Sample records for object location detector

  1. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  2. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  3. Object locating system

    DOEpatents

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  4. Object locating system

    DOEpatents

    Novak, James L.; Petterson, Ben

    1998-06-09

    A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.

  5. Non-contact local temperature measurement inside an object using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-04-01

    Local temperature measurement in deep areas of objects is an important technique in biomedical measurement. We have investigated a non-contact method for measuring temperature inside an object using a point detector for infrared (IR) light. An IR point detector with a pinhole was constructed and the radiant IR light emitted from the local interior of the object is photodetected only at the position of pinhole located in imaging relation. We measured the thermal structure of the filament inside the miniature bulb using the IR point detector, and investigated the temperature dependence at approximately human body temperature using a glass plate positioned in front of the heat source.

  6. 46 CFR 76.27-10 - Location and spacing of detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...

  7. 46 CFR 76.27-10 - Location and spacing of detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...

  8. 46 CFR 76.27-10 - Location and spacing of detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...

  9. 46 CFR 76.27-10 - Location and spacing of detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...

  10. 46 CFR 76.27-10 - Location and spacing of detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...

  11. Language and memory for object location.

    PubMed

    Gudde, Harmen B; Coventry, Kenny R; Engelhardt, Paul E

    2016-08-01

    In three experiments, we investigated the influence of two types of language on memory for object location: demonstratives (this, that) and possessives (my, your). Participants first read instructions containing demonstratives/possessives to place objects at different locations, and then had to recall those object locations (following object removal). Experiments 1 and 2 tested contrasting predictions of two possible accounts of language on object location memory: the Expectation Model (Coventry, Griffiths, & Hamilton, 2014) and the congruence account (Bonfiglioli, Finocchiaro, Gesierich, Rositani, & Vescovi, 2009). In Experiment 3, the role of attention allocation as a possible mechanism was investigated. Results across all three experiments show striking effects of language on object location memory, with the pattern of data supporting the Expectation Model. In this model, the expected location cued by language and the actual location are concatenated leading to (mis)memory for object location, consistent with models of predictive coding (Bar, 2009; Friston, 2003). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Detect2Rank: Combining Object Detectors Using Learning to Rank.

    PubMed

    Karaoglu, Sezer; Yang Liu; Gevers, Theo

    2016-01-01

    Object detection is an important research area in the field of computer vision. Many detection algorithms have been proposed. However, each object detector relies on specific assumptions of the object appearance and imaging conditions. As a consequence, no algorithm can be considered universal. With the large variety of object detectors, the subsequent question is how to select and combine them. In this paper, we propose a framework to learn how to combine object detectors. The proposed method uses (single) detectors like Deformable Part Models, Color Names and Ensemble of Exemplar-SVMs, and exploits their correlation by high-level contextual features to yield a combined detection list. Experiments on the PASCAL VOC07 and VOC10 data sets show that the proposed method significantly outperforms single object detectors, DPM (8.4%), CN (6.8%) and EES (17.0%) on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10. We show with an experiment that there are no constraints on the type of the detector. The proposed method outperforms (2.4%) the state-of-the-art object detector (RCNN) on VOC07 when Regions with Convolutional Neural Network is combined with other detectors used in this paper.

  13. A Wireless Object Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Occupational Activities with Nintendo Wii Balance Boards

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Balance Board into a high performance standing location detector with a newly developed standing location detection program (SLDP). This study extended SLDP functionality to assess whether two people with developmental disabilities would be able to actively perform…

  14. Object Locating System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2000-01-01

    A portable system is provided that is operational for determining, with three dimensional resolution, the position of a buried object or approximately positioned object that may move in space or air or gas. The system has a plurality of receivers for detecting the signal front a target antenna and measuring the phase thereof with respect to a reference signal. The relative permittivity and conductivity of the medium in which the object is located is used along with the measured phase signal to determine a distance between the object and each of the plurality of receivers. Knowing these distances. an iteration technique is provided for solving equations simultaneously to provide position coordinates. The system may also be used for tracking movement of an object within close range of the system by sampling and recording subsequent position of the object. A dipole target antenna. when positioned adjacent to a buried object, may be energized using a separate transmitter which couples energy to the target antenna through the medium. The target antenna then preferably resonates at a different frequency, such as a second harmonic of the transmitter frequency.

  15. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  16. Object-location memory in adults with autism spectrum disorder.

    PubMed

    Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M

    2015-10-01

    This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Predictable Locations Aid Early Object Name Learning

    PubMed Central

    Benitez, Viridiana L.; Smith, Linda B.

    2012-01-01

    Expectancy-based localized attention has been shown to promote the formation and retrieval of multisensory memories in adults. Three experiments show that these processes also characterize attention and learning in 16- to 18- month old infants and, moreover, that these processes may play a critical role in supporting early object name learning. The three experiments show that infants learn names for objects when those objects have predictable rather than varied locations, that infants who anticipate the location of named objects better learn those object names, and that infants integrate experiences that are separated in time but share a common location. Taken together, these results suggest that localized attention, cued attention, and spatial indexing are an inter-related set of processes in young children that aid in the early building of coherent object representations. The relevance of the experimental results and spatial attention for everyday word learning are discussed. PMID:22989872

  18. Sex and spatial position effects on object location memory following intentional learning of object identities.

    PubMed

    Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S

    2002-01-01

    Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.

  19. Detector location selection based on VIP analysis in near-infrared detection of dural hematoma.

    PubMed

    Sun, Qiuming; Zhang, Yanjun; Ma, Jun; Tian, Feng; Wang, Huiquan; Liu, Dongyuan

    2018-03-01

    Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP) analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS) for the prediction of dural position μ a was established using light absorbance information from 30 detectors located 2.0-5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE) of the dural position μ a prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μ a prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μ a . This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection.

  20. Searching for Stochastic Gravitational Waves Using Data from the Two Co-Located LIGO Hanford Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; hide

    2014-01-01

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  1. Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking

    PubMed Central

    Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka

    2017-01-01

    Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430

  2. Forgetting What Was Where: The Fragility of Object-Location Binding

    PubMed Central

    Pertzov, Yoni; Dong, Mia Yuan; Peich, Muy-Cheng; Husain, Masud

    2012-01-01

    Although we frequently take advantage of memory for objects locations in everyday life, understanding how an object’s identity is bound correctly to its location remains unclear. Here we examine how information about object identity, location and crucially object-location associations are differentially susceptible to forgetting, over variable retention intervals and memory load. In our task, participants relocated objects to their remembered locations using a touchscreen. When participants mislocalized objects, their reports were clustered around the locations of other objects in the array, rather than occurring randomly. These ‘swap’ errors could not be attributed to simple failure to remember either the identity or location of the objects, but rather appeared to arise from failure to bind object identity and location in memory. Moreover, such binding failures significantly contributed to decline in localization performance over retention time. We conclude that when objects are forgotten they do not disappear completely from memory, but rather it is the links between identity and location that are prone to be broken over time. PMID:23118956

  3. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  4. Luminance gradient at object borders communicates object location to the human oculomotor system.

    PubMed

    Kilpeläinen, Markku; Georgeson, Mark A

    2018-01-25

    The locations of objects in our environment constitute arguably the most important piece of information our visual system must convey to facilitate successful visually guided behaviour. However, the relevant objects are usually not point-like and do not have one unique location attribute. Relatively little is known about how the visual system represents the location of such large objects as visual processing is, both on neural and perceptual level, highly edge dominated. In this study, human observers made saccades to the centres of luminance defined squares (width 4 deg), which appeared at random locations (8 deg eccentricity). The phase structure of the square was manipulated such that the points of maximum luminance gradient at the square's edges shifted from trial to trial. The average saccade endpoints of all subjects followed those shifts in remarkable quantitative agreement. Further experiments showed that the shifts were caused by the edge manipulations, not by changes in luminance structure near the centre of the square or outside the square. We conclude that the human visual system programs saccades to large luminance defined square objects based on edge locations derived from the points of maximum luminance gradients at the square's edges.

  5. Reconstruction of source location in a network of gravitational wave interferometric detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalier, Fabien; Barsuglia, Matteo; Bizouard, Marie-Anne

    2006-10-15

    This paper deals with the reconstruction of the direction of a gravitational wave source using the detection made by a network of interferometric detectors, mainly the LIGO and Virgo detectors. We suppose that an event has been seen in coincidence using a filter applied on the three detector data streams. Using the arrival time (and its associated error) of the gravitational signal in each detector, the direction of the source in the sky is computed using a {chi}{sup 2} minimization technique. For reasonably large signals (SNR>4.5 in all detectors), the mean angular error between the real location and the reconstructedmore » one is about 1 deg. . We also investigate the effect of the network geometry assuming the same angular response for all interferometric detectors. It appears that the reconstruction quality is not uniform over the sky and is degraded when the source approaches the plane defined by the three detectors. Adding at least one other detector to the LIGO-Virgo network reduces the blind regions and in the case of 6 detectors, a precision less than 1 deg. on the source direction can be reached for 99% of the sky.« less

  6. Glucose improves object-location binding in visual-spatial working memory.

    PubMed

    Stollery, Brian; Christian, Leonie

    2016-02-01

    There is evidence that glucose temporarily enhances cognition and that processes dependent on the hippocampus may be particularly sensitive. As the hippocampus plays a key role in binding processes, we examined the influence of glucose on memory for object-location bindings. This study aims to study how glucose modifies performance on an object-location memory task, a task that draws heavily on hippocampal function. Thirty-one participants received 30 g glucose or placebo in a single 1-h session. After seeing between 3 and 10 objects (words or shapes) at different locations in a 9 × 9 matrix, participants attempted to immediately reproduce the display on a blank 9 × 9 matrix. Blood glucose was measured before drink ingestion, mid-way through the session, and at the end of the session. Glucose significantly improves object-location binding (d = 1.08) and location memory (d = 0.83), but not object memory (d = 0.51). Increasing working memory load impairs object memory and object-location binding, and word-location binding is more successful than shape-location binding, but the glucose improvement is robust across all difficulty manipulations. Within the glucose group, higher levels of circulating glucose are correlated with better binding memory and remembering the locations of successfully recalled objects. The glucose improvements identified are consistent with a facilitative impact on hippocampal function. The findings are discussed in the context of the relationship between cognitive processes, hippocampal function, and the implications for glucose's mode of action.

  7. Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

    PubMed Central

    Kanwisher, Nancy

    2012-01-01

    The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434

  8. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  10. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  11. Self-initiated object-location memory in young and older adults.

    PubMed

    Berger-Mandelbaum, Anat; Magen, Hagit

    2017-11-20

    The present study explored self-initiated object-location memory in ecological contexts, as aspect of memory that is largely absent from the research literature. Young and older adults memorized objects-location associations they selected themselves or object-location associations provided to them, and elaborated on the strategy they used when selecting the locations themselves. Retrieval took place 30 min and 1 month after encoding. The results showed an age-related decline in self-initiated and provided object-location memory. Older adults benefited from self-initiation more than young adults when tested after 30 min, while the benefit was equal when tested after 1 month. Furthermore, elaboration enhanced memory only in older adults, and only after 30 min. Both age groups used deep encoding strategies on the majority of the trials, but their percentage was lower in older adults. Overall, the study demonstrated the processes involved in self-initiated object-location memory, which is an essential part of everyday functioning.

  12. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  13. Location of geographical objects in crisis situations

    NASA Astrophysics Data System (ADS)

    Rybansky, M.; Kratochvil, V.

    2014-02-01

    This article summarizes the various expressions of object positioning using different coordinate data and different methods, such as use of maps, exploiting the properties of digital Global System for Mobile Communications (GSM) networks, Global Navigational Satellite Systems (GNSS), Inertial Navigation Systems (INS), Inertial Measurement Systems (IMS), hybrid methods and non-contact (remote sensing) methods; all with varying level of accuracy. Furthermore, the article describes some geographical identifiers and verbal means to describe location of geographical objects such as settlements, rivers, forest, roads, etc. All of the location methods have some advantages and disadvantages, especially in emergency situations, when usually the crisis management has a lack of time in a decision process.

  14. Fast neutron detection at near-core location of a research reactor with a SiC detector

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  15. How Things Work: Metal Locators and Related Devices.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1984-01-01

    Describes a simple form of metal detector, discussing the principles of signal generation, and the detection and discrimination of induced eddy current signals from the located objects. Includes a rough schematic of the detector. (JM)

  16. A wireless object location detector enabling people with developmental disabilities to control environmental stimulation through simple occupational activities with Nintendo Wii Balance Boards.

    PubMed

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Balance Board into a high performance standing location detector with a newly developed standing location detection program (SLDP). This study extended SLDP functionality to assess whether two people with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards and SLDP software. An ABAB design was adopted in this study to perform the tests. The test results showed that, during the intervention phases, both participants significantly increased their target response (i.e. simple occupational activity) to activate the control system to produce environmental stimulation. The practical and developmental implications of the findings are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  18. Examining Object Location and Object Recognition Memory in Mice

    PubMed Central

    Vogel-Ciernia, Annie; Wood, Marcelo A.

    2014-01-01

    Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location

  19. The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study.

    PubMed

    Yang, Ping; Fan, Chenggui; Wang, Min; Fogelson, Noa; Li, Ling

    2017-08-15

    Object identity and location are bound together to form a unique integration that is maintained and processed in visual working memory (VWM). Changes in task-irrelevant object location have been shown to impair the retrieval of memorial representations and the detection of object identity changes. However, the neural correlates of this cognitive process remain largely unknown. In the present study, we aim to investigate the underlying brain activation during object color change detection and the modulatory effects of changes in object location and VWM load. To this end we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings, which can reveal the neural activity with both high temporal and high spatial resolution. Subjects responded faster and with greater accuracy in the repeated compared to the changed object location condition, when a higher VWM load was utilized. These results support the spatial congruency advantage theory and suggest that it is more pronounced with higher VWM load. Furthermore, the spatial congruency effect was associated with larger posterior N1 activity, greater activation of the right inferior frontal gyrus (IFG) and less suppression of the right supramarginal gyrus (SMG), when object location was repeated compared to when it was changed. The ERP-fMRI integrative analysis demonstrated that the object location discrimination-related N1 component is generated in the right SMG. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 3D-Web-GIS RFID Location Sensing System for Construction Objects

    PubMed Central

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821

  1. 3D-Web-GIS RFID location sensing system for construction objects.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  2. Associative Symmetry versus Independent Associations in the Memory for Object-Location Associations

    ERIC Educational Resources Information Center

    Sommer, Tobias; Rose, Michael; Buchel, Christian

    2007-01-01

    The formation of associations between objects and locations is a vital aspect of episodic memory. More specifically, remembering the location where one experienced an object and, vice versa, the object one encountered at a specific location are both important elements for the memory of an event. Whether episodic associations are holistic…

  3. Early Limits on the Verbal Updating of an Object's Location

    ERIC Educational Resources Information Center

    Ganea, Patricia A.; Harris, Paul L.

    2013-01-01

    Recent research has shown that by 30 months of age, children can successfully update their representation of an absent object's location on the basis of new verbal information, whereas 23-month-olds often return to the object's prior location. The current results show that this updating failure persisted even when (a) toddlers received visual and…

  4. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    PubMed

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  5. Cortical systems mediating visual attention to both objects and spatial locations

    PubMed Central

    Shomstein, Sarah; Behrmann, Marlene

    2006-01-01

    Natural visual scenes consist of many objects occupying a variety of spatial locations. Given that the plethora of information cannot be processed simultaneously, the multiplicity of inputs compete for representation. Using event-related functional MRI, we show that attention, the mechanism by which a subset of the input is selected, is mediated by the posterior parietal cortex (PPC). Of particular interest is that PPC activity is differentially sensitive to the object-based properties of the input, with enhanced activation for those locations bound by an attended object. Of great interest too is the ensuing modulation of activation in early cortical regions, reflected as differences in the temporal profile of the blood oxygenation level-dependent (BOLD) response for within-object versus between-object locations. These findings indicate that object-based selection results from an object-sensitive reorienting signal issued by the PPC. The dynamic circuit between the PPC and earlier sensory regions then enables observers to attend preferentially to objects of interest in complex scenes. PMID:16840559

  6. Location perception: the X-Files parable.

    PubMed

    Prinzmetal, William

    2005-01-01

    Three aspects of visual object location were investigated: (1) how the visual system integrates information for locating objects, (2) how attention operates to affect location perception, and (3) how the visual system deals with locating an object when multiple objects are present. The theories were described in terms of a parable (the X-Files parable). Then, computer simulations were developed. Finally, predictions derived from the simulations were tested. In the scenario described in the parable, we ask how a system of detectors might locate an alien spaceship, how attention might be implemented in such a spaceship detection system, and how the presence of one spaceship might influence the location perception of another alien spaceship. Experiment 1 demonstrated that location information is integrated with a spatial average rule. In Experiment 2, this rule was applied to a more-samples theory of attention. Experiment 3 demonstrated how the integration rule could account for various visual illusions.

  7. Spatiotemporal distribution of location and object effects in reach-to-grasp kinematics

    PubMed Central

    Rouse, Adam G.

    2015-01-01

    In reaching to grasp an object, the arm transports the hand to the intended location as the hand shapes to grasp the object. Prior studies that tracked arm endpoint and grip aperture have shown that reaching and grasping, while proceeding in parallel, are interdependent to some degree. Other studies of reaching and grasping that have examined the joint angles of all five digits as the hand shapes to grasp various objects have not tracked the joint angles of the arm as well. We, therefore, examined 22 joint angles from the shoulder to the five digits as monkeys reached, grasped, and manipulated in a task that dissociated location and object. We quantified the extent to which each angle varied depending on location, on object, and on their interaction, all as a function of time. Although joint angles varied depending on both location and object beginning early in the movement, an early phase of location effects in joint angles from the shoulder to the digits was followed by a later phase in which object effects predominated at all joint angles distal to the shoulder. Interaction effects were relatively small throughout the reach-to-grasp. Whereas reach trajectory was influenced substantially by the object, grasp shape was comparatively invariant to location. Our observations suggest that neural control of reach-to-grasp may occur largely in two sequential phases: the first determining the location to which the arm transports the hand, and the second shaping the entire upper extremity to grasp and manipulate the object. PMID:26445870

  8. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  9. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD)

    PubMed Central

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2017-01-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices. PMID:28615795

  10. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  11. Detection of on-surface objects with an underground radiography detector system using cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko

    2017-05-01

    We have developed a compact muon radiography detector to investigate the status of the nuclear debris in the Fukushima Daiichi Reactors. Our previous observation showed that a large portion of the Unit-1 Reactor fuel had fallen to floor level. The detector must be located underground to further investigate the status of the fallen debris. To investigate the performance of muon radiography in such a situation, we observed 2 m cubic iron blocks located on the surface of the ground through different lengths of ground soil. The iron blocks were imaged and their corresponding iron density was derived successfully.

  12. The roles of scene priming and location priming in object-scene consistency effects

    PubMed Central

    Heise, Nils; Ansorge, Ulrich

    2014-01-01

    Presenting consistent objects in scenes facilitates object recognition as compared to inconsistent objects. Yet the mechanisms by which scenes influence object recognition are still not understood. According to one theory, consistent scenes facilitate visual search for objects at expected places. Here, we investigated two predictions following from this theory: If visual search is responsible for consistency effects, consistency effects could be weaker (1) with better-primed than less-primed object locations, and (2) with less-primed than better-primed scenes. In Experiments 1 and 2, locations of objects were varied within a scene to a different degree (one, two, or four possible locations). In addition, object-scene consistency was studied as a function of progressive numbers of repetitions of the backgrounds. Because repeating locations and backgrounds could facilitate visual search for objects, these repetitions might alter the object-scene consistency effect by lowering of location uncertainty. Although we find evidence for a significant consistency effect, we find no clear support for impacts of scene priming or location priming on the size of the consistency effect. Additionally, we find evidence that the consistency effect is dependent on the eccentricity of the target objects. These results point to only small influences of priming to object-scene consistency effects but all-in-all the findings can be reconciled with a visual-search explanation of the consistency effect. PMID:24910628

  13. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  14. Location and acquisition of objects in unpredictable locations. [a teleoperator system with a computer for manipulator control

    NASA Technical Reports Server (NTRS)

    Sword, A. J.; Park, W. T.

    1975-01-01

    A teleoperator system with a computer for manipulator control to combine the capabilities of both man and computer to accomplish a task is described. This system allows objects in unpredictable locations to be successfully located and acquired. By using a method of characterizing the work-space together with man's ability to plan a strategy and coarsely locate an object, the computer is provided with enough information to complete the tedious part of the task. In addition, the use of voice control is shown to be a useful component of the man/machine interface.

  15. Sexual orientation and spatial position effects on selective forms of object location memory.

    PubMed

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-04-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location

    PubMed Central

    Fiebelkorn, Ian C.; Saalmann, Yuri B.; Kastner, Sabine

    2013-01-01

    SUMMARY The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based selection) spreads to uncued locations, if those locations are part of the same object (i.e., resulting in object-based selection). But little is known about the relationship between these fundamental selection mechanisms. Here, we used human behavioral data to determine how space- and object-based selection simultaneously evolve under conditions that promote sustained attention at a cued location, varying the cue-to-target interval from 300—1100 ms. We tracked visual-target detection at a cued location (i.e., space-based selection), at an uncued location that was part of the same object (i.e., object-based selection), and at an uncued location that was part of a different object (i.e., in the absence of space- and object-based selection). The data demonstrate that even under static conditions, there is a moment-to-moment reweighting of attentional priorities based on object properties. This reweighting is revealed through rhythmic patterns of visual-target detection both within (at 8 Hz) and between (at 4 Hz) objects. PMID:24316204

  17. Guidance of attention to objects and locations by long-term memory of natural scenes.

    PubMed

    Becker, Mark W; Rasmussen, Ian P

    2008-11-01

    Four flicker change-detection experiments demonstrate that scene-specific long-term memory guides attention to both behaviorally relevant locations and objects within a familiar scene. Participants performed an initial block of change-detection trials, detecting the addition of an object to a natural scene. After a 30-min delay, participants performed an unanticipated 2nd block of trials. When the same scene occurred in the 2nd block, the change within the scene was (a) identical to the original change, (b) a new object appearing in the original change location, (c) the same object appearing in a new location, or (d) a new object appearing in a new location. Results suggest that attention is rapidly allocated to previously relevant locations and then to previously relevant objects. This pattern of locations dominating objects remained when object identity information was made more salient. Eye tracking verified that scene memory results in more direct scan paths to previously relevant locations and objects. This contextual guidance suggests that a high-capacity long-term memory for scenes is used to insure that limited attentional capacity is allocated efficiently rather than being squandered.

  18. Object-location binding across a saccade: A retinotopic Spatial Congruency Bias

    PubMed Central

    Shafer-Skelton, Anna; Kupitz, Colin N.; Golomb, Julie D.

