009-01-01

    The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degreemore » of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.« less

  9. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    PubMed

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  10. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  11. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  12. Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Uto, Shotaro; Toyota, Takenobu; Shimoda, Haruhito; Tateyama, Kazutaka; Shirasawa, Kunio

    Recent observations have revealed that dynamical thickening is dominant in the growth process of sea ice in the southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed ice in this area. The objective of the present paper is to establish a ship-based method for observing the thickness of deformed ice with reasonable accuracy. Since February 2003, one of the authors has engaged in the core sampling using a small basket from the icebreaker Soya. Based on these results, we developed a new model which expressed the internal structure of pack ice in the southern Sea of Okhotsk, as a one-dimensional multilayered structure. Since 2004, the electromagnetic (EM) inductive sounding of sea-ice thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to ice + snow thickness (total thickness). Comparison with total thickness by drillhole observations showed fair agreement. The probability density functions of total thickness in 2004 and 2005 showed some difference, which reflected the difference of fractions of thick deformed ice.

  13. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    NASA Astrophysics Data System (ADS)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-11-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability.

  14. Dynamic deformations and the M6.7, Northridge, California earthquake

    USGS Publications Warehouse

    Gomberg, J.

    1997-01-01

    A method of estimating the complete time-varying dynamic formation field from commonly available three-component single station seismic data has been developed and applied to study the relationship between dynamic deformation and ground failures and structural damage using observations from the 1994 Northridge, California earthquake. Estimates from throughout the epicentral region indicate that the horizontal strains exceed the vertical ones by more than a factor of two. The largest strains (exceeding ???100 ??strain) correlate with regions of greatest ground failure. There is a poor correlation between structural damage and peak strain amplitudes. The smallest strains, ???35 ??strain, are estimated in regions of no damage or ground failure. Estimates in the two regions with most severe and well mapped permanent deformation, Potrero Canyon and the Granada-Mission Hills regions, exhibit the largest strains; peak horizontal strains estimates in these regions equal ???139 and ???229 ??strain respectively. Of note, the dynamic principal strain axes have strikes consistent with the permanent failure features suggesting that, while gravity, sub-surface materials, and hydrologic conditions undoubtedly played fundamental roles in determining where and what types of failures occurred, the dynamic deformation field may have been favorably sized and oriented to initiate failure processes. These results support other studies that conclude that the permanent deformation resulted from ground shaking, rather than from static strains associated with primary or secondary faulting. They also suggest that such an analysis, either using data or theoretical calculations, may enable observations of paleo-ground failure to be used as quantitative constraints on the size and geometry of previous earthquakes. ?? 1997 Elsevier Science Limited.

  15. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    PubMed

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.

  16. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    PubMed

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  17. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The nature and dynamics of time-dependent deformation along major seismic zones including the influence of irregularities in fault geometry on the earthquake cycle, and the processes contributing to the state of stress and rates of strain in plate interior regions were studied. The principle findings of the research are discussed.

  18. Quantification of focal adhesion dynamics of cell movement based on cell-induced collagen matrix deformation using second-harmonic generation microscopy.

    PubMed

    Kang, Yong Guk; Jang, Hwanseok; Yang, Taeseok Daniel; Notbohm, Jacob; Choi, Youngwoon; Park, Yongdoo; Kim, Beop-Min

    2018-06-01

    Mechanical interactions of living cells with the surrounding environment via focal adhesion (FA) in three dimensions (3-D) play a key role in dynamic biological events, such as tissue regeneration, wound healing, and cancer invasion. Recently, several methods for observing 3-D cell-extracellular matrix (ECM) interactions have been reported, lacking solid and quantitative analysis on the dynamics of the physical interaction between the cell and the ECM. We measured the submicron displacements of ECM deformation in 3-D due to protrusion-retraction dynamics during cell migration, using second-harmonic generation without labeling the matrix structures. We then quantitatively analyzed the mechanical deformation between the ECM and the cells based on spatiotemporal volumetric correlations. The greatest deformations within the collagen matrix were found to occur at sites of colocalization of the FA site-related proteins vinculin and actin, which confirms that FA sites play a critical role in living cells within the ECM as a point for adhesion, traction, and migration. We believe that this modality can be used in studies of cell-ECM interaction during angiogenesis, wound healing, and metastasis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  20. High-Temperature Deformation Behavior of HCP Alloys -- An Internal Variable Approach

    DTIC Science & Technology

    2006-05-31

    successfully to characterize the high temperature deformation behavior of various metallic materials such as Al alloys, Pb-Sn hyper- eutectic alloy, and...implying dynamic recrystallization (DRX) and GBS as the major deformation mechanisms at 523 K and 10-4 /s. Large cavities are observed at the

  1. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  2. Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper

    NASA Astrophysics Data System (ADS)

    Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan

    This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.

  3. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  4. Mechanics of Formation of Forearc Basins of Indonesia and Alaska

    NASA Astrophysics Data System (ADS)

    Cassola, T.; Willett, S.; Kopp, H.

    2010-12-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  5. [Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].

    PubMed

    Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo

    2015-03-01

    To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.

  6. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well and are stable and repeatable at the sub-nm level over the course of an hour. In Chapter 8, I prove MEMS ability to correct high-order Kolmogorov turbulence and maintain the high-contrast "dark hole" in the GPI woofer-tweeter architecture. Finally, in Chapter 9, I analyze MEMS performance on sky with Villages, a telescope testbed for MEMS technology, visible-light AO, and open-loop control. The MEMS remains repeatably flat and controllable over ˜4 years and ˜800 hours of operation. Open loop control of the hysteresis-free MEMS produces a diffraction-limited core in I-band, while internal static errors dominate the on-sky error budget. This work establishes MEMS deformable mirrors as excellent wavefront correctors for high-order AO. The MEMS in GPI will produce a deeper, broader dark hole, allowing for detection and characterization of directly-imaged planets in a fainter, wider search space.

  7. Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Jiang, Yao; Li, Tiemin

    2014-09-01

    Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.

  8. Dynamics of a Lüders Band and Destruction of an Aluminum-Magnesium Alloy, Initiated by a Stress Concentrator

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.

    2018-02-01

    Spatio-temporal localization of deformation and the rupture of the aluminum-magnesium AlMg6 alloy, initiated by a geometrical stress concentrator, are studied in situ by video recording at a speed of 500 to 20000 frames/s. It is established that a stress concentrator in the form of a small notch with a depth about 1% of the width of a flat specimen is an attractor of bands of macrolocalized plastic deformation, starting from a Lüders band and ending with the start of the main crack. The key role of intersecting deformation macrobands in the development of the main crack is revealed. Possible micromechanisms of viscous destruction associated with the dynamics of the intersection of deformation bands are discussed.

  9. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  10. Experimental investigation of compliant wall surface deformation in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Cao; Wang, Jin; Katz, Joseph

    2016-11-01

    The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.

  11. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2018-04-01

    A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.

  12. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

    NASA Astrophysics Data System (ADS)

    Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.

    2012-11-01

    Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

  13. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  14. On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian

    2017-04-01

    There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation.

  15. Aortic root dynamics and surgery: from craft to science.

    PubMed

    Cheng, Allen; Dagum, Paul; Miller, D Craig

    2007-08-29

    Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.

  16. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture

    NASA Astrophysics Data System (ADS)

    Patra, Sudipta; Ghosh, Abhijit; Singhal, Lokesh Kumar; Podder, Arijit Saha; Sood, Jagmohan; Kumar, Vinod; Chakrabarti, Debalay

    2017-01-01

    The hot deformation behavior of 2101 grade lean duplex stainless steel (DSS, containing 5 wt pct Mn, 0.2 wt pct N, and 1.4 wt pct Ni) and associated microstructural changes within δ-ferrite and austenite ( γ) phases were investigated by hot-compression testing in a GLEEBLE 3500 simulator over a range of deformation temperatures, T def [1073 K to 1373 K (800 °C to 1100 °C)], and applied strains, ɛ (0.25 to 0.80), at a constant true strain rate of 1/s. The microstructural softening inside γ was dictated by discontinuous dynamic recrystallization (DDRX) at a higher T def [1273 K to 1373 K (1000 °C to 1100 °C)], while the same was dictated by continuous dynamic recrystallization (CDRX) at a lower T def (1173 K (900 °C)]. Dynamic recovery (DRV) and CDRX dominated the softening inside δ-ferrite at T def ≥ 1173 K (900 °C). The dynamic recrystallization (DRX) inside δ and γ could not take place upon deformation at 1073 K (800 °C). The average flow stress level increased 2 to 3 times as the T def dropped from 1273 to 1173 K (1000 °C to 900 °C) and finally to 1073 K (800 °C). The average microhardness values taken from δ-ferrite and γ regions of the deformed samples showed a different trend. At T def of 1373 K (1100 °C), microhardness decreased with the increase in strain, while at T def of 1173 K (900 °C), microhardness increased with the increase in strain. The microstructural changes and hardness variation within individual phases of hot-deformed samples are explained in view of the chemical composition of the steel and deformation parameters ( T def and ɛ).

  17. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunal, K.; Aluru, N. R., E-mail: aluru@illinois.edu

    We investigate the effect of size on intrinsic dissipation in nano-structures. We use molecular dynamics simulation and study dissipation under two different modes of deformation: stretching and bending mode. In the case of stretching deformation (with uniform strain field), dissipation takes place due to Akhiezer mechanism. For bending deformation, in addition to the Akhiezer mechanism, the spatial temperature gradient also plays a role in the process of entropy generation. Interestingly, we find that the bending modes have a higher Q factor in comparison with the stretching deformation (under the same frequency of operation). Furthermore, with the decrease in size, themore » difference in Q factor between the bending and stretching deformation becomes more pronounced. The lower dissipation for the case of bending deformation is explained to be due to the surface scattering of phonons. A simple model, for phonon dynamics under an oscillating strain field, is considered to explain the observed variation in dissipation rate. We also studied the scaling of Q factor with initial tension, in a beam under flexure. We develop a continuum theory to explain the observed results.« less

  19. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  20. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns

    PubMed Central

    Maharaj, Dave; Bhushan, Bharat

    2015-01-01

    Nano-objects have been investigated for drug delivery, oil detection, contaminant removal, and tribology applications. In some applications, they are subjected to friction and deformation during contact with each other and their surfaces on which they slide. Experimental studies directly comparing local and global deformation are lacking. This research performs nanoindentation (local deformation) and compression tests (global deformation) with a nanoindenter (sharp tip and flat punch, respectively) on molybdenum disulfide (MoS2) multi-walled nanotubes (MWNTs), ~500 nm in diameter. Hardness of the MoS2 nanotube was similar to bulk and does not follow the “smaller is stronger” phenomenon as previously reported for other nano-objects. Tungsten disulfide (WS2) MWNTs, ~300 nm in diameter and carbon nanohorns (CNHs) 80–100 nm in diameter were of interest and also selected for compression studies. These studies aid in understanding the mechanisms involved during global deformation when nano-objects are introduced to reduce friction and wear. For compression, highest loads were required for WS2 nanotubes, then MoS2 nanotubes and CNHs to achieve the same displacement. This was due to the greater number of defects with the MoS2 nanotubes and the flexibility of the CNHs. Repeat compression tests of nano-objects were performed showing a hardening effect for all three nano-objects. PMID:25702922

  1. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion–Extension of the Neck

    PubMed Central

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.

    2017-01-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358

  2. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-06-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  3. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  4. Topology-preserving quantum deformation with non-numerical parameter

    NASA Astrophysics Data System (ADS)

    Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina

    2013-11-01

    We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.

  5. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    PubMed

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  6. Study of deformation evolution during failure of rock specimens using laser-based vibration measurements

    NASA Astrophysics Data System (ADS)

    Smolin, I. Yu.; Kulkov, A. S.; Makarov, P. V.; Tunda, V. A.; Krasnoveikin, V. A.; Eremin, M. O.; Bakeev, R. A.

    2017-12-01

    The aim of the paper is to analyze experimental data on the dynamic response of the marble specimen in uniaxial compression. To make it we use the methods of mathematical statistics. The lateral surface velocity evolution obtained by the laser Doppler vibrometer represents the data for analysis. The registered data were regarded as a time series that reflects deformation evolution of the specimen loaded up to failure. The revealed changes in statistical parameters were considered as precursors of failure. It is shown that before failure the deformation response is autocorrelated and reflects the states of dynamic chaos and self-organized criticality.

  7. Geometric effects in the electronic transport of deformed nanotubes

    NASA Astrophysics Data System (ADS)

    Santos, Fernando; Fumeron, Sébastien; Berche, Bertrand; Moraes, Fernando

    2016-04-01

    Quasi-two-dimensional systems may exibit curvature, which adds three-dimensional influence to their internal properties. As shown by da Costa (1981 Phys. Rev. A 23 1982-7), charged particles moving on a curved surface experience a curvature-dependent potential which greatly influence their dynamics. In this paper, we study the electronic ballistic transport in deformed nanotubes. The one-electron Schrödinger equation with open boundary conditions is solved numerically with a flexible MAPLE code made available as supplementary data. We find that the curvature of the deformations indeed has strong effects on the electron dynamics, suggesting its use in the design of nanotube-based electronic devices.

  8. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  9. Spin dynamics in helical molecules with nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Albares, P.; Estévez, P. G.; Cerveró, J. M.; Gaul, C.; Diez, E.; Domínguez-Adame, F.

    2018-04-01

    It is widely admitted that the helical conformation of certain chiral molecules may induce a sizable spin selectivity observed in experiments. Spin selectivity arises as a result of the interplay between a helicity-induced spin–orbit coupling (SOC) and electric dipole fields in the molecule. From the theoretical point of view, different phenomena might affect the spin dynamics in helical molecules, such as quantum dephasing, dissipation and the role of metallic contacts. With a few exceptions, previous studies usually neglect the local deformation of the molecule about the carrier, but this assumption seems unrealistic to describe charge transport in molecular systems. We introduce an effective model describing the electron spin dynamics in a deformable helical molecule with weak SOC. We find that the electron–lattice interaction allows the formation of stable solitons such as bright solitons with well defined spin projection onto the molecule axis. We present a thorough study of these bright solitons and analyze their possible impact on the spin dynamics in deformable helical molecules.

  10. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    NASA Astrophysics Data System (ADS)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  11. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties

    PubMed Central

    Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro

    2016-01-01

    Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application. PMID:27966603

  12. Microstructure and critical strain of dynamic recrystallization of 6082 aluminum alloy in thermal deformation

    NASA Astrophysics Data System (ADS)

    Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.