    2017-01-01

    Despite frequent eye movements that rapidly shift the locations of objects on our retinas, our visual system creates a stable perception of the world. To do this, it must convert eye-centered (retinotopic) input to world-centered (spatiotopic) percepts. Moreover, for successful behavior we must also incorporate information about object features/identities during this updating – a fundamental challenge that remains to be understood. Here we adapted a recent behavioral paradigm, the “Spatial Congruency Bias”, to investigate object-location binding across an eye movement. In two initial baseline experiments, we showed that the Spatial Congruency Bias was present for both gabor and face stimuli in addition to the object stimuli used in the original paradigm. Then, across three main experiments, we found the bias was preserved across an eye movement, but only in retinotopic coordinates: Subjects were more likely to perceive two stimuli as having the same features/identity when they were presented in the same retinotopic location. Strikingly, there was no evidence of location binding in the more ecologically relevant spatiotopic (world-centered) coordinates; the reference frame did not update to spatiotopic even at longer post-saccade delays, nor did it transition to spatiotopic with more complex stimuli (gabors, shapes, and faces all showed a retinotopic Congruency Bias). Our results suggest that object-location binding may be tied to retinotopic coordinates, and that it may need to be re-established following each eye movement rather than being automatically updated to spatiotopic coordinates. PMID:28070793

  19. Sex Differences in Object Location Memory: The Female Advantage of Immediate Detection of Changes

    ERIC Educational Resources Information Center

    Honda, Akio; Nihei, Yoshiaki

    2009-01-01

    Object location memory has been considered the only spatial ability in which females display an advantage over males. We examined sex differences in long-term object location memory. After participants studied an array of objects, they were asked to recall the locations of these objects three minutes later or one week later. Results showed a…

  20. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    ERIC Educational Resources Information Center

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  1. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  2. A mobile agent-based moving objects indexing algorithm in location based service

    NASA Astrophysics Data System (ADS)

    Fang, Zhixiang; Li, Qingquan; Xu, Hong

    2006-10-01

    This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.

  3. An Object Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Occupational Activities with Battery-Free Wireless Mice

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    This study assessed whether two persons with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using battery-free wireless mice with a newly developed object location detection program (OLDP, i.e., a new software program turning a battery-free…

  4. Landmark-aided localization for air vehicles using learned object detectors

    NASA Astrophysics Data System (ADS)

    DeAngelo, Mark Patrick

    This research presents two methods to localize an aircraft without GPS using fixed landmarks observed from an optical sensor. Onboard absolute localization is useful for vehicle navigation free from an external network. The objective is to achieve practical navigation performance using available autopilot hardware and a downward pointing camera. The first method uses computer vision cascade object detectors, which are trained to detect predetermined, distinct landmarks prior to a flight. The first method also concurrently explores aircraft localization using roads between landmark updates. During a flight, the aircraft navigates with attitude, heading, airspeed, and altitude measurements and obtains measurement updates when landmarks are detected. The sensor measurements and landmark coordinates extracted from the aircraft's camera images are combined into an unscented Kalman filter to obtain an estimate of the aircraft's position and wind velocities. The second method uses computer vision object detectors to detect abundant generic landmarks referred as buildings, fields, trees, and road intersections from aerial perspectives. Various landmark attributes and spatial relationships to other landmarks are used to help associate observed landmarks with reference landmarks. The computer vision algorithms automatically extract reference landmarks from maps, which are processed offline before a flight. During a flight, the aircraft navigates with attitude, heading, airspeed, and altitude measurements and obtains measurement corrections by processing aerial photos with similar generic landmark detection techniques. The method also combines sensor measurements and landmark coordinates into an unscented Kalman filter to obtain an estimate of the aircraft's position and wind velocities.

  5. Spacecraft Leak Location Using Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Reusser, R. S.; Chimenti, D. E.; Holland, S. D.; Roberts, R. A.

    2010-02-01

    Guided ultrasonic waves, generated by air escaping through a small hole, have been measured with an 8×8 piezoelectric phased-array detector. Rapid location of air leaks in a spacecraft skin, caused by high-speed collisions with small objects, is essential for astronaut survival. Cross correlation of all 64 elements, one pair at a time, on a diced PZT disc combined with synthetic aperture analysis determines the dominant direction of wave propagation. The leak location is triangulated by combining data from two or more detector. To optimize the frequency band selection for the most robust direction finding, noise-field measurements of a plate with integral stiffeners have been performed using laser Doppler velocimetry. We compare optical and acoustic measurements to analyze the influence of the PZT array detector and its mechanical coupling to the plate.

  6. Gender Differences in Object Location Memory in a Real Three-Dimensional Environment

    ERIC Educational Resources Information Center

    Iachini, Tina; Sergi, Ida; Ruggiero, Gennaro; Gnisci, Augusto

    2005-01-01

    In this preliminary study we investigate gender differences in object location memory. Our purpose is to extend the results about object location memory obtained in laboratory settings to a real 3-D environment and to further distinguish the specific components involved in this kind of memory by considering the strategies adopted to perform the…

  7. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  8. Method and apparatus for determining the coordinates of an object

    DOEpatents

    Pedersen, Paul S.

    2002-01-01

    A simplified method and related apparatus are described for determining the location of points on the surface of an object by varying, in accordance with a unique sequence, the intensity of each illuminated pixel directed to the object surface, and detecting at known detector pixel locations the intensity sequence of reflected illumination from the surface of the object whereby the identity and location of the originating illuminated pixel can be determined. The coordinates of points on the surface of the object are then determined by conventional triangulation methods.

  9. Identifying the location of a concealed object through unintentional eye movements

    PubMed Central

    Neuman, Yair; Assaf, Dan; Israeli, Navot

    2015-01-01

    In some investigative and interrogative contexts, the investigator is seeking to identify the location of an object (e.g., implanted bomb) which is known to a given subject (e.g., a terrorist). In this paper, we present a non-intrusive methodology for uncovering the loci of a concealed object by analyzing the subject's eye movements. Using a combination of eye tracking, psychological manipulation and a search algorithm, we have performed two experiments. In the first experiment, we have gained 58% hit rate in identifying the location of the concealed object and in the second experiment 56% hit rate. The pros and cons of the methodology for forensic investigation are discussed. PMID:25904879

  10. Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.

    PubMed

    Kim, Han-Ul; Kim, Chang-Su

    2017-08-01

    In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.

  11. Processing ser and estar to locate objects and events

    PubMed Central

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  12. Analysis of the Bayesian Cramér-Rao lower bound in astrometry. Studying the impact of prior information in the location of an object

    NASA Astrophysics Data System (ADS)

    Echeverria, Alex; Silva, Jorge F.; Mendez, Rene A.; Orchard, Marcos

    2016-10-01

    Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims: We analyze bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (I.e., the position is a random variable) from observations that are statistically dependent on the position. Methods: We characterize the Bayesian Cramér-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results: We quantify and analyze the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions: The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.

  13. Grids in topographic maps reduce distortions in the recall of learned object locations.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.

  14. The Role of Local and Distal Landmarks in the Development of Object Location Memory

    ERIC Educational Resources Information Center

    Bullens, Jessie; Klugkist, Irene; Postma, Albert

    2011-01-01

    To locate objects in the environment, animals and humans use visual and nonvisual information. We were interested in children's ability to relocate an object on the basis of self-motion and local and distal color cues for orientation. Five- to 9-year-old children were tested on an object location memory task in which, between presentation and…

  15. The same-location cost is unrelated to attentional settings: an object-updating account.

    PubMed

    Carmel, Tomer; Lamy, Dominique

    2014-08-01

    What mechanisms allow us to ignore salient yet irrelevant visual information has been a matter of intense debate. According to the contingent-capture hypothesis, such information is filtered out, whereas according to the salience-based account, it captures attention automatically. Several recent studies have reported a same-location cost that appears to fit neither of these accounts. These showed that responses may actually be slower when the target appears at the location just occupied by an irrelevant singleton distractor. Here, we investigated the mechanisms underlying this same-location cost. Our findings show that the same-location cost is unrelated to automatic attentional capture or strategic setting of attentional priorities, and therefore invalidate the feature-based inhibition and fast attentional disengagement accounts of this effect. In addition, we show that the cost is wiped out when the cue and target are not perceived as parts of the same object. We interpret these findings as indicating that the same-location cost has been previously misinterpreted by both bottom-up and top-down theories of attentional capture. We propose that it is better understood as a consequence of object updating, namely, as the cost of updating the information stored about an object when this object changes across time.

  16. Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert

    2009-01-01

    Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…

  17. Boundary and object detection in real world images. [by means of algorithms

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.

    1974-01-01

    A solution to the problem of automatic location of objects in digital pictures by computer is presented. A self-scaling local edge detector which can be applied in parallel on a picture is described. Clustering algorithms and boundary following algorithms which are sequential in nature process the edge data to locate images of objects.

  18. Analysis of light incident location and detector position in early diagnosis of knee osteoarthritis by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Yisha; Yan, Huangping; Wang, Xiaoling

    2017-01-01

    Early detection of knee osteoarthritis (KOA) is meaningful to delay or prevent the onset of osteoarthritis. In consideration of structural complexity of knee joint, position of light incidence and detector appears to be extremely important in optical inspection. In this paper, the propagation of 780-nm near infrared photons in three-dimensional knee joint model is simulated by Monte Carlo (MC) method. Six light incident locations are chosen in total to analyze the influence of incident and detecting location on the number of detected signal photons and signal to noise ratio (SNR). Firstly, a three-dimensional photon propagation model of knee joint is reconstructed based on CT images. Then, MC simulation is performed to study the propagation of photons in three-dimensional knee joint model. Photons which finally migrate out of knee joint surface are numerically analyzed. By analyzing the number of signal photons and SNR from the six given incident locations, the optimal incident and detecting location is defined. Finally, a series of phantom experiments are conducted to verify the simulation results. According to the simulation and phantom experiments results, the best incident location is near the right side of meniscus at the rear end of left knee joint and the detector is supposed to be set near patella, correspondingly.

  19. Enhancement of the visibility of objects located below the surface of a scattering medium

    DOEpatents

    Demos, Stavros

    2013-11-19

    Techniques are provided for enhancing the visibility of objects located below the surface of a scattering medium such as tissue, water and smoke. Examples of such an object include a vein located below the skin, a mine located below the surface of the sea and a human in a location covered by smoke. The enhancement of the image contrast of a subsurface structure is based on the utilization of structured illumination. In the specific application of this invention to image the veins in the arm or other part of the body, the issue of how to control the intensity of the image of a metal object (such as a needle) that must be inserted into the vein is also addressed.

  20. Added value of integrated circuit detector in head CT: objective and subjective image quality in comparison to conventional detector design.

    PubMed

    Korn, Andreas; Bender, Benjamin; Spira, Daniel; Schabel, Christoph; Bhadelia, Rafeeque; Claussen, Claus; Ernemann, Ulrike; Brodoefel, Harald

    2014-12-01

    A new computed tomography (CT) detector with integrated electric components and shorter conducting pathways has recently been introduced to decrease system inherent electronic noise. The purpose of this study was to assess the potential benefit of such integrated circuit detector (ICD) in head CT by comparing objective and subjective image quality in low-dose examinations with a conventional detector design. Using a conventional detector, reduced-dose noncontrast head CT (255 mAs; effective dose, 1.7 mSv) was performed in 25 consecutive patients. Following transition to ICD, 25 consecutive patients were scanned using identical imaging parameters. Images in both groups were reconstructed with iterative reconstruction (IR) and filtered back projection (FBP) and assessed in terms of quantitative and qualitative image quality. Acquisition of head CT using ICD increased signal-to-noise ratio of gray and white matter by 14% (10.0 ± 1.6 vs. 11.4 ± 2.5; P = .02) and 17% (8.2 ± 0.8 vs. 9.6 ± 1.5; P = .000). The associated improvement in contrast-to-noise ratio was 12% (2.0 ± 0.5 vs. 2.2 ± 0.6; P = .121). In addition, there was a 51% increase in objective image sharpness (582 ± 85 vs. 884.5 ± 191; change in HU/Pixel; P < .000). Compared to standard acquisitions, subjective grading of noise and overall image quality scores were significantly improved with ICD (2.1 ± 0.3 vs. 1.6 ± 0.3; P < .000; 2.0 ± 0.5 vs. 1.6 ± 0.3; P = .001). Moreover, streak artifacts in the posterior fossa were substantially reduced (2.3 ± 0.7 vs. 1.7 ± 0.5; P = .004). At the same radiation level, acquisition of head CT with ICD achieves superior objective and subjective image quality and provides potential for significant dose reduction. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  1. Changes of EEG Spectra and Functional Connectivity during an Object-Location Memory Task in Alzheimer's Disease.

    PubMed

    Han, Yuliang; Wang, Kai; Jia, Jianjun; Wu, Weiping

    2017-01-01

    Object-location memory is particularly fragile and specifically impaired in Alzheimer's disease (AD) patients. Electroencephalogram (EEG) was utilized to objectively measure memory impairment for memory formation correlates of EEG oscillatory activities. We aimed to construct an object-location memory paradigm and explore EEG signs of it. Two groups of 20 probable mild AD patients and 19 healthy older adults were included in a cross-sectional analysis. All subjects took an object-location memory task. EEG recordings performed during object-location memory tasks were compared between the two groups in the two EEG parameters (spectral parameters and phase synchronization). The memory performance of AD patients was worse than that of healthy elderly adults The power of object-location memory of the AD group was significantly higher than the NC group (healthy elderly adults) in the alpha band in the encoding session, and alpha and theta bands in the retrieval session. The channels-pairs the phase lag index value of object-location memory in the AD group was clearly higher than the NC group in the delta, theta, and alpha bands in encoding sessions and delta and theta bands in retrieval sessions. The results provide support for the hypothesis that the AD patients may use compensation mechanisms to remember the items and episode.

  2. Objective image characterization of a spectral CT scanner with dual-layer detector

    NASA Astrophysics Data System (ADS)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  3. Self-Activating System and Method for Alerting When an Object or a Person is Left Unattended

    NASA Technical Reports Server (NTRS)

    Edwards, William Christopher (Inventor); Mack, Terry L. (Inventor); Modlin, Edward A. (Inventor)

    2004-01-01

    A system and method uses a wireless tether comprising a transmitter and a receiver to alert a caregiver that an object or person has been left unattended. A detector Senses the presence of the object, usually a child, located in a position such as a safety seat. The detector couples to the transmitter, which is located near the object. The transmitter transmits at least one wireless signal when the object is in the position. The receiver, which is remotely located from the transmitter, senses the at least one signal as long as the receiver is within a prescribed range of transmission. By performing a timing function, the receiver monitors the proximity of the caregiver, who maintains possession of the receiver, to the transmitter. The system communicates an alarm to the caregiver when the caregiver ventures outside the range of transmission without having removed the object/child from the position.

  4. Self-activating System and Method for Alerting When an Object or a Person is Left Unattended

    NASA Technical Reports Server (NTRS)

    Edwards, William C. (Inventor); Mack, Terry L. (Inventor); Modlin, Edward A. (Inventor)

    2006-01-01

    A system and method use a wireless tether comprising a transmitter and a receiver to alert a caregiver that an object has been left unattended. A detector senses the presence of the object, usually a child, located in a position such as a safety seat. The detector is operatively coupled to the transmitter. which is located near the object. The transmitter transmits at least one wireless signal when the object is in the position. The receiver, which is remotely located from the transmitter, senses at least one signal as long as the receiver is within a prescribed range of transmission. By performing a timing function, the receiver monitors the proximity of the caregiver, who maintains possession of the receiver, to the transmitter. The system communicates an alarm to the caregiver when the caregiver ventures outside the range of transmission without having removed the object from the position.

  5. Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location

    PubMed Central

    Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene

    2017-01-01

    Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005

  6. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  7. Not All Locations Are Created Equal: Exploring How Adults Hide and Search for Objects

    PubMed Central

    Legge, Eric L. G.; Spetch, Marcia L.; Cenkner, Andrew; Bulitko, Vadim; Anderson, Craig; Brown, Matthew; Heth, Donald

    2012-01-01

    Little is known about the strategies people use to effectively hide objects from others, or to search for objects others have hidden. The present research extends a recent investigation of people’s hiding and searching strategies in a simple room with 9 cache location. In the present studies, people hid and searched for three objects under more than 70 floor tiles in complex real and virtual rooms. Experiment 1 replicated several finding of Talbot et al within the more complex real and virtual environments. Specifically, people traveled further from origin and selected more dispersed locations when hiding than when searching. Experiments 2 and 3 showed that: 1) people were attracted to an area of darkness when searching and avoided locations close to a window when hiding, 2) when search attempts were limited to three choices, people searched farther from origin and dispersed their locations more when hiding than when searching, and 3) informing people that they would need to recover their hidden objects altered their hiding behavior and increased recovery accuracy. Across all experiments, consistencies in location preferences emerged, with more preference for the middle of the room during hiding and more preference for corners of the room during searching. Even though the same people participated in both the hiding and searching tasks, it appears that people use different strategies to select hiding places than to search for objects hidden by others. PMID:22606324

  8. Out of place, out of mind: Schema-driven false memory effects for object-location bindings.

    PubMed

    Lew, Adina R; Howe, Mark L

    2017-03-01

    Events consist of diverse elements, each processed in specialized neocortical networks, with temporal lobe memory systems binding these elements to form coherent event memories. We provide a novel theoretical analysis of an unexplored consequence of the independence of memory systems for elements and their bindings, 1 that raises the paradoxical prediction that schema-driven false memories can act solely on the binding of event elements despite the superior retrieval of individual elements. This is because if 2, or more, schema-relevant elements are bound together in unexpected conjunctions, the unexpected conjunction will increase attention during encoding to both the elements and their bindings, but only the bindings will receive competition with evoked schema-expected bindings. We test our model by examining memory for object-location bindings in recognition (Study 1) and recall (Studies 2 and 3) tasks. After studying schema-relevant objects in unexpected locations (e.g., pan on a stool in a kitchen scene), participants who then viewed these objects in expected locations (e.g., pan on stove) at test were more likely to falsely remember this object-location pairing as correct, compared with participants that viewed a different unexpected object-location pairing (e.g., pan on floor). In recall, participants were more likely to correctly remember individual schema-relevant objects originally viewed in unexpected, as opposed to expected locations, but were then more likely to misplace these items in the original room scene to expected places, relative to control schema-irrelevant objects. Our theoretical analysis and novel paradigm provide a tool for investigating memory distortions acting on binding processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. LLNL Location and Detection Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S C; Harris, D B; Anderson, M L

    2003-07-16

    We present two LLNL research projects in the topical areas of location and detection. The first project assesses epicenter accuracy using a multiple-event location algorithm, and the second project employs waveform subspace Correlation to detect and identify events at Fennoscandian mines. Accurately located seismic events are the bases of location calibration. A well-characterized set of calibration events enables new Earth model development, empirical calibration, and validation of models. In a recent study, Bondar et al. (2003) develop network coverage criteria for assessing the accuracy of event locations that are determined using single-event, linearized inversion methods. These criteria are conservative andmore » are meant for application to large bulletins where emphasis is on catalog completeness and any given event location may be improved through detailed analysis or application of advanced algorithms. Relative event location techniques are touted as advancements that may improve absolute location accuracy by (1) ensuring an internally consistent dataset, (2) constraining a subset of events to known locations, and (3) taking advantage of station and event correlation structure. Here we present the preliminary phase of this work in which we use Nevada Test Site (NTS) nuclear explosions, with known locations, to test the effect of travel-time model accuracy on relative location accuracy. Like previous studies, we find that the reference velocity-model and relative-location accuracy are highly correlated. We also find that metrics based on travel-time residual of relocated events are not a reliable for assessing either velocity-model or relative-location accuracy. In the topical area of detection, we develop specialized correlation (subspace) detectors for the principal mines surrounding the ARCES station located in the European Arctic. Our objective is to provide efficient screens for explosions occurring in the mines of the Kola Peninsula (Kovdor

  10. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  11. Sex Differences in Object Location Memory: Some Further Methodological Considerations

    ERIC Educational Resources Information Center

    Gallagher, Peter; Neave, Nick; Hamilton, Colin; Gray, John M.

    2006-01-01

    Previously it has been reported that female performance on the recall of objects and their locations in a spatial array is superior to that of males. This may reflect underlying information-processing biases whereby males organize information in a self-referential manner while females adopt a more comprehensive approach. The known female advantage…

  12. Gender differences in memory for objects and their locations: a study on automatic versus controlled encoding and retrieval contexts.

    PubMed

    De Goede, Maartje; Postma, Albert

    2008-04-01

    Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object location memory and its component object identity memory were assessed in the present study. In order to disentangle these two components, an object location memory task (in which objects had to be relocated in daily environments), and a separate object identity recognition task were carried out. This study also focused on the conditions under which object locations were encoded and retrieved. Only half of the participants were aware of the fact that object locations had to be retrieved later on. Moreover, by applying the 'process dissociation procedure' to the object location memory assessments and the 'remember-know' paradigm to the object identity measure, the amount of explicit (conscious) and implicit (unconscious) retrieval was estimated for each component. In general, females performed better than males on the object location memory task. However, when controlled for object identity memory, females no longer outperformed males, whereas they did not obtain a higher general object identity memory score, nor did they have more explicit or implicit recollection of the object identities. These complicated effects might stem from a difference between males and females, in the way locations or associations between objects and locations are retrieved. In general, participants had more explicit (conscious) recollection than implicit (unconscious) recollection. No effect of encoding context was found, nor any interaction effect of gender, encoding and retrieval context.

  13. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab ismore » illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.« less

  14. Medium-range, objective predictions of thunderstorm location and severity for aviation

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.; Turner, R. E.

    1981-01-01

    This paper presents a computerized technique for medium-range (12-48h) prediction of both the location and severity of thunderstorms utilizing atmospheric predictions from the National Meteorological Center's limited-area fine-mesh model (LFM). A regional-scale analysis scheme is first used to examine the spatial and temporal distributions of forecasted variables associated with the structure and dynamics of mesoscale systems over an area of approximately 10 to the 6th sq km. The final prediction of thunderstorm location and severity is based upon an objective combination of these regionally analyzed variables. Medium-range thunderstorm predictions are presented for the late afternoon period of April 10, 1979, the day of the Wichita Falls, Texas tornado. Conventional medium-range thunderstorm forecasts, made from observed data, are presented with the case study to demonstrate the possible application of this objective technique in improving 12-48 h thunderstorm forecasts for aviation.

  15. A large area cosmic muon detector located at Ohya stone mine

    NASA Technical Reports Server (NTRS)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  16. The object-based Simon effect: grasping affordance or relative location of the graspable part?

    PubMed

    Cho, Dongbin Tobin; Proctor, Robert W

    2010-08-01

    Reaction time is often shorter when the irrelevant graspable handle of an object corresponds with the location of a keypress response to the relevant attribute than when it does not. This object-based Simon effect has been attributed to an affordance for grasping the handle with the hand to the same side. Because a grasping affordance should differentially affect keypress responses only when they are made with different hands, we conducted three experiments that measured the object-based Simon effect for frying pan stimuli using between- and within-hand response sets. When the relevant stimulus dimension was color, neither the object-based Simon effect nor the location-based Simon effect varied across response sets. When upright-inverted orientation judgments were made for the frying pan and for nongraspable stimuli derived from it, there again was no significant difference in size of the between- and within-hand Simon effects for any of the stimuli. The results provide evidence that the Simon effect for graspable frying pan stimuli is because of relative location of the handle and not to a grasping affordance.