    2018-05-01

    Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.

  13. Connection forces in deformable multibody dynamics

    NASA Technical Reports Server (NTRS)

    Shabana, A. A.; Chang, C. W.

    1989-01-01

    In the dynamic formulation of holonomic and nonholonomic systems based on D'Alembert-Lagrange equation, the forces of constraints are maintained in the dynamic equations by introducing auxiliary variables, called Lagrange multipliers. This approach introduces a set of generalized reaction forces associated with the system generalized coordinates. Different sets of variables can be used as generalized coordinates and accordingly, the generalized reactions associated with these generalized coordinates may not be the actual reaction forces at the joints. In rigid body dynamics, the generalized reaction forces and the actual reaction forces at the joints represent equipollent systems of forces since they produce the same total forces and moments at and about any point on the rigid body. This is not, however, the case in deformable body analyses wherein the generalized reaction forces depend on the system generalized reference and elastic coordinates. In this paper, a method for determining the actual reaction forces at the joints from the generalized reaction forces in deformable multibody systems is presented.

  14. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: a molecular dynamics study

    PubMed Central

    Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.

    2017-01-01

    While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain. PMID:28169377

  15. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  16. Ultrasound-induced oscillations of gas bubbles in contact with gelatin gel surfaces

    NASA Astrophysics Data System (ADS)

    Fukui, Sosuke; Ando, Keita

    2017-11-01

    Ultrasound-induced dynamics of gas bubbles in the vicinity of deformable boundaries are studied experimentally, as a simplified model of sonoporation in medicine. In our experiment, 28-kHz underwater ultrasound was irradiated to a gas bubble nuclei (of radius from 60 μm to 200 μm) sitting at gel surfaces (of gelatin concentration from 6 wt% to 16 wt%) and the bubble dynamics were recorded by a high-speed camera. The repeated deformation of the gel surface was found to be in phase with volumetric oscillation of the bubble. A liquid jet, which can appear toward the collapse phase in the bubble oscillation in volume, produced localized surface deformation, which is an important observation in the context of sonoporation. We characterize the maximum displacement of the gel surface with varying the bubble nuclei radius (in comparison to the resonant radius fixed approximately at 117 μm). We also examine the phase difference between the ultrasound and the bubble dynamics under the influence of the deformable boundary. The Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  17. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  18. Time-varying q-deformed dark energy interacts with dark matter

    NASA Astrophysics Data System (ADS)

    Dil, Emre; Kolay, Erdinç

    We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.

  19. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.

    PubMed

    Mateo, Carlos M; Gil, Pablo; Torres, Fernando

    2016-05-05

    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object's surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand's fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.

  20. Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennite -- A Computational Modeling Study

    NASA Astrophysics Data System (ADS)

    Adebiyi, Babatunde Mattew

    Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance, are required. A computational material modeling methodology is investigated and demonstrated for a key cement hydrated component material chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work. The effect of material ion exchanges on the mechanical stiffness properties and shear deformation behavior of hydrated cement material chemistry structure of Calcium Silicate Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The traditional Jennite structure was obtained from the American Mineralogist Crystal Structure Database and super cells of the structures were created using a Molecular Dynamics Analyzer and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used in material modeling analysis studies based on convergence results obtained from the elastic modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the Magnesium ion modified structures. NVT Discover dynamics using COMPASS forcefield was used in the material modeling studies to investigate the influence of ionic exchange on the shear deformation of the associated material chemistry structures. A prior established quasi-static deformation method to emulate shear deformation of C-S-H material chemistry structure that is based on a triclinic crystal structure was used, by deforming the triclinic crystal structure at 0.2 degree per time step for 75 steps of deformation. It was observed that there is a decrease in the total energies of the systems as the percentage of magnesium ion increases in the C-S-H Jennite molecular structure systems. Investigation of effect of ion exchange on the elastic modulus shows that the elastic stiffness modulus tends to decrease as the amount of Mg in the systems increases, using either COMPASS or universal force field. On the other hand, shear moduli obtained after deforming the structures computed from the stress-strain curve obtained from material modeling increases as the amount of Mg increases in the system. The present investigations also showed that ultimate shear stress obtained from predicted shear stress---strain also increases with amount of Mg in the chemistry structure. Present study clearly demonstrates that computational material modeling following molecular dynamics analysis methodology is an effective way to predict and understand the effective material chemistry and additive changes on the stiffness and deformation characteristics in cementitious materials, and the results suggest that this method can be extended to other materials.

  1. Dynamics of a gravity-gradient stabilized flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Juang, J. N.

    1974-01-01

    The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.

  2. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus was in two broad areas during the most recent 6-month period: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings are described in the accompanying appendices.

  3. Principal axes estimation using the vibration modes of physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  4. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems

    NASA Astrophysics Data System (ADS)

    Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye

    2018-07-01

    This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.

  5. The Penn State Safety Floor: Part I--Design parameters associated with walking deflections.

    PubMed

    Casalena, J A; Ovaert, T C; Cavanagh, P R; Streit, D A

    1998-08-01

    A new flooring system has been developed to reduce peak impact forces to the hips when humans fall. The new safety floor is designed to remain relatively rigid under normal walking conditions, but to deform elastically when impacted during a fall. Design objectives included minimizing peak force experienced by the femur during a fall-induced impact, while maintaining a maximum of 2 mm of floor deflection during walking. Finite Element Models (FEMs) were developed to capture the complex dynamics of impact response between two deformable bodies. Validation of the finite element models included analytical calculations of theoretical buckling column response, experimental quasi-static loading of full-scale flooring prototypes, and flooring response during walking trials. Finite Element Method results compared well with theoretical and experimental data. Both finite element and experimental data suggest that the proposed safety floor can effectively meet the design goal of 2 mm maximum deflection during walking, while effectively reducing impact forces during a fall.

  6. Real-time deformations of organ based on structural mechanics for surgical simulators

    NASA Astrophysics Data System (ADS)

    Nakaguchi, Toshiya; Tagaya, Masashi; Tamura, Nobuhiko; Tsumura, Norimichi; Miyake, Yoichi

    2006-03-01

    This research proposes the deformation model of organs for the development of the medical training system using Virtual Reality (VR) technology. First, the proposed model calculates the strains of coordinate axis. Secondly, the deformation is obtained by mapping the coordinate of the object to the strained coordinate. We assume the beams in the coordinate space to calculate the strain of the coordinate axis. The forces acting on the object are converted to the forces applied to the beams. The bend and the twist of the beams are calculated based on the theory of structural mechanics. The bend is derived by the finite element method. We propose two deformation methods which differ in the position of the beams in the coordinate space. One method locates the beams along the three orthogonal axes (x, y, z). Another method locates the beam in the area where the deformation is large. In addition, the strain of the coordinate axis is attenuated in proportion to the distance from the point of action to consider the attenuation of the stress which is a viscoelastic feature of the organs. The proposed model needs less computational cost compared to the conventional deformation method since our model does not need to divide the object into the elasticity element. The proposed model was implemented in the laparoscopic surgery training system, and a real-time deformation can be realized.

  7. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  8. Monitoring of Deformation in Ground Before and After Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Eren, Mehmet; Hilmi Erkoç, Muharrem

    2017-04-01

    As population increase in metropolitan city, we need transportation and transmission tunnel. In this context, the engineers and administors attach impotance to building and planning underground-tunnel. Moreover, we must at regular intervals monitoring to deformation in underground-tunnel for quality and safety. Firstly, a deformation monitoring network is designed as perpendicular to the tunnel main axis. Secondly, the prescribed number of deformation measurements must be made. Finally, the deformation analysis is evaluated and its results is interpreted. This study investigates how deformation in monitoring network during and after tunnel excavate change.For this purpose, a deformation monitoring network of 18 object point and 4 reference point was established. Object points networks was designed steeply to the tunnel main axis as 3 cross section. Each cross section consisted of 3 point left, 2 point right and 1 point at the flowing line. Initial conditional measurement was made before tunnel excavation. Then the deformation measurement was made 5 period (1 period measured after tunnel excavate). All data sets were adjusted according to free adjustment method. The results from the investigation considering the tunnel line, a symmetrical subsidence was observed. The following day of tunnel excavation, we were observed %68 per of the total deformation. At the end of the last period measurements, %99 per of the total deformation was detected. Keywords: Tunnel, Deformation, Subsidence, Excavation

  9. Tracking moving targets behind a scattering medium via speckle correlation.

    PubMed

    Guo, Chengfei; Liu, Jietao; Wu, Tengfei; Zhu, Lei; Shao, Xiaopeng

    2018-02-01

    Tracking moving targets behind a scattering medium is a challenge, and it has many important applications in various fields. Owing to the multiple scattering, instead of the object image, only a random speckle pattern can be received on the camera when light is passing through highly scattering layers. Significantly, an important feature of a speckle pattern has been found, and it showed the target information can be derived from the speckle correlation. In this work, inspired by the notions used in computer vision and deformation detection, by specific simulations and experiments, we demonstrate a simple object tracking method, in which by using the speckle correlation, the movement of a hidden object can be tracked in the lateral direction and axial direction. In addition, the rotation state of the moving target can also be recognized by utilizing the autocorrelation of a speckle. This work will be beneficial for biomedical applications in the fields of quantitative analysis of the working mechanisms of a micro-object and the acquisition of dynamical information of the micro-object motion.

  10. A 4DCT imaging-based breathing lung model with relative hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less

  11. A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: benchmarking efficiency and quality

    NASA Astrophysics Data System (ADS)

    Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.

    2017-02-01

    Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.

  12. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  13. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings

    NASA Astrophysics Data System (ADS)

    Cunha, Americo; Soize, Christian; Sampaio, Rubens

    2015-11-01

    This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.

  14. Deformable Organic Nanowire Field-Effect Transistors.

    PubMed

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nonlinear elasticity in resonance experiments

    NASA Astrophysics Data System (ADS)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  16. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands

    PubMed Central

    Mateo, Carlos M.; Gil, Pablo; Torres, Fernando

    2016-01-01

    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID:27164102

  17. In-process deformation measurements of translucent high speed fibre-reinforced disc rotors

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Filippatos, Angelos; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Langkamp, Albert; Fischer, Andreas; Czarske, Jürgen

    2015-07-01

    The high stiffness to weight ratio of glass fibre-reinforced polymers (GFRP) makes them an attractive material for rotors e.g. in the aerospace industry. We report on recent developments towards non-contact, in-situ deformation measurements with temporal resolution up to 200 µs and micron measurement uncertainty. We determine the starting point of damage evolution inside the rotor material through radial expansion measurements. This leads to a better understanding of dynamic material behaviour regarding damage evolution and the prediction of damage initiation and propagation. The measurements are conducted using a novel multi-sensor system consisting of four laser Doppler distance (LDD) sensors. The LDD sensor, a two-wavelength Mach-Zehnder interferometer was already successfully applied for dynamic deformation measurements at metallic rotors. While translucency of the GFRP rotor material limits the applicability of most optical measurement techniques due to speckles from both surface and volume of the rotor, the LDD profits from speckles and is not disturbed by backscattered laser light from the rotor volume. The LDD sensor evaluates only signals from the rotor surface. The anisotropic glass fibre-reinforcement results in a rotationally asymmetric dynamic deformation. A novel signal processing algorithm is applied for the combination of the single sensor signals to obtain the shape of the investigated rotors. In conclusion, the applied multi-sensor system allows high temporal resolution dynamic deformation measurements. First investigations regarding damage evolution inside GFRP are presented as an important step towards a fundamental understanding of the material behaviour and the prediction of damage initiation and propagation.

  18. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  19. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  20. Optical dynamic deformation measurements at translucent materials.

    PubMed

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  1. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  2. Ear canal dynamic motion as a source of power for in-ear devices

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2013-02-01

    Ear canal deformation caused by temporomandibular joint (jaw joint) activity, also known as "ear canal dynamic motion," is introduced in this paper as a candidate source of power to possibly recharge hearing aid batteries. The geometrical deformation of the ear canal is quantified in 3D by laser scanning of different custom ear moulds. An experimental setup is proposed to measure the amount of power potentially available from this source. The results show that 9 mW of power is available from a 15 mm3 dynamic change in the ear canal volume. Finally, the dynamic motion and power capability of the ear canal are investigated in a group of 12 subjects.

  3. Dynamic Forces Between Two Deformable Oil Droplets in Water

    NASA Astrophysics Data System (ADS)

    Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz

    2006-07-01

    The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.

  4. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    PubMed Central

    Zuo, Xinxin; Du, Chao; Wang, Runxiao; Zheng, Jiangbin; Yang, Ruigang

    2018-01-01

    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects. PMID:29547562

  5. Influence of surface tension on the instabilities and bifurcations of a particle in a drop under shear

    NASA Astrophysics Data System (ADS)

    Gallaire, Francois; Zhu, Lailai

    2016-11-01

    While the deformation regimes under flow of anuclear cells, like red blood cells, have been widely analyzed, the dynamics of nuclear cells are less explored. The objective of this work is to investigate the interplay between the stiff nucleus, modeled here as a rigid spherical particle and the surrounding deformable cell membrane, modeled for simplicity as an immiscible droplet, subjected to an external unbounded plane shear flow. A three-dimensional boundary integral implementation is developed to describe the interface-structure interaction characterized by two dimensionless numbers: the capillary number Ca , defined as the ratio of shear to capillary forces and and the particle-droplet size ratio. For large Ca , i.e. very deformable droplets, the particle has a stable equilibrium position at the center of the droplet. However, for smaller Ca , both the plane symmetry and the time invariance are broken and the particle migrates to a closed orbit located off the symmetry plane, reaching a limit cycle. For even smaller capillary numbers, the time invariance is restored and the particle reaches a steady equilibrium position off the symmetry plane. This series of bifurcations is analyzed and possible physical mechanisms from which they originate are discussed. Financial support by ERC Grant SimCoMiCs 280117 is gratefully acknowledged.

  6. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-07-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  7. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steel under different loading conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang

    2009-08-01

    Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.

  8. Analysis of warping deformation modes using higher order ANCF beam element

    NASA Astrophysics Data System (ADS)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  9. Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shabashov, V. A.; Makarov, A. V.; Kozlov, K. A.; Sagaradze, V. V.; Zamatovskii, A. E.; Volkova, E. G.; Luchko, S. N.

    2018-02-01

    Methods of Mössbauer spectroscopy and electron microscopy have been used to study the effect of the severe plastic deformation by high pressure torsion in Bridgman anvils on the dissolution and precipitation of chromium nitrides in the austenitic and ferritic structure of an Fe71.2Cr22.7Mn1.3N4.8 high-nitrogen steel. It has been found that an alternative process of dynamic aging with the formation of secondary nitrides affects the kinetics of the dissolution of chromium nitrides. The dynamic aging of ferrite is activated with an increase in the deformation temperature from 80 to 573 K.

  10. Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg-Zn-Ca Alloy

    NASA Astrophysics Data System (ADS)

    Du, Yuzhou; Zheng, Mingyi; Jiang, Bailing; Zhou, Kesong

    2018-05-01

    The microstructure of an Mg-Zn-Ca extrusion was investigated by transmission electron microscopy, and the interaction between dynamic precipitation and dynamic recrystallization was analyzed. The results showed that dynamic precipitation significantly affected the microstructure of the as-extruded Mg-Zn-Ca alloy. The pinning effects of precipitates on dislocations effectively prohibited dynamic recrystallization processes, while the grain boundary precipitate Ca2Mg6Zn3, inhibited the growth of dynamically recrystallized grains. Consequently, a bimodal microstructure with fine dynamically recrystallized (DRXed) grains and elongated deformed regions was obtained for the Mg-Zn-Ca extrusion. High-resolution transmission electron microscopy indicated that the intragranular precipitate MgZn2 had a crystal orientation relationship with α-Mg in the form of (0002)Mg//(10-13)MgZn2 and [1-100]Mg//[1-210]MgZn2, which was beneficial for strength improvement.

  11. Reduced dynamical model of the vibrations of a metal plate

    NASA Astrophysics Data System (ADS)

    Moreno, D.; Barrientos, Bernardino; Perez-Lopez, Carlos; Mendoza-Santoyo, Fernando; Guerrero, J. A.; Funes, M.

    2005-02-01

    The Proper Orthogonal Decomposition (POD) method is applied to the vibrations analysis of a metal plate. The data obtained from the metal plate under vibrations were measured with a laser vibrometer. The metal plate was subject to vibrations with an electrodynamical shaker in a range of frequencies from 100 to 5000 Hz. The deformation measurements were taken on a quarter of the plate in a rectangular grid of 7 x 8 points. The plate deformation measurements were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the deformation is contained within the first six POD modes. The essential features of the deformation are thus described by only the six first eigenfunctions. A reduced order model for the dynamical behavior is then constructed using Galerkin projection of the equation of motion for the vertical displacement of a plate.

  12. Planar dynamics of large-deformation rods under moving loads

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  13. Effect of small perturbations on the evolution of polycrystalline structure during plastic deformation

    NASA Astrophysics Data System (ADS)

    Korznikova, E. A.; Baimova, Yu. A.; Kistanov, A. A.; Dmitriev, S. V.; Korznikov, A. V.

    2014-09-01

    The method of molecular dynamics has been used to study the influence of initial perturbations on the evolution of grain boundaries during the shear plastic deformation of a two-dimensional polycrystalline material with nanoscale grains. It has been shown that short-term thermalization-induced small perturbations result in noticeable differences in grain boundaries configurations at the deformation of 0.05 and the polycrystal completely loses its initial grain boundary structure at the deformation of 0.4.

  14. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion.

    PubMed

    Kawashima, Yukio; Tachikawa, Masanori

    2014-01-14

    Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.

  15. Comparative Analysis of Volcanic Inflation—Deflation Cycles

    NASA Astrophysics Data System (ADS)

    Walwer, D.; Ghil, M.; Calais, E.

    2016-12-01

    GPS geodetic data together with INSAR images are often used to formulate kinematic models of the sources of volcanic deformations. The increasing amount of data now available allows one to produce time series that are several years long and thus capture continuously the history of volcanic deformations, in particular their nonlinear behavior. This information is highly valuable in helping understand the dynamics of volcanic systems.Nonlinear deformation signals are, however, difficult to extract from the background noise inherent in the GPS time series. It is also arduous to unravel the signal of interest from other nonlinear signals, such as the seasonal oscillations associated with mass variations in the atmosphere, the ocean, and the hydrological reservoirs. Here we use Multichannel Singular Spectrum Analysis (M-SSA) — an advanced, data-adaptive method for time series analysis that exploits simultaneously the temporal and spatial correlations of geophysical fields — to extract such deformation signals.We apply M-SSA to GPS data sets from four volcanoes: Akutan, Alaska; Okmok, Alaska; Westdahl, Alaska; and Piton de la Fournaise, La Reunion. Our analyses show that all four volcanoes share similar features in their deformation history, suggesting similarities in the dynamics that generate the inflation-deflation cycles. In particular, all four volcanic systems exhibit sawtooth-shaped oscillations with slow inflations followed by slower deflations, with time scales that vary from 6 months to 4 years. This relation of dynamical similarity is further highlighted by the phase portrait reconstruction of the four systems in the plane of deformation vs. rate-of-deformation, as obtained from the deformation signals extracted from the GPS time series using M-SSA.The inflating phase of these oscillations is followed by eruptions at Okmok volcano and at Piton de la Fournaise. These analysis results suggest that these volcanic inflation—deflation cycles are associated with the destabilization of a volcanic system and may lead to the identification of premonitory signals for an eruptive regime.

  16. Investigation of biomechanical behavior of lumbar vertebral segments with dynamic stabilization device using finite element approach

    NASA Astrophysics Data System (ADS)

    Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.

    2013-03-01

    Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.

  17. Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan

    2003-01-01

    This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.

  18. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  19. Modelling coastal processes by means of innovative integration of remote sensing and modelling analysis

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Zanuttigh, B.; Zucca, F.; Dejana, M.; Valentini, E.

    2011-12-01

    Coastal marine and inland landforms are dynamic systems undergoing adjustments in form at different time and space scales in response to varying conditions external to the system. Coastal emerged and shallow submerged nearshore areas, affected by short-term perturbations, return to their pre-disturbance morphology and generally reach a dynamic equilibrium. Worldwide in the last century we have experienced in increased coastal inundation, erosion and ecosystem losses. However, erosion can result from a number of other factors, such as altered wind and current patterns, high-energy waves, and reduced fluvial sediment inputs. Direct impacts of human activities, including reclamation of coastal wetlands, deforestation, damming, channelization, diversions of coastal waterways, construction of seawalls and other structures, alter circulation patterns. Also indirect human impacts such as land-uses changes through time (eg. from agricultural to industrial use) have affected coastal ecosystems. The objective of this research is to propose innovative remote sensing applications to monitor specific coastal processes in order to use them within a physical modelling to quantify and model their time evolution. The research was applied in two dynamic and densely populated deltas and coastal areas (the Po and the Plymouth delta) by combining multi-sensor spaceborne remote sensing (SAR and OPTICAL) to physical modelling. The main results are: a) deformation and spatiotemporal variations maps in coastal morphology with a special focus to point out the temporal subsidence evolution, b) inter and intra-annual change detection maps that are both used a to feed a coastal physical modelling (MIKE 21). The basic strategy was to highlight the different components of the coastal system environment through: 1) deformation and spatio-temporal variations maps of coastal morphology, by the use of time-stack from 1992 up today of ESA SAR data (ERS-1/2 and ENVISAT-ASAR sensors) were used to produce deformation maps and to point out the temporal evolution and 2) multitemporal hyperspectral endmembers fractions map of coastal morphology, 3) numerical model well-established through remote sensed based procedures and results in order to produce spatio-temporal scenario in coastal areas. The objective was to locate and characterize important coastal indicators for different regions using multitemporal data from the multi-hyperspectral sensors, as well as topographic elevation, SAR and derived products (eg. coherence) data. The identification of different indicators was based on land spectral properties, topography/landforms (low topography), disturbed areas (agricultural, construction), and vegetation distribution. Moreover, the indicators were assessed at seasonal and interannual time scales over two temporal decades horizons starting from 1990 and 2000.

  20. Aging preserves the ability to perceive 3D object shape from static but not deforming boundary contours.

    PubMed

    Norman, J Farley; Bartholomew, Ashley N; Burton, Cory L

    2008-09-01

    A single experiment investigated how younger (aged 18-32 years) and older (aged 62-82 years) observers perceive 3D object shape from deforming and static boundary contours. On any given trial, observers were shown two smoothly-curved objects, similar to water-smoothed granite rocks, and were required to judge whether they possessed the "same" or "different" shape. The objects presented during the "different" trials produced differently-shaped boundary contours. The objects presented during the "same" trials also produced different boundary contours, because one of the objects was always rotated in depth relative to the other by 5, 25, or 45 degrees. Each observer participated in 12 experimental conditions formed by the combination of 2 motion types (deforming vs. static boundary contours), 2 surface types (objects depicted as silhouettes or with texture and Lambertian shading), and 3 angular offsets (5, 25, and 45 degrees). When there was no motion (static silhouettes or stationary objects presented with shading and texture), the older observers performed as well as the younger observers. In the moving object conditions with shading and texture, the older observers' performance was facilitated by the motion, but the amount of this facilitation was reduced relative to that exhibited by the younger observers. In contrast, the older observers obtained no benefit in performance at all from the deforming (i.e., moving) silhouettes. The reduced ability of older observers to perceive 3D shape from motion is probably due to a low-level deterioration in the ability to detect and discriminate motion itself.

  1. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    PubMed Central

    2011-01-01

    Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533

  2. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  3. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, I.; Zikry, M.A.; Ziaei, S.

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  4. Origins of Rolling Friction

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  5. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The focus of the research was in two broad areas during the most recent 6 month period: the nature and dynamics of time-dependent deformation along major seismic zones, including the influence of irregularities in fault geometry on the earthquake cycles, and the processes contributing to the state of stress and rates of strain in plate interior regions. The principal findings of the research to date are described.

  6. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  7. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  8. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan

    1998-01-01

    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our existing and continued GPS measurements, which will provide much needed data on far-field strain accumulation across the region and on the deformational response of continental lithosphere during and following a large earthquake, forming the basis for kinematic and dynamic modeling of secular and seismic-cycle deformation. GPS geodesy affords both regional coverage and high precision that uniquely bear on these problems.

  9. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate

    NASA Astrophysics Data System (ADS)

    Coon, Max; Kwok, Ron; Levy, Gad; Pruis, Matthew; Schreyer, Howard; Sulsky, Deborah

    2007-11-01

    This paper revisits the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling sea ice dynamics. The AIDJEX assumptions were that (1) enough leads were present in a 100 km by 100 km region to make the ice isotropic on that scale; (2) the ice had no tensile strength; and (3) the ice behavior could be approximated by an isotropic yield surface. These assumptions were made during the development of the AIDJEX model in the 1970s, and are now found inadequate. The assumptions were made in part because of insufficient large-scale (10 km) deformation and stress data, and in part because of computer capability limitations. Upon reviewing deformation and stress data, it is clear that a model including deformation on discontinuities and an anisotropic failure surface with tension would better describe the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities. Such a model would require a different class of metrics to validate discontinuities against observations.

  10. Twinning in magnesium under dynamic loading

    NASA Astrophysics Data System (ADS)

    Dixit, Neha; Hazeli, Kavan; Ramesh, Kaliat T.

    2015-09-01

    Twinning is an important mode of deformation in magnesium (Mg) and its alloys at high strain rates. Twinning in this material leads to important effects such as mechanical anisotropy, texture evolution, tension-compression asymmetry, and sometimes non-Schmid effects. Extension twins in Mg can accommodate significant plastic deformation as they grow, and thus twinning affects the overall rate of plastic deformation. We use an experimental approach to study the deformation twinning mechanism under dynamic loading. We perform normal plate impact recovery experiments (with microsecond pulse durations) on pure polycrystalline Mg specimens. Estimates of average TB velocity under the known impact stress are obtained by characterization of twin sizes and aspect ratios developed within the target during the loading pulse. The measured average TB velocities in our experiments are of the order of several m s-1. These velocities are several orders of magnitude higher than those so far measured in Mg under quasi-static loading conditions. Electron back-scattered diffraction (EBSD) is then used to characterize the nature of the twins and the microstructural evolution. Detailed crystallographic analysis of the twins enables us to understand twin nucleation and growth of twin variants under dynamic loading.

  11. Deformation Behavior of a Coarse-Grained Mg-8Al-1.5Ca-0.2Sr Magnesium Alloy at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lou, Yan; Liu, Xiao

    2018-02-01

    The compression tests were carried out on a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy samples at temperatures from 300 to 450 °C and strain rates from 0.001 to 10 s-1. The flow stress curves were analyzed using the double-differentiation method, and double minima were detected on the flow curves. The first set of minima is shown to identify the critical strain for twinning, while the second set indicates the critical strain for the initiation of dynamic recrystallization (DRX). Twin variant selection was numerically identified by comprehensive analysis of the Schmid factors for different deformation modes and the accommodation strains imposed on neighboring grains. It was found that twinning is initiated before DRX. Dynamic recrystallization volume increases with strain rate at a given deformation temperature. At high strain rate, various twin variants are activated to accommodate deformation, leading to the formation of twin intersections and high DRX volume. Fully dynamic recrystallized structure can be obtained at both high and low strain rates due to the high mobility of the grain and twin boundaries at the temperature of 400 °C.

  12. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress⁻Strain Response.

    PubMed

    Kooiker, H; Perdahcıoğlu, E S; van den Boogaard, A H

    2018-05-22

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress⁻strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend.

  13. PREFACE: International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

    NASA Astrophysics Data System (ADS)

    Silberschmidt, Vadim V.

    2013-07-01

    Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013 ranged from traditional ones such as metals, alloys, polymers and composites to advanced and emerging materials, such as foams, cellular materials and metallic glasses, as well as bio-materials. Within the framework of the Symposium, a Special Session 'Parametric Resonance, Vibro-impact and Related Phenomena' was organised by partners of the FP7 IAPP project PARM-2: 'Vibro-impact machines based on parametric resonance: Concepts, mathematical modelling, experimental verification and implementation.' The Session focused on the topics, directly related to the project: excitation, stabilization, control and applications of parametric resonance (PR); multiple degrees of freedom of PR-excited systems; basic principles of PR-based macro and micro tools; design and technological aspects of PR-based machines; vibro-assisted machining; fatigue under high-amplitude vibro-impact conditions and corresponding optimal design; localisation near defects in dynamic response of elastic lattices and structures; dispersive waves and dynamic fracture in non-uniform lattice systems; thermally induced surface-breaking cracks, etc. This issue presents a selection of research papers presented at the International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013. The Symposium Organisers would like to acknowledge its sponsors: Institute of Physics, International Centre of Vibro-Impact Systems and Marie Curie Action: Industry-Academia Partnerships and Pathways of the Seventh Framework Programme (FP7) of the European Commission (PARM-2 consortium). The PARM-2 consortium sponsored twenty scholarships for early-stage researchers to participate in this Symposium.