  17. Neurons with object-centered spatial selectivity in macaque SEF: do they represent locations or rules?

    PubMed

    Tremblay, Léon; Gettner, Sonya N; Olson, Carl R

    2002-01-01

    In macaque monkeys performing a task that requires eye movements to the leftmost or rightmost of two dots in a horizontal array, some neurons in the supplementary eye field (SEF) fire differentially according to which side of the array is the target regardless of the array's location on the screen. We refer to these neurons as exhibiting selectivity for object-centered location. This form of selectivity might arise from involvement of the neurons in either of two processes: representing the locations of targets or representing the rules by which targets are selected. To distinguish between these possibilities, we monitored neuronal activity in the SEF of two monkeys performing a task that required the selection of targets by either an object-centered spatial rule or a color rule. On each trial, a sample array consisting of two side-by-side dots appeared; then a cue flashed on one dot; then the display vanished and a delay ensued. Next a target array consisting of two side-by-side dots appeared at an unpredictable location and another delay ensued; finally the monkey had to make an eye movement to one of the target dots. On some trials, the monkey had to select the dot on the same side as the cue (right or left). On other trials, he had to select the target of the same color as the cue (red or green). Neuronal activity robustly encoded the object-centered locations first of the cue and then of the target regardless of the whether the monkey was following a rule based on object-centered location or color. Neuronal activity was at most weakly affected by the type of rule the monkey was following (object-centered-location or color) or by the color of the cue and target (red or green). On trials involving a color rule, neuronal activity was moderately enhanced when the cue and target appeared on opposite sides of their respective arrays. We conclude that the general function of SEF neurons selective for object-centered location is to represent where the cue and target

  18. Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.

    2016-12-01

    Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.

  19. Microwave determination of location and speed of an object inside a pipe

    DOEpatents

    Sinha, Dipen N.

    2010-12-14

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  20. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.

    PubMed

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M; Hobson, Peter A; Gibson, Graham M; Padgett, Miles J; Hendry, Euan

    2016-06-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm(2)) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging.

  1. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  2. Categorical spatial memory in patients with mild cognitive impairment and Alzheimer dementia: positional versus object-location recall.

    PubMed

    Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M

    2010-01-01

    Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.

  3. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    PubMed Central

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  4. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  5. Object Identity in Infancy: The Interaction of Spatial Location Codes in Determining Search Errors

    ERIC Educational Resources Information Center

    Butterworth, George

    1975-01-01

    Reports two experiments which were designed to establish whether errors in infants' manual searches for objects are caused by changes in the location of an object or by the change in the relation between old and new hiding places. (JMB)

  6. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    PubMed

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  8. Cosmic dust or other similar outer-space particles location detector

    NASA Technical Reports Server (NTRS)

    Aver, S.

    1973-01-01

    Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.

  9. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  10. Spatiotemporal distribution of location and object effects in the electromyographic activity of upper extremity muscles during reach-to-grasp

    PubMed Central

    Rouse, Adam G.

    2016-01-01

    In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156

  11. Spatiotemporal Distribution of Location and Object Effects in Primary Motor Cortex Neurons during Reach-to-Grasp

    PubMed Central

    Rouse, Adam G.

    2016-01-01

    Reaching and grasping typically are considered to be spatially separate processes that proceed concurrently in the arm and the hand, respectively. The proximal representation in the primary motor cortex (M1) controls the arm for reaching, while the distal representation controls the hand for grasping. Many studies of M1 activity therefore have focused either on reaching to various locations without grasping different objects, or else on grasping different objects all at the same location. Here, we recorded M1 neurons in the anterior bank and lip of the central sulcus as monkeys performed more naturalistic movements, reaching toward, grasping, and manipulating four different objects in up to eight different locations. We quantified the extent to which variation in firing rates depended on location, on object, and on their interaction—all as a function of time. Activity proceeded largely in two sequential phases: the first related predominantly to the location to which the upper extremity reached, and the second related to the object about to be grasped. Both phases involved activity distributed widely throughout the sampled territory, spanning both the proximal and the distal upper extremity representation in caudal M1. Our findings indicate that naturalistic reaching and grasping, rather than being spatially segregated processes that proceed concurrently, each are spatially distributed processes controlled by caudal M1 in large part sequentially. Rather than neuromuscular processes separated in space but not time, reaching and grasping are separated more in time than in space. SIGNIFICANCE STATEMENT Reaching and grasping typically are viewed as processes that proceed concurrently in the arm and hand, respectively. The arm region in the primary motor cortex (M1) is assumed to control reaching, while the hand region controls grasping. During naturalistic reach–grasp–manipulate movements, we found, however, that neuron activity proceeds largely in two sequential

  12. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  13. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  14. Fragile visual short-term memory is an object-based and location-specific store.

    PubMed

    Pinto, Yaïr; Sligte, Ilja G; Shapiro, Kimron L; Lamme, Victor A F

    2013-08-01

    Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.

  15. Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.

    PubMed

    Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang

    2018-09-01

    Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.

  16. Multivariate objective response detectors (MORD): statistical tools for multichannel EEG analysis during rhythmic stimulation.

    PubMed

    Felix, Leonardo Bonato; Miranda de Sá, Antonio Mauricio Ferreira Leite; Infantosi, Antonio Fernando Catelli; Yehia, Hani Camille

    2007-03-01

    The presence of cerebral evoked responses can be tested by using objective response detectors. They are statistical tests that provide a threshold above which responses can be assumed to have occurred. The detection power depends on the signal-to-noise ratio (SNR) of the response and the amount of data available. However, the correlation within the background noise could also affect the power of such detectors. For a fixed SNR, the detection can only be improved at the expense of using a longer stretch of signal. This can constitute a limitation, for instance, in monitored surgeries. Alternatively, multivariate objective response detection (MORD) could be used. This work applies two MORD techniques (multiple coherence and multiple component synchrony measure) to EEG data collected during intermittent photic stimulation. They were evaluated throughout Monte Carlo simulations, which also allowed verifying that correlation in the background reduces the detection rate. Considering the N EEG derivations as close as possible to the primary visual cortex, if N = 4, 6 or 8, multiple coherence leads to a statistically significant higher detection rate in comparison with multiple component synchrony measure. With the former, the best performance was obtained with six signals (O1, O2, T5, T6, P3 and P4).

  17. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  18. An object location memory paradigm for older adults with and without mild cognitive impairment.

    PubMed

    Külzow, Nadine; Kerti, Lucia; Witte, Veronica A; Kopp, Ute; Breitenstein, Caterina; Flöel, Agnes

    2014-11-30

    Object-location memory is critical in every-day life and known to deteriorate early in the course of neurodegenerative disease. We adapted the previously established learning paradigm "LOCATO" for use in healthy older adults and patients with mild cognitive impairment (MCI). Pictures of real-life buildings were associated with positions on a two-dimensional street map by repetitions of "correct" object-location pairings over the course of five training blocks, followed by a recall task. Correct/incorrect associations were indicated by button presses. The original two 45-item sets were reduced to 15 item-sets, and tested in healthy older adults and MCI for learning curve, recall, and re-test effects. The two 15-item versions showed comparable learning curves and recall scores within each group. While learning curves increased linearly in both groups, MCI patients performed significantly worse on learning and recall compared to healthy controls. Re-testing after 6 month showed small practice effects only. LOCATO is a simple standardized task that overcomes several limitation of previously employed visuospatial task by using real-life stimuli, minimizing verbal encoding, avoiding fine motor responses, combining explicit and implicit statistical learning, and allowing to assess learning curve in addition to recall. Results show that the shortened version of LOCATO meets the requirements for a robust and ecologically meaningful assessment of object-location memory in older adults with and without MCI. It can now be used to systematically assess acquisition of object-location memory and its modulation through adjuvant therapies like pharmacological or non-invasive brain stimulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Guidance of Attention to Objects and Locations by Long-Term Memory of Natural Scenes

    ERIC Educational Resources Information Center

    Becker, Mark W.; Rasmussen, Ian P.

    2008-01-01

    Four flicker change-detection experiments demonstrate that scene-specific long-term memory guides attention to both behaviorally relevant locations and objects within a familiar scene. Participants performed an initial block of change-detection trials, detecting the addition of an object to a natural scene. After a 30-min delay, participants…

  20. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  1. Cosmic Ray Detector

    Science.gov Websites

    A picture of our detector with the front panel removed. Normally the electronic board is located on the the front lucite panel. Below is a picture of a completed detector being held by Colleen Twitty

  2. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Brad J

    2006-06-01

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less

  3. Locating an imaging radar in Canada for identifying spaceborne objects

    NASA Astrophysics Data System (ADS)

    Schick, William G.

    1992-12-01

    This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.

  4. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    PubMed

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    PubMed Central

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  6. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  7. Integration of World Knowledge and Temporary Information about Changes in an Object's Environmental Location during Different Stages of Sentence Comprehension.

    PubMed

    Chen, Xuqian; Yang, Wei; Ma, Lijun; Li, Jiaxin

    2018-01-01

    Recent findings have shown that information about changes in an object's environmental location in the context of discourse is stored in working memory during sentence comprehension. However, in these studies, changes in the object's location were always consistent with world knowledge (e.g., in "The writer picked up the pen from the floor and moved it to the desk," the floor and the desk are both common locations for a pen). How do people accomplish comprehension when the object-location information in working memory is inconsistent with world knowledge (e.g., a pen being moved from the floor to the bathtub)? In two visual world experiments, with a "look-and-listen" task, we used eye-tracking data to investigate comprehension of sentences that described location changes under different conditions of appropriateness (i.e., the object and its location were typically vs. unusually coexistent, based on world knowledge) and antecedent context (i.e., contextual information that did vs. did not temporarily normalize unusual coexistence between object and location). Results showed that listeners' retrieval of the critical location was affected by both world knowledge and working memory, and the effect of world knowledge was reduced when the antecedent context normalized unusual coexistence of object and location. More importantly, activation of world knowledge and working memory seemed to change during the comprehension process. These results are important because they demonstrate that interference between world knowledge and information in working memory, appears to be activated dynamically during sentence comprehension.

  8. Validation of Harris Detector and Eigen Features Detector

    NASA Astrophysics Data System (ADS)

    Kok, K. Y.; Rajendran, P.

    2018-05-01

    Harris detector is one of the most common features detection for applications such as object recognition, stereo matching and target tracking. In this paper, a similar Harris detector algorithm is written using MATLAB and the performance is compared with MATLAB built in Harris detector for validation. This is to ensure that rewritten version of Harris detector can be used for Unmanned Aerial Vehicle (UAV) application research purpose yet can be further improvised. Another corner detector close to Harris detector, which is Eigen features detector is rewritten and compared as well using same procedures with same purpose. The simulation results have shown that rewritten version for both Harris and Eigen features detectors have the same performance with MATLAB built in detectors with not more than 0.4% coordination deviation, less than 4% & 5% response deviation respectively, and maximum 3% computational cost error.

  9. Integration of World Knowledge and Temporary Information about Changes in an Object's Environmental Location during Different Stages of Sentence Comprehension

    PubMed Central

    Chen, Xuqian; Yang, Wei; Ma, Lijun; Li, Jiaxin

    2018-01-01

    Recent findings have shown that information about changes in an object's environmental location in the context of discourse is stored in working memory during sentence comprehension. However, in these studies, changes in the object's location were always consistent with world knowledge (e.g., in “The writer picked up the pen from the floor and moved it to the desk,” the floor and the desk are both common locations for a pen). How do people accomplish comprehension when the object-location information in working memory is inconsistent with world knowledge (e.g., a pen being moved from the floor to the bathtub)? In two visual world experiments, with a “look-and-listen” task, we used eye-tracking data to investigate comprehension of sentences that described location changes under different conditions of appropriateness (i.e., the object and its location were typically vs. unusually coexistent, based on world knowledge) and antecedent context (i.e., contextual information that did vs. did not temporarily normalize unusual coexistence between object and location). Results showed that listeners' retrieval of the critical location was affected by both world knowledge and working memory, and the effect of world knowledge was reduced when the antecedent context normalized unusual coexistence of object and location. More importantly, activation of world knowledge and working memory seemed to change during the comprehension process. These results are important because they demonstrate that interference between world knowledge and information in working memory, appears to be activated dynamically during sentence comprehension. PMID:29520249

  10. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  11. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  12. Using Computer Vision Techniques to Locate Objects in an Image

    DTIC Science & Technology

    1988-09-01

    Sujata Kakarla J. Wakeley A. S. Maida Snf DTIC SL7CTE0 ;r’!•,,/ )N ATMT~~c.N T" A TICIINICAL REPORT " SR 10 •: 1"R! _ IrIi) The Pennsylvania State...University APPLIED RESEARCH LABORATORY P. 0. Box 30 State College, PA 16804 USING COMPUTER VISION TECHNIQUES TO LOCATE OBJECTS IN AN IMAGE by Sujata Kakarla J...in an Image 12 PERSONAL AUTHOR(S) Sujata Kakarla, J. Wakelev, A. S. Maida 𔃽a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Y ar, Month, Day) 5

  13. A review of underwater acoustic systems and methods for locating objects lost at sea

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1983-01-01

    Information related to the location of objects lost at sea is presented. Acoustic devices attached to an object prior to being transported is recommended as a homing beacon. Minimum requirements and some environmental constraints are defined. Methods and procedures for search and recovery are also discussed. Both an interim system and a more advanced system are outlined. Controlled acoustic emission to enhance security is the theme followed.

  14. Differential Roles for "Nr4a1" and "Nr4a2" in Object Location vs. Object Recognition Long-Term Memory

    ERIC Educational Resources Information Center

    McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.

    2012-01-01

    "Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…

  15. From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2012-01-01

    Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737

  16. Do you remember where sounds, pictures and words came from? The role of the stimulus format in object location memory.

    PubMed

    Delogu, Franco; Lilla, Christopher C

    2017-11-01

    Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.

  17. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies.

    PubMed

    Zimmermann, Kathrin; Eschen, Anne

    2017-04-01

    Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.

  18. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, M; Nagesh, S Setlur; Ionita, C

    2015-06-15

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken ofmore » the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an

  20. Long-term object tracking combined offline with online learning

    NASA Astrophysics Data System (ADS)

    Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun

    2016-04-01

    We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.

  1. Memory for Object Locations: Priority Effect and Sex Differences in Associative Spatial Learning

    ERIC Educational Resources Information Center

    Cinan, Sevtap; Atalay, Deniz; Sisman, Simge; Basbug, Gokce; Dervent-Ozbek, Sevinc; Teoman, Dalga D.; Karagoz, Ayca; Karadeniz, A. Yezdan; Beykurt, Sinem; Suleyman, Hediye; Memis, H. Ozge; Yurtsever, Ozgur D.

    2007-01-01

    This paper reports two experiments conducted to examine priority effects and sex differences in object location memory. A new task of paired position-learning was designed, based on the A-B A-C paradigm, which was used in paired word learning. There were three different paired position-learning conditions: (1) positions of several different…

  2. Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition.

    PubMed

    Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G

    2017-06-01

    Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition

    PubMed Central

    Towers, Albert E; Oelschlager, Maci L.; Patel, Jay; Gainey, Stephen J.; McCusker, Robert; Freund, Gregory G.

    2017-01-01

    Background Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β is regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Methods Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24 hours or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. Results A 24 h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24 h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Conclusions Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. PMID:28521881

  4. Mother-Child Communication about Location: Giving and Following Directions for Finding Hidden Objects

    ERIC Educational Resources Information Center

    Plumert, Jodie M.; Haggerty, Kathryn A.; Mickunas, Andrew; Herzog, Lauren; Shadrick, Courtney

    2012-01-01

    We conducted 2 experiments to examine how mothers structure directions to young children for finding hidden objects and how young children use these directions to guide their searches. In Experiment 1, we examined the reference frames mothers use to communicate with their 2.5-, 3-, and 3.5-year-old children about location by asking mothers to…

  5. Impact location of objects hitting the water surface

    NASA Astrophysics Data System (ADS)

    Kadri, Usama

    2017-04-01

    Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742

  6. Gender Differences in Memory for Objects and Their Locations: A Study on Automatic versus Controlled Encoding and Retrieval Contexts

    ERIC Educational Resources Information Center

    De Goede, Maartje; Postma, Albert

    2008-01-01

    Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object…

  7. Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects.

    PubMed

    Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka

    2005-10-01

    The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.

  8. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  9. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  10. Paediatric interventional cardiology: flat detector versus image intensifier using a test object

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.

    2010-12-01

    Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.

  11. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  12. Motion makes sense: an adaptive motor-sensory strategy underlies the perception of object location in rats.

    PubMed

    Saraf-Sinik, Inbar; Assa, Eldad; Ahissar, Ehud

    2015-06-10

    Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables. Copyright © 2015 the authors 0270-6474/15/358777-13$15.00/0.

  13. Mining moving object trajectories in location-based services for spatio-temporal database update

    NASA Astrophysics Data System (ADS)

    Guo, Danhuai; Cui, Weihong

    2008-10-01

    Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.

  14. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    NASA Astrophysics Data System (ADS)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  15. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  16. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  17. Wandering: A Web-Based Platform for the Creation of Location-Based Interactive Learning Objects

    ERIC Educational Resources Information Center

    Barak, Miri; Ziv, Shani

    2013-01-01

    Wandering is an innovative web-based platform that was designed to facilitate outdoor, authentic, and interactive learning via the creation of location-based interactive learning objects (LILOs). Wandering was integrated as part of a novel environmental education program among middle school students. This paper describes the Wandering platform's…

  18. Detector Control System for the AFP detector in ATLAS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  19. Cat and mouse search: the influence of scene and object analysis on eye movements when targets change locations during search.

    PubMed

    Hillstrom, Anne P; Segabinazi, Joice D; Godwin, Hayward J; Liversedge, Simon P; Benson, Valerie

    2017-02-19

    We explored the influence of early scene analysis and visible object characteristics on eye movements when searching for objects in photographs of scenes. On each trial, participants were shown sequentially either a scene preview or a uniform grey screen (250 ms), a visual mask, the name of the target and the scene, now including the target at a likely location. During the participant's first saccade during search, the target location was changed to: (i) a different likely location, (ii) an unlikely but possible location or (iii) a very implausible location. The results showed that the first saccade landed more often on the likely location in which the target re-appeared than on unlikely or implausible locations, and overall the first saccade landed nearer the first target location with a preview than without. Hence, rapid scene analysis influenced initial eye movement planning, but availability of the target rapidly modified that plan. After the target moved, it was found more quickly when it appeared in a likely location than when it appeared in an unlikely or implausible location. The findings show that both scene gist and object properties are extracted rapidly, and are used in conjunction to guide saccadic eye movements during visual search.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  20. Two spatial memories are not better than one: evidence of exclusivity in memory for object location.

    PubMed

    Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K

    2006-05-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.

  1. Short-Term Memory Maintenance of Object Locations during Active Navigation: Which Working Memory Subsystem Is Essential?

    PubMed Central

    Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.

    2011-01-01

    The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686

  2. True-3D Accentuating of Grids and Streets in Urban Topographic Maps Enhances Human Object Location Memory

    PubMed Central

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  3. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  4. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  5. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    PubMed Central

    Yu, Hao; Solvang, Wei Deng

    2016-01-01

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293

  6. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    PubMed

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  7. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  8. A compact cosmic muon veto detector and possible use with the Iron Calorimeter detector for neutrinos

    NASA Astrophysics Data System (ADS)

    Panchal, N.; Mohanraj, S.; Kumar, A.; Dey, T.; Majumder, G.; Shinde, R.; Verma, P.; Satyanarayana, B.; Datar, V. M.

    2017-11-01

    The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a ~1 m × 1 m × 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.

  9. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Singular value description of a digital radiographic detector: Theory and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to

  11. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  12. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.

  13. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  14. A standing location detector enabling people with developmental disabilities to control environmental stimulation through simple physical activities with Nintendo Wii Balance Boards.

    PubMed

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance Board into a standing location detector). This study was carried out using to an ABAB design. The data showed that both participants significantly increased their simple physical activity (target response) to activate the control system to produce environmental stimulation during the B (intervention) phases. The practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Stability Control of Grasping Objects with Different Locations of Center of Mass and Rotational Inertia

    PubMed Central

    Slota, Gregory P.; Suh, Moon Suk; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2012-01-01

    The objective of this study was to observe how the digits of the hand adjust to varying location of the center of mass (CoM) above/below the grasp and rotational inertia (RI) of a hand held object. Such manipulations do not immediately affect the equilibrium equations while stability control is affected. Participants were instructed to hold a handle, instrumented with five force/torque transducers and a 3-D rotational tilt sensor, while either the location of the CoM or the RI values were adjusted. On the whole, people use two mechanisms to adjust to the changed stability requirements; they increase the grip force and redistribute the total moment between the normal and tangential forces offsetting internal torques. The increase in grip force, an internal force, and offsetting internal torques allows for increases in joint and hand rotational apparent stiffness while not creating external forces/torques which would unbalance the equations of equilibrium. PMID:22456054

  16. Endomorphin-1 attenuates Aβ42 induced impairment of novel object and object location recognition tasks in mice.

    PubMed

    Zhang, Rui-san; Xu, Hong-jiao; Jiang, Jin-hong; Han, Ren-wen; Chang, Min; Peng, Ya-li; Wang, Yuan; Wang, Rui

    2015-12-10

    A growing body of evidence suggests that the agglomeration of amyloid-β (Aβ) may be a trigger for Alzheimer׳s disease (AD). Central infusion of Aβ42 can lead to memory impairment in mice. Inhibiting the aggregation of Aβ has been considered a therapeutic strategy for AD. Endomorphin-1 (EM-1), an endogenous agonist of μ-opioid receptors, has been shown to inhibit the aggregation of Aβ in vitro. In the present study, we investigated whether EM-1 could alleviate the memory-impairing effects of Aβ42 in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. We showed that co-administration of EM-1 was able to ameliorate Aβ42-induced amnesia in the lateral ventricle and the hippocampus, and these effects could not be inhibited by naloxone, an antagonist of μ-opioid receptors. Infusion of EM-1 or naloxone separately into the lateral ventricle had no influence on memory in the tasks. These results suggested that EM-1 might be effective as a drug for AD preventative treatment by inhibiting Aβ aggregation directly as a molecular modifier. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Statins enhance cognitive performance in object location test in albino Swiss mice: involvement of beta-adrenoceptors.