  14. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  15. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE PAGES

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  16. EBSD Imaging of Monazite: a Petrochronological Tool?

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.; Cottle, J. M.

    2014-12-01

    Recent advances in in-situ U-Th/Pb monazite petrochronology allow ages obtained from micron-scale portions of texturally-constrained, individual crystals to be placed directly into a quantitative Pressure-Temperature framework. However, there remain major unresolved challenges in linking monazite ages to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Few studies have quantitatively investigated monazite microstructure, and these studies have largely focused only on crystals produced experimentally (e.g. Reddy et al., 2010). The dispersion in age data commonly yielded from monazite U-Th/Pb datasets suggest that monazite dynamically recrystallises during deformation. It remains unclear how this continual recrystallisation is reflected in the monazite crystal structure, and how this subsequently impacts the ages (or age ranges) yielded from single crystals. Here, combined laser ablation split-stream analysis of deformed monazite, EBSD imaging and Pressure-Temperature (P-T) phase equilibria modelling is used to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains. These data provide links between ages and specific deformation events, thus helping further our understanding of the role of dynamic recrystallisation in producing age variation within and between crystals in a deformed rock. These data provide a new dimension to the field of petrochronology, demonstrating the importance of fully integrating the Pressure-Temperature-time-deformation history of accessory phases to better interpret the meaningfulness of ages yielded from deformed rocks. Reddy, S. et al., 2010. Mineralogical Magazine 74: 493-506

  17. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  18. NMR study on mechanisms of ionic polymer-metal composites deformation with water content

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Chen, Hualing; Wang, Yongquan; Luo, Bin; Chang, Longfei; Li, Bo; Chen, Luping

    2011-10-01

    Ionic polymer-metal composites (IPMCs) exhibit a large dynamic bending deformation under exterior electric field. The states and proportions of water within the IPMCs have great effect on the IPMCs deformation properties. This letter investigates the influence of the proportion changes of different types of water on the deformation, which may disclose the working mechanisms of the IPMCs. We give a deformation trend of IPMCs with the reduction of water content firstly. Then by the method of nuclear magnetic resonance, various water types (water bonded to sulfonates, loosely bound water and free water) of IPMCs and their proportions are investigated in the drying process which corresponds to their different deformation states. It is obtained that the deformation properties of IPMCs depend strongly on their water content and the excess free water is responsible for the relaxation deformation.

  19. Collision detection and modeling of rigid and deformable objects in laparoscopic simulator

    NASA Astrophysics Data System (ADS)

    Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru

    2015-03-01

    Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.

  20. Dynamic elasticity measurement for prosthetic socket design.

    PubMed

    Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin

    2017-07-01

    The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.

  1. Measurement and analysis of applied power, forces and material response in friction stir welding of aluminum alloy 6061

    NASA Astrophysics Data System (ADS)

    Avila, Ricardo E.

    The process of Friction Stir Welding (FSW) 6061 aluminum alloy is investigated, with focus on the forces and power being applied in the process and the material response. The main objective is to relate measurements of the forces and power applied in the process with mechanical properties of the material during the dynamic process, based on mathematical modeling and aided by computer simulations, using the LS-DYNA software for finite element modeling. Results of measurements of applied forces and power are presented. The result obtained for applied power is used in the construction of a mechanical variational model of FSW, in which minimization of a functional for the applied torque is sought, leading to an expression for shear stress in the material. The computer simulations are performed by application of the Smoothed Particle Hydrodynamics (SPH) method, in which no structured finite element mesh is used to construct a spatial discretization of the model. The current implementation of SPH in LS-DYNA allows a structural solution using a plastic kinematic material model. This work produces information useful to improve understanding of the material flow in the process, and thus adds to current knowledge about the behavior of materials under processes of severe plastic deformation, particularly those processes in which deformation occurs mainly by application of shear stress, aided by thermoplastic strain localization and dynamic recrystallization.

  2. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE PAGES

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.; ...

    2017-11-03

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  3. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  4. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    PubMed Central

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  5. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  6. Shape measurement and vibration analysis of moving speaker cone

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  7. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  8. Development of computer-aided design system of elastic sensitive elements of automatic metering devices

    NASA Astrophysics Data System (ADS)

    Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.

    2018-05-01

    The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.

  9. Relative locality and the soccer ball problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amelino-Camelia, Giovanni; Freidel, Laurent; Smolin, Lee

    We consider the behavior of macroscopic bodies within the framework of relative locality [G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1101.0931]. This is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets, and stars, with energies E{sub macro} much larger than M{sub P}.more » We show that this soccer ball problem does not arise within the framework of relative locality because the nonlinear effects for the dynamics of a composite system with N elementary particles appear at most of order E{sub macro}/N{center_dot}M{sub P}.« less

  10. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    NASA Astrophysics Data System (ADS)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.

  11. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical deformation, warm-deformation followed by annealing is a simpler process to control in the rolling mill; however, the need for high-power rolling mill and controlled annealing facility imposes industrial challenges.

  12. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  13. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  14. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  15. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  16. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  17. Getting the most out of additional guidance information in deformable image registration by leveraging multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Bosman, Peter A. N.; Bel, Arjan

    2015-03-01

    Incorporating additional guidance information, e.g., landmark/contour correspondence, in deformable image registration is often desirable and is typically done by adding constraints or cost terms to the optimization function. Commonly, deciding between a "hard" constraint and a "soft" additional cost term as well as the weighting of cost terms in the optimization function is done on a trial-and-error basis. The aim of this study is to investigate the advantages of exploiting guidance information by taking a multi-objective optimization perspective. Hereto, next to objectives related to match quality and amount of deformation, we define a third objective related to guidance information. Multi-objective optimization eliminates the need to a-priori tune a weighting of objectives in a single optimization function or the strict requirement of fulfilling hard guidance constraints. Instead, Pareto-efficient trade-offs between all objectives are found, effectively making the introduction of guidance information straightforward, independent of its type or scale. Further, since complete Pareto fronts also contain less interesting parts (i.e., solutions with near-zero deformation effort), we study how adaptive steering mechanisms can be incorporated to automatically focus more on solutions of interest. We performed experiments on artificial and real clinical data with large differences, including disappearing structures. Results show the substantial benefit of using additional guidance information. Moreover, compared to the 2-objective case, additional computational cost is negligible. Finally, with the same computational budget, use of the adaptive steering mechanism provides superior solutions in the area of interest.

  18. Temperature dependence of dynamic deformation in FCC metals, aluminum and invar

    DOE PAGES

    Chen, Laura; Swift, D. C.; Austin, R. A.; ...

    2017-01-01

    Laser-driven shock experiments were performed on fcc metals, aluminum and invar, at a range of initial temperatures from approximately 120-800 K to explore the effect of initial temperature on dynamic strength properties at strain rates reaching up to 10 7 s -1. In aluminum, velocimetry data demonstrated an increase of peak stress of the elastic wave, σ E, with initial temperature. Alternatively, for invar, σ E exhibits little-to-no decrease over the same initial temperature range. Aluminum’s unusual deformation behavior is found to primarily be due to anharmonic vibrational effects. Differences in the magnetic structure of aluminum and invar can accountmore » for discrepancies in high rate deformation behavior.« less

  19. Implementation of Free-Formulation-Based Flat Shell Elements into NASA Comet Code and Development of Nonlinear Shallow Shell Element

    NASA Technical Reports Server (NTRS)

    Barut, A.; Madenci, Erdogan; Tessler, A.

    1997-01-01

    This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.

  20. Knowledge modeling in image-guided neurosurgery: application in understanding intraoperative brain shift

    NASA Astrophysics Data System (ADS)

    Cohen-Adad, Julien; Paul, Perrine; Morandi, Xavier; Jannin, Pierre

    2006-03-01

    During an image-guided neurosurgery procedure, the neuronavigation system is subject to inaccuracy because of anatomical deformations which induce a gap between the preoperative images and their anatomical reality. Thus, the objective of many research teams is to succeed in quantifying these deformations in order to update preoperative images. Anatomical intraoperative deformations correspond to a complex spatio-temporal phenomenon. Our objective is to identify the parameters implicated in these deformations and to use these parameters as constrains for systems dedicated to updating preoperative images. In order to identify these parameters of deformation we followed the iterative methodology used for cognitive system conception: identification, conceptualization, formalization, implementation and validation. A state of the art about cortical deformations has been established in order to identify relevant parameters probably involved in the deformations. As a first step, 30 parameters have been identified and described following an ontological approach. They were formalized into a Unified Modeling Language (UML) class diagram. We implemented that model into a web-based application in order to fill a database. Two surgical cases have been studied at this moment. After having entered enough surgical cases for data mining purposes, we expect to identify the most relevant and influential parameters and to gain a better ability to understand the deformation phenomenon. This original approach is part of a global system aiming at quantifying and correcting anatomical deformations.

  1. Detection of internal cracks in rubber composite structures using an impact acoustic modality

    NASA Astrophysics Data System (ADS)

    Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.

    2014-01-01

    The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.

  2. Computational dynamics of soft machines

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Tian, Qiang; Liu, Cheng

    2017-06-01

    Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

  3. Mechanism of slip and twinning

    NASA Technical Reports Server (NTRS)

    Rastani, Mansur

    1992-01-01

    The objectives are to: (1) demonstrate the mechanisms of deformation in body centered cubic (BCC), face centered cubic (FCC), and hexagonal close-packed (HCP)-structure metals and alloys and in some ceramics as well; (2) examine the deformed microstructures (slip lines and twin boundaries) in different grains of metallic and ceramic specimens; and (3) study visually the deformed macrostructure (slip and twin bands) of metals and alloys. Some of the topics covered include: deformation behavior of materials, mechanisms of plastic deformation, slip bands, twin bands, ductile failure, intergranular fracture, shear failure, slip planes, crystal deformation, and dislocations in ceramics.

  4. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.

  5. Development and Advanced Analysis of Dynamic and Static Casing Strain Monitoring to Characterize the Orientation and Dimensions of Hydraulic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael; Ramos, Juan; Lao, Kang

    Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less

  6. Acoustic emission study of deformation behavior of nacre

    NASA Astrophysics Data System (ADS)

    Luo, Shunfei; Luo, Hongyun; Han, Zhiyuan

    2016-02-01

    A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.

  7. A structural dynamics study of a wing-pylon-tiltrotor system

    NASA Astrophysics Data System (ADS)

    Khader, N.; Abu-Mallouh, R.

    1992-12-01

    A simple structural model for a three-bladed tiltrotor-pylon-wing assembly is presented, which accounts for chordwise, transverse, and torsional wing deformations, rigid pylon pitching motion with respect to the wing tip cross-section in its deformed position, lead-lag, flap, and torsional deformations of rotor blades. The model considers equivalent viscous damping associated with blade and wing elastic deformations and with rigid pylon pitching motion. It is established that blade-to wing bending rigidity ratio, pylon pitching frequency, equivalent viscous damping associated with blade elastic deformations, and rotational speed, are the most important design parameters, whose effect on system frequencies and stability boundaries is evaluated.

  8. Haemoglobin content modulated deformation dynamics of red blood cells on a compact disc.

    PubMed

    Kar, Shantimoy; Ghosh, Uddipta; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-12-21

    We investigate the deformation characteristics of red blood cells (RBCs) on a rotating compact disc platform. Our study brings out the interplay between haemoglobin content and RBC deformability in a centrifugally actuated microfluidic environment. We reveal that RBC deformations follow the similar trend of principal stress distributed throughout the radial direction, rendering an insight into the mechano-physical processes involved. This study can be used as a diagnostic marker to determine haematological disorders in diseased blood samples tested on compact disc based microfluidic platforms.

  9. Effect of vorticity on polycrystalline ice deformation

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka

    2017-04-01

    Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our results further show that subgrain boundaries can be developed by the activity of the non-basal slip systems. The implementation of the polygonisation routine reduces grain size and SPO, but does not significantly change the final LPO, because newly nucleated grains approximately keep the c-axis orientations of their parental grains. However, it enables the establishment of an equilibrium grain size, and therefore the differential stress reaches a steady-state. Lebensohn. 2001 N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia, 49(14), 2723-2737. Llorens, et al., 2016a. Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. Journal of Glaciology, 62(232), 359-377. Llorens, et al., 2016b. Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth and Planetary Science Letters, 450, 233-242. Llorens, et al., 2017. Dynamic recrystallisation during deformation of polycrystalline ice: insights from numerical simulations, Philosophical Transactions of the Royal Society A, 375 (2086), 20150346.

  10. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  11. Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Tongda; Cheng, Jianhua; Guan, Dongxue; Kang, Yingyao; Zhang, Wei

    2017-09-01

    Due to the lever-arm effect and flexural deformation in the practical application of transfer alignment (TA), the TA performance is decreased. The existing polar TA algorithm only compensates a fixed lever-arm without considering the dynamic lever-arm caused by flexural deformation; traditional non-polar TA algorithms also have some limitations. Thus, the performance of existing compensation algorithms is unsatisfactory. In this paper, a modified compensation algorithm of the lever-arm effect and flexural deformation is proposed to promote the accuracy and speed of the polar TA. On the basis of a dynamic lever-arm model and a noise compensation method for flexural deformation, polar TA equations are derived in grid frames. Based on the velocity-plus-attitude matching method, the filter models of polar TA are designed. An adaptive Kalman filter (AKF) is improved to promote the robustness and accuracy of the system, and then applied to the estimation of the misalignment angles. Simulation and experiment results have demonstrated that the modified compensation algorithm based on the improved AKF for polar TA can effectively compensate the lever-arm effect and flexural deformation, and then improve the accuracy and speed of TA in the polar region.

  12. Simple shear of deformable square objects

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Lan, Labao

    2003-12-01

    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  13. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  14. A collision dynamics model of a multi-level train

    DOT National Transportation Integrated Search

    2006-11-05

    In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular inciden...

  15. Hypersonic and Unsteady Flow Science Issues for Explosively Formed Penetrators

    DTIC Science & Technology

    2006-08-01

    under going real- time dynamic deformation. ACCOMPLISHMENTS/RESULTS • Completed initial assessment of flow chemistry • Completed initial stability... flow chemistry during rapid deformation •Cannot use static boundary conditions in CFD codes •Interfaces one approach to coupling with hydrocodes

  16. Dynamic strength properties of the surface of an ultra-fine-grained aluminum alloy under conditions of high-speed erosion

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Yu. V.; Lashkov, V. A.

    2016-05-01

    The influence of severe plastic deformation on the material surface is investigated under highspeed erosion conditions. The AD1 aluminum alloy was tested with the structure changed by severe plastic torsional deformation.

  17. Unified Static and Dynamic Recrystallization Model for the Minerals of Earth's Mantle Using Internal State Variable Model

    NASA Astrophysics Data System (ADS)

    Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.

    2017-12-01

    In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.

  18. Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy

    NASA Astrophysics Data System (ADS)

    Jin, S. B.; Zhang, K.; Bjørge, R.; Tao, N. R.; Marthinsen, K.; Lu, K.; Li, Y. J.

    2015-08-01

    Deformation twinning has rarely been observed in coarse grained Al and its alloys except under some extreme conditions such as ultrahigh deformation strain or strain rates. Here, we report that a significant amount of Σ3 deformation twins could be generated in a coarse-grained Al-7 Mg alloy by dynamic plastic deformation (DPD). A systematic investigation of the Σ3 boundaries shows that they are Σ3{112} type incoherent twin boundaries (ITBs). These ITBs have formed by gradual evolution from copious low-angle deformation bands through <111>-twist Σ boundaries by lattice rotation. These findings provide an approach to generate deformation twin boundaries in high stacking fault energy metallic alloys. It is suggested that high solution content of Mg in the alloy and the special deformation mode of DPD played an important role in formation of the Σ and ITBs.

  19. Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion.

    PubMed

    Ledet, Eric H; Sanders, Glenn P; DiRisio, Darryl J; Glennon, Joseph C

    2018-02-13

    Achieving a successful spinal fusion requires the proper biological and biomechanical environment. Optimizing load-sharing in the interbody space can enhance bone formation. For anterior cervical discectomy and fusion (ACDF), loading and motion are largely dictated by the stiffness of the plate, which can facilitate a balance between stability and load-sharing. The advantages of load-sharing may be substantial for patients with comorbidities and in multilevel procedures where pseudarthrosis rates are significant. We aimed to evaluate the efficacy of a novel elastically deformable, continuously load-sharing anterior cervical spinal plate for promotion of bone formation and interbody fusion relative to a translationally dynamic plate. An in vivo animal model was used to evaluate the effects of an elastically deformable spinal plate on bone formation and spine fusion. Fourteen goats underwent an ACDF and received either a translationally dynamic or elastically deformable plate. Animals were followed up until 18 weeks and were evaluated by plain x-ray, computed tomography scan, and undecalcified histology to evaluate the rate and quality of bone formation and interbody fusion. Animals treated with the elastically deformable plate demonstrated statistically significantly superior early bone formation relative to the translationally dynamic plate. Trends in the data from 8 to 18 weeks postoperatively suggest that the elastically deformable implant enhanced bony bridging and fusion, but these enhancements were not statistically significant. Load-sharing through elastic micro-motion accelerates bone formation in the challenging goat ACDF model. The elastically deformable implant used in this study may promote early bony bridging and increased rates of fusion, but future studies will be necessary to comprehensively characterize the advantages of load-sharing through micro-motion. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Computed Intranasal Spray Penetration: Comparisons Before and After Nasal Surgery

    PubMed Central

    Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Rhee, John S.

    2012-01-01

    Background Quantitative methods for comparing intranasal drug delivery efficiencies pre- and postoperatively have not been fully utilized. The objective of this study is to use computational fluid dynamics techniques to evaluate aqueous nasal spray penetration efficiencies before and after surgical correction of intranasal anatomic deformities. Methods Ten three-dimensional models of the nasal cavities were created from pre- and postoperative computed tomography scans in five subjects. Spray simulations were conducted using a particle size distribution ranging from 10–110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state, resting inspiratory airflow present. Two different nozzle positions were compared. Statistical analysis was conducted using Student T-test for matched pairs. Results On the obstructed side, posterior particle deposition after surgery increased by 118% and was statistically significant (p-value=0.036), while anterior particle deposition decreased by 13% and was also statistically significant (p-value=0.020). The fraction of particles that by-passed the airways either pre- or post-operatively was less than 5%. Posterior particle deposition differences between obstructed and contralateral sides of the airways were 113% and 30% for pre- and post-surgery, respectively. Results showed that nozzle positions can influence spray delivery. Conclusions Simulations predicted that surgical correction of nasal anatomic deformities can improve spray penetration to areas where medications can have greater effect. Particle deposition patterns between both sides of the airways are more evenly distributed after surgery. These findings suggest that correcting anatomic deformities may improve intranasal medication delivery. For enhanced particle penetration, patients with nasal deformities may explore different nozzle positions. PMID:22927179

  1. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    PubMed

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection, active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition, the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.

  2. A New Cellular Automaton Method Coupled with a Rate-dependent (CARD) Model for Predicting Dynamic Recrystallization Behavior

    NASA Astrophysics Data System (ADS)

    Azarbarmas, M.; Aghaie-Khafri, M.

    2018-03-01

    A comprehensive cellular automaton (CA) model should be coupled with a rate-dependent (RD) model for analyzing the RD deformation of alloys at high temperatures. In the present study, a new CA technique coupled with an RD model—namely, CARD—was developed. The proposed CARD model was used to simulate the dynamic recrystallization phenomenon during the hot deformation of the Inconel 718 superalloy. This model is capable of calculating the mean grain size and volume fraction of dynamic recrystallized grains, and estimating the phenomenological flow behavior of the material. In the presented model, an actual orientation definition comprising three Euler angles was used by implementing the electron backscatter diffraction data. For calculating the lattice rotation of grains, it was assumed that all slip systems of grains are active during the high-temperature deformation because of the intrinsic rate dependency of the procedure. Moreover, the morphological changes in grains were obtained using a topological module.

  3. Effect of Mo on dynamic recrystallization and microstructure development of microalloyed steels

    NASA Astrophysics Data System (ADS)

    Schambron, Thomas; Dehghan-Manshadi, Ali; Chen, Liang; Gooch, Taliah; Killmore, Chris; Pereloma, Elena

    2017-07-01

    The dynamic recrystallization (DRX) behaviour, mechanical properties and microstructure development of four low carbon, Nb-Ti-containing micro-alloyed steels with Mo contents from 0 to 0.27 wt% were studied. Plane strain compression tests were performed in a Gleeble 3500 thermomechanical simulator. The effects of composition, deformation temperature and strain rate on the DRX parameters and resultant microstructures were examined. The volume fraction of recrystallised grains was estimated from micrographs and a DRX model. The stress-strain curves showed the typical signs of DRX over a wide range of deformation conditions. Dynamic recovery was only observed for higher strain rates (5 s-1) and/or lower deformation temperatures (below 1000 °C). It was shown that Mo increases the hot strength by around 100 MPa per weight percent. In addition, it has an effect on retarding recrystallization in microalloyed steels by increasing the activation energy for DRX by 320 kJ/molK per weight percent. This was attributed to solute drag and the interaction with other microalloying elements.

  4. Active microrheology and simultaneous visualization of sheared phospholipid monolayers

    PubMed Central

    Choi, S.Q.; Steltenkamp, S.; Zasadzinski, J.A.; Squires, T.M.

    2011-01-01

    Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries. PMID:21587229

  5. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  6. Earthquake triggering by seismic waves following the landers and hector mine earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.

    2001-01-01

    The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.

  7. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108

  8. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Shao, Yimin

    2017-06-01

    Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.

  9. Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2012-09-01

    Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle.

  10. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.

    PubMed

    Wu, J Z; Herzog, W

    2000-03-01

    Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3-4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent.

  11. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  12. Understanding the mechanisms of amorphous creep through molecular simulation

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Short, Michael P.; Yip, Sidney

    2017-12-01

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  13. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan

    2017-11-01

    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  14. Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun

    2015-01-01

    The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.

  15. Thermomechanical deformation behavior of a dynamic strain aging alloy, Hastelloy X

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Miner, Robert V.; Robinson, David N.

    1992-01-01

    An experimental study was performed to identify the effects of dynamic strain aging (solute drag) and metallurgical instabilities under thermomechanical loading conditions. The study involved a series of closely controlled thermomechanical deformation tests on the solid-solution-strenghened nickel-base superalloy, Hastelloy X. This alloy exhibits a strong isothermal strain aging peak at approximately 600 C, promoted by the effects of solute drag and precipitation hardening. Macroscopic thermomechanical hardening trends are correlated with microstructural characteristics through the use of transmission electron microscopy. These observations are compared and contrasted with isothermal conditions. Thermomechanical behavior unique to the isothermal database is identified and discussed. The microstructural characteristics were shown to be dominated by effects associated with the highest temperature of the thermomechanical cycle. Results indicate that the deformation behavior of Hastelloy X is thermomechanically path dependent. In addition, guidance is given pertaining to deformation modeling in the context of macroscopic unified theory. An internal state variable is formulated to qualitatively reflect the isotropic hardening trends identified in the TMD experiments.

  16. Deformation Characteristics and Recrystallization Response of a 9310 Steel Alloy

    NASA Astrophysics Data System (ADS)

    Snyder, David; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2013-01-01

    The flow behavior and recrystallization response of a 9310 steel alloy deformed in the ferrite temperature range were studied in this work. Samples were compressed under various conditions of strain (0.6, 0.8 and multi-axial), strain rate (10-4 seconds-1 to 10-1 seconds-1) and temperature [811 K to 1033 K (538 °C to 760 °C)] using a Gleeble thermo-mechanical simulator. Deformation was characterized by both qualitative and quantitative means, using standard microscopy, electron backscatter diffraction (EBSD) analysis and flow stress modeling. The results indicate that deformation is primarily accommodated through dynamic recovery in sub-grain formation. EBSD analysis shows a continuous increase in sub-grain boundary misorientation with increasing strain, ultimately producing recrystallized grains from the sub-grains at high strains. This suggests that a sub-grain rotation recrystallization mechanism predominates in this temperature range. Analyses of the results reveal a decreasing mean dynamically recrystallized grain size with increasing Zener-Hollomon parameter, and an increasing recrystallized fraction with increasing strain.

  17. Different Phases of Earthquake Cycle Reflected in GPS Measured Crustal Deformations along the Andes

    NASA Astrophysics Data System (ADS)

    Khazaradze, G.; Klotz, J.

    2001-12-01

    The South American Geodynamic Activities (SAGA) project was initiated in 1993 by the GeoForschungsZentrum together with host organizations in Argentina and Chile with the main objective of studying the kinematics and dynamics of present-day deformation processes along the central and southern Andes. Currently the SAGA network consists of 230 geodetic markers spanning more than 2000 km long distance from Peru/Chile border in the north to Cape Horn in the south. The majority of the observed crustal deformation field is relatively homogenous: roughly parallel to the plate convergence direction and decreasing in magnitude away from the deformation front. This pattern is characteristic for the \\textit{inter-seismic} phase of earthquake deformation cycle and can be explained by the elastic strain accumulation due to locking of the thrust interface between the subducting Nazca and the overriding South America plates. However, in addition to the dominant inter-seismic signal, close examination of the observed velocity field also reveals significant spatial and temporal variations, contrary to the commonly used assumption of constant deformation rates. This variation is especially pronounced for the measurements in the vicinity of the 1995 Mw8.0 Antofagasta earthquake (22{° }S-26{° }S). Here, after capturing up to 1 meters of \\textit{co-seismic} displacements associated with this event, the analysis of data obtained during the three following field campaigns (1996-1999), reveals highly time dependent deformation pattern. This can be explained by the decreasing importance of \\textit{post-seismic} effects of the Antofagasta event relative to the increasing dominance of the inter-seismic phase of subduction. Perhaps, even more interesting time dependent observations have been detected in the southern part the SAGA network (38{° }S-43{° }S).Here, after 35 years of the occurrence of the 1960 Mw9.5 Chile earthquake, we still see the continuing post-seismic effects of this largest ever recorded earthquake on the earth. To properly interpret given observations, we developed the fully \\textsc{3D} Andean Elastic Dislocation Model (AEDM), which is used to explain the dominant inter-seismic signal. The subtraction of the AEDM predicted deformation rates from the observations leads towards the "filtered" residual velocity field, that can be used to highlight, for example, the post-seismic deformation effects. Also, in the central section of the SAGA network, the residual velocity field indicates the existence of more long-term (i.e. geologic) deformations. In summary, the changing spatial-temporal pattern of GPS measured crustal deformation rates along the central and southern Andes is governed by the relative importance of different phases of earthquake deformation cycle.

  18. Fluid dynamics of aortic valve stenosis

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Maftoon, Nima

    2009-11-01

    Aortic valve stenosis, which causes considerable constriction of the flow passage, is one of the most frequent cardiovascular diseases and is the most common cause of the valvular replacements which take place for around 100,000 per year in North America. Furthermore, it is considered as the most frequent cardiac disease after arterial hypertension and coronary artery disease. The objective of this study is to develop an analytical model considering the coupling effect between fluid flow and elastic deformation with reasonable boundary conditions to describe the effect of AS on the left ventricle and the aorta. The pulsatile and Newtonian blood flow through aortic stenosis with vascular wall deformability is analyzed and its effects are discussed in terms of flow parameters such as velocity, resistance to flow, shear stress distribution and pressure loss. Meanwhile we developed analytical expressions to improve the comprehension of the transvalvular hemodynamics and the aortic stenosis hemodynamics which is of great interest because of one main reason. To medical scientists, an accurate knowledge of the mechanical properties of whole blood flow in the aorta can suggest a new diagnostic tool.

  19. Influence of altered gait patterns on the hip joint contact forces.

    PubMed

    Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J

    2014-01-01

    Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.

  20. High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Goel, K.; Adam, N.

    2012-07-01

    In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.

  1. A variational approach to dynamics of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Chin; Haug, Edward J.; Kim, Sung-Soo

    1989-01-01

    This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body references frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed.

  2. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS creep, and we relate the continuous strain hardening to this process. A dynamic grain growth model involving an increase in cellular defect fraction seems best applicable to the grain growth observed in this study. We suggest that the employment of this model to fine-grained olivine rocks can further improve our understanding of the microstructural evolution of this material and related rheological behaviour.

  3. Approaching a flat boundary with a block copolymer coated emulsion drop: late stage drainage dynamics

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.