    PubMed

    Vandresen-Filho, Samuel; França, Lucas Moreira; Alcantara-Junior, José; Nogueira, Lucas Caixeta; de Brito, Thiago Marques; Lopes, Lousã; Junior, Fernando Mesquita; Vanzeler, Maria Luzinete; Bertoldo, Daniela Bohn; Dias, Paula Gomes; Colla, André R S; Hoeller, Alexandre; Duzzioni, Marcelo; Rodrigues, Ana Lúcia S; de Lima, Thereza C M; Tasca, Carla Inês; Viola, Giordano Gubert

    2015-05-01

    Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/kg or 10 mg/kg (v.o.) or simvastatin 10 mg/kg or 20 mg/kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of the used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improve the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOEpatents

    Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  19. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  20. Minefield reconnaissance and detector system

    DOEpatents

    Butler, Millard T.; Cave, Steven P.; Creager, James D.; Johnson, Charles M.; Mathes, John B.; Smith, Kirk J.

    1994-01-01

    A multi-sensor system (10) for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform (12) has a plurality of metal detector sensors (22) and a plurality of short pulse radar sensors (24). The remote sensor platform (12) is remotely controlled from a processing and control unit (14) and signals from the remote sensor platform (12) are sent to the processing and control unit (14) where they are individually evaluated in separate data analysis subprocess steps (34, 36) to obtain a probability "score" for each of the pluralities of sensors (22, 24). These probability scores are combined in a fusion subprocess step (38) by comparing score sets to a probability table (130) which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess (40) for controlling a marker device (76) to mark the location of found objects.

  1. Minefield reconnaissance and detector system

    DOEpatents

    Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.

    1994-04-26

    A multi-sensor system is described for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability score for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects. 7 figures.

  2. Baby-MIND neutrino detector

    NASA Astrophysics Data System (ADS)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  3. Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Rasmussen, Ian P.

    2010-01-01

    The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…

  4. ATRC Neutron Detector Testing Quick Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activationmore » spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and

  5. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (< 10 μm), to handle large particle occupancy, and to require a small fraction of the number of electronic channels of an equivalent pixel detector. The Silicon Vertex Tracker (SVT) for the STAR experiment at RHIC is based on this new technology. The SVT will consist of 216 SDD's, each 6.3 cm by 6.3 cm, arranged in a three layer barrel design, covering 2 π in azimuth and ±1 in pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  6. Calibration of a Silver Detector using a PuBe Source

    DTIC Science & Technology

    2012-06-14

    solid state mechanisms [12]. If the source used for calibration has a known neutron flux , the detector efficiency can be determine by allowing a neutron ...between the normalized neutron flux at the different silver foil locations compared to the flux at the bottom right detector location. The differences are... neutron detection system used at the FRCHX to determine the nominal calibration factors. The type of silver detector used in the FRCHX experiment

  7. Void/particulate detector

    DOEpatents

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  8. Working memory capacity accounts for the ability to switch between object-based and location-based allocation of visual attention.

    PubMed

    Bleckley, M Kathryn; Foster, Jeffrey L; Engle, Randall W

    2015-04-01

    Bleckley, Durso, Crutchfield, Engle, and Khanna (Psychonomic Bulletin & Review, 10, 884-889, 2003) found that visual attention allocation differed between groups high or low in working memory capacity (WMC). High-span, but not low-span, subjects showed an invalid-cue cost during a letter localization task in which the letter appeared closer to fixation than the cue, but not when the letter appeared farther from fixation than the cue. This suggests that low-spans allocated attention as a spotlight, whereas high-spans allocated their attention to objects. In this study, we tested whether utilizing object-based visual attention is a resource-limited process that is difficult for low-span individuals. In the first experiment, we tested the uses of object versus location-based attention with high and low-span subjects, with half of the subjects completing a demanding secondary load task. Under load, high-spans were no longer able to use object-based visual attention. A second experiment supported the hypothesis that these differences in allocation were due to high-spans using object-based allocation, whereas low-spans used location-based allocation.

  9. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  10. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  11. Cortical Activation Patterns during Long-Term Memory Retrieval of Visually or Haptically Encoded Objects and Locations

    ERIC Educational Resources Information Center

    Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…

  12. Characterization of a prototype neutron portal monitor detector

    NASA Astrophysics Data System (ADS)

    Nakhoul, Nabil

    The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.

  13. Location of DAN on Curiosity

    NASA Image and Video Library

    2012-08-21

    This image of NASA Curiosity rover shows the location of the two components of the Dynamic Albedo of Neutrons instrument. The neutron generator is mounted on the right hip and the detectors are on the opposite hip.

  14. The GPS Burst Detector W-Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrady, D.D.; Phipps, P.

    1994-08-01

    The NAVSTAR satellites have two missions: navigation and nuclear detonation detection. The main objective of this paper is to describe one of the key elements of the Nuclear Detonation Detection System (NDS), the Burst Detector W-Sensor (BDW) that was developed for the Air Force Space and Missle Systems Center, its mission on GPS Block IIR, and how it utilizes GPS timing signals to precisely locate nuclear detonations (NUDET). The paper will also cover the interface to the Burst Detector Processor (BDP) which links the BDW to the ground station where the BDW is controlled and where data from multiple satellitesmore » are processed to determine the location of the NUDET. The Block IIR BDW is the culmination of a development program that has produced a state-of-the-art, space qualified digital receiver/processor that dissipates only 30 Watts, weighs 57 pounds, and has a 12in. {times} l4.2in. {times} 7.16in. footprint. The paper will highlight several of the key multilayer printed circuit cards without which the required power, weight, size, and radiation requirements could not have been met. In addition, key functions of the system software will be covered. The paper will be concluded with a discussion of the high speed digital signal processing and algorithm used to determine the time-of-arrival (TOA) of the electromagnetic pulse (EMP) from the NUDET.« less

  15. A Sensitive, Reliable Inexpensive Touch Detector

    ERIC Educational Resources Information Center

    Anger, Douglas; Schachtman, Todd R.

    2007-01-01

    Research in a laboratory required a sensitive, reliable, inexpensive touch detector for use with rats to test the reinforcement of inhibition. A small touch detector was also desirable so that the detector could be mounted on the rat's cage close to the object being touched by the rat, whose touches in turn were being detected by current passing…

  16. Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location

    ERIC Educational Resources Information Center

    Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.

    2006-01-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…

  17. Recognizing familiar objects by hand and foot: Haptic shape perception generalizes to inputs from unusual locations and untrained body parts.

    PubMed

    Lawson, Rebecca

    2014-02-01

    The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.

  18. DIORAMA Location Type User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, James Russell

    2015-01-29

    The purpose of this report is to present the current design and implementation of the DIORAMA location type object (LocationType) and to provide examples and use cases. The LocationType object is included in the diorama-app package in the diorama::types namespace. Abstractly, the object is intended to capture the full time history of the location of an object or reference point. For example, a location may be speci ed as a near-Earth orbit in terms of a two-line element set, in which case the location type is capable of propagating the orbit both forward and backward in time to provide amore » location for any given time. Alternatively, the location may be speci ed as a xed set of geodetic coordinates (latitude, longitude, and altitude), in which case the geodetic location of the object is expected to remain constant for all time. From an implementation perspective, the location type is de ned as a union of multiple independent objects defi ned in the DIORAMA tle library. Types presently included in the union are listed and described in subsections below, and all conversions or transformation between these location types are handled by utilities provided by the tle library with the exception of the \\special-values" location type.« less

  19. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  20. Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.

    PubMed

    Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K

    2014-01-01

    Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.

  1. Non-Invasive Pneumothorax Detector

    DTIC Science & Technology

    2012-04-01

    AD_________________ Award Number: W81XWH-09-2-0092 TITLE: Non-Invasive Pneumothorax Detector...REPORT TYPE Final 3. DATES COVERED 27 July 2009 – 31 August 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-Invasive Pneumothorax ...that form the scope of work support the development and clinical testing of a non-invasive pneumothorax detector. Goal and objectives are reflected in

  2. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, M; Ionita, C; Bednarek, D

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors withoutmore » changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less

  3. Estimate of Cosmic Muon Background for Shallow Underground Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Simão, F. R. A.; Anjos, J. C.

    One of the severe limitations in detecting neutrino signals from nuclear reactors is that the copious cosmic ray background imposes the use of a time veto upon the passage of the muons to reduce the number of fake signals due to muon-induced spallation neutrons. For this reason neutrino detectors are usually located underground, with a large overburden. However there are practical limitations that do restrain from locating the detectors at large depths underground. In order to decide the depth underground at which the Neutrino Angra Detector (currently in preparation) should be installed, an estimate of the cosmogenic background in the detector as a function of the depth is required. We report here a simple analytical estimation of the muon rates in the detector volume for different plausible depths, assuming a simple plain overburden geometry. We extend the calculation to the case of the San Onofre neutrino detector and to the case of the Double Chooz neutrino detector, where other estimates or measurements have been performed. Our estimated rates are consistent.

  4. A experiment on radio location of objects in the near-Earth space with VLBI in 2012

    NASA Astrophysics Data System (ADS)

    Nechaeva, M.; Antipenko, A.; Bezrukovs, V.; Bezrukov, D.; Dementjev, A.; Dugin, N.; Konovalenko, A.; Kulishenko, V.; Liu, X.; Nabatov, A.; Nesteruk, V.; Pupillo, G.; Reznichenko, A.; Salerno, E.; Shmeld, I.; Shulga, O.; Sybiryakova, Y.; Tikhomirov, Yu.; Tkachenko, A.; Volvach, A.; Yang, W.-J.

    An experiment on radar location of space debris objects using of the method of VLBI was carried out in April, 2012. The radar VLBI experiment consisted in irradiation of some space debris objects (4 rocket stages and 5 inactive satellites) with a signal of the transmitter with RT-70 in Evpatoria, Ukraine. Reflected signals were received by a complex of radio telescopes in the VLBI mode. The following VLBI stations took part in the observations: Ventspils (RT-32), Urumqi (RT-25), Medicina (RT-32) and Simeiz (RT-22). The experiment included measurements of the Doppler frequency shift and the delay for orbit refining, and measurements of the rotation period and sizes of objects by the amplitudes of output interferometer signals. The cross-correlation of VLBI-data is performed at a correlator NIRFI-4 of Radiophysical Research Institute (Nizhny Novgorod). Preliminary data processing resulted in the series of Doppler frequency shifts, which comprised the information on radial velocities of the objects. Some results of the experiment are presented.

  5. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  6. Detectors for the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Marriage, Tobias Andrew

    The Atacama Cosmology Telescope (ACT) will make measurements of the brightness temperature anisotropy in the Cosmic Microwave Background (CMB) on degree to arcminute angular scales. The ACT observing site is located 5200 m near the top of Cerro Toco in the Atacama Desert of northern Chile. This thesis presents research on the detectors which capture the image of the CMB formed at ACT's focal plane. In the first chapter, the primary brightness temperature fluctuations in the Cosmic Microwave Background are reviewed. In Chapter 2, a calculation shows how the CMB brightness is translated by ACT to an input power to the detectors. Chapter 3 describes the ACT detectors in detail and presents the response and sensitivity of the detectors to the input power computed in Chapter 2. Chapter 4 describes the detector fabrication at NASA Goddard Space Flight Center. Chapter 5 summarizes experiments which characterize the ACT detector performance.

  7. Object formation in visual working memory: Evidence from object-based attention.

    PubMed

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets ofmore » ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)« less

  9. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  10. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  11. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  12. Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit.

    PubMed

    Lagravère, M O; Carey, J; Ben-Zvi, M; Packota, G V; Major, P W

    2008-09-01

    The purpose of this study was to determine the effect of an object's location in a cone beam CT imaging chamber (CBCT-NewTom 3G) on its apparent density and to develop a linear conversion coefficient for Hounsfield units (HU) to material density (g cm(-3)) for the NewTom 3G Scanner. Three cylindrical models of materials with different densities were constructed and scanned at five different locations in a NewTom 3G Volume Scanner. The average HU value for each model at each location was obtained using two different types of software. Next, five cylinders of different known densities were scanned at the exact centre of a NewTom 3G Scanner. The collected data were analysed using the same two types of software to determine a standard linear relationship between density and HU for each type of software. There is no statistical significance of location of an object within the CBCT scanner on determination of its density. A linear relationship between the density of an object and the HU of a scan was rho = 0.001(HU)+1.19 with an R2 value of 0.893 (where density, rho, is measured in g cm(-3)). This equation is to be used on a range between 1.42 g cm(-3) and 0.4456 g cm(-3). A linear relationship can be used to determine the density of materials (in the density range of bone) from the HU values of a CBCT scan. This relationship is not affected by the object's location within the scanner itself.

  13. Object detection system using SPAD proximity detectors

    NASA Astrophysics Data System (ADS)

    Stark, Laurence; Raynor, Jeffrey M.; Henderson, Robert K.

    2011-10-01

    This paper presents an object detection system based upon the use of multiple single photon avalanche diode (SPAD) proximity sensors operating upon the time-of-flight (ToF) principle, whereby the co-ordinates of a target object in a coordinate system relative to the assembly are calculated. The system is similar to a touch screen system in form and operation except that the lack of requirement of a physical sensing surface provides a novel advantage over most existing touch screen technologies. The sensors are controlled by FPGA-based firmware and each proximity sensor in the system measures the range from the sensor to the target object. A software algorithm is implemented to calculate the x-y coordinates of the target object based on the distance measurements from at least two separate sensors and the known relative positions of these sensors. Existing proximity sensors were capable of determining the distance to an object with centimetric accuracy and were modified to obtain a wide field of view in the x-y axes with low beam angle in z in order to provide a detection area as large as possible. Design and implementation of the firmware, electronic hardware, mechanics and optics are covered in the paper. Possible future work would include characterisation with alternative designs of proximity sensors, as this is the component which determines the highest achievable accur1acy of the system.

  14. Processing ser and estar to locate objects and events: An ERP study with L2 speakers of Spanish.

    PubMed

    Dussias, Paola E; Contemori, Carla; Román, Patricia

    2014-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as 'to be'). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of 'object/event + estar/ser ' permutations. Participants provided grammaticality judgments on correct (object + estar ; event + ser ) and incorrect (object + ser ; event + estar ) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while 'object + ser ' constructions were considered grossly ungrammatical, 'event + estar ' combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ' en ' showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500-700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less accurate than

  15. Entering the Two-Detector Phase of Double Chooz: First Near Detector Data and Prospects for Future Analyses

    NASA Astrophysics Data System (ADS)

    Carr, Rachel; Double Chooz Collaboration

    2015-04-01

    In 2011, Double Chooz reported the first evidence for θ13-driven reactor antineutrino oscillation, derived from observations of inverse beta decay (IBD) events in a single detector located ~ 1 km from two nuclear reactors. Since then, the collaboration has honed the precision of its sin2 2θ13 measurement by reducing backgrounds, improving detection efficiency and systematics, and including additional statistics from IBD events with neutron captures on hydrogen. By 2014, the overwhelmingly dominant contribution to sin2 2θ13 uncertainty was reactor flux uncertainty, which is irreducible in a single-detector experiment. Now, as Double Chooz collects the first data with a near detector, we can begin to suppress that uncertainty and approach the experiment's full potential. In this talk, we show quality checks on initial data from the near detector. We also present our two-detector sensitivity to both sin2 2θ13 and sterile neutrino mixing, which are enhanced by analysis strategies developed in our single-detector phase. In particular, we discuss prospects for the first two-detector results from Double Chooz, expected in 2015.

  16. Automatic vehicle location system

    NASA Technical Reports Server (NTRS)

    Hansen, G. R., Jr. (Inventor)

    1973-01-01

    An automatic vehicle detection system is disclosed, in which each vehicle whose location is to be detected carries active means which interact with passive elements at each location to be identified. The passive elements comprise a plurality of passive loops arranged in a sequence along the travel direction. Each of the loops is tuned to a chosen frequency so that the sequence of the frequencies defines the location code. As the vehicle traverses the sequence of the loops as it passes over each loop, signals only at the frequency of the loop being passed over are coupled from a vehicle transmitter to a vehicle receiver. The frequencies of the received signals in the receiver produce outputs which together represent a code of the traversed location. The code location is defined by a painted pattern which reflects light to a vehicle carried detector whose output is used to derive the code defined by the pattern.

  17. How Object-Specific Are Object Files? Evidence for Integration by Location

    ERIC Educational Resources Information Center

    van Dam, Wessel O.; Hommel, Bernhard

    2010-01-01

    Given the distributed representation of visual features in the human brain, binding mechanisms are necessary to integrate visual information about the same perceptual event. It has been assumed that feature codes are bound into object files--pointers to the neural codes of the features of a given event. The present study investigated the…

  18. Interior micro-CT with an offset detector

    PubMed Central

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua

    2014-01-01

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three

  19. Population density estimated from locations of individuals on a passive detector array

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.

    2009-01-01

    The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.

  20. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV detector response function at six photon energies. The 12 parameters are obtained by non-linear least-square fitting with the measured detector response functions at the six energies. The correlations of the 12 parameters with energy are also investigated with the measured data. The analytical model generally describes the detector response function and is in good agreement with the measured data. The trend lines of the 12 parameters indicate higher energies tend to cause grater spectrum distortion. The spectrum distortion caused by the detector response function on spectral CT reconstruction is analyzed theoretically, and a solution to correct this spectrum distortion is also proposed. In spectral and fluorescence CT, the spectrum distortion caused by detector response function poses a problem and cannot be ignored in any quantitative analysis. The detector response function of a CdTe detector can be obtained by a semi-analytical method.

  1. Method of locating underground mines fires

    DOEpatents

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  2. Scientific Benefit of Enlarging Gravitational Wave Detector Networks

    NASA Astrophysics Data System (ADS)

    Chu, Qi; Wen, Linqing; Blair, David

    2012-06-01

    Localising the sources of gravitational waves (GWs) in the sky is crucial to observing the electromagnetic counterparts of GW sources. The localisation capability is poor by a single GW detector yet can be improved by adding more detectors to the detector network. In this paper we review recent studies on scientific benefits of global detector networks and focus on their localisation capability. We employ Wen-Chen's formula to compare this merit of current and future detector networks for localising gravitational wave bursts. We find that the addition of a new detector located in Japan, or India, or Australia will increase angular resolution 3~5 fold with respect to current LIGO-Virgo network, and that the angular resolution improvement by adding a single detector in Australia is comparable to that achieved by adding detectors in both India and Japan. A six-site network achieves a 11-fold improvement in angular resolution compared with the existing three-site network.

  3. Astroparticle Physics: Detectors for Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, Humberto; Villasenor, Luis

    2006-09-25

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection ofmore » extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.« less

  4. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  5. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  6. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  7. A search for sterile neutrinos at the NOvA Far Detector

    NASA Astrophysics Data System (ADS)

    Aurisano, Adam; Davies, Gavin S.; Kafka, Gareth K.; Sousa, Alex; Suter, Louise; Yang, Shaokai

    2017-09-01

    NOvA is the current United States flagship long-baseline neutrino experiment designed to study the properties of neutrino oscillations. It consists of two functionally identical detectors each located 14.6 mrad off the central axis from the Fermilab NuMI neutrino beam. The Near Detector is located 1 km downstream from the beam source, and the Far Detector is located 810 km away in Ash River, Minnesota. This long baseline, combined with the ability of the NuMI facility to switch between nearly pure neutrino and anti-neutrino beams, allows NOvA to make precision measurements of neutrino mixing angles, potentially determine the neutrino mass hierarchy, and begin searching for CP violating effects in the lepton sector. However, NOvA can also probe more exotic scenarios, such as oscillations between the known active neutrinos and new sterile species. We will showcase the first search for sterile neutrinos in a 3 + 1 model at NOvA. The analysis presented searches for a deficit in the rate of neutral current events at the Far Detector using the Near Detector to constrain the predicted spectrum. This analysis was performed using data taken between February 2014 and May 2016 corresponding to 6.05 × 1020 protons on target.

  8. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  9. Effectiveness of Guided Multiple Choice Objective Questions Test on Students' Academic Achievement in Senior School Mathematics by School Location

    ERIC Educational Resources Information Center

    Igbojinwaekwu, Patrick Chukwuemeka

    2015-01-01

    This study investigated, using pretest-posttest quasi-experimental research design, the effectiveness of guided multiple choice objective questions test on students' academic achievement in Senior School Mathematics, by school location, in Delta State Capital Territory, Nigeria. The sample comprised 640 Students from four coeducation secondary…

  10. Learned filters for object detection in multi-object visual tracking

    NASA Astrophysics Data System (ADS)

    Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David

    2016-05-01

    We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.

  11. Predictable Locations Aid Early Object Name Learning

    ERIC Educational Resources Information Center

    Benitez, Viridiana L.; Smith, Linda B.

    2012-01-01

    Expectancy-based localized attention has been shown to promote the formation and retrieval of multisensory memories in adults. Three experiments show that these processes also characterize attention and learning in 16- to 18-month old infants and, moreover, that these processes may play a critical role in supporting early object name learning. The…

  12. Temperature distribution model for the semiconductor dew point detector

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Gniazdowski, Z.; Jachowicz, Ryszard; Lysko, Jan M.

    2001-08-01

    The simulation results of temperature distribution in the new type silicon dew point detector are presented in this paper. Calculations were done with use of the SMACEF simulation program. Fabricated structures, apart from the impedance detector used to the dew point detection, contained the resistive four terminal thermometer and two heaters. Two detector structures, the first one located on the silicon membrane and the second one placed on the bulk materials were compared in this paper.

  13. Detecting and Locating Seismic Events Without Phase Picks or Velocity Models

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.

    2015-12-01

    The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.

  14. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  15. The Female Advantage in Object Location Memory is Robust to Verbalizability and Mode of Presentation of Test Stimuli

    ERIC Educational Resources Information Center

    Lejbak, Lisa; Vrbancic, Mirna; Crossley, Margaret

    2009-01-01

    This study extends Duff and Hampson's [Duff, S., & Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. "Brain and Cognition, 47," 470-493] finding of a sex-related difference in favor of females for an object location memory task. Twenty female and 20 male undergraduate students performed both manual and…

  16. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  17. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  18. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  19. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  20. Hit efficiency study of CMS prototype forward pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  1. Detection of orthopaedic implants by airport metal detectors.

    PubMed

    Obremskey, William T; Austin, Tom; Crosby, Colin; Driver, Robin; Kurtz, Will; Shuler, Franklin; Kregor, Philip

    2007-02-01

    To report the effect of patient's body mass index (BMI), implant type, size, location, number, and material on detection by certified Transportation Security Administration (TSA) and Federal Aviation Administration (FAA) airport metal detectors set to today's standard sensitivity. Retrospective clinical study. Level 1 university trauma center. Ninety-six regularly scheduled trauma clinic patients with a wide variety of orthopaedic implants were enrolled in the study from August 2004 through December 2004. Patients walked through an airport arch metal detector and were also wanded with a handheld metal detector. Detection of implants by arch detector or wand was recorded. We also gathered information regarding BMI, location of implants, type, metal composition, and size. All unilateral prostheses (8/8) and bilateral prostheses (1/1) were detected. Subjects with 4 or fewer screws and no other implants were never detected by the arch metal detector (0/7). For the remaining 78 subjects, the 2 best predictors of detection by the arch were having plates of length >10 holes and having titanium nails (P < 0.001 for each predictor, Wald's test for effects in a logistic model). Prostheses, plates of length >10 holes, and titanium nails were the best predictors of detection by the arch. These 3 factors accounted for 42 of the 43 detections by the arch. Body mass index was not shown to affect detectability of orthopaedic implants.