  4. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  5. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  6. Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.

    2018-03-01

    Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.

  7. The coupling effects of kinematics and flexibility on the Lagrangian dynamic formulation of open chain deformable links

    NASA Technical Reports Server (NTRS)

    Changizi, Koorosh

    1989-01-01

    A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.

  8. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sung, Po-Hsien; Wu, Cheng-Da; Fang, Te-Hua

    2012-05-01

    Single-crystal aluminium nanowires under torsion are studied using molecular dynamics simulations based on the many-body tight-binding potential. The effects of temperature, loading rate and nanowire length are evaluated in terms of atomic trajectories, potential energy, von Mises stress, a centrosymmetry parameter, torque, shear modulus and radial distribution function. Simulation results clearly show that torsional deformation begins at the surface, extends close to the two ends and finally diffuses to the middle part. The critical torsional angle which represents the beginning of plastic deformation varies with different conditions. Before the critical torsional angle is reached, the potential energy and the torque required for the deformation of a nanowire significantly increase with the torsional angle. The critical torsional angle increases with increasing nanowire length and loading rate and decreasing temperature. The torque required for the deformation decreases and the shear modulus increases with increasing nanowire length. For higher temperatures and higher loading rates, torsional buckling more easily occurs at the two ends of a nanowire, whereas it occurs towards the middle part at or below room temperature with lower loading rates. Geometry instability occurs before material instability (buckling) for a long nanowire.

  9. Full-field Deformation Measurement Techniques for a Rotating Composite Shaft

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.

    2012-01-01

    Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.

  10. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  11. Design of a dynamic sensor inspired by bat ears

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Pannala, Mittu; Reddy, O. Praveen K.; Meymand, Sajjad Z.

    2012-09-01

    In bats, the outer ear shapes act as beamforming baffles that create a spatial sensitivity pattern for the reception of the biosonar signals. Whereas technical receivers for wave-based signals usually have rigid geometries, the outer ears of some bat species, such as horseshoe bats, can undergo non-rigid deformations as a result of muscular actuation. It is hypothesized that these deformations provide the animals with a mechanism to adapt their spatial hearing sensitivity on short, sub-second time scales. This biological approach could be of interest to engineering as an inspiration for the design of beamforming devices that combine flexibility with parsimonious implementation. To explore this possibility, a biomimetic dynamic baffle was designed based on a simple shape overall geometry based on an average bat ear. This shape was augmented with three different biomimetic local shape features, a ridge on its exposed surface as well as a flap and an incision along its rim. Dynamic non-rigid deformations of the shape were accomplished through a simple actuation mechanism based on linear actuation inserted at a single point. Despite its simplicity, the prototype device was able to reproduce the dynamic functional characteristics that have been predicted for its biological paragon in a qualitative fashion.

  12. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress–Strain Response

    PubMed Central

    Perdahcıoğlu, E. S.; van den Boogaard, A. H.

    2018-01-01

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress–strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend. PMID:29789492

  13. Numerical study on influence of single control surface on aero elastic behavior of forward-swept wing

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei

    2017-10-01

    In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.

  14. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    NASA Astrophysics Data System (ADS)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong <001> + <111> dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  15. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  16. Hydrodynamic resistance and mobility of deformable objects in microfluidic channels

    PubMed Central

    Sajeesh, P.; Doble, M.; Sen, A. K.

    2014-01-01

    This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ϕ and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ϕ and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells. PMID:25538806

  17. Tidal deformation, Orbital Dynamics and JIMO

    NASA Astrophysics Data System (ADS)

    Ratcliff, J. T.; Wu, X.; Williams, J. G.

    2003-12-01

    Observations of Europa, Ganymede and Callisto obtained from encounters by the Galileo spacecraft strongly suggest the possibility of liquid oceans under the icy shells of these Jovian satellites. The strong tidal environments in which these moons are found and the fact that a planetary body with internal fluid undergoes greater deformation than an otherwise solid body make a compelling case for using tidal observations as a method for ocean detection. Given the high degree of uncertainty in our knowledge of the interiors of these moons, a comprehensive geodetic program measuring different physical signatures related to tidal deformation and interior structure is preferred to using separate and various interior parameters that may not be as closely tied to actual measurable quantities. Potential and displacement tidal Love numbers, libration amplitudes of the surface ice shell and rocky mantle, static topography and gravity fields and other quantities should all be included in the measurement objectives. Many geodetic techniques rely heavily upon orbital positions of the spacecraft. Their accurate determination depend on factors such as the orbital configuration, the gravity fields of the icy moons, as well as the duration and geometry of tracking. Given the competing science, engineering and planetary protection demands, orbital accuracy subject to constraints has become a critical mission design issue. Orbit determination simulations and covariance analyses will be used to investigate the achievable accuracies of spacecraft position and geodetic signatures under different orbital and tracking scenarios.

  18. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  19. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    NASA Astrophysics Data System (ADS)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS'. In October of 2015, geodetic deformation measurements were conducted by considering FIG reports related to deformation measurements and German DIN 18710 Engineering Measurements norms in the Çorum province of Turkey. The main purpose of the study is to determine optimum measurement and evaluation methods that will be used to specify movements in the horizontal and vertical directions for the fill dam. For this purpose; • In reference networks consisting of 8 points, measurements were performed by using long-term dual-frequency GNSS receivers for duration of 8 hours. • GNSS measurements were conducted in varying times between 30 minutes and 120 minutes at the 44 units object points on the body of the dam. • Two repetitive measurements of real time kinematic (RTK) GNSS were conducted at the object points on dam. • Geometric leveling measurements were performed between reference and object points. • Trigonometric leveling measurements were performed between reference and object points. • Polar measurements were performed between references and object points. GNSS measurements performed at reference points of the monitoring network for 8 hours have been evaluated by using GAMIT software in accordance with the IGS points in the region. In this manner, regional and local movements in the network can be determined. It is aimed to determine measurement period which will provide 1-2mm accuracy that expected in local GNSS network by evaluating GNSS measurements performed on body of dam. Results will be compared by offsetting GNSS and terrestrial measurements. This study will investigate whether or not there is increased accuracy provided by GNSS measurements carried out among reference points without the possibility of vision.

  20. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  1. Objective measurements for grading the nasal esthetics on Basal view in individuals with secondary cleft nasal deformity.

    PubMed

    He, Xing; Li, Hua; Shao, Yan; Shi, Bing

    2015-01-01

    The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.

  2. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  3. Manipulating Digital Holograms to Modify Phase of Reconstructed Wavefronts

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro; Paturzo, Melania; Memmolo, Pasquale; Finizio, Andrea

    2010-04-01

    We show that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in the numerical reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in-focus, and in one reconstructed image plane, different objects lying at different distance from the hologram plane (i.e. CCD sensor), but in the same field of view. In the same way it is possible to extend the depth of field for 3D object having a tilted object whole in-focus.

  4. Dislocation onset and nearly axial glide in carbon nanotubes under torsion

    NASA Astrophysics Data System (ADS)

    Zhang, D.-B.; James, R. D.; Dumitricǎ, T.

    2009-02-01

    The torsional plastic response of single-walled carbon nanotubes is studied with tight-binding objective molecular dynamics. In contrast with plasticity under elongation and bending, a torsionally deformed carbon nanotube can slip along a nearly axial helical path, which introduces a distinct (+1,-1) change in wrapping indexes. The low energy realization occurs without loss in mass via nucleation of a 5-7-7-5 dislocation dipole, followed by glide of 5-7 kinks. The possibility of nearly axial glide is supported by the obtained dependence of the plasticity onset on chirality and handedness and by the presented calculations showing the energetic advantage of the slip path and of the initial glide steps.

  5. The dynamics of the rapid solidification of two successive aluminum particles in molten state

    NASA Astrophysics Data System (ADS)

    Zirari, M.; El-Hadj, A. Abdellah; Bacha, N.

    2013-12-01

    A finite element method is used to simulate coating deposition in the thermal spraying process. The model uses a method based on a fixed-grid Eulerian control volume to solve the fluid dynamics and energy conservation equations. A volume-of-fluid algorithm was used to track free surface deformation. The specific heat method (SHM) is used for the solidification phenomenon. This work deals mainly numerically, the problem related to solidification during impact of two identical aluminium drops, impacting successively on the same point and time-shifted, onto a smooth steel substrate. In the first part of this study, a completely melted particle, sprayed onto substrate tool steel H13 is considered in the objective of identification. Then, we examine four possible cases of successive impacts of two particles and their effects on the sprawl dynamics in different states (fully and/or partially melted). It was found that the internal energy in conjunction with the metallurgical state of the droplet play a key role in the final morphology of the coating.

  6. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  7. Multiple estimation channel decoupling and optimization method based on inverse system

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  8. Multi-Scale Scattering Transform in Music Similarity Measuring

    NASA Astrophysics Data System (ADS)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  9. Single Stage Treatment of Non - Union of Transcervical Neck Femur Fracture with Shepherd Crook Deformity of Proximal Femur in A Case of Fibrous Dysplasia using Dynamic Hip Screw Fixation.

    PubMed

    Vk, Kandhari; Ss, Bava; Mm, Desai; Rn, Wade

    2015-01-01

    Fibrous dysplasia is a rare benign disorder of the skeletal system characterized by fibro osseous proliferation with intervening areas of normal or immature bone in the intramedullary region. It can either be a monostotic (involves one bone) or a polyostotic (involves more than one bone) presentation and usually occurs equally in males and females. Deformities like scoliosis and shepherd's crook deformity are frequently encountered in the polyostotic form. We report a rare managed case of bilateral non-union of the pathological fracture of femur neck with shepherd's crook deformity of the proximal femur in a case of polyostotic fibrous dysplasia. A 16 years old female case of polyostotic fibrous dysplasia had bilateral Shepherd's crook deformity of the proximal femur with bilateral non - union of pathological fracture of neck femur. We managed each side in one stage with two osteotomies. On the right side, first oblique osteotomy was done from just distal to the greater trochanter up to the level of the neck and the second; lateral closing wedge abduction osteotomy was done at the subtrochanteric level. 2 months later on the left side double lateral closing wedge abduction osteotomies were performed both at the subtrochanteric level. Fixation of both the sides was done using a 135° Dynamic Richard's screw with a long side plate to span the osteotomy sites and the lesion. Post - operatively we achieved a neck shaft angle of 135° on right side and 133° on the left side. Follow up imaging showed union at both the osteotomy sites bilaterally and also at the site of the pathological fracture of neck femur. Presently, at 18 months post - operatively, patient is walking full weight bearing without support and there are no signs of recurrence of lesions of fibrous dysplasia or the deformity. Double osteotomy is an easy and effective method to correct the shepherd's crook deformity and achieve correct mechanical alignment. Dynamic hip screw with long side plate is a versatile implant to tackle the proximal femur deformity. Double osteotomy corrects the deformity and tackles the associated problems like non - union of the pathological neck femur fracture in one stage.

  10. Single Stage Treatment of Non – Union of Transcervical Neck Femur Fracture with Shepherd Crook Deformity of Proximal Femur in A Case of Fibrous Dysplasia using Dynamic Hip Screw Fixation

    PubMed Central

    VK, Kandhari; SS, Bava; MM, Desai; RN, Wade

    2015-01-01

    Introduction: Fibrous dysplasia is a rare benign disorder of the skeletal system characterized by fibro osseous proliferation with intervening areas of normal or immature bone in the intramedullary region. It can either be a monostotic (involves one bone) or a polyostotic (involves more than one bone) presentation and usually occurs equally in males and females. Deformities like scoliosis and shepherd’s crook deformity are frequently encountered in the polyostotic form. We report a rare managed case of bilateral non-union of the pathological fracture of femur neck with shepherd’s crook deformity of the proximal femur in a case of polyostotic fibrous dysplasia. Case Report: A 16 years old female case of polyostotic fibrous dysplasia had bilateral Shepherd’s crook deformity of the proximal femur with bilateral non – union of pathological fracture of neck femur. We managed each side in one stage with two osteotomies. On the right side, first oblique osteotomy was done from just distal to the greater trochanter up to the level of the neck and the second; lateral closing wedge abduction osteotomy was done at the subtrochanteric level. 2 months later on the left side double lateral closing wedge abduction osteotomies were performed both at the subtrochanteric level. Fixation of both the sides was done using a 135° Dynamic Richard’s screw with a long side plate to span the osteotomy sites and the lesion. Post – operatively we achieved a neck shaft angle of 135° on right side and 133° on the left side. Follow up imaging showed union at both the osteotomy sites bilaterally and also at the site of the pathological fracture of neck femur. Presently, at 18 months post – operatively, patient is walking full weight bearing without support and there are no signs of recurrence of lesions of fibrous dysplasia or the deformity. Conclusion: Double osteotomy is an easy and effective method to correct the shepherd’s crook deformity and achieve correct mechanical alignment. Dynamic hip screw with long side plate is a versatile implant to tackle the proximal femur deformity. Double osteotomy corrects the deformity and tackles the associated problems like non - union of the pathological neck femur fracture in one stage. PMID:27299066

  11. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  12. Ultrasound Imaging of Muscle Contraction of the Tibialis Anterior in Patients with Facioscapulohumeral Dystrophy.

    PubMed

    Gijsbertse, Kaj; Goselink, Rianne; Lassche, Saskia; Nillesen, Maartje; Sprengers, André; Verdonschot, Nico; van Alfen, Nens; de Korte, Chris

    2017-11-01

    A need exists for biomarkers to diagnose, quantify and longitudinally follow facioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not completely understood. Dynamic ultrasound imaging (B-mode image sequences) in combination with speckle tracking is an easy, applicable and patient-friendly imaging tool to visualize and quantify muscle deformation. This dynamic information provides insight in the pathophysiological mechanisms and may help to distinguish the various stages of diseased muscle in FSHD. In this proof-of-principle study, we applied a speckle tracking technique to 2-D ultrasound image sequences to quantify the deformation of the tibialis anterior muscle in patients with FSHD and in healthy controls. The resulting deformation patterns were compared with muscle ultrasound echo intensity analysis (a measure of fat infiltration and dystrophy) and clinical outcome measures. Of the four FSHD patients, two patients had severe peroneal weakness and two patients had mild peroneal weakness on clinical examination. We found a markedly varied muscle deformation pattern between these groups: patients with severe peroneal weakness showed a different motion pattern of the tibialis anterior, with overall less displacement of the central tendon region, while healthy patients showed a non-uniform displacement pattern, with the central aponeurosis showing the largest displacement. Hence, dynamic muscle ultrasound of the tibialis anterior muscle in patients with FSHD revealed a distinctively different tissue deformation pattern among persons with and without tibialis anterior weakness. These findings could clarify the understanding of the pathophysiology of muscle weakness in FSHD patients. In addition, the change in muscle deformation shows good correlation with clinical measures and quantitative muscle ultrasound measurements. In conclusion, dynamic ultrasound in combination with speckle tracking allows the study of the effects of muscle pathology in relation to strength, force transmission and movement generation. Although further research is required, this technique can develop into a biomarker to quantify muscle disease severity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... deformation, which renders the IBC unsafe for transportation, and no loss of contents. (2) For fiberboard and wooden IBCs, there may be no loss of contents and no permanent deformation, which renders the whole IBC..., which renders the IBC unsafe for transportation, and no loss of contents. (4) For the dynamic...

  14. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... deformation, which renders the IBC unsafe for transportation, and no loss of contents. (2) For fiberboard and wooden IBCs, there may be no loss of contents and no permanent deformation, which renders the whole IBC..., which renders the IBC unsafe for transportation, and no loss of contents. (4) For the dynamic...

  15. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... deformation, which renders the IBC unsafe for transportation, and no loss of contents. (2) For fiberboard and wooden IBCs, there may be no loss of contents and no permanent deformation, which renders the whole IBC..., which renders the IBC unsafe for transportation, and no loss of contents. (4) For the dynamic...

  16. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... deformation, which renders the IBC unsafe for transportation, and no loss of contents. (2) For fiberboard and wooden IBCs, there may be no loss of contents and no permanent deformation, which renders the whole IBC..., which renders the IBC unsafe for transportation, and no loss of contents. (4) For the dynamic...

  17. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  18. Cruise report for A1-98-SC southern California Earthquake Hazards Project

    USGS Publications Warehouse

    Normark, William R.; Bohannon, Robert G.; Sliter, Ray; Dunhill, Gita; Scholl, David W.; Laursen, Jane; Reid, Jane A.; Holton, David

    1999-01-01

    The focus of the Southern California Earthquake Hazards project, within the Western Region Coastal and Marine Geology team (WRCMG), is to identify the landslide and earthquake hazards and related ground-deformation processes that can potentially impact the social and economic well-being of the inhabitants of the Southern California coastal region, the most populated urban corridor along the U.S. Pacific margin. The primary objective is to help mitigate the earthquake hazards for the Southern California region by improving our understanding of how deformation is distributed (spatially and temporally) in the offshore with respect to the onshore region. To meet this overall objective, we are investigating the distribution, character, and relative intensity of active (i.e., primarily Holocene) deformation within the basins and along the shelf adjacent to the most highly populated areas (see Fig. 1). In addition, the project will examine the Pliocene-Pleistocene record of how this deformation has shifted in space and time. The results of this study should improve our knowledge of shifting deformation for both the long-term (105 to several 106 yr) and short-term (<50 ky) time frames and enable us to identify actively deforming structures that may constitute current significant seismic hazards.

  19. A centric/non-centric impact protocol and finite element model methodology for the evaluation of American football helmets to evaluate risk of concussion.

    PubMed

    Post, Andrew; Oeur, Anna; Walsh, Evan; Hoshizaki, Blaine; Gilchrist, Michael D

    2014-01-01

    American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.

  20. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading

    PubMed Central

    Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira

    2017-01-01

    Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies. PMID:28772974

  1. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing

    PubMed Central

    Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.

    2015-01-01

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512

  2. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading.

    PubMed

    Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira

    2017-06-03

    Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.

  3. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu; Center for Computational Biology, Simons Foundation, New York, NY 10010; Rahimian, Abtin, E-mail: arahimian@acm.org

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs),more » and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.« less

  4. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.

  5. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote sensing data and the reasons of deviations and uncertainties are unbiased. The probability of changes and impact of sediment drift over ocean dynamic model over the long running of years is estimated.

  6. Particle-based solid for nonsmooth multidomain dynamics

    NASA Astrophysics Data System (ADS)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  7. Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys

    NASA Astrophysics Data System (ADS)

    Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian

    2018-02-01

    The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.

  8. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  9. The dynamics of magma ascent in the crust: Characterising fluid flow and host-rock deformation using scaled analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Dennis, David

    2015-04-01

    We present the results from a series of analogue experiments that use gelatine injected by water to study magma ascent dynamics in the crust. Gelatine is a viscoelastic material that displays predominantly elastic deformation when used at low temperatures (5-10 °C) and mid-to-low concentrations (2-5 wt%). To study dyke propagation we have used a combination of Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) to characterise the dynamics of fluid flow within the intrusion and contemporaneous deformation of the host gelatine. Experiments are prepared by filling a 40 cm x 40 cm x 30 cm clear-Perspex tank with a gelatine mixture that has been seeded with neutrally buoyant fluorescent particles. Water, also seeded with tracer particles, is then injected into the solid gelatine from below under a constant flux or constant head pressure. This causes a vertical penny-shaped crack (dyke) to propagate through the gelatine and erupt at the surface. During the experiment, a vertical high-power laser sheet positioned along the centre of the tank is triggered to illuminate the seeding particles with short intense pulses, and two Dantec CCD cameras record successive images. Using PIV and DIC, vector fields of fluid flow within the intrusion and strain within the gelatine host is calculated by cross-correlation between successive images at a defined time interval. The experiments indicate that, prior to eruption, dyke propagation is characterised by rapid centralised and upwards fluid flow with accompanying downwards motion at the intrusion margin. Deformation of the gelatine solid is focused at a small head region, with the tail remaining relatively static as the dyke grows. Upon eruption, rapid centralised fluid evacuation occurs with contemporaneous contraction of the dyke and relaxation of the host gelatine. Models that can couple fluid dynamics and host deformation during magma ascent and eruption will make an important step towards improving our understanding of the dynamics of magma transport through the crust, and may help to constrain the tendency for eruption.

  10. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  11. Snyder-like modified gravity in Newton's spacetime

    NASA Astrophysics Data System (ADS)

    Leiva, Carlos

    This work is focused on searching a geodesic interpretation of the dynamics of a particle under the effects of a Snyder-like deformation in the background of the Kepler problem. In order to accomplish that task, a Newtonian spacetime is used. Newtonian spacetime is not a metric manifold, but allows to introduce a torsion-free connection in order to interpret the dynamic equations of the deformed Kepler problem as geodesics in a curved spacetime. These geodesics and the curvature terms of the Riemann and Ricci tensors show a mass and a fundamental length dependence as expected, but are velocity-independent that is a feature present in other classical approaches to the problem. In this sense, the effect of introducing a deformed algebra is examined and the corresponding curvature terms calculated, as well as the modifications of the integrals of motion.

  12. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, A.N.

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grainmore » orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.« less

  13. High speed X-ray phase contrast imaging of energetic composites under dynamic compression

    NASA Astrophysics Data System (ADS)

    Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; Mares, Jesus O.; Casey, Alex D.; Gunduz, I. Emre; Hudspeth, Matthew; Claus, Benjamin; Sun, Tao; Fezzaa, Kamel; Son, Steven F.; Chen, Weinong W.

    2016-09-01

    Fracture of crystals and frictional heating are associated with the formation of "hot spots" (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speed synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. The obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.

  14. High speed X-ray phase contrast imaging of energetic composites under dynamic compression

    DOE PAGES

    Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; ...

    2016-09-26

    Fracture of crystals and subsequent frictional heating are associated with formation of hot spots in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and fracture mechanisms in PBXs manufactured using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene (HTPB) binder. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speedmore » synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. In conclusion, the obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.« less

  15. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  16. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  17. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.

    PubMed

    Liu, Haijiao; Usprech, Jenna; Sun, Yu; Simmons, Craig A

    2016-04-01

    Cellular microenvironments present cells with multiple stimuli, including not only soluble biochemical and insoluble matrix cues but also mechanical factors. Biomaterial array platforms have been used to combinatorially and efficiently probe and define two-dimensional (2D) and 3D microenvironmental cues to guide cell functions for tissue engineering applications. However, there are few examples of array platforms that include dynamic mechanical forces, particularly to enable stretching of 3D cell-seeded biomaterials, which is relevant to engineering connective and cardiovascular tissues. Here we present a deformable membrane platform that enables 3D dynamic mechanical stretch of arrayed biomaterial constructs. Cell-seeded polyethylene glycol norbornene (PEG-NB) hydrogels were bound to miniaturized deformable membranes via a thiol-ene reaction with off-stoichiometry thiol-ene based polydimethylsiloxane (OSTE-PDMS) as the membrane material. Bonding to OSTE-PDMS enabled the 3D hydrogel microconstructs to be cyclically deformed and stretched by the membrane. As a first demonstration, human mesenchymal stromal cells (MSCs) embedded in PEG-NB were stretched for several days. They were found to be viable, spread in the 3D hydrogels, and exhibited a contractile myofibroblast phenotype when exposed to dynamic 3D mechanical deformation. This platform, which is readily scalable to larger arrays, enables systematic interrogation of the relationships between combinations of 3D mechanobiological cues and cellular responses, and thus has the potential to identify strategies to predictably control the construction of functional engineered tissues. Current high-throughput biomaterial screening approaches fail to consider the effects of dynamic mechanical stimulation, despite its importance in a wide variety of regenerative medicine applications. To meet this need, we developed a deformable membrane platform that enables 3D dynamic stretch of arrayed biomaterial constructs. Our approach combines microtechnologies fabricated with off-stoichiometry thiol-ene based polydimethylsiloxane membranes that can covalently bond cell-seeded polyethylene glycol norbornene 3D hydrogels, a model biomaterial with tunable adhesive, elastic and degradation characteristics. As a first demonstration, we show that human mesenchymal stromal cells embedded in hydrogels and subjected to dynamic mechanical stimulation undergo myofibroblast differentiation. This system is readily scaled up to larger arrays, and will enable systematic and efficient screening of combinations of 3D mechanobiological and biomaterial cues on cell fate and function. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Dislocation dynamics simulations of plasticity at small scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less

  19. Development of Control Models and a Robust Multivariable Controller for Surface Shape Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winters, Scott Eric

    2003-06-18

    Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less

  20. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Shultz, Louis A.

    1994-01-01

    The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.

  1. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  2. Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphaël; Popović, Marko; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2017-03-01

    In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations and elongation as well as cellular growth and elongation to tissue deformation. Using this triangle method, we discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.

  3. Influence of Severe Plastic Deformation on the Structure and Properties of Al-Li-Cu-Mg-Zr-Sc-Zn Alloy

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2018-02-01

    The structural and phase transformations in the Al-Li-Cu-Mg-Zr-Sc-Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.

  4. Meshless Modeling of Deformable Shapes and their Motion

    PubMed Central

    Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.

    2010-01-01

    We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614

  5. Visualizing Chemical Interaction Dynamics of Confined DNA Molecules

    NASA Astrophysics Data System (ADS)

    Henkin, Gilead; Berard, Daniel; Stabile, Frank; Leslie, Sabrina

    We present a novel nanofluidic approach to controllably introducing reagent molecules to interact with confined biopolymers and visualizing the reaction dynamics in real time. By dynamically deforming a flow cell using CLiC (Convex Lens-induced Confinement) microscopy, we are able to tune reaction chamber dimensions from micrometer to nanometer scales. We apply this gentle deformation to load and extend DNA polymers within embedded nanotopographies and visualize their interactions with other molecules in solution. Quantifying the change in configuration of polymers within embedded nanotopographies in response to binding/unbinding of reagent molecules provides new insights into their consequent change in physical properties. CLiC technology enables an ultra sensitive, massively parallel biochemical analysis platform which can acces a broader range of interaction parameters than existing devices.

  6. Deformable M-Reps for 3D Medical Image Segmentation.

    PubMed

    Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L

    2003-11-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models , which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps ), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.

  7. Deformable M-Reps for 3D Medical Image Segmentation

    PubMed Central

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID:23825898

  8. Effect of conducting core on the dynamics of a compound drop in an AC electric field

    NASA Astrophysics Data System (ADS)

    Soni, Purushottam; Dixit, Divya; Juvekar, Vinay A.

    2017-11-01

    Dynamics of 0.1M NaCl/castor oil/silicone oil compound drop in an alternating electric field of frequency 1 Hz was investigated experimentally in a parallel plate electrode cell. A novel yet simple method was used for producing the compound drop with different ratios of the core radius to shell radius. Deformation dynamics under both transient and cyclical steady states were recorded using high-speed imaging. We observed that with an increase in the radius ratio, deformation of the shell increases and that of the core decreases. The temporal deformation of the core always leads that of the shell. The phase lead between the core and the shell is independent of electric field strength and salt concentration in the core but strongly depends on the viscosity of the medium and radius ratio. At a small radius ratio, the breakup of the core is similar to the disintegration of the isolated drop in an infinite fluid; whereas the core attends a diamond-like shape at a high radius ratio before ejecting the small droplets from the tips.

  9. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals.

    PubMed

    Cherukara, Mathew J; Sasikumar, Kiran; Cha, Wonsuk; Narayanan, Badri; Leake, Steven J; Dufresne, Eric M; Peterka, Tom; McNulty, Ian; Wen, Haidan; Sankaranarayanan, Subramanian K R S; Harder, Ross J

    2017-02-08

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.

  10. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys

    PubMed Central

    Chen, Pengwan

    2018-01-01

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively. PMID:29303988

  11. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling

    NASA Astrophysics Data System (ADS)

    Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang

    2017-03-01

    Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.

  12. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less

  13. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  14. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals

    DOE PAGES

    Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk; ...

    2016-12-27

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less

  15. Microrheology: Structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.

    2003-08-01

    An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.

  16. Role of structural inheritance on present-day deformation in intraplate domains

    NASA Astrophysics Data System (ADS)

    Tarayoun, A.; Mazzotti, S.; Gueydan, F.