  2. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  3. Selective representation of task-relevant objects and locations in the monkey prefrontal cortex.

    PubMed

    Everling, Stefan; Tinsley, Chris J; Gaffan, David; Duncan, John

    2006-04-01

    In the monkey prefrontal cortex (PFC), task context exerts a strong influence on neural activity. We examined different aspects of task context in a temporal search task. On each trial, the monkey (Macaca mulatta) watched a stream of pictures presented to left or right of fixation. The task was to hold fixation until seeing a particular target, and then to make an immediate saccade to it. Sometimes (unilateral task), the attended pictures appeared alone, with a cue at trial onset indicating whether they would be presented to left or right. Sometimes (bilateral task), the attended picture stream (cued side) was accompanied by an irrelevant stream on the opposite side. In two macaques, we recorded responses from a total of 161 cells in the lateral PFC. Many cells (75/161) showed visual responses. Object-selective responses were strongly shaped by task relevance - with stronger responses to targets than to nontargets, failure to discriminate one nontarget from another, and filtering out of information from an irrelevant stimulus stream. Location selectivity occurred rather independently of object selectivity, and independently in visual responses and delay periods between one stimulus and the next. On error trials, PFC activity followed the correct rules of the task, rather than the incorrect overt behaviour. Together, these results suggest a highly programmable system, with responses strongly determined by the rules and requirements of the task performed.

  4. Laser radiography forming bremsstrahlung radiation to image an object

    DOEpatents

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  5. Readout Electronics for the Forward Vertex Detector at PHENIX

    NASA Astrophysics Data System (ADS)

    Phillips, Michael

    2010-11-01

    The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.

  6. Rocket engine hot-spot detector

    NASA Astrophysics Data System (ADS)

    Collamore, F. N.

    1985-04-01

    On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.

  7. Applying Bayesian Neural Network to determine neutrino incoming direction in reactor neutrino experiments and supernova explosion location by scintillator detectors

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Xu, Y.; Meng, Y. X.; Wu, B.

    2009-01-01

    In the paper, it is discussed by using Monte-Carlo simulation that the Bayesian Neural Network (BNN) is applied to determine neutrino incoming direction in reactor neutrino experiments and supernova explosion location by scintillator detectors. As a result, compared to the method in ref. [1], the uncertainty on the measurement of the neutrino direction using BNN is significantly improved. The uncertainty on the measurement of the reactor neutrino direction is about 1.0° at the 68.3% C.L., and the one in the case of supernova neutrino is about 0.6° at the 68.3% C.L. . Compared to the method in ref. [1], the uncertainty attainable by using BNN reduces by a factor of about 20. And compared to the Super-Kamiokande experiment (SK), it reduces by a factor of about 8.

  8. Surface Location In Scene Content Analysis

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Tio, J. B. K.; McPherson, C. A.; Hwang, J. J.

    1981-12-01

    The purpose of this paper is to describe techniques and algorithms for the location in three dimensions of planar and curved object surfaces using a computer vision approach. Stereo imaging techniques are demonstrated for planar object surface location using automatic segmentation, vertex location and relational table matching. For curved surfaces, the locations of corresponding 'points is very difficult. However, an example using a grid projection technique for the location of the surface of a curved cup is presented to illustrate a solution. This method consists of first obtaining the perspective transformation matrix from the images, then using these matrices to compute the three dimensional point locations of the grid points on the surface. These techniques may be used in object location for such applications as missile guidance, robotics, and medical diagnosis and treatment.

  9. Object classification for obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Regensburger, Uwe; Graefe, Volker

    1991-03-01

    Object recognition is necessary for any mobile robot operating autonomously in the real world. This paper discusses an object classifier based on a 2-D object model. Obstacle candidates are tracked and analyzed false alarms generated by the object detector are recognized and rejected. The methods have been implemented on a multi-processor system and tested in real-world experiments. They work reliably under favorable conditions but sometimes problems occur e. g. when objects contain many features (edges) or move in front of structured background.

  10. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  11. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  12. Laser positioning of four-quadrant detector based on pseudo-random sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yanqin; Cao, Ercong; Hu, Xiaobo; Gu, Guohua; Qian, Weixian

    2016-10-01

    Nowadays the technology of laser positioning based on four-quadrant detector has the wide scope of the study and application areas. The main principle of laser positioning is that by capturing the projection of the laser spot on the photosensitive surface of the detector, and then calculating the output signal from the detector to obtain the coordinates of the spot on the photosensitive surface of the detector, the coordinate information of the laser spot in the space with respect to detector system which reflects the spatial position of the target object is calculated effectively. Given the extensive application of FPGA technology and the pseudo-random sequence has the similar correlation of white noise, the measurement process of the interference, noise has little effect on the correlation peak. In order to improve anti-jamming capability of the guided missile in tracking process, when the laser pulse emission, the laser pulse period is pseudo-random encoded which maintains in the range of 40ms-65ms so that people of interfering can't find the exact real laser pulse. Also, because the receiver knows the way to solve the pseudo-random code, when the receiver receives two consecutive laser pulses, the laser pulse period can be decoded successfully. In the FPGA hardware implementation process, around each laser pulse arrival time, the receiver can open a wave door to get location information contained the true signal. Taking into account the first two consecutive pulses received have been disturbed, so after receiving the first laser pulse, it receives all the laser pulse in the next 40ms-65ms to obtain the corresponding pseudo-random code.

  13. A Virtual Object-Location Task for Children: Gender and Videogame Experience Influence Navigation; Age Impacts Memory and Completion Time.

    PubMed

    Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M-Carmen; Perez-Hernandez, Elena

    2018-01-01

    The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables.

  14. A Virtual Object-Location Task for Children: Gender and Videogame Experience Influence Navigation; Age Impacts Memory and Completion Time

    PubMed Central

    Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M.-Carmen; Perez-Hernandez, Elena

    2018-01-01

    The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5–12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children’s videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables. PMID:29674988

  15. Geophysics-based method of locating a stationary earth object

    DOEpatents

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  16. Development of dual sensor hand-held detector

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  17. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  18. Enhancing community based health programs in Iran: a multi-objective location-allocation model.

    PubMed

    Khodaparasti, S; Maleki, H R; Jahedi, S; Bruni, M E; Beraldi, P

    2017-12-01

    Community Based Organizations (CBOs) are important health system stakeholders with the mission of addressing the social and economic needs of individuals and groups in a defined geographic area, usually no larger than a county. The access and success efforts of CBOs vary, depending on the integration between health care providers and CBOs but also in relation to the community participation level. To achieve widespread results, it is important to carefully design an efficient network which can serve as a bridge between the community and the health care system. This study addresses this challenge through a location-allocation model that deals with the hierarchical nature of the system explicitly. To reflect social welfare concerns of equity, local accessibility, and efficiency, we develop the model in a multi-objective framework, capturing the ambiguity in the decision makers' aspiration levels through a fuzzy goal programming approach. This study reports the findings for the real case of Shiraz city, Fars province, Iran, obtained by a thorough analysis of the results.

  19. Feasibility of real-time location systems in monitoring recovery after major abdominal surgery.

    PubMed

    Dorrell, Robert D; Vermillion, Sarah A; Clark, Clancy J

    2017-12-01

    Early mobilization after major abdominal surgery decreases postoperative complications and length of stay, and has become a key component of enhanced recovery pathways. However, objective measures of patient movement after surgery are limited. Real-time location systems (RTLS), typically used for asset tracking, provide a novel approach to monitoring in-hospital patient activity. The current study investigates the feasibility of using RTLS to objectively track postoperative patient mobilization. The real-time location system employs a meshed network of infrared and RFID sensors and detectors that sample device locations every 3 s resulting in over 1 million data points per day. RTLS tracking was evaluated systematically in three phases: (1) sensitivity and specificity of the tracking device using simulated patient scenarios, (2) retrospective passive movement analysis of patient-linked equipment, and (3) prospective observational analysis of a patient-attached tracking device. RTLS tracking detected a simulated movement out of a room with sensitivity of 91% and specificity 100%. Specificity decreased to 75% if time out of room was less than 3 min. All RTLS-tagged patient-linked equipment was identified for 18 patients, but measurable patient movement associated with equipment was detected for only 2 patients (11%) with 1-8 out-of-room walks per day. Ten patients were prospectively monitored using RTLS badges following major abdominal surgery. Patient movement was recorded using patient diaries, direct observation, and an accelerometer. Sensitivity and specificity of RTLS patient tracking were both 100% in detecting out-of-room ambulation and correlated well with direct observation and patient-reported ambulation. Real-time location systems are a novel technology capable of objectively and accurately monitoring patient movement and provide an innovative approach to promoting early mobilization after surgery.

  20. Feature-location binding in 3D: Feature judgments are biased by 2D location but not position-in-depth

    PubMed Central

    Finlayson, Nonie J.; Golomb, Julie D.

    2016-01-01

    A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features (Golomb, Kupitz, & Thiemann, 2014), such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information – not position-in-depth – seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. PMID:27468654

  1. Feature-location binding in 3D: Feature judgments are biased by 2D location but not position-in-depth.

    PubMed

    Finlayson, Nonie J; Golomb, Julie D

    2016-10-01

    A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features, such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information - not position-in-depth - seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of Detector Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Stockum, Jana L.

    2005-01-01

    In this paper, several different detectors are examined for use in a Comet/Asteroid Protection System (CAPS), a conceptual study for a possible future space-based system. Each detector will be examined for its future (25 years or more in the future) ability to find and track near-Earth Objects (NEOs) from a space-based detection platform. Within the CAPS study are several teams of people who each focus on different aspects of the system concept. This study s focus is on detection devices. In particular, evaluations on the following devices have been made: charge-coupled devices (CCDs), charge-injected devices (CIDs), superconducting tunneling junctions (STJs), and transition edge sensors (TESs). These devices can be separated into two main categories; the first category includes detectors that are currently being widely utilized, such as CCDs and CIDs. The second category includes experimental detectors, such as STJs and TESs. After the discussion of the detectors themselves, there will be a section devoted to the explicit use of these detectors with CAPS.

  3. Do objective neighbourhood characteristics relate to residents' preferences for certain sports locations? A cross-sectional study using a discrete choice modelling approach.

    PubMed

    Deelen, Ineke; Jansen, Marijke; Dogterom, Nico J; Kamphuis, Carlijn B M; Ettema, Dick

    2017-12-11

    The number of sports facilities, sports clubs, or city parks in a residential neighbourhood may affect the likelihood that people participate in sports and their preferences for a certain sports location. This study aimed to assess whether objective physical and socio-spatial neighbourhood characteristics relate to sports participation and preferences for sports locations. Data from Dutch adults (N = 1201) on sports participation, their most-used sports location, and socio-demographic characteristics were collected using an online survey. Objective land-use data and the number of sports facilities were gathered for each participant using a 2000-m buffer around their home locations, whereas socio-spatial neighbourhood characteristics (i.e., density, socio-economic status, and safety) were determined at the neighbourhood level. A discrete choice-modelling framework (multinomial probit model) was used to model the associations between neighbourhood characteristics and sports participation and location. Higher proportions of green space, blue space, and the number of sports facilities were positively associated with sports participation in public space, at sports clubs, and at other sports facilities. Higher degrees of urbanization were negatively associated with sports participation at public spaces, sports clubs, and other sports facilities. Those with more green space, blue space or sports facilities in their residential neighbourhood were more likely to participate in sports, but these factors did not affect their preference for a certain sports location. Longitudinal study designs are necessary to assess causality: do active people choose to live in sports-facilitating neighbourhoods, or do neighbourhood characteristics affect sports participation?

  4. Characterization of BEGe detectors in the HADES underground laboratory

    NASA Astrophysics Data System (ADS)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  5. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  6. Muon Energy Calibration of the MINOS Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Paul S.

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized tomore » calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.« less

  7. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  8. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  9. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  10. On the calibration of a single channel cosmic ray particle detector

    NASA Astrophysics Data System (ADS)

    Maghrabi, A. H.; Alghamdi, A. S.; Alotaibi, R.; Almutari, M. M.; Garawi, M. S.

    2014-07-01

    Cosmic Ray (CR) variation measurements have been extensively conducted using different type of detectors sensing different components of CR and at different locations around the world. We have constructed and, operated a single channel muon detector in the central part of Saudi Arabia. The main goal of this detector is to record the intensity of cosmic rays on different time scales and investigate their correlations with environment parameters. This detector is expected to fill the gap between neutron monitors and muon telescopes that exist around the world. In this paper, the technical aspects of this detector will be briefly discussed. Calibration procedures conducted to characterize and improve its performance will be detailed. These include the effect of the detector geometry and the internal surface coating.

  11. Awakening the BALROG: BAyesian Location Reconstruction Of GRBs

    NASA Astrophysics Data System (ADS)

    Burgess, J. Michael; Yu, Hoi-Fung; Greiner, Jochen; Mortlock, Daniel J.

    2018-05-01

    The accurate spatial location of gamma-ray bursts (GRBs) is crucial for both accurately characterizing their spectra and follow-up observations by other instruments. The Fermi Gamma-ray Burst Monitor (GBM) has the largest field of view for detecting GRBs as it views the entire unocculted sky, but as a non-imaging instrument it relies on the relative count rates observed in each of its 14 detectors to localize transients. Improving its ability to accurately locate GRBs and other transients is vital to the paradigm of multimessenger astronomy, including the electromagnetic follow-up of gravitational wave signals. Here we present the BAyesian Location Reconstruction Of GRBs (BALROG) method for localizing and characterizing GBM transients. Our approach eliminates the systematics of previous approaches by simultaneously fitting for the location and spectrum of a source. It also correctly incorporates the uncertainties in the location of a transient into the spectral parameters and produces reliable positional uncertainties for both well-localized sources and those for which the GBM data cannot effectively constrain the position. While computationally expensive, BALROG can be implemented to enable quick follow-up of all GBM transient signals. Also, we identify possible response problems that require attention and caution when using standard, public GBM detector response matrices. Finally, we examine the effects of including the uncertainty in location on the spectral parameters of GRB 080916C. We find that spectral parameters change and no extra components are required when these effects are included in contrast to when we use a fixed location. This finding has the potential to alter both the GRB spectral catalogues and the reported spectral composition of some well-known GRBs.

  12. Comparison of effects of humans versus wildlife-detector dogs

    USGS Publications Warehouse

    Heaton, Jill S.; Cablk, Mary E.; Nussear, Kenneth E.; Esque, Todd C.; Medica, Philip A.; Sagebiel, John C.; Francis, S. Steve

    2008-01-01

    The use of dogs (Canis lupus familiaris) trained to locate wildlife under natural conditions may increase the risk of attracting potential predators or alter behavior of target species. These potentially negative effects become even more problematic when dealing with threatened or endangered species, such as the Mojave Desert tortoise (Gopherus agassizii). We addressed three concerns regarding use of dogs trained to locate desert tortoises in the wild. First, we looked at the potential for dogs to attract native and non-native predators to sites at a greater rate than with human visitation alone by comparing presence of predator sign before and after visitation by dogs and by humans. We found no significant difference in predator sign based upon type of surveyor. Second, we looked at the difference in risk of predation to desert tortoises that were located in the wild by humans versus humans with wildlife-detector dogs. Over a 5-week period, during which tortoises were extensively monitored and a subsequent period of 1 year during which tortoises were monitored monthly, there was no predation on, nor sign of predator-inflicted trauma to tortoises initially encountered either by humans or wildlife-detector dogs. Third, we looked at movement patterns of tortoises after encounter by either humans or wildlife-detector dogs. Movement of desert tortoises was not significantly different after being found by a human versus being found by a wildlife-detector dog. Based upon these initial results we conclude that use of trained wildlife-detector dogs to survey for desert tortoises in the wild does not appear to increase attraction of predators, increase risk of predation, or alter movement patterns of desert tortoises more than surveys conducted by humans alone.

  13. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    PubMed

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  14. Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier.

    PubMed

    Yang, Jong-Ryul; Han, Seong-Tae; Baek, Donghyun

    2017-09-09

    We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m² input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB.

  15. NeuRad detector prototype pulse shape study

    NASA Astrophysics Data System (ADS)

    Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.

    2018-04-01

    The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.

  16. The LHCb Vertex Locator Upgrade

    NASA Astrophysics Data System (ADS)

    Szumlak, T.

    2017-12-01

    The Large Hadron Collider beauty LHCb detector is a dedicated flavour physics experiment, designed to efficiently detect decays of b- and c-hadrons to perform precise studies of CP violation and rare decays. At the end of Run 2, many of the LHCb measurements will remain statistically dominated. In order to increase the trigger yield for purely hadronic channels, the hardware trigger will be removed, and the full detector will be read out at 40 MHz. This, in combination with the five-fold increase in luminosity necessitates radical changes to LHCb's electronics with entire subdetector replacements required in some cases. The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the proton-proton collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The upgraded VELO will be equipped with silicon hybrid pixel sensors, each read out by VeloPix ASICs. The highest occupancy ASICs will have pixel hit rates of 900 Mhit/s and produce an output data rate of over 15 Gbit/s, with a total rate of 1.6 Tbit/s anticipated for the whole detector. Selected highlights of this challenging and ambitious project are described in this paper.

  17. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  18. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  19. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  20. Biological detector and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  1. Single Station System and Method of Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  2. The Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; NEOCam Science Team

    2017-10-01

    The Near-Earth Object Camera (NEOCam) is a NASA mission in formulation designed to find, track, and provide basic physical characterization of asteroids and comets that make close approaches to Earth. Its goal is to reduce the risk of impacts from undetected near-Earth objects (NEOs) capable of causing global and regional disasters. NEOCam consists of a 50 cm telescope operating at two channels dominated by NEO thermal emission, 4.2-5.0um and 6-10um, in order to better constrain the objects' temperatures and diameters. Orbiting the Sun-Earth L1 Lagrange point, the mission would find hundreds of thousands of NEOs and would make significant progress toward the Congressional objective of discovering more than 90% of NEOs larger than 140 m during its five-year lifetime. The mission uses novel 2048x2048 HgCdTe detectors that extend the wavelength cutoff beyond 10um at an operating temperature of 40K (Dorn et al. 2016). Both the optical system and the detectors are cooled passively using radiators and thermal shields to enable long mission life and to avoid the complexity of cryocoolers or cryogens. NEOCam is currently in an extended Phase A.

  3. Airport detectors and orthopaedic implants.

    PubMed

    van der Wal, Bart C H; Grimm, Bernd; Heyligers, Ide C

    2005-08-01

    As a result of the rising threats of terrorism, airport security has become a major issue. Patients with orthopaedic implants are concerned that they may activate alarms at airport security gates. A literature overview showed that the activation rate of the alarm by hand-held detectors is higher than for arch detectors (100% versus 56%). Arch detection rate has significantly increased from 0% before 1995 up to 83.3% after 1994. Reported factors which influence detection rates are implant mass, implant combinations, implant volume, transfer speed, side of implant, detector model, sensitivity settings, material and tissue masking. Detection rate has been improved by more sensitive devices and improved filter software. Doctors should be able to objectively inform patients. A form is presented which will easily inform the airport security staff.

  4. On the possibilities of large-scale radio and fiber optics detectors in cosmic rays

    NASA Technical Reports Server (NTRS)

    Gusev, G. A.; Markov, M. A.; Zheleznykh, I. M.

    1985-01-01

    Different variants of radio and fiber optics detectors for registration of super high energy cascades in the atmosphere and in dense media are discussed. Particularly the possibilities for investigation of quasi horizontal cosmic ray showers (CRS) and simulated muons from these CRS with the help of radio detectors and fiber optics detectors located on the ice surface are considered.

  5. Enhancing source location protection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Lin, Zhengkui; Wu, Di; Wang, Bailing

    2015-12-01

    Wireless sensor networks are widely deployed in the internet of things to monitor valuable objects. Once the object is monitored, the sensor nearest to the object which is known as the source informs the base station about the object's information periodically. It is obvious that attackers can capture the object successfully by localizing the source. Thus, many protocols have been proposed to secure the source location. However, in this paper, we examine that typical source location protection protocols generate not only near but also highly localized phantom locations. As a result, attackers can trace the source easily from these phantom locations. To address these limitations, we propose a protocol to enhance the source location protection (SLE). With phantom locations far away from the source and widely distributed, SLE improves source location anonymity significantly. Theory analysis and simulation results show that our SLE provides strong source location privacy preservation and the average safety period increases by nearly one order of magnitude compared with existing work with low communication cost.

  6. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  7. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  8. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  9. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  10. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  11. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  12. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  13. Hadronic interactions in the MINOS detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordosky, Michael Alan

    2004-08-01

    MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results ofmore » the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.« less

  14. Prosthetic metal implants and airport metal detectors.

    PubMed

    Ismail, A; Dancey, A; Titley, O G

    2013-04-01

    Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination.

  15. Identification and topographic localization of metallic foreign bodies by metal detector.

    PubMed

    Muensterer, Oliver J; Joppich, Ingolf

    2004-08-01

    Exact localization of ingested metal objects is necessary to guide therapy. This study prospectively evaluates the accuracy of foreign body (FB) identification and localization by metal detector (MTD) in a systematic topographic fashion. Patients who presented after an alleged or witnessed metal FB ingestion were scanned with an MTD. In case of a positive signal, the location was recorded in a topographic diagram, and radiographs were obtained. The diagnostic accuracy of the MTD scan for FB identification and topographic localization was determined by chi(2) analysis, and concordance was calculated by the McNemar test and expressed as kappa. A total of 70 MTD examinations were performed on 65 patients (age 6 months to 16 years); 5 patients were scanned twice on different days. The majority had swallowed coins and button batteries (n = 41). Of these, 29 items were correctly identified, and 11 of 12 were correctly ruled out (coins and button batteries: sensitivity, 100% [95% Confidence Interval 95% to 100%]; specificity, 91.7% [95% CI 76% to 100%], kappa = 0.94). When all metallic objects were included, 41 of 46 were correctly identified, and 22 of 24 were correctly ruled out (sensitivity, 89.1% [95% CI 80% to 98%]; specificity, 91.7% [95% CI 81% to 100%], kappa = 0.78). Five miscellaneous objects were not identified (sensitivity for items other than coins and button batteries 71% [95% CI 49% to 92%], kappa = 0.56). Localization by MTD was correct in 30 of 41 identified objects (73%). The error rates of junior and senior pediatric surgery residents did not differ significantly (P =.82). Ingested coins and button batteries can be safely and accurately found by metal detector. For these indications, the MTD is a radiation-free diagnostic alternative to conventional radiographs. Other items, however, cannot be ruled out reliably by MTD. In these cases, radiographic imaging is still indicated.

  16. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  17. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  18. Transfer after process-based object-location memory training in healthy older adults.

    PubMed

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  20. Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier

    PubMed Central

    Han, Seong-Tae; Baek, Donghyun

    2017-01-01

    We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m2 input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB. PMID:28891927

  1. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  2. Privacy-Preserving Location-Based Services

    ERIC Educational Resources Information Center

    Chow, Chi Yin

    2010-01-01

    Location-based services (LBS for short) providers require users' current locations to answer their location-based queries, e.g., range and nearest-neighbor queries. Revealing personal location information to potentially untrusted service providers could create privacy risks for users. To this end, our objective is to design a privacy-preserving…

  3. A detector interferometric calibration experiment for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-11-01

    Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.

  4. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  5. Multianode microchannel array detectors for Space Shuttle imaging applications

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.

  6. Are wildlife detector dogs or people better at finding Desert Tortoises (Gopherus agassizii)?

    USGS Publications Warehouse

    Nussear, K.E.; Esque, T.C.; Heaton, J.S.; Cablk, Mary E.; Drake, K.K.; Valentin, C.; Yee, J.L.; Medica, P.A.

    2008-01-01

    Our ability to study threatened and endangered species depends on locating them readily in the field. Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii) are cryptic and difficult to detect during surveys, especially the smaller size classes. We conducted comparative surveys to determine whether human or detector dog teams were more effective at locating Desert Tortoises in the wild. We compared detectability of Desert Tortoises and the costs to deploy human and dog search teams. Detectability of tortoises was not statistically different for either team, and was estimated to be approximately 70% (SE = 5%). Dogs found a greater proportion of tortoises located in vegetation than did humans. The dog teams finished surveys 2.5 hours faster than the humans on average each day. The human team cost was approximately $3,000 less per square kilometer sampled. Dog teams provided a quick and effective method for surveying for adult Desert Tortoises; however, we were unable to determine-their effectiveness at locating smaller size classes. Detection of smaller size classes during surveys would improve management of the species and should be addressed by future research using Desert Tortoise detector dogs.

  7. FAST CHOPPER DETECTOR HOUSE, TRA665. FIRST FLOOR, PLAN AND SECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER DETECTOR HOUSE, TRA-665. FIRST FLOOR, PLAN AND SECTION, AS PROPOSED FOR MODIFICATION IN 1962. CONCRETE WALLS THREE FEET THICK. EXISTING WINDOWS IN MTR AND DETECTOR HOUSE WALLS WERE TO BE FILLED IN WITH HIGH-DENSITY BRICK. NOTE 20-METER MARK, WHERE THE FAST CHOPPER DETECTOR HAD BEEN LOCATED. F.C. TORKELSON 842-MTR-665-S-2, 4/1962. INL INDEX NO. 531-0665-60-851-150996, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Optical inspection system for cylindrical objects

    DOEpatents

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  9. Tracking Detector Performance and Data Quality in the NOvA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Biswaranjan

    NOvA is a long-baseline neutrino oscillation experiment. It uses the NuMI beam from Fermilab and two sampling calorimeter detectors located off-axis from the beam. The NOvA experiment measures the rate of electron-neutrino appearance in the almost pure muon-neutrino NuMI beam, with the data measured at the Near Detector being used to accurately determine the expected rate at the Far Detector. It is very important to have automated and accurate monitoring of the data recorded by the detectors so any hardware, DAQ or beam issues arising in the 344k (20k) channels of the Far (Near) detector which could affect the qualitymore » of the data taking are determined. This paper will cover the techniques and detector monitoring systems in various stages of data taking.« less

  10. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  11. Positional calibrations of the germanium double sided strip detectors for the Compton spectrometer and imager

    NASA Astrophysics Data System (ADS)

    Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.

    2016-08-01

    The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.

  12. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  13. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  14. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  15. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  16. Calibration methods for explosives detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Stephen J.; Rounbehler, David P.

    1992-05-01

    Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.

  17. A comparative study of FDG PET/CT and enhanced multi-detector CT for detecting liver metastasis according to the size and location.

    PubMed

    Park, Jung Mi; Kim, Il Young; Kim, Sang Won; Lee, Sang Mi; Kim, Hyun Gi; Kim, Shin Young; Shin, Hyung Chul

    2013-04-01

    The aim of this study was to compare the diagnosability between (18)F-fluorodeoxyglucose (FDG) PET/CT and enhanced multi-detector CT (MDCT) for the detection of liver metastasis (LM) according to the size and location in liver and to evaluate standard maximum standardized uptake values (SUVmax) of all liver metastatic lesions. One hundred two consecutive patients with malignancy who underwent both FDG PET/CT and MDCT for LM evaluation were retrospectively reviewed. Among them, 56 patients with LM were enrolled in this study. LM was confirmed by follow-up imaging studies after at least 6 months or by histopathology. FDG PET/CT and MDCT images were visually analyzed using three-point scale by the consensus of two radiologists and two nuclear medicine physicians. The size and location (central vs. sub-capsular) of the all liver lesions were evaluated using MDCT images. Furthermore, SUVmax of all liver lesions on FDG PET/CT images were calculated. A total of 146 liver lesions were detected by FDG PET/CT and MDCT and 142 of the lesions were diagnosed as LM. The detection rates of MDCT and FDG PET/CT for LM by visual analysis were 77 and 78%, respectively. There was no significant difference of detection rate according to the overall location and size of the lesions. However, FDG PET/CT was more sensitive than MDCT for detecting small and sub-capsular LM. The detection rate of FDG PET/CT for LM was 68% by the cutoff SUVmax of 2.7. Although the diagnosabilities of MDCT and FDG PET/CT for detecting LM were comparable, FDG PET/CT is superior to MDCT for detecting small LM located in the sub-capsular portion of liver.

  18. Next generation gamma-ray Cherenkov detectors for the National Ignition Facility.

    PubMed

    Herrmann, H W; Kim, Y H; McEvoy, A M; Zylstra, A B; Young, C S; Lopez, F E; Griego, J R; Fatherley, V E; Oertel, J A; Stoeffl, W; Khater, H; Hernandez, J E; Carpenter, A; Rubery, M S; Horsfield, C J; Gales, S; Leatherland, A; Hilsabeck, T; Kilkenny, J D; Malone, R M; Hares, J D; Milnes, J; Shmayda, W T; Stoeckl, C; Batha, S H

    2016-11-01

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.

  19. Improved intersection operations during detector failures.

    DOT National Transportation Integrated Search

    2010-03-01

    The objective of this project was to develop three modules that would improve the efficiency of : intersection operations at isolated signalized intersections. The motivation for these modules was to use the : existing detectors more efficiently. Thi...

  20. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    PubMed Central

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  1. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  2. Small object transporter. [Patent: for objects 0. 01 to 2. 00 mm dia

    DOEpatents

    Winkler, M.A.

    1980-05-21

    The disclosure relates to a small object transporter. Gas is passed through a conduit having a venturi. Small objects are picked up at a first location by a pickup tube in communication with the venturi and are forced out one end of the conduit at a desired second location.

  3. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  4. The locator system for wandering individuals

    NASA Technical Reports Server (NTRS)

    Davidson, Shayla

    1992-01-01

    Configurations and operation strategies are described for a wanderer locator system based on wireless radio frequency communication designed to monitor elderly patients who may wander beyond safe perimeters in the home or in an institutional setting. The modular components of this wandering notification system are (1) portable transmitter/receivers to be worn or carried by the patient and the caretaker, (2) detectors to be mounted in doorways or other perimeters of a safe area, (3) programmable central processing units to control, communicate with, and/or trace the portable and remote devices, and (4) a cathode ray tube that can display information on patient location or system status. Photographs of all system components and illustrations of operations concepts are included.

  5. Prosthetic metal implants and airport metal detectors

    PubMed Central

    Dancey, A; Titley, OG

    2013-01-01

    Introduction Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. Methods A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. Results No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Conclusions Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination. PMID:23827294

  6. Reconstructing Michel Electrons in the MicroBooNE Detector

    NASA Astrophysics Data System (ADS)

    Caratelli, David

    2016-03-01

    MicroBooNE is a Liquid Argon Time Projection Chamber (LArTPC) neutrino detector located in the Booster Neutrino Beamline at Fermilab which began collecting neutrino data in October 2015. MicroBooNE aims to explore the low-energy excess in the νe spectrum reported by MiniBooNE as well as perform ν-Ar cross-section measurements. In this talk, we present the current status of reconstructing Michel electrons from cosmic ray muons in the MicroBooNE detector. These Michel electrons are distributed uniformly inside the detector, and serve as a natural and powerful calibration source to study the detector's response for low energy (10s of MeV) interactions as a function of position. We have developed a reconstruction software tool to successfully identify such Michel electrons which could be of benefit to LArTPC experiments generically.

  7. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  8. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the originalmore » 1.5-MVp value.« less

  9. Characterization of ferromagnetic or conductive properties of metallic foreign objects embedded within the human body with magnetic iron detector (MID): Screening patients for MRI.

    PubMed

    Gianesin, Barbara; Zefiro, Daniele; Paparo, Francesco; Caminata, Alessio; Balocco, Manuela; Carrara, Paola; Quintino, Sabrina; Pinto, Valeria; Bacigalupo, Lorenzo; Rollandi, Gian Andrea; Marinelli, Mauro; Forni, Gian Luca

    2015-05-01

    A preliminary assessment of the MRI-compatibility of metallic object possibly embedded within the patient is required before conducting the MRI examination. The Magnetic Iron Detector (MID) is a highly sensitive susceptometer that uses a weak magnetic field to measure iron overload in the liver. MID might be used to perform a screening procedure for MRI by determining the ferromagnetic/conductive properties of embedded metallic objects. The study was composed by: (i) definition of MID sensitivity threshold; (ii) application of MID in a procedure to characterize the ferromagnetic/conductive properties of metallic foreign objects in 958 patients scheduled for MID examination. The detection threshold for ferromagnetic objects was found to be the equivalent of a piece of wire of length 2 mm and gauge 0.8 mm(2) and, representing purely conductive objects, an aluminum sheet of area 2 × 2 cm(2) . Of 958 patients, 165 had foreign bodies of unknown nature. MID was able to detect those with ferromagnetic and/or conducting properties based on fluctuations in the magnetic and eddy current signals versus control. The high sensitivity of MID makes it suitable for assessing the ferromagnetic/conductive properties of metallic foreign objects embedded within the body of patients scheduled for MRI. © 2015 Wiley Periodicals, Inc.

  10. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  11. Tracking Detectors in the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  12. Neutron resonance spectroscopy for the characterization of materials and objects

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Borella, A.; Emiliani, F.; Gorini, G.; Kockelmann, W.; Kopecky, S.; Lampoudis, C.; Moxon, M.; Perelli Cippo, E.; Postma, H.; Rhodes, N. J.; Schooneveld, E. M.; Van Beveren, C.

    2012-03-01

    The resonance structure in neutron induced reaction cross sections can be used to determine the elemental compositions of materials or objects. The occurrence of resonances is the basis of neutron resonance capture analysis (NRCA) and neutron resonance transmission analysis (NRTA). NRCA and NRTA are fully non-destructive methods to determine the bulk elemental composition without the need of any sample preparation and resulting in a negligible residual activity. They have been applied to determine the elemental composition of archaeological objects and to characterize reference materials used for cross section measurements. For imaging applications a position sensitive neutron detector has been developed within the ANCIENT CHARM project. The detector is based on a 10 × 10 array of 6Li-glass scintillators mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm2 active area. The detector has been tested at the time-of-flight facility GELINA and used at the ISIS spallation source to study cultural heritage objects.

  13. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  14. Development of a detector model for generation of synthetic radiographs of cargo containers

    NASA Astrophysics Data System (ADS)

    White, Timothy A.; Bredt, Ofelia P.; Schweppe, John E.; Runkle, Robert C.

    2008-05-01

    Creation of synthetic cargo-container radiographs that possess attributes of their empirical counterparts requires accurate models of the imaging-system response. Synthetic radiographs serve as surrogate data in studies aimed at determining system effectiveness for detecting target objects when it is impractical to collect a large set of empirical radiographs. In the case where a detailed understanding of the detector system is available, an accurate detector model can be derived from first-principles. In the absence of this detail, it is necessary to derive empirical models of the imaging-system response from radiographs of well-characterized objects. Such a case is the topic of this work, where we demonstrate the development of an empirical model of a gamma-ray radiography system with the intent of creating a detector-response model that translates uncollided photon transport calculations into realistic synthetic radiographs. The detector-response model is calibrated to field measurements of well-characterized objects thus incorporating properties such as system sensitivity, spatial resolution, contrast and noise.

  15. The Belle II software—From detector signals to physics results

    NASA Astrophysics Data System (ADS)

    Kuhr, T.

    2017-07-01

    The construction of the Belle II detector is being completed and the focus shifts towards the reconstruction of higher level objects from the detector signals with the aim to search for new physics effects in huge data samples. The software is providing the connection between detector hardware and physics analyses. This article describes the development infrastructure and main components of the Belle II software which are essential for the success of the Belle II physics program.

  16. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  17. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  18. A lunar-based detector to search for relic supernovae antineutrinos

    NASA Astrophysics Data System (ADS)

    Mann, A. K.; Zhang, W.

    1990-03-01

    Observations of the relic supernovae antineutrino flux are argued to be possible near the lowest theoretical estimates of the flux by means of a suitable detector located on the moon. The status of the search for the relic flux is discussed with illustrations of the data obtained by terrestrial searches. The detector concept is described, and the advantages are found to include the fact that a lunar detector would not detect the electron-type antineutrinos related to nuclear reactors. Similarly, the lunar detector would not be affected by the flux of neutrinos and antineutrinos generated by the cosmic-ray proton flux in the atmosphere. The relative abundance of radioisotopes on the moon is similar to that found on earth, so that the background lunar radioactivity would have little effect on the detection of antineutrinos.

  19. Tests and calibration of NIF neutron time of flight detectors.

    PubMed

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  20. Intrinsic and contextual features in object recognition.

    PubMed

    Schlangen, Derrick; Barenholtz, Elan

    2015-01-28

    The context in which an object is found can facilitate its recognition. Yet, it is not known how effective this contextual information is relative to the object's intrinsic visual features, such as color and shape. To address this, we performed four experiments using rendered scenes with novel objects. In each experiment, participants first performed a visual search task, searching for a uniquely shaped target object whose color and location within the scene was experimentally manipulated. We then tested participants' tendency to use their knowledge of the location and color information in an identification task when the objects' images were degraded due to blurring, thus eliminating the shape information. In Experiment 1, we found that, in the absence of any diagnostic intrinsic features, participants identified objects based purely on their locations within the scene. In Experiment 2, we found that participants combined an intrinsic feature, color, with contextual location in order to uniquely specify an object. In Experiment 3, we found that when an object's color and location information were in conflict, participants identified the object using both sources of information equally. Finally, in Experiment 4, we found that participants used whichever source of information-either color or location-was more statistically reliable in order to identify the target object. Overall, these experiments show that the context in which objects are found can play as important a role as intrinsic features in identifying the objects. © 2015 ARVO.

  1. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  2. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  3. Detector Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)

    2003-01-01

    Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.

  4. Numerical analysis of three-colour HgCdTe detectors

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, K.; Rogalski, A.

    2007-12-01

    The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.

  5. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  6. Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR

    NASA Astrophysics Data System (ADS)

    Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram

    2017-08-01

    Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.

  7. Background levels in the Borexino detector

    NASA Astrophysics Data System (ADS)

    D'Angelo, Davide; Wurm, Michael; Borexino Collaboration

    2008-11-01

    The Borexino detector, designed and constructed for sub-MeV solar neutrino spectroscopy, is taking data at the Gran Sasso Laboratory, Italy; since May 2007. The main physics objective of Borexino, based on elastic scattering of neutrinos in organic liquid scintillator, is the real time flux measurement of the 862keV mono-energetic neutrinos from 7Be, which set extremely severe radio-purity requirements in the detector's design and handling. The first year of continous data taking provide now evidence of the extremely low background levels achieved in the construction of the detector and in the purification of the target mass. Several pieces of analysis sense the presence of radioisotopes of the 238U and 232Th chains, of 85Kr and of 210Po out of equilibrium from other Radon daughters. Particular emphasis is given to the detection of the cosmic muon background whose angular distributions have been obtained with the outer detector tracking algorithm and to the possibility of tagging the muon-induced neutron background in the scintillator with the recently enhanced electronics setup.

  8. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  9. A wireless sensor network-based portable vehicle detector evaluation system.

    PubMed

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  10. Next Generation Gamma-Ray Cherenkov Detectors for the National Ignition Facility

    DOE PAGES

    Herrmann, Hans W.; Kim, Yong Ho; McEvoy, Aaron Matthew; ...

    2016-10-19

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3more » will inform the design of a heavily-shielded “Super” GCD to be located as close as 20 cm from TCC. In conclusion, it will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ~100 ps state-of-the-art photomultiplier tubes (PMT) to ~10 ps Pulse Dilation PMT technology currently under development.« less

  11. How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking

    PubMed Central

    Thomas, Laura E.; Seiffert, Adriane E.

    2011-01-01

    Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259

  12. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  13. Sample Selection for Training Cascade Detectors.

    PubMed

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  14. A study of the material in the ATLAS inner detector using secondary hadronic interactions

    DOE PAGES

    None, None

    2012-01-13

    The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such asmore » tracks, leptons, jets, and missing transverse momentum.« less

  15. What's the object of object working memory in infancy? Unraveling 'what' and 'how many'.

    PubMed

    Kibbe, Melissa M; Leslie, Alan M

    2013-06-01

    Infants have a bandwidth-limited object working memory (WM) that can both individuate and identify objects in a scene, (answering 'how many?' or 'what?', respectively). Studies of infants' WM for objects have typically looked for limits on either 'how many' or 'what', yielding different estimates of infant capacity. Infants can keep track of about three individuals (regardless of identity), but appear to be much more limited in the number of specific identities they can recall. Why are the limits on 'how many' and 'what' different? Are the limits entirely separate, do they interact, or are they simply two different aspects of the same underlying limit? We sought to unravel these limits in a series of experiments which tested 9- and 12-month-olds' WM for object identities under varying degrees of difficulty. In a violation-of-expectation looking-time task, we hid objects one at a time behind separate screens, and then probed infants' WM for the shape identity of the penultimate object in the sequence. We manipulated the difficulty of the task by varying both the number of objects in hiding locations and the number of means by which infants could detect a shape change to the probed object. We found that 9-month-olds' WM for identities was limited by the number of hiding locations: when the probed object was one of two objects hidden (one in each of two locations), 9-month-olds succeeded, and they did so even though they were given only one means to detect the change. However, when the probed object was one of three objects hidden (one in each of three locations), they failed, even when they were given two means to detect the shape change. Twelve-month-olds, by contrast, succeeded at the most difficult task level. Results show that WM for 'how many' and for 'what' are not entirely separate. Individuated objects are tracked relatively cheaply. Maintaining bindings between indexed objects and identifying featural information incurs a greater attentional/memory cost

  16. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  17. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  18. Target-based optimization of advanced gravitational-wave detector network operations

    NASA Astrophysics Data System (ADS)

    Szölgyén, Á.; Dálya, G.; Gondán, L.; Raffai, P.

    2017-04-01

    We introduce two novel time-dependent figures of merit for both online and offline optimizations of advanced gravitational-wave (GW) detector network operations with respect to (i) detecting continuous signals from known source locations and (ii) detecting GWs of neutron star binary coalescences from known local galaxies, which thereby have the highest potential for electromagnetic counterpart detection. For each of these scientific goals, we characterize an N-detector network, and all its (N  -  1)-detector subnetworks, to identify subnetworks and individual detectors (key contributors) that contribute the most to achieving the scientific goal. Our results show that aLIGO-Hanford is expected to be the key contributor in 2017 to the goal of detecting GWs from the Crab pulsar within the network of LIGO and Virgo detectors. For the same time period and for the same network, both LIGO detectors are key contributors to the goal of detecting GWs from the Vela pulsar, as well as to detecting signals from 10 high interest pulsars. Key contributors to detecting continuous GWs from the Galactic Center can only be identified for finite time intervals within each sidereal day with either the 3-detector network of the LIGO and Virgo detectors in 2017, or the 4-detector network of the LIGO, Virgo, and KAGRA detectors in 2019-2020. Characterization of the LIGO-Virgo detectors with respect to goal (ii) identified the two LIGO detectors as key contributors. Additionally, for all analyses, we identify time periods within a day when lock losses or scheduled service operations could result with the least amount of signal-to-noise or transient detection probability loss for a detector network.

  19. Attentional Spreading in Object-Based Attention

    ERIC Educational Resources Information Center

    Richard, Ashleigh M.; Lee, Hyunkyu; Vecera, Shaun P.

    2008-01-01

    The authors investigated 2 effects of object-based attention: the spread of attention within an attended object and the prioritization of search across possible target locations within an attended object. Participants performed a flanker task in which the location of the task-relevant target was fixed and known to participants. A spreading…

  20. Visual awareness of objects and their colour.

    PubMed

    Pilling, Michael; Gellatly, Angus

    2011-10-01

    At any given moment, our awareness of what we 'see' before us seems to be rather limited. If, for instance, a display containing multiple objects is shown (red or green disks), when one object is suddenly covered at random, observers are often little better than chance in reporting about its colour (Wolfe, Reinecke, & Brawn, Visual Cognition, 14, 749-780, 2006). We tested whether, when object attributes (such as colour) are unknown, observers still retain any knowledge of the presence of that object at a display location. Experiments 1-3 involved a task requiring two-alternative (yes/no) responses about the presence or absence of a colour-defined object at a probed location. On this task, if participants knew about the presence of an object at a location, responses indicated that they also knew about its colour. A fourth experiment presented the same displays but required a three-alternative response. This task did result in a data pattern consistent with participants' knowing more about the locations of objects within a display than about their individual colours. However, this location advantage, while highly significant, was rather small in magnitude. Results are compared with those of Huang (Journal of Vision, 10(10, Art. 24), 1-17, 2010), who also reported an advantage for object locations, but under quite different task conditions.

  1. Performance of the STAR Event Plane Detector

    NASA Astrophysics Data System (ADS)

    Ewigleben, Justin; Justin Ewigleben Collaboration

    2017-09-01

    The Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider has shown hints of a critical point and first order phase transition at the BES energies. Key measurements for locating the critical point and determining the first order phase transition are limited by poor event plane resolution, limited statistics and a TPC-only centrality determination. A new event plane and collision centrality detector (EPD) is planned to replace the existing detector, the Beam-Beam Counter (BBC), with higher granularity and acceptance. The design of the EPD consists of two scintillator discs at z = +/- 3.75m from the center of STAR, covering 2.2 < η < 5.1. One quarter of a single disc was installed in STAR for the 2017 run for commissioning. In this talk we will discuss the detector performance during this commissioning run in both proton-proton collisions at √{ s = 510 } GeV and Au-Au collisions at √{sNN = 54.4 } GeV. NSF Grant 1614474.

  2. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, Wigbert

    1987-01-01

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  3. Bi-objective approach for placing ground and air ambulance base and helipad locations in order to optimize EMS response.