    2017-12-01

    Understanding the role of structural inheritance on present day surface deformation is a key element for better characterizing the dynamism of intraplate earthquakes. Current deformation and seismicity are poorly understood phenomenon in intra-continental domains. A commonly used hypothesis, based on observations, suggests that intraplate deformation is related to the reactivation of large tectonic paleo-structures, which can act as locally weakened domains. The objective of our study is to quantify the impact of these weakened areas on present-day strain localizations and rates. We combine GPS observations and numerical modeling to analyze the role of structural inheritance on strain rates, with specific observations along the St. Lawrence Valley of eastern Canada. We processed 143 GPS stations from five different networks, in particular one dense campaign network situated along a recognized major normal faults system of the Iapetus paleo-rift, in order to accurately determine the GPS velocities and strain rates. Results of strain rates show magnitude varying from 1.5x10-10 to 6.8x10-9 yr-1 in the St Lawrence valley. Weakened area strain rates are up to one order of magnitude higher than surrounding areas. We compare strain rates inferred from GPS and the new postglacial rebound model. We found that GPS signal is one order of magnitude higher in the weakened zone, which is likely due to structural inheritance. The numerical modeling investigates the steady-state deformation of the continental lithosphere with presence of a weak area. Our new approach integrates ductile structural inheritance using a weakening coefficient that decreases the lithosphere strength at different depths. This allows studying crustal strain rates mainly as a function of rheological contrast and geometry of the weakened domains. Comparison between model predictions and observed GPS strain rates will allow us to investigate the respective role of crustal and mantle tectonic inheritance.

  17. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  18. Whole-field macro- and micro-deformation characteristic of unbound water-loss in dentin hard tissue.

    PubMed

    Chen, Zhenning; Nadeau, Bobby; Yu, Kevin; Shao, Xinxing; He, Xiaoyuan; Goh, M Cynthia; Kishen, Anil

    2018-04-06

    High-resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water-loss mediated changes and their role in its mechanical integrity. Yet a whole-field, 3-dimensional (3D) measurement and characterization of fully hydrated dentin in both macro- and micro-scales remain to be a challenge. This study was conducted in 2 stages. In stage-1, a stereo-digital image correlation approach was utilized to determine the water-loss and load-induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin-enamel-junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi-static loadings, further increase in the residual deformation was observed in the dentin. In stage-2, dentin microstructural variations induced by dynamic water-loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water-loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro- and micro-scale analysis provided insight on the free-water-loss induced regional deformations and ultrastructural changes in human dentin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.

    PubMed

    Martin, David M; Murphy, Eoin A; Boyle, Fergal J

    2014-08-01

    In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Repeatability study of replicate crash tests: A signal analysis approach.

    PubMed

    Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason

    2017-10-03

    To provide an objective basis on which to evaluate the repeatability of vehicle crash test methods, a recently developed signal analysis method was used to evaluate correlation of sensor time history data between replicate vehicle crash tests. The goal of this study was to evaluate the repeatability of rollover crash tests performed with the Dynamic Rollover Test System (DRoTS) relative to other vehicle crash test methods. Test data from DRoTS tests, deceleration rollover sled (DRS) tests, frontal crash tests, frontal offset crash tests, small overlap crash tests, small overlap impact (SOI) crash tests, and oblique crash tests were obtained from the literature and publicly available databases (the NHTSA vehicle database and the Insurance Institute for Highway Safety TechData) to examine crash test repeatability. Signal analysis of the DRoTS tests showed that force and deformation time histories had good to excellent repeatability, whereas vehicle kinematics showed only fair repeatability due to the vehicle mounting method for one pair of tests and slightly dissimilar mass properties (2.2%) in a second pair of tests. Relative to the DRS, the DRoTS tests showed very similar or higher levels of repeatability in nearly all vehicle kinematic data signals with the exception of global X' (road direction of travel) velocity and displacement due to the functionality of the DRoTS fixture. Based on the average overall scoring metric of the dominant acceleration, DRoTS was found to be as repeatable as all other crash tests analyzed. Vertical force measures showed good repeatability and were on par with frontal crash barrier forces. Dynamic deformation measures showed good to excellent repeatability as opposed to poor repeatability seen in SOI and oblique deformation measures. Using the signal analysis method as outlined in this article, the DRoTS was shown to have the same or better repeatability of crash test methods used in government regulatory and consumer evaluation test protocols.

  1. Occupant dynamics in rollover crashes: influence of roof deformation and seat belt performance on probable spinal column injury.

    PubMed

    Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S

    2007-11-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.

  2. Occupant Dynamics in Rollover Crashes: Influence of Roof Deformation and Seat Belt Performance on Probable Spinal Column Injury

    PubMed Central

    Cochran, John E.; King, Dottie; Burke, Donald S.

    2007-01-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975

  3. On the ambiguity in relativistic tidal deformability

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  4. Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation.

    PubMed

    Khodadad, Davood; Singh, Alok Kumar; Pedrini, Giancarlo; Sjödahl, Mikael

    2016-09-20

    The objective of this paper is to describe a full-field deformation measurement method based on 3D speckle displacements. The deformation is evaluated from the slope of the speckle displacement function that connects the different reconstruction planes. For our experiment, a symmetrical arrangement with four illuminations parallel to the planes (x,z) and (y,z) was used. Four sets of speckle patterns were sequentially recorded by illuminating an object from the four directions, respectively. A single camera is used to record the holograms before and after deformations. Digital speckle photography is then used to calculate relative speckle displacements in each direction between two numerically propagated planes. The 3D speckle displacements vector is calculated as a combination of the speckle displacements from the holograms recorded in each illumination direction. Using the speckle displacements, problems associated with rigid body movements and phase wrapping are avoided. In our experiment, the procedure is shown to give the theoretical accuracy of 0.17 pixels yielding the accuracy of 2×10-3 in the measurement of deformation gradients.

  5. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  6. Non-rigid Reconstruction of Casting Process with Temperature Feature

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  7. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-01

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  8. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  9. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L M; Lassila, D H

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain ofmore » 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.« less

  10. Mesoscale Modeling of Nonlinear Elasticity and Fracture in Ceramic Polycrystals Under Dynamic Shear and Compression

    DTIC Science & Technology

    2012-08-01

    investigation of heterogeneous microplasticity in ceramics deformed under high confining stresses. Mech. Mater. 37, 95–112. Zhang, K., Wu, M., Feng, R., 2005b...Simulation of microplasticity -induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plasticity 21, 801–834

  11. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  12. Features of structural response of mechanically loaded crystallites to irradiation

    NASA Astrophysics Data System (ADS)

    Korchuganov, Aleksandr V.

    2015-10-01

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  13. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  14. Comparison of Angle of Attack Measurements for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas, W.; Hoppe, John C.

    2001-01-01

    Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.

  15. Mechanical Behaviour of Light Metal Alloys at High Strain Rates. Computer Simulation on Mesoscale Levels

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya

    2012-02-01

    Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.

  16. Effect of chordwise forces and deformations and deformations due to steady lift on wing flutter

    NASA Technical Reports Server (NTRS)

    Boyd, W. N.

    1977-01-01

    This investigation explores the effects of chordwise forces and deformations and steady-state deformation due to lift on the static and dynamic aeroelastic stability of a uniform cantilever wing. Results of this analysis are believed to have practical applications for high-performance sailplanes and certain RPV's. The airfoil cross section is assumed to be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-aft bending, and torsion are considered. A differential equation model is developed, which included the nonlinear elastic bending-torsion coupling that accompanies even moderate deflections. A linearized expansion in small time-dependent deflections is made about a steady flight condition. The stability determinant of the linearized system then contains coefficients that depend on steady displacements. Loads derived from two-dimensional incompressible aerodynamic theory are used to obtain the majority of the results, but cases using three-dimensional subsonic compressible theory are also studied. The stability analysis is carried out in terms of the dynamically uncoupled natural modes of vibration of the uniform cantilever.

  17. A conformal truncation framework for infinite-volume dynamics

    DOE PAGES

    Katz, Emanuel; Khandker, Zuhair U.; Walters, Matthew T.

    2016-07-28

    Here, we present a new framework for studying conformal field theories deformed by one or more relevant operators. The original CFT is described in infinite volume using a basis of states with definite momentum, P, and conformal Casimir, C. The relevant deformation is then considered using lightcone quantization, with the resulting Hamiltonian expressed in terms of this CFT basis. Truncating to states with C ≤ C max, one can numerically find the resulting spectrum, as well as other dynamical quantities, such as spectral densities of operators. This method requires the introduction of an appropriate regulator, which can be chosen tomore » preserve the conformal structure of the basis. We check this framework in three dimensions for various perturbative deformations of a free scalar CFT, and for the case of a free O(N) CFT deformed by a mass term and a non-perturbative quartic interaction at large- N. In all cases, the truncation scheme correctly reproduces known analytic results. As a result, we also discuss a general procedure for generating a basis of Casimir eigenstates for a free CFT in any number of dimensions.« less

  18. Speckle interferometry with temporal phase evaluation for measuring large-object deformation.

    PubMed

    Joenathan, C; Franze, B; Haible, P; Tiziani, H J

    1998-05-01

    We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.

  19. Perceiving environmental structure from optical motion

    NASA Technical Reports Server (NTRS)

    Lappin, Joseph S.

    1991-01-01

    Generally speaking, one of the most important sources of optical information about environmental structure is known to be the deforming optical patterns produced by the movements of the observer (pilot) or environmental objects. As an observer moves through a rigid environment, the projected optical patterns of environmental objects are systematically transformed according to their orientations and positions in 3D space relative to those of the observer. The detailed characteristics of these deforming optical patterns carry information about the 3D structure of the objects and about their locations and orientations relative to those of the observer. The specific geometrical properties of moving images that may constitute visually detected information about the shapes and locations of environmental objects is examined.

  20. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  1. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE PAGES

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...

    2017-12-02

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  2. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  3. Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy

    NASA Astrophysics Data System (ADS)

    McCarley, Joshua; Alabbad, B.; Tin, S.

    2018-03-01

    The influence of varying fractions of primary gamma prime precipitates on the hot deformation and annealing behavior of an experimental Nickel-based superalloy containing 24 wt pct. Co was investigated. Billets heat treated at 1110 °C or 1135 °C were subjected to hot compression tests at temperatures ranging from 1020 °C to 1060 °C and strain rates ranging from 0.001 to 0.1/s. The microstructures were characterized using electron back scatter diffraction in the as-deformed condition as well as following a super-solvus anneal heat treatment at 1140 °C for 1 hour. This investigation sought to quantify and understand what effect the volume fraction of primary gamma prime precipitates has on the dynamic recrystallization behavior and resulting length fraction ∑3 twin boundaries in the low stacking fault superalloy following annealing. Although deformation at the lower temperatures and higher strain rates led to dynamic recrystallization for both starting microstructures, comparatively lower recrystallized fractions were observed in the 1135 °C billet microstructures deformed at strain rates of 0.1/s and 0.05/s. Subsequent annealing of the 1135 °C billet microstructures led to a higher proportion of annealing twins when compared to the annealed 1110 °C billet microstructures.

  4. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  5. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  6. Contrast of lithospheric dynamics across the southern and eastern margins of the Tibetan Plateau: a numerical study

    NASA Astrophysics Data System (ADS)

    Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai

    2018-05-01

    Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.

  7. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, L.B.; Li, X.; Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior.more » The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.« less

  8. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    NASA Astrophysics Data System (ADS)

    Broumand, P.; Khoei, A. R.

    2018-04-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  9. The narrative labyrinth of violent dying.

    PubMed

    Rynearson, E K

    2005-05-01

    This essay outlines the dynamics of retelling the violent death of a loved one and the narrative "dilemma" of vulnerable family members fixated on retelling. To counter this fixation, the author presents a mythic retelling of violent death (the Myth of Theseus) as narrative basis for developing a restorative retelling. The essay begins by exploring the deformed and deforming structure of the violent dying story, then details the dynamics of its retelling and concludes by presenting a restorative retelling model for family members who cannot release themselves from the story for months or years after the violent dying.

  10. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus of the research was in two broad areas: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings of the research are described in the accompanying appendices. The first two and the fourth appendices are reprints of papers recently submitted for publication, and the third is the abstract of a recently completed thesis supported by this project.

  11. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an analytical dynamic model of intrusion of magma or injection of supercritical fluids in the PTE. Propagation is governed by a Navier-Stokes equation for magma intrusion and modelled as creeping flow in porous media (Darcy's law) for supercritical fluids injection. In both cases the ground deformation pattern is constant over time. Using Finite Element Modeling, we also show that the presence of a viscoelastic shell surrounding the PTE amplifies ground deformation, with no appreciable effect on the ground deformation pattern. Thus, our model satisfies the observed CF deformation pattern stationarity both using a purely elastic medium or allowing for stress relaxation close to the PTE, caused by the rock temperature. Amoruso et al. (2014a), J. Geophys. Res., 119 (2), 858-879 Amoruso et al. (2014b), Geophys. Res. Lett., 41 (9), 3081-3088

  12. MD simulations of papillomavirus DNA-E2 protein complexes hints at a protein structural code for DNA deformation.

    PubMed

    Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A

    2008-08-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.

  13. 3D calcite heterostructures for dynamic and deformable mineralized matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen

    Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less

  14. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.

    PubMed

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-12-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  15. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-07-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  16. 3D calcite heterostructures for dynamic and deformable mineralized matrices

    DOE PAGES

    Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen; ...

    2017-09-11

    Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less

  17. A multi-object statistical atlas adaptive for deformable registration errors in anomalous medical image segmentation

    NASA Astrophysics Data System (ADS)

    Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.

    2017-02-01

    Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.

  18. The Impact of the Rock Mass Deformation on Geometric Changes of a Historical Chimney in the Salt Mine of Bochnia

    NASA Astrophysics Data System (ADS)

    Szafarczyk, Anna; Gawałkiewicz, Rafał

    2018-03-01

    There are many ways of the geometry measurement of slim objects, with the application of geodetic and photogrammetric methods. A modern solution in the diagnostics of slim objects is the application of laser scanning, with the use of a scanner of a scanning total station. The point cloud, obtained from the surface of the scanned object gives the possibility of generating not only information on structural surface deformations, but also facilitates obtaining the data on the geometry of the axis of the building, as a basic indicator of the characteristics of its deformation. The cause of the change in the geometry of slim objects is the impact of many external and internal factors. These objects are located in the areas of working or closed underground mines. They can be impacted by the ground and they can face the results of the convergence of cavities. A specific structure of the salt rock mass causes subsequent convergence of the post-exploitation cavities, which has the influence on the behaviour of the terrain surface and the related objects. The authors analysed the impact of the changes in the rock mass and the surface on the changes of the industrial chimney in the Bochnia Salt Mine.

  19. Relative hardness measurement of soft objects by a new fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran

    2010-06-01

    The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.

  20. Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass

    NASA Astrophysics Data System (ADS)

    Zupan, E.; Zupan, D.

    2018-01-01

    In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.

Top