    PubMed

    Shahriari, Milad; Bozorgi-Amiri, Ali; Tavakoli, Shayan; Yousefi-Babadi, Abolghasem

    2017-12-01

    Shortening the travel time of patient transfer has clinical implications for many conditions such as cardiac arrest, trauma, stroke and STEMI. As resources are often limited precise calculations are needed. In this paper we consider the location problem for both ground and aerial emergency medical services. Given the uncertainty of when patients are in need of prompt medical attention we consider these demand points to be uncertain. We consider various ways in which ground and helicopter ambulances can work together to make the whole process go faster. We develop a mathematical model that minimizes travel time and maximizes service level. We use a compromising programming method to solve this bi-objective mathematical model. For numerical experiments we apply our model to a case study in Lorestan, Iran, using geographical and population data, and the location of the actual hospital based in the capital of the province. Results show that low-accessibility locations are the main focus of the proposed problem and with mathematical modeling access to a hospital is vastly improved. We also found out that once the budget reaches a certain point which suffices for building certain ambulance bases more investments does not necessarily result in less travel time. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Future Long-Baseline Neutrino Facilities and Detectors

    DOE PAGES

    Diwan, Milind; Edgecock, Rob; Hasegawa, Takuya; ...

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development ofmore » theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.« less

  5. Investigation of three-dimensional localisation of radioactive sources using a fast organic liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2013-04-01

    In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.

  6. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  7. Realization of the electrical Sentinel 4 detector integration

    NASA Astrophysics Data System (ADS)

    Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.

    2017-09-01

    The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and

  8. Vacuum-Ultraviolet Photovoltaic Detector.

    PubMed

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  9. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  10. Coding Location: The View from Toddler Studies

    ERIC Educational Resources Information Center

    Huttenlocher, Janellen

    2008-01-01

    The ability to locate objects in the environment is adaptively important for mobile organisms. Research on location coding reveals that even toddlers have considerable spatial skill. Important information has been obtained using a disorientation task in which children watch a target object being hidden and are then blindfolded and rotated so they…

  11. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  12. The Antecedents, Objects, and Consequents of User Trust in Location-Based Social Networks

    ERIC Educational Resources Information Center

    Russo, Paul

    2012-01-01

    Online social networks provide rich opportunities to interact with friends and other online community members. At the same time, the addition of emerging location-sharing technologies--which broadcast a user's location online, including who they are with and what is happening nearby--is creating new dimensions to the types of interactions…

  13. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  14. Methods and strategies of object localization

    NASA Technical Reports Server (NTRS)

    Shao, Lejun; Volz, Richard A.

    1989-01-01

    An important property of an intelligent robot is to be able to determine the location of an object in 3-D space. A general object localization system structure is proposed, some important issues on localization discussed, and an overview given for current available object localization algorithms and systems. The algorithms reviewed are characterized by their feature extracting and matching strategies; the range finding methods; the types of locatable objects; and the mathematical formulating methods.

  15. Locating an Imaging Radar in Canada for Identifying Spaceborne Objects

    DTIC Science & Technology

    1992-12-01

    of residents. Daskin (11:48) extended that model to account for the chance that when a demand arrives at the system it will not be covered since all...Journal of Operational Research, 50: 280-297 (February 1991). 11. Daskin , Mark S. " A Maximum Expected Covering Location Model: Formulation...continue with this thesis-, and Dr. William Wiesel for his instruction and help in developing a satellite coordinate frame and understanding the mechanics

  16. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks.

    PubMed

    Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui

    2013-07-01

    Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Search for supernova neutrino bursts with the AMANDA detector

    NASA Astrophysics Data System (ADS)

    Ahrens, J.; Bai, X.; Barouch, G.; Barwick, S. W.; Bay, R. C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Boyce, M. M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C. G. S.; Cowen, D. F.; Dalberg, E.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjö, J.; Ekström, P.; Feser, T.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hellwig, M.; Heukenkamp, H.; Hill, G. C.; Hulth, P. O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Köpke, L.; Kowalski, M.; Lamoureux, J. I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D. M.; Madsen, J.; Marciniewski, P.; Matis, H. S.; Miller, T. C.; Minaeva, Y.; Miočinović, P.; Mock, P. C.; Morse, R.; Neunhöffer, T.; Niessen, P.; Nygren, D. R.; Ogelman, H.; Pérez de los Heros, C.; Porrata, R.; Price, P. B.; Rawlins, K.; Reed, C.; Rhode, W.; Richter, S.; Rodríguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G. M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R. G.; Streicher, O.; Sudhoff, P.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C. H.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-02-01

    The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons ν¯e+ p→ e++ n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.

  18. Enhanced numerical analysis of three-color HgCdTe detectors

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, K.; Rogalski, A.

    2007-04-01

    The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.

  19. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, W.

    1985-02-04

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  20. A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification

    NASA Technical Reports Server (NTRS)

    Fries, K. L.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.

  1. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, V.; Chirac, T.; Lasserre, T., E-mail: vincent.fischer@cea.fr, E-mail: tchirac@gmail.fr, E-mail: thierry.lasserre@cea.fr

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generationmore » of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.« less

  2. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  3. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  4. The Location of the CO2, Fundamental in Clathrate Hydrates and its Application to Infrared Spectra of Icy Solar System Objects

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Mastrapa, R. M. E.; Bernstein, M. P.; Cruikshank, D. P.

    2006-01-01

    CO2 is present on the surface of many Solar System objects, but not always as a segregated, pure ice. In pure CO2-ice, the fundamental absorption is located near 4.268 micron (2343.3 wavenumbers). However, on several objects, the CO2 fundamental is shifted to higher frequency. This shift may be produced by CO2 gas trapped in another material, or adsorbed onto minerals. We have seen that a mixture of H2O, CH3OH4 and CO2 forms a type II clathrate when heated to 125 K and produces a CO2 fundamental near 4.26 micron. The exact location of the feature is strongly dependent on the initial ratio of the three components. We are currently exploring various starting ratios relevant to the Solar System to determine the minimum amount of CH3OH needed to convert all of the CO2 to the clathrate, i.e. eliminate the splitting of the CO2 fundamental. We are testing the stability of the clathrate to thermal processing and UV photolysis, and documenting the changes seen in the spectra in the wavelength range from 1-5 micron. We acknowledge financial support from the Origins of Solar Systems Program, the Planetary Geology and Geophysics and the NASA Postdoctoral Program.

  5. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  6. Hubble Space Telescope, Faint Object Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  7. Characterization and Analysis of InGaAsSb Detectors

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Joshi, Ravindra P.; Sulima, Oleg V.; Mauk, Michael; Singh, Upendra N.

    2003-01-01

    Profiling of atmospheric CO2 at 2 micron wavelength using the LIDAR technique, has recently gained interest. Although several detectors might be suitable for this application, an ideal device would have high gain, low noise and narrow spectral response peaking around the wavelength of interest. This increases the detector signal-to-noise ratio and minimizes the background signal, thereby increasing the device sensitivity and dynamic range. Detectors meeting the above idealized criteria are commercially unavailable for this particular wavelength. In this paper, the characterization and analysis of Sb-based detectors for 2 micron lidar applications are presented. The detectors were manufactured by AstroPower, Inc., with an InGaAsSb absorbing layer and AlGaAsSb passivating layer. The characterization experiments included spectral response, current versus voltage and noise measurements. The effect of the detectors bias voltage and temperature on its performance, have been investigated as well. The detectors peak responsivity is located at the 2 micron wavelength. Comparing three detector samples, an optimization of the spectral response around the 2 micron wavelength, through a narrower spectral period was observed. Increasing the detector bias voltage enhances the device gain at the narrow spectral range, while cooling the device reduces the cut-off wavelength and lowers its noise. Noise-equivalent-power analysis results in a value as low as 4 x 10(exp -12) W/Hz(exp 1/2) corresponding to D* of 1 x 10(exp 10) cmHz(exp 1/2)/W, at -1 V and 20 C. Discussions also include device operational physics and optimization guidelines, taking into account peculiarity of the Type II heterointerface and transport mechanisms under these conditions.

  8. S-CNN: Subcategory-aware convolutional networks for object detection.

    PubMed

    Chen, Tao; Lu, Shijian; Fan, Jiayuan

    2017-09-26

    The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.

  9. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  10. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  11. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  12. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  13. Self-motion impairs multiple-object tracking.

    PubMed

    Thomas, Laura E; Seiffert, Adriane E

    2010-10-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.

  14. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  15. A three-dimensional object orientation detector assisting people with developmental disabilities to control their environmental stimulation through simple occupational activities with a Nintendo Wii Remote Controller.

    PubMed

    Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang

    2012-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program, which turns a Wii Remote Controller into a three-dimensional object orientation detector). An ABAB design, in which A represented the baseline and B represented intervention phases, was adopted in this study. The data shows that the performance of both participants has significantly increased (i.e. they perform more simple occupational activities to activate the control system to produce environmental stimulation) during the intervention phases. The practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Array Detector Modules for Spent Fuel Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Aleksey

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  17. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  18. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1-42 in mice novel object and object location recognition tasks.

    PubMed

    Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R

    2015-09-01

    Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  20. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    NASA Astrophysics Data System (ADS)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  1. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ 13 and the effective mass splitting Δm 2 ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrummore » due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  2. Investigating the response of Micromegas detector to low-energy neutrons using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Khezripour, S.; Negarestani, A.; Rezaie, M. R.

    2017-08-01

    Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.

  3. Remote Imaging by Nanosecond Terahertz Spectrometer with Standoff Detector

    NASA Astrophysics Data System (ADS)

    Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.

    2018-01-01

    Creation and application of the remote imaging spectrometer based on high power nanosecond terahertz source with standoff detector is reported. 2D transmission images of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection images of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).

  4. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  5. Intelligent detectors modelled from the cat's eye

    NASA Astrophysics Data System (ADS)

    Lindblad, Th.; Becanovic, V.; Lindsey, C. S.; Szekely, G.

    1997-02-01

    Biologically inspired image/signal processing, in particular neural networks like the Pulse-Coupled Neural Network (PCNN), are revisited. Their use with high granularity high-energy physics detectors, as well as optical sensing devices, for filtering, de-noising, segmentation, object isolation and edge detection is discussed.

  6. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  7. Location of laccase in ordered mesoporous materials

    NASA Astrophysics Data System (ADS)

    Mayoral, Álvaro; Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (Cs) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  8. Performance characterization of the EarthCARE BBR Detectors

    NASA Astrophysics Data System (ADS)

    Proulx, C.; Allard, M.; Pope, T.; Tremblay, B.; Williamson, F.; Julien, C.; Larouche, C.; Delderfield, J.; Parker, D.

    2017-11-01

    The Broadband Radiometer (BBR) is an instrument being developed for the ESA EarthCARE satellite. The BBR instrument objective is to provide measurements of the reflected short-wave (0.25-4.0 μm) and emitted long-wave (4.0-50 μm) top of the atmosphere (TOA) radiance over three along-track views (forward, nadir and backward). The instrument has three fixed telescopes, one for each view, each containing a broadband detector. The BBR instrument is led by SEA in the UK with RAL responsible for the BBR optics unit (OU) while EADS Astrium is the EarthCARE prime contractor. A detailed description of the instrument is provided in [1]. The BBR detectors consist in three dedicated assemblies under the responsibility of INO. The detectors development started in 2008 and led to the design and implementation of a new gold black deposition facility at INO [2], in parallel with the preliminary and detailed design phases of the detector assemblies. As of today, two breadboard models and one engineering model have been delivered to RAL. In the BBR OU each detector mechanically interfaces with the telescope and electrically with the front-end electronics (FEE). The detectors' development is now at the Critical Design Review (CDR) level. This paper first provides a description of the detector design along with its principles of operation. It further presents and discusses measurement and analysis results for the performance characterization of the engineering model in the context of the applicable requirements. Detector-level qualification planning is finally discussed.

  9. Simulation of the CRIPT Detector

    DTIC Science & Technology

    2015-03-01

    National Defence, 2015 c© Sa Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2015 Abstract The...iron slabs of the spectrometer. The red plates are the panels containing the scintillator bars. 3 3 Monte Carlo Geometry The geometry of the detector is...instead of hollow), • parts were in wrong location (eg. spectrometer iron plates). To fix this, Computer Aided Design ( CAD ) drawings were provided for

  10. Systematic identification of high crash locations

    DOT National Transportation Integrated Search

    2001-05-01

    The objective of this project is to develop tools and procedures by which Iowa engineers can identify potentially hazardous roadway locations and designs, and to demonstrate the utility of these tools by developing candidate lists of high crash locat...

  11. Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.

  12. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    PubMed

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.

  13. Multi-energy x-ray detectors to improve air-cargo security

    NASA Astrophysics Data System (ADS)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  14. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  15. If it's not there, where is it? Locating illusory conjunctions.

    PubMed

    Hazeltine, R E; Prinzmetal, W; Elliott, W

    1997-02-01

    There is evidence that complex objects are decomposed by the visual system into features, such as shape and color. Consistent with this theory is the phenomenon of illusory conjunctions, which occur when features are incorrectly combined to form an illusory object. We analyzed the perceived location of illusory conjunctions to study the roles of color and shape in the location of visual objects. In Experiments 1 and 2, participants located illusory conjunctions about halfway between the veridical locations of the component features. Experiment 3 showed that the distribution of perceived locations was not the mixture of two distributions centered at the 2 feature locations. Experiment 4 replicated these results with an identification task rather than a detection task. We concluded that the locations of illusory conjunctions were not arbitrary but were determined by both constituent shape and color.

  16. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, J. C.; Barbosa, A. F.; Lima, H. P. Jr.

    2010-03-30

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in amore » first step, to use the measured neutrino event rate to monitor the on--off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.« less

  17. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Barbosa, A. F.; Bezerra, T. J. C.; Chimenti, P.; Gonzalez, L. F. G.; Kemp, E.; de Oliveira, M. A. Leigui; Lima, H. P.; Lima, R. M.; Nunokawa, H.

    2010-03-01

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on—off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  18. Detector Noise Characterization and Performance of MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.; Chen, N.; Chiang, K.; Xiong, S.; Wenny, B.; Barnes, W. L.

    2007-01-01

    MODIS has 16 thermal emissive bands, a total of 160 individual detectors (10 for each spectral bands), located on the two cold focal plane assemblies (CFPA). MODIS TEB detectors were fully characterized pre-launch in a thermal vacuum (TV) environment using a NIST traceable blackbody calibration source (BCS) with temperatures ranging from 170 to 340K. On-orbit the TEB detectors are calibrated using an on-board blackbody (BB) on a scan-by-scan basis. For nominal on-orbit operation, the on-board BB temperature is typically controlled at 285K for Aqua MODIS and 290K for Terra MODIS. For the MODIS TEB calibration, each detector's noise equivalent temperature difference (NEdT) is often used to assess its performance and this parameter is a major contributor to the calibration uncertainty. Because of its impact on sensor calibration and data product quality, each MODIS TEB detector's NEdT is monitored on a daily basis at a fixed BB temperature and completely characterized on a regular basis at a number of BB temperatures. In this paper, we describe MODIS on-orbit TEB NEdT characterization activities, approaches, and results. We compare both pre-launch and on-orbit performance with sensor design specification and examine detector noise characterization impact on the calibration uncertainty. To date, 135 TEB detectors (out of a total of 160 detectors) in Terra MODIS (launched in December 1999) and 158 in Aqua MODIS (launched in May 2002) continue to perform with their NEdT below (or better than) their design specifications. A complete summary of all TEB noisy detectors, identified both pre-launch and on-orbit, is provided.

  19. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation.

    PubMed

    Butler, Duncan J; Beveridge, Toby; Lehmann, Joerg; Oliver, Christopher P; Stevenson, Andrew W; Livingstone, Jayde

    2018-02-01

    To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used. © 2017 Commonwealth of Australia. Medical Physics © 2017 American Association of Physicists in Medicine. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission. Requests and enquiries concerning reproduction and rights should be directed in the first instance to John Wiley & Sons Ltd of The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ UNITED KINGDOM; alternatively to ARPANSA.

  20. Current pulse amplifier transmits detector signals with minimum distortion and attenuation

    NASA Technical Reports Server (NTRS)

    Bush, N. E.

    1967-01-01

    Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.

  1. The Global Muon Detector Network -GMDN and the space situational awareness

    NASA Astrophysics Data System (ADS)

    Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank

    Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the

  2. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  3. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE PAGES

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  4. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  5. Location of laccase in ordered mesoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayoral, Álvaro; Gascón, Victoria; Blanco, Rosa M.

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  6. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  7. Laser scanning system for object monitoring

    DOEpatents

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  8. Object Orientation Affects Spatial Language Comprehension

    ERIC Educational Resources Information Center

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…

  9. Accurate electromagnetic modeling of terahertz detectors

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; McGrath, William R.

    2004-01-01

    Twin slot antennas coupled to superconducting devices have been developed over the years as single pixel detectors in the terahertz (THz) frequency range for space-based and astronomy applications. Used either for mixing or direct detection, they have been object of several investigations, and are currently being developed for several missions funded or co-funded by NASA. Although they have shown promising performance in terms of noise and sensitivity, so far they have usually also shown a considerable disagreement in terms of performance between calculations and measurements, especially when considering center frequency and bandwidth. In this paper we present a thorough and accurate electromagnetic model of complete detector and we compare the results of calculations with measurements. Starting from a model of the embedding circuit, the effect of all the other elements in the detector in the coupled power have been analyzed. An extensive variety of measured and calculated data, as presented in this paper, demonstrates the effectiveness and reliability of the electromagnetic model at frequencies between 600 GHz and 2.5THz.

  10. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  11. LWIR HgCdTe Detectors Grown on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.

    2008-09-01

    Long-wavelength infrared (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.

  12. Supernova Neutrino-Burst Search with the AMANDA Detector

    NASA Astrophysics Data System (ADS)

    Neunhöffer, T.; AMANDA Collaboration

    2001-08-01

    The neutrino telescope AMANDA located deep in the South Pole ice has been used to search for bursts of low energy neutrinos originating from supernova collapses. In the data sets taken during 1997 and 1998 with 302 of the detector's optical modules no candidate events were found. With this detector configuration 70% of the galaxy is covered with 90% efficiency allowing for one background fake per year. An upper limit at the 90% c.l. on the rate of star collapses in the Milky Way is derived, yielding 4.3 events per year. The new supernova readout system, which has been installed in 2000 and 2001, is discussed. With the full (19string) system we expect to cover 97% of our galaxy.

  13. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Dezalay, J.-P.; Houret, B.; Amoros, C.; Atteia, J.-L.; Aubaret, K.; Billot, M.; Bordon, S.; Cordier, B.; Delaigue, S.; Galliano, M.; Gevin, O.; Godet, O.; Gonzalez, F.; Guillemot, Ph.; Limousin, O.; Mercier, K.; Nasser, G.; Pons, R.; Rambaud, D.; Ramon, P.; Waegebaert, V.

    2016-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane. In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.

  14. Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

    NASA Astrophysics Data System (ADS)

    Antonova, M.; Asfandiyarov, R.; Bayes, R.; Benoit, P.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Chikuma, N.; Dudarev, A.; Ekelöf, T.; Favre, Y.; Fedotov, S.; Hallsjö, S.-P.; Izmaylov, A.; Karadzhov, Y.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Koga, T.; Kostin, A.; Kudenko, Y.; Likhacheva, V.; Martinez, B.; Matev, R.; Medvedeva, M.; Mefodiev, A.; Minamino, A.; Mineev, O.; Nessi, M.; Nicola, L.; Noah, E.; Ovsiannikova, T.; Pais Da Silva, H.; Parsa, S.; Rayner, M.; Rolando, G.; Shaykhiev, A.; Simion, P.; Soler, F. J. P.; Suvorov, S.; Tsenov, R.; Ten Kate, H.; Vankova-Kirilova, G.; Yershov, N.

    2017-07-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  15. Baby MIND: A Magnetized Segmented Neutrino Detector for the WAGASCI Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, M.; et al.

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) hasmore » been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.« less

  16. Gamifying Video Object Segmentation.

    PubMed

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  17. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  18. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  19. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    DOE PAGES

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear opticsmore » network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.« less

  20. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  1. How would GW150914 look with future gravitational wave detector networks?

    NASA Astrophysics Data System (ADS)

    Gaebel, S. M.; Veitch, J.

    2017-09-01

    The first detected gravitational wave signal, GW150914 (Abbott et al 2016 Phys. Rev. Lett. 116 061102), was produced by the coalescence of a stellar-mass binary black hole. Along with the subsequent detection of GW151226, GW170104 and the candidate event LVT151012, this gives us evidence for a population of black hole binaries with component masses in the tens of solar masses (Abbott et al 2016 Phys. Rev. X 6 041015). As detector sensitivity improves, this type of source is expected to make a large contribution to the overall number of detections, but has received little attention compared to binary neutron star systems in studies of projected network performance. We simulate the observation of a system like GW150914 with different proposed network configurations, and study the precision of parameter estimates, particularly source location, orientation and masses. We find that the improvements to low frequency sensitivity that are expected with continued commissioning (Abbott et al 2016 Living Rev. Relativ. 19 1) will improve the precision of chirp mass estimates by an order of magnitude, whereas the improvements in sky location and orientation are driven by the expanded network configuration. This demonstrates that both sensitivity and number of detectors will be important factors in the scientific potential of second generation detector networks.

  2. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    NASA Astrophysics Data System (ADS)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a

  3. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    NASA Astrophysics Data System (ADS)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  4. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    PubMed

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-10-08

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.

  5. Influence of local objects on hippocampal representations: landmark vectors and memory

    PubMed Central

    Deshmukh, Sachin S.; Knierim, James J.

    2013-01-01

    The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. Here, we demonstrate correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects. We describe a new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day’s recording sessions, in 8 cases the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. We also demonstrate object-location memory in the hippocampus. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object +place conjunctive memory; in other neurons the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal’s location and the location of objects in its environment. PMID:23447419

  6. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  7. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  8. The STIS MAMA status: Current detector performance

    NASA Technical Reports Server (NTRS)

    Danks, A. C.; Joseph, C.; Bybee, R.; Argebright, V.; Abraham, J.; Kimble, R.; Woodgate, B.

    1992-01-01

    The STIS (Space Telescope Imaging Spectrograph) is a second generation Hubble instrument scheduled to fly in 1997. Through a variety of modes, the instrument will provide spectral resolutions from R approximately 50 in the objective spectroscopy mode to 100,000 in the high resolution echelle mode in the wavelength region from 115 to 1000 nm. In the UV the instrument employs two MAMA (Multimode Anode Microchannel plate Arrays) 1024 by 1024 pixel detectors, which provide high DQE (Detective Quantum Efficiency), and good dynamic range and resolution. The current progress and performance of these detectors are reported, illustrating that the technology is mature and that the performance is very close to flight requirements.

  9. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  11. Bulk and surface event identification in p-type germanium detectors

    NASA Astrophysics Data System (ADS)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  12. Reducing the spatial resolution range of neutron radiographs cast by thick objects

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2017-11-01

    The quality of a neutron radiograph is strongly dependent upon the features of the acquisition system. Most of them, such as detector resolution, electronic noise and statistical fluctuation can hardly be improved. Yet, a main parameter ruling the image spatial resolution, namely the L/D ratio of the system can be increased simply by lengthening the source-detector clearance. Such an option eventually may not be feasible due to neutron flux decreasing or engineering constraints. Under this circumstance, a radiograph improvement is only possible by some kind of after-acquisition procedure capable to retrieve, at least partially, the information concealed by the degradation process. Since the spoiling agent tied to the L/D has a systematic character, its impact can be reduced by an unfolding procedure such as Richardson-Lucy algorithm. However, that agent should be fully characterized and furnished to the algorithm as a Point Spread Function - PSF unfolding function. A main drawback of unfolding algorithms like Richardson-Lucy is that the PSF should be fixed, i.e., it assumes a certain constant image spatial resolution, rather than a variable one as actually occurs for thick objects. This work presents a methodology to minimize this difficulty by making all planes of the inspected object to cast a resolution within the shorter gap comprised between the object central plane and the detector. The image can then be unfolded with a lower resolution within a tighter range, yielding a better quality. The process is performed with two radiographs, where one of them is acquired with the object turned by 180° on its vertical axis with regard to the other. After a mirroring of one of them about its vertical axis, the images are added. As the resolution increases linearly with the object-detector gap, it would remain always lower than that of the central one. Therefore, the overall resolution of the composite radiograph is enhanced. A further improvement can then be achieved

  13. Newtonian noise and ambient ground motion for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.

    2012-06-01

    Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.

  14. Analysis of long-lived particle decays with the MATHUSLA detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, David; Peskin, Michael E.

    Here, the MATHUSLA detector is a simple large-volume tracking detector to be located on the surface above one of the general-purpose experiments at the Large Hadron Collider. This detector was proposed to detect exotic, neutral, long-lived particles that might be produced in high-energy proton-proton collisions. In this paper, we consider the use of the limited information that MATHULSA would provide on the decay products of the long-lived particle. For the case in which the long-lived particle is pair-produced in Higgs boson decays, we show that it is possible to measure the mass of this particle and determine the dominant decaymore » mode with less than 100 observed events. We discuss the ability of MATHUSLA to distinguish the production mode of the long-lived particle and to determine its mass and spin in more general cases.« less

  15. Analysis of long-lived particle decays with the MATHUSLA detector

    DOE PAGES

    Curtin, David; Peskin, Michael E.

    2018-01-08

    Here, the MATHUSLA detector is a simple large-volume tracking detector to be located on the surface above one of the general-purpose experiments at the Large Hadron Collider. This detector was proposed to detect exotic, neutral, long-lived particles that might be produced in high-energy proton-proton collisions. In this paper, we consider the use of the limited information that MATHULSA would provide on the decay products of the long-lived particle. For the case in which the long-lived particle is pair-produced in Higgs boson decays, we show that it is possible to measure the mass of this particle and determine the dominant decaymore » mode with less than 100 observed events. We discuss the ability of MATHUSLA to distinguish the production mode of the long-lived particle and to determine its mass and spin in more general cases.« less

  16. Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure

    NASA Astrophysics Data System (ADS)

    Ghezavati, V. R.; Beigi, M.

    2016-12-01

    During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among established facilities and existing demand points. In this paper, the location-routing problem with time window (LRPTW) and homogeneous fleet type and designing a multi-echelon, and capacitated reverse logistics network, are considered which may arise in many real-life situations in logistics management. Our proposed RL network consists of hybrid collection/inspection centers, recovery centers and disposal centers. Here, we present a new bi-objective mathematical programming (BOMP) for LRPTW in reverse logistic. Since this type of problem is NP-hard, the non-dominated sorting genetic algorithm II (NSGA-II) is proposed to obtain the Pareto frontier for the given problem. Several numerical examples are presented to illustrate the effectiveness of the proposed model and algorithm. Also, the present work is an effort to effectively implement the ɛ-constraint method in GAMS software for producing the Pareto-optimal solutions in a BOMP. The results of the proposed algorithm have been compared with the ɛ-constraint method. The computational results show that the ɛ-constraint method is able to solve small-size instances to optimality within reasonable computing times, and for medium-to-large-sized problems, the proposed NSGA-II works better than the ɛ-constraint.

  17. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  18. The paired-object affordance effect.

    PubMed

    Yoon, Eun Young; Humphreys, Glyn W; Riddoch, M Jane

    2010-08-01

    We demonstrate that right-handed participants make speeded classification responses to pairs of objects that appear in standard co-locations for right-handed actions relative to when they appear in reflected locations. These effects are greater when participants "weight" information for action when deciding if 2 objects are typically used together, compared with deciding if objects typically occur in a given context. The effects are enhanced, and affect both types of decision, when an agent is shown holding the objects. However, the effects are eliminated when the objects are not viewed from the first-person perspective and when words are presented rather than objects. The data suggest that (a) participants are sensitive to whether objects are positioned correctly for their own actions, (b) the position information is coded within an egocentric reference frame, (c) the critical representation involved is visual and not semantic, and (d) the effects are enhanced by a sense of agency. The results can be interpreted within a dual-route framework for action retrieval in which a direct visual route is influenced by affordances for action.

  19. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams.

    PubMed

    Grad, Michael; Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J

    2012-12-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H + ), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ( 4 He ++ ). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  20. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    PubMed Central

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  1. Object detection in cinematographic video sequences for automatic indexing

    NASA Astrophysics Data System (ADS)

    Stauder, Jurgen; Chupeau, Bertrand; Oisel, Lionel

    2003-06-01

    This paper presents an object detection framework applied to cinematographic post-processing of video sequences. Post-processing is done after production and before editing. At the beginning of each shot of a video, a slate (also called clapperboard) is shown. The slate contains notably an electronic audio timecode that is necessary for audio-visual synchronization. This paper presents an object detection framework to detect slates in video sequences for automatic indexing and post-processing. It is based on five steps. The first two steps aim to reduce drastically the video data to be analyzed. They ensure high recall rate but have low precision. The first step detects images at the beginning of a shot possibly showing up a slate while the second step searches in these images for candidates regions with color distribution similar to slates. The objective is to not miss any slate while eliminating long parts of video without slate appearance. The third and fourth steps are statistical classification and pattern matching to detected and precisely locate slates in candidate regions. These steps ensure high recall rate and high precision. The objective is to detect slates with very little false alarms to minimize interactive corrections. In a last step, electronic timecodes are read from slates to automize audio-visual synchronization. The presented slate detector has a recall rate of 89% and a precision of 97,5%. By temporal integration, much more than 89% of shots in dailies are detected. By timecode coherence analysis, the precision can be raised too. Issues for future work are to accelerate the system to be faster than real-time and to extend the framework for several slate types.

  2. Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors

    DOEpatents

    Chaiken, Alison

    2000-01-01

    A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.

  3. Magneto-Radar Hidden Metal Detector

    DOEpatents

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  4. A Compton scattering setup for pulse shape discrimination studies in germanium detectors.

    PubMed

    von Sturm, K; Belogurov, S; Brugnera, R; Garfagnini, A; Lippi, I; Modenese, L; Rosso, D; Turcato, M

    2017-07-01

    Pulse shape discrimination is an important handle to improve sensitivity in low background experiments. A dedicated setup was built to investigate the response of high-purity germanium detectors to single Compton scattered events. Using properly collimated γ-ray sources, it is possible to select events with known interaction location. The aim is to correlate the position dependent signal shape with geometrical and electrical properties of the detector. We report on design and performance of the setup with a first look on data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of a spectroscopic detector for application in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is

  6. Subliminal spatial cues capture attention and strengthen between-object link.

    PubMed

    Chou, Wei-Lun; Yeh, Su-Ling

    2011-12-01

    According to the spreading hypothesis of object-based attention, a subliminal cue that can successfully capture attention to a location within an object should also cause attention to spread throughout the whole cued object and lead to the same-object advantage. Instead, we propose that a subliminal cue favors shifts of attention between objects and strengthens the between-object link, which is coded primarily within the dorsal pathway that governs the visual guidance of action. By adopting the two-rectangle method and using an effective subliminal cue to compare with the classic suprathreshold cue, we found a different result pattern with suprathreshold cues than with subliminal cues. The suprathreshold cue replicated the conventional location and object effects, whereas a subliminal cue led to a different-object advantage with a facilitatory location effect and a same-object advantage with an inhibitory location effect. These results support our consciousness-dependent shifting hypothesis but not the spreading hypothesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Test results from a comparative evaluation of a condensation nuclei fire detector

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.

    1985-01-01

    The fire/smoke alarm response of a condensation nuclei fire detector (CNFD) was compared with photoelectric and ionization detectors. Tests were conducted in a former control room 8.5 m by 8.9 with a 2.7 m ceiling. The room had air supplied from above the ceiling and under the floor with return air exiting from ceiling grills. The environment was varied from 278 to 305 K and relative humidities from 8 to 65%. Four detection zones were located in the room. Each zone contained a sampling head for the CNDF, a photodetector, and an ionization detector so that each detector system had four opportunities to alarm during tests. The particle level in the test room was also monitored during tests with a condensation nuclei particle counter. The CNFD responded to 90% of exposures to smoldering plastic and 84% of exposures to visible fire. The photoelectric response was 43 and 12.5% respectively for the same conditions. The ionization response was 9 and 48 respectively.

  8. Ship Effect Measurements With Fiber Optic Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize themore » muon contribution.« less

  9. Nuclear Emulsion Analysis Methods of Locating Neutrino Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Carolyn Lee

    2006-12-01

    The Fermilab experiment 872 (DONUT) was the first to directly observe tau neutrinos in the charged current interactionV more » $$\\tau$$+N →$$\\tau$$ +X. The observation was made using a hybrid emulsion-spectrometer detector to identify the signature kink or trident decay of the tau particle. Although nuclear emulsion has the benefit of sub-micron resolution, its use incorporates difficulties such as significant distortions and a high density of data resulting from its continuously active state. Finding events and achieving sub-micron resolution in emulsion requires a multi-pronged strategy of tracking and vertex location to deal with these inherent difficulties. By applying the methods developed in this thesis, event location efficiency can be improved from a value of 58% to 87%.« less

  10. Einstein-Podolsky-Rosen-entangled motion of two massive objects

    NASA Astrophysics Data System (ADS)

    Schnabel, Roman

    2015-07-01

    In 1935, Einstein, Podolsky, and Rosen (EPR) considered two particles in an entangled state of motion to illustrate why they questioned the completeness of quantum theory. In past decades, microscopic systems with entanglement in various degrees of freedom have successfully been generated, representing compelling evidence to support the completeness of quantum theory. Today, the generation of an EPR-entangled state of motion of two massive objects of up to the kilogram scale seems feasible with state-of-the-art technology. Recently, the generation and verification of EPR-entangled mirror motion in interferometric gravitational wave detectors was proposed, with the aim of testing quantum theory in the regime of macroscopic objects, and to make available nonclassical probe systems for future tests of modified quantum theories that include (nonrelativistic) gravity. The work presented here builds on these earlier results and proposes a specific Michelson interferometer that includes two high-quality laser mirrors of about 0.1 kg mass each. The mirrors are individually suspended as pendula and located close to each other, and cooled to about 4 K. The physical concepts for the generation of the EPR-entangled center-of-mass motion of these two mirrors are described. Apart from a test of quantum mechanics in the macroscopic world, the setup is envisioned to test predictions of yet-to-be-elaborated modified quantum theories that include gravitational effects.

  11. Association among US locations for orchardgrass production

    USDA-ARS?s Scientific Manuscript database

    Thirteen orchardgrass (Dacylis glomerata L.) cultivars were evaluated over four years at five U.S. field locations in Kentucky, Pennsylvania, Utah, Virginia, and Wisconsin. The objective was to determine the relationship among the five locations for orchardgrass agronomic performance. Cultivar by en...

  12. Detection of In Vivo Foot and Ankle Implants by Walkthrough Metal Detectors.

    PubMed

    Chan, Jeremy Y; Mani, Sriniwasan B; Williams, Phillip N; O'Malley, Martin J; Levine, David S; Roberts, Matthew M; Ellis, Scott J

    2014-08-01

    Heightened security concerns have made metal detectors a standard security measure in many locations. While prior studies have investigated the detection rates of various hip and knee implants, none have looked specifically at the detection of foot and ankle implants in an in vivo model. Our goals were to identify which commonly used foot and ankle implants would be detected by walkthrough metal detectors both in vivo and ex vivo. Over a 7-month period, 153 weightbearing patients with foot and ankle hardware were recruited to walk through a standard airport metal detector at 3 different program settings (buildings, airports, and airports enhanced) with a base sensitivity of 165 (arbitrary units), as currently used by the Transportation Security Administration. The number of implants, location and type, as well as the presence of concomitant hardware outside of the foot and ankle were recorded. To determine the detection rate of common foot and ankle implants ex vivo, different hardware sets were walked through the detector at all 3 program settings. Seventeen patients were found to have detectable hardware at the buildings, airports, and airports enhanced settings. An additional 3 patients had hardware only detected at the airports enhanced setting. All 20 of these patients had concomitant metal implants outside of the foot and ankle from other orthopaedic procedures. All patients with foot and ankle implants alone passed through undetected. Seven hardware sets were detected ex vivo at the airports enhanced setting. Our results indicate that patients with foot and ankle implants alone are unlikely to be detected by walkthrough metal detectors at standard airport settings. When additional hardware is present from orthopaedic procedures outside of the foot and ankle, metal detection rates were higher. We believe that these results are important for surgeons in order to educate patients on how they might be affected when walking through a metal detector such as while

  13. Geometric correction methods for Timepix based large area detectors

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Dudak, J.; Karch, J.; Krejci, F.

    2017-01-01

    X-ray micro radiography with the hybrid pixel detectors provides versatile tool for the object inspection in various fields of science. It has proven itself especially suitable for the samples with low intrinsic attenuation contrast (e.g. soft tissue in biology, plastics in material sciences, thin paint layers in cultural heritage, etc.). The limited size of single Medipix type detector (1.96 cm2) was recently overcome by the construction of large area detectors WidePIX assembled of Timepix chips equipped with edgeless silicon sensors. The largest already built device consists of 100 chips and provides fully sensitive area of 14.3 × 14.3 cm2 without any physical gaps between sensors. The pixel resolution of this device is 2560 × 2560 pixels (6.5 Mpix). The unique modular detector layout requires special processing of acquired data to avoid occurring image distortions. It is necessary to use several geometric compensations after standard corrections methods typical for this type of pixel detectors (i.e. flat-field, beam hardening correction). The proposed geometric compensations cover both concept features and particular detector assembly misalignment of individual chip rows of large area detectors based on Timepix assemblies. The former deals with larger border pixels in individual edgeless sensors and their behaviour while the latter grapple with shifts, tilts and steps between detector rows. The real position of all pixels is defined in Cartesian coordinate system and together with non-binary reliability mask it is used for the final image interpolation. The results of geometric corrections for test wire phantoms and paleo botanic material are presented in this article.

  14. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  15. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  16. Optical apparatus for laser scattering by objects having complex shapes

    DOEpatents

    Ellingson, William A.; Visher, Robert J.

    2006-11-14

    Apparatus for observing and measuring in realtime surface and subsurface characteristics of objects having complex shapes includes an optical fiber bundle having first and second opposed ends. The first end includes a linear array of fibers, where the ends of adjacent fibers are in contact and are aligned perpendicular to the surface of the object being studied. The second ends of some of the fibers are in the form of a polished ferrule forming a multi-fiber optical waveguide for receiving laser light. The second ends of the remaining fibers are formed into a linear array suitable for direct connection to a detector, such as a linear CMOS-based optical detector. The output data is analyzed using digital signal processing for the detection of anomalies such as cracks, voids, inclusions and other defects.

  17. Perceptual grouping allows for attention to cover noncontiguous locations and suppress capture from nearby locations.

    PubMed

    Kerzel, Dirk; Born, Sabine; Schönhammer, Josef

    2012-12-01

    A salient stimulus may interrupt visual search because of attentional capture. It has been shown that attentional capture occurs with a wide, but not with a small attentional window. We tested the hypothesis that capture depends more strongly on the shape of the attentional window than on its size. Search elements were arranged in two nested rings. The ring containing the search target remained fixed, while a salient color singleton occurred either in the same or in the other ring. We observed that color singletons only disrupted search when shown in the same ring as the search target. It is important to note that, when focusing on the outer array, which presumably required a larger attentional window, singletons on the inner array did not capture attention. In contrast to the original attentional window hypothesis, our results show that attentional capture does not always occur with a large attentional window. Rather, attention can be flexibly allocated to the set of relevant stimulus locations and attentional capture is confined to the attended locations. Further experiments showed that attention was allocated to search elements that were perceptually grouped into "whole" or "Gestalt"-like objects, which prevented attentional capture from nearby locations. However, when attention was allocated to noncontiguous locations that did not form a perceptual Gestalt, nearby locations elicited attentional capture. Perceptual grouping could be based on a combination of color and position, but not on color alone. Thus, the allocation of attention to Gestalt-like objects that were jointly defined by similarity and proximity prevented attentional capture from nearby locations.

  18. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    PubMed

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  19. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  20. In-flight performance of the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.

    1991-01-01

    An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.

  1. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozguner, O; Halliburton, S; Dhanantwari, A

    2016-06-15

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation frommore » water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used

  2. Spectacular science: the lie detector's ambivalent powers.

    PubMed

    Bunn, Geoffrey C

    2007-05-01

    Spectacular science is a mode of scientific inquiry that is created and sustained by popular culture. In this article, I provide evidence for this claim by examining the history of the lie detector. Throughout the 20th century, the technology was nurtured by newspaper and magazine articles, movies, comic books, television shows, and advertisements. Analysis of this rich archive reveals the instrument to be, on the one hand, an automatically functioning machine, the epitome of science. But on the other hand, the lie detector is also a totemistic object that requires the skills of a charismatic magician to work at all. Nevertheless, the instrument was untroubled by such apparent contradictions, because it operated according to a spectacular mode of governance.

  3. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, Thomas W.

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  4. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  5. A study of satellite emergency locator systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Satellite emergency locator systems were studied. The objective of the study was to determine the feasibility and hardware requirements for satellite systems capable of identifying and locating the position emergency locator transmitters and emergency position indicating radio beacons. Both geosynchronous and near-polar-orbiting satellites were considered. One of the most important aspects of the study was to minimize the cost of the hardware required.

  6. Particle identification for a future EIC detector

    NASA Astrophysics Data System (ADS)

    Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.

    2018-03-01

    In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results

  7. On Using Intensity Interferometry for Feature Identification and Imaging of Remote Objects

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Strekalov, Dmitry V.; Yu, Nan

    2013-01-01

    We derive an approximation to the intensity covariance function of two scanning pinhole detectors, facing a distant source (e.g., a star) being occluded partially by an absorptive object (e.g., a planet). We focus on using this technique to identify or image an object that is in the line-of-sight between a well-characterized source and the detectors. We derive the observed perturbation to the intensity covariance map due to the object, showing that under some reasonable approximations it is proportional to the real part of the Fourier transform of the source's photon-flux density times the Fourier transform of the object's intensity absorption. We highlight the key parameters impacting its visibility and discuss the requirements for estimating object-related parameters, e.g., its size, velocity or shape. We consider an application of this result to determining the orbit inclination of an exoplanet orbiting a distant star. Finally, motivated by the intrinsically weak nature of the signature, we study its signal-to-noise ratio and determine the impact of system parameters.

  8. Analysis of long-lived particle decays with the MATHUSLA detector

    NASA Astrophysics Data System (ADS)

    Curtin, David; Peskin, Michael E.

    2018-01-01

    The MATHUSLA detector is a simple large-volume tracking detector to be located on the surface above one of the general-purpose experiments at the Large Hadron Collider. This detector was proposed in [J. P. Chou, D. Curtin, and H. J. Lubatti, Phys. Lett. B 767, 29 (2017), 10.1016/j.physletb.2017.01.043] to detect exotic, neutral, long-lived particles that might be produced in high-energy proton-proton collisions. In this paper, we consider the use of the limited information that MATHULSA would provide on the decay products of the long-lived particle. For the case in which the long-lived particle is pair-produced in Higgs boson decays, we show that it is possible to measure the mass of this particle and determine the dominant decay mode with less than 100 observed events. We discuss the ability of MATHUSLA to distinguish the production mode of the long-lived particle and to determine its mass and spin in more general cases.

  9. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  10. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  11. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults

    PubMed Central

    Külzow, Nadine; Cavalcanti de Sousa, Angelica Vieira; Cesarz, Magda; Hanke, Julie-Marie; Günsberg, Alida; Harder, Solvejg; Koblitz, Swantje; Grittner, Ulrike; Flöel, Agnes

    2018-01-01

    Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and

  12. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults.

    PubMed

    Külzow, Nadine; Cavalcanti de Sousa, Angelica Vieira; Cesarz, Magda; Hanke, Julie-Marie; Günsberg, Alida; Harder, Solvejg; Koblitz, Swantje; Grittner, Ulrike; Flöel, Agnes

    2017-01-01

    Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and

  13. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  14. Attribute conjunctions and the part configuration advantage in object category learning.

    PubMed

    Saiki, J; Hummel, J E

    1996-07-01

    Five experiments demonstrated that in object category learning people are particularly sensitive to conjunctions of part shapes and relative locations. Participants learned categories defined by a part's shape and color (part-color conjunctions) or by a part's shape and its location relative to another part (part-location conjunctions). The statistical properties of the categories were identical across these conditions, as were the salience of color and relative location. Participants were better at classifying objects defined by part-location conjunctions than objects defined by part-color conjunctions. Subsequent experiments revealed that this effect was not due to the specific color manipulation or the role of location per se. These results suggest that the shape bias in object categorization is at least partly due to sensitivity to part-location conjunctions and suggest a new processing constraint on category learning.

  15. Results from the First Beam-Induced Reconstructed Tracks in the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Rodrigues, E.

    2010-04-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare b decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of B-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 μm thick half disc sensors with R and Φ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO2 cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relative timing alignment between the sensors and for the first evaluation of the spatial alignment. Using this track sample the VELO has been aligned to an accuracy of 5 μm. A single hit resolution of 10 μm was obtained at the smallest pitch for tracks of perpendicular incidence. The design and the main components of the detector system are introduced. The commissioning of the detector is reported and the talk will focus on the results obtained using the first beam-induced reconstructed tracks.

  16. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  17. Design and construction of the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.

  18. Design and construction of the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-02-01

    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.

  19. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  20. Design and Implementation of a Fuzzy Accident Detector

    NASA Astrophysics Data System (ADS)

    Jafari, Shahram; Arabnejad, Mohammad; Rashidi Moakhar, Ali

    A fuzzy accident detector has been proposed in this paper. The implemented controller ensures a reliable margin for the speed of a car. This is done by carefully observing the skills of the driver in controlling the automobile during a critical condition. Since x- and y- accelerations of the automobile change sharply during an accident, such conditions can be detected. The system also updates the speed limits in different locations on the road